JP5757085B2 - Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method - Google Patents

Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method Download PDF

Info

Publication number
JP5757085B2
JP5757085B2 JP2010286601A JP2010286601A JP5757085B2 JP 5757085 B2 JP5757085 B2 JP 5757085B2 JP 2010286601 A JP2010286601 A JP 2010286601A JP 2010286601 A JP2010286601 A JP 2010286601A JP 5757085 B2 JP5757085 B2 JP 5757085B2
Authority
JP
Japan
Prior art keywords
magnesium alloy
coil material
plate
flatness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010286601A
Other languages
Japanese (ja)
Other versions
JP2012130957A (en
Inventor
北村 貴彦
貴彦 北村
大石 幸広
幸広 大石
河部 望
望 河部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010286601A priority Critical patent/JP5757085B2/en
Publication of JP2012130957A publication Critical patent/JP2012130957A/en
Application granted granted Critical
Publication of JP5757085B2 publication Critical patent/JP5757085B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、マグネシウム合金部材の素材に適したマグネシウム合金コイル材及びその製造方法、このコイル材により製造したマグネシウム合金部材及びその製造方法に関するものである。特に、平坦性及び塑性加工性に優れるマグネシウム合金コイル材に関するものである。   The present invention relates to a magnesium alloy coil material suitable for a raw material of a magnesium alloy member and a manufacturing method thereof, a magnesium alloy member manufactured using the coil material, and a manufacturing method thereof. In particular, the present invention relates to a magnesium alloy coil material excellent in flatness and plastic workability.

携帯電話やノート型コンピュータといった携帯用電気・電子機器類の筐体、自動車用部品などの各種の部材の構成材料として、マグネシウム合金が検討されている。マグネシウム合金は、軽量で、比強度・比剛性が高く、衝撃吸収性に優れるものの、六方晶の結晶構造(hcp構造)を有することから、室温での塑性加工性に乏しい。そのため、マグネシウム合金からなる部材は、ダイキャスト法やチクソモールド法による鋳造材(例えば、ASTM規格のAZ91合金)が主流である。しかし、上記鋳造方法では薄い板材、特に、上記各種の部材を大量生産にするにあたり、その素材に適した長尺な板材を製造することが困難である。   Magnesium alloys have been studied as constituent materials for various members such as casings for portable electric and electronic devices such as mobile phones and notebook computers, and automobile parts. Magnesium alloys are lightweight, have high specific strength / specific rigidity, and are excellent in impact absorption, but have a hexagonal crystal structure (hcp structure), and therefore have poor plastic workability at room temperature. Therefore, a member made of a magnesium alloy is mainly a cast material (for example, ASTM standard AZ91 alloy) by a die-cast method or a thixomold method. However, in the above casting method, it is difficult to produce a thin plate material, in particular, a long plate material suitable for the material when mass-producing the various members.

一方、ASTM規格のAZ31合金に代表される展伸用マグネシウム合金は、比較的塑性加工を施し易いため、当該合金からなる鋳造板に圧延やプレス加工を施した部材が使用されつつある。特許文献1では、AZ91合金と同程度のAlを含有する合金からなる圧延板にロールレベラにより曲げを付与して、せん断帯を残存させた板材を開示している。この板材は、プレス加工時に再結晶を連続的に生じることができ、プレス成形性に優れる。また、AZ91合金や当該合金と同等程度のAlを含有する合金は、耐食性や強度が高いことから、今後、展伸材としての需要が高まると期待される。   On the other hand, since a magnesium alloy for extension represented by ASTM standard AZ31 alloy is relatively easy to be plastically processed, a member obtained by rolling or pressing a cast plate made of the alloy is being used. Patent Document 1 discloses a plate material in which a rolled plate made of an alloy containing Al at the same level as the AZ91 alloy is bent by a roll leveler to leave a shear band. This plate material can continuously generate recrystallization during press working, and is excellent in press formability. In addition, the AZ91 alloy and an alloy containing Al at the same level as the alloy have high corrosion resistance and strength, so that it is expected that the demand for wrought materials will increase in the future.

国際公開第2009/001516号International Publication No. 2009/001516

マグネシウム合金部材の生産性を向上することが望まれている。
マグネシウム合金部材の生産性を向上するためには、プレス加工などの塑性加工やその他の加工を行うにあたり、加工装置に素材を連続的に供給することが望まれる。例えば、長尺な圧延板などの板状材を円筒状に巻き取ったコイル材を素材に利用することで、上記加工装置に素材を連続的に供給することができる。
It is desired to improve the productivity of magnesium alloy members.
In order to improve the productivity of the magnesium alloy member, it is desired to continuously supply the raw material to the processing apparatus when performing plastic processing such as press processing or other processing. For example, a raw material can be continuously supplied to the said processing apparatus by using for the raw material the coil material which wound up plate-shaped materials, such as a long rolled board, in the cylindrical shape.

しかし、コイル材では、巻き癖などにより平坦性に劣る恐れがある。
コイル材の巻き取り径(内径)を小さくすると、長尺材でも小型にできるため、搬送や上記加工装置への設置などが容易である上に、上記加工装置に対して一つのコイル材から供給可能な素材量を多くでき、マグネシウム合金部材の生産性をより高められると期待される。しかし、巻き取り径が小さいと、特に、巻き取り径が1000mm以下であると、当該板状材に巻き癖が付き易く、変形や反りを有する恐れがある。
However, the coil material may be inferior in flatness due to winding curl or the like.
By reducing the coiling diameter (inner diameter) of the coil material, even long materials can be reduced in size, making it easy to transport and install in the processing equipment, and to supply the processing equipment from a single coil material. It is expected that the amount of possible materials can be increased and the productivity of magnesium alloy members can be further increased. However, when the winding diameter is small, in particular, when the winding diameter is 1000 mm or less, the plate-shaped material is likely to have curl and may have deformation or warpage.

巻き癖が付いた場合、コイル材を巻き戻しただけでは曲がっていて平坦にならない。このような曲がった板状材を加工装置に供給すると、プレス加工といった塑性加工や打ち抜き加工といった、形状を変化させるための加工を行うにあたり、加工装置の所定の位置に当該板状材を精度良く位置決めすることが困難である。その結果、塑性加工部材を精度良く製造できず、寸法不良により歩留まりが低下し、マグネシウム合金部材の生産性の低下を招く。加工装置に板状材を精度良く配置するために、別途、矯正などの加工を行うと、工程数の増加により、マグネシウム合金部材の生産性の低下を招く。   When a curl is attached, it is bent and does not become flat just by rewinding the coil material. When such a bent plate-shaped material is supplied to the processing device, the plate-shaped material is accurately placed at a predetermined position of the processing device when performing processing for changing the shape such as plastic processing such as press processing or punching processing. It is difficult to position. As a result, the plastic working member cannot be manufactured with high accuracy, and the yield is reduced due to a dimensional defect, leading to a decrease in productivity of the magnesium alloy member. If processing such as correction is performed separately in order to accurately arrange the plate-like material in the processing apparatus, the productivity of the magnesium alloy member is reduced due to an increase in the number of steps.

特許文献1に記載されるロールレベラを用いた処理を施すことで、平坦性に優れるマグネシウム合金板が得られる。しかし、上記処理を温間で行うことで、加熱設備や加熱のためのエネルギーが必要であり、マグネシウム合金部材の生産性の更なる向上が難しい。また、上記処理を温間で行うことで、圧延により導入された歪み(せん断帯)がある程度解放されることを防止できず、塑性加工性を更に高めることに限界がある。   By performing the treatment using the roll leveler described in Patent Document 1, a magnesium alloy plate having excellent flatness can be obtained. However, by performing the above-mentioned treatment warmly, heating equipment and energy for heating are required, and it is difficult to further improve the productivity of the magnesium alloy member. Further, by performing the above-mentioned treatment warmly, it is not possible to prevent the strain (shear band) introduced by rolling to be released to some extent, and there is a limit to further improving the plastic workability.

そこで、本発明の目的の一つは、平坦性及び塑性加工性に優れるマグネシウム合金コイル材、及びその製造方法を提供することにある。また、本発明の他の目的は、上記コイル材を用いて得られたマグネシウム合金部材、及びその製造方法を提供することにある。   Then, one of the objectives of this invention is providing the magnesium alloy coil material excellent in flatness and plastic workability, and its manufacturing method. Another object of the present invention is to provide a magnesium alloy member obtained by using the coil material and a method for producing the same.

本発明者らは、プレス成形品などのマグネシウム合金部材の素材として、マグネシウム合金からなるコイル材を対象として、特に、巻き戻した状態の板状材の平坦性を高める手法を種々検討した。上述のようにロールレベラにより矯正加工を施せば、平坦性を高められる。しかし、温間で矯正加工を施し、得られた板状材を加熱状態で巻き取ると、塑性加工性が高められているため変形し易く、板状材に巻き癖が付き易くなる。そのため、矯正加工を施したコイル材であっても、上述した加工装置に供給する直前に、再度、矯正を施す必要がある。これに対して、冷間で矯正加工を施して巻き取れば、巻き取った板状材に巻き癖がつき難く、一旦巻き取ったコイル材を巻き戻しても、当該板状材は平坦性に優れる。また、冷間で矯正加工を施すことで、歪み(せん断帯)の解放を防止し、歪みが十分に存在するコイル材とすることができ、塑性加工性の向上を図ることができる。   The present inventors have studied various methods for improving the flatness of a rewinded plate-like material, particularly for a coil material made of a magnesium alloy as a material of a magnesium alloy member such as a press-formed product. As described above, the flatness can be improved by correcting the roll leveler. However, when a straightening process is performed warmly and the obtained plate-shaped material is wound in a heated state, the plastic workability is improved, so that the plate-shaped material is easily deformed, and the plate-shaped material is likely to be curled. Therefore, even if it is the coil material which gave the correction process, it is necessary to correct again immediately before supplying to the processing apparatus mentioned above. On the other hand, if the sheet is wound after being straightened in a cold state, the wound plate-shaped material is less likely to be curled, and even if the coil material once wound is rewound, the plate-shaped material is flat. Excellent. Further, by performing the straightening process in the cold, it is possible to prevent the release of strain (shear band), to obtain a coil material with sufficient strain, and to improve the plastic workability.

しかし、マグネシウム合金は、室温(20℃〜25℃程度)での塑性加工性に劣る金属であり、冷間で矯正加工を行うと割れなどが生じる恐れがある。割れなどが生じないように曲げの付与度合いを調整すると、平坦性に優れるコイル材を得ることが難しい。本発明者らは、更に検討した結果、コイル材に特定の大きさの張力を加えた状態で矯正加工を行うと、冷間で矯正加工を施しても、割れなどが生じず、かつ平坦性にも非常に優れるコイル材が得られる、との知見を得た。また、得られたコイル材は、歪み(せん断帯)が十分に存在することで、プレス加工といった塑性加工を施したときに動的再結晶化が十分に生じて、塑性加工性に優れる、との知見を得た。本発明は、上記知見に基づくものである。   However, a magnesium alloy is a metal that is inferior in plastic workability at room temperature (about 20 ° C. to 25 ° C.), and cracking or the like may occur when straightening is performed in a cold state. When the degree of bending is adjusted so as not to cause cracks, it is difficult to obtain a coil material with excellent flatness. As a result of further investigation, the present inventors have found that, when correction processing is performed in a state where a specific magnitude of tension is applied to the coil material, cracks do not occur even if correction processing is performed cold, and flatness is achieved. In addition, it was found that an excellent coil material can be obtained. In addition, the obtained coil material has sufficient strain (shear band), sufficiently dynamic recrystallization occurs when plastic processing such as press processing is performed, and is excellent in plastic workability. I got the knowledge. The present invention is based on the above findings.

本発明のマグネシウム合金コイル材は、マグネシウム合金からなる板状材が円筒状に巻き取られたものであり、このコイル材の内径が1000mm以下である。そして、このコイル材を構成する板状材の残留応力が30MPa超であり、かつこのコイル材は、以下の平坦度を満たす。
(平坦度)
上記コイル材を構成する板状材のうち、最内周側に位置する板状材を長さ:1000mmに切断して試験片とし、この試験片を水平台に載置したとき、上記水平台の表面と、当該試験片の一面において上記水平台に接触しない箇所との鉛直方向の最大距離を平坦度とし、当該平坦度が5mm以下である。
The magnesium alloy coil material of the present invention is obtained by winding a plate material made of a magnesium alloy into a cylindrical shape, and the inner diameter of the coil material is 1000 mm or less. And the residual stress of the plate-shaped material which comprises this coil material is more than 30 MPa, and this coil material satisfy | fills the following flatness.
(Flatness)
Among the plate-like materials constituting the coil material, the plate-like material located on the innermost peripheral side is cut into a length: 1000 mm to form a test piece, and when this test piece is placed on a horizontal stand, the horizontal stand The maximum distance in the vertical direction between the surface of the test piece and a portion that does not contact the horizontal table on one surface of the test piece is defined as flatness, and the flatness is 5 mm or less.

本発明コイル材は、内径が1000mm以下と小さい。従って、本発明コイル材のうち、最内周側の板状材には、曲げ半径が500mm以下といった比較的きつい曲げが加えられた状態である。しかし、本発明コイル材を巻き戻すと、当該コイル材を構成する板状材は、上述のように高い平坦性を有している。即ち、上記板状材は、巻き癖がつき難い、或いは実質的についていない。従って、本発明コイル材を巻き戻した板状材をそのままプレス加工といった塑性加工や切断などの各種の加工を行う加工装置に供給する際、精度良く位置決めすることができる。   The coil material of the present invention has an inner diameter as small as 1000 mm or less. Therefore, among the coil materials of the present invention, the innermost peripheral plate-like material is in a state in which a relatively tight bending with a bending radius of 500 mm or less is applied. However, when the coil material of the present invention is rewound, the plate-like material constituting the coil material has high flatness as described above. That is, the plate-like material is difficult to be curled or substantially free from curling. Therefore, when the plate-like material to which the coil material of the present invention has been rewound is supplied as it is to a processing apparatus for performing various types of processing such as plastic processing such as press processing and cutting, positioning can be performed with high accuracy.

このような本発明コイル材を利用することで、上記塑性加工や切断などの加工直前に巻き癖による変形や反りを除去するための矯正工程自体を省略することができる。また、本発明コイル材は、後述するように冷間にて矯正加工を施して製造されることで、加熱に要するエネルギーも省略或いは低減でき、生産性に優れる。従って、本発明コイル材を利用することで、素材を塑性加工装置などの加工装置に連続的に供給できることから、箱などの立体形状や板などの平面形状など、種々の形状のマグネシウム合金部材を生産性良く製造することができる。このように本発明コイル材は、マグネシウム合金部材の素材に好適に利用できる上に、マグネシウム合金部材の生産性の向上に寄与することができると期待される。また、素材となる本発明コイル材が上述のように平坦性に優れるため、上述した各種の加工を精度良く行え、寸法精度に優れるマグネシウム合金部材が得られると期待される。   By using such a coil material of the present invention, it is possible to omit the correction process itself for removing deformation and warpage due to curling immediately before the plastic working or cutting. Further, the coil material of the present invention is manufactured by performing a straightening process in the cold as will be described later, so that the energy required for heating can be omitted or reduced, and the productivity is excellent. Therefore, since the raw material can be continuously supplied to a processing apparatus such as a plastic processing apparatus by using the coil material of the present invention, magnesium alloy members having various shapes such as a three-dimensional shape such as a box or a planar shape such as a plate can be used. It can be manufactured with high productivity. As described above, the coil material of the present invention can be suitably used as a material for a magnesium alloy member, and is expected to contribute to an improvement in productivity of the magnesium alloy member. Moreover, since the coil material of the present invention which is a material is excellent in flatness as described above, it is expected that a magnesium alloy member having excellent dimensional accuracy can be obtained by performing the above-described various processes with high accuracy.

ここで、後述する矯正加工が施されたコイル材は、当該コイル材を構成する板状材の表面の任意の方向に圧縮性の残留応力を有する。また、圧縮性の残留応力を有することは、上記矯正加工が施されていることを示す指標の一つや歪み(せん断帯)が存在することを示す指標の一つとして利用できる場合がある。本発明コイル材は、上記残留応力が十分に高い。換言すれば、本発明コイル材は、歪み(せん断帯)が十分に存在する。そのため、本発明コイル材は、塑性加工時に動的再結晶化が十分に生じることができ、塑性加工性に優れる。この点からも本発明コイル材は、塑性加工部材(本発明マグネシウム合金部材の一形態)の素材に好適に利用できる上に、塑性加工部材の生産性の向上に寄与することができると期待される。   Here, the coil material on which correction processing described later is performed has compressive residual stress in an arbitrary direction on the surface of the plate-like material constituting the coil material. In addition, having compressive residual stress may be used as one of an index indicating that the straightening process has been performed and one of an index indicating the presence of strain (shear band). The coil material of the present invention has a sufficiently high residual stress. In other words, the coil material of the present invention has sufficient strain (shear band). Therefore, the coil material of the present invention can sufficiently undergo dynamic recrystallization during plastic processing, and is excellent in plastic workability. From this point of view, the coil material of the present invention can be suitably used as a material for a plastic working member (one form of the magnesium alloy member of the present invention) and is expected to contribute to the improvement of the productivity of the plastic working member. The

本発明の一形態として、上記平坦度が0.5mm以下である形態が挙げられる。   As one form of this invention, the form whose said flatness is 0.5 mm or less is mentioned.

後述するように冷間でかつ張力を加えて矯正加工を施すことで、巻癖がつき難く、かつ矯正による効果も十分に得られることから、本発明コイル材は、平坦度が0.5mm以下といった平坦性に更に優れる形態とすることができる。   As will be described later, by applying a correction process by applying a cold and tension, it is difficult to curl and the effect of correction can be sufficiently obtained, so the coil material of the present invention has a flatness of 0.5 mm or less. It can be set as the form which is further excellent in flatness.

上記本発明コイル材や後述する本発明マグネシウム合金部材を構成するマグネシウム合金は、Mgに添加元素を含有した種々の組成のもの(残部:Mg及び不純物、、Mg:50質量%以上)が挙げられる。添加元素は、例えば、Al,Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,Ce,Sn,Li,Zr,Be,Ni,Au及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素が挙げられる。添加元素が多いほど、強度や耐食性などに優れるが、多過ぎると偏析による欠陥や塑性加工性の低下により割れなどが生じ易くなることから、添加元素の合計含有量は20質量%以下が好ましい。不純物は、例えば、Feなどが挙げられる。   Magnesium alloys constituting the coil material of the present invention and the magnesium alloy member of the present invention to be described later include those having various compositions containing Mg as an additive element (remainder: Mg and impurities, Mg: 50% by mass or more). . The additive element is selected from, for example, Al, Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, Ce, Sn, Li, Zr, Be, Ni, Au, and rare earth elements (excluding Y and Ce). And at least one element. The greater the added element, the better the strength and corrosion resistance. However, if the added element is too much, defects such as segregation and cracking are likely to occur due to a decrease in plastic workability, so the total content of the added elements is preferably 20% by mass or less. Examples of the impurity include Fe.

本発明の一形態として、上記マグネシウム合金が添加元素にAlを5.8質量%以上12質量%以下含有する形態が挙げられる。また、本発明の一形態として、上記マグネシウム合金が添加元素にAlを8.3質量%以上9.5質量%以下含有する形態が挙げられる。   As one form of this invention, the form in which the said magnesium alloy contains Al 5.8 mass% or more and 12 mass% or less is mentioned. In addition, as an embodiment of the present invention, an embodiment in which the magnesium alloy contains 8.3 mass% or more and 9.5 mass% or less of Al as an additive element can be mentioned.

Alを含有するMg-Al系合金は、耐食性に優れ、Al量が多いほど強度が向上し、耐食性にも優れる傾向にある。しかし、Alが、多過ぎると曲げを含む塑性加工性の低下を招き、圧延や矯正加工、その他種々の塑性加工の際に割れなどが生じる恐れがある。マグネシウム合金の塑性加工性を高めるために上記加工時のマグネシウム合金の温度を高めると、加熱のためのエネルギーや加熱時間が必要であり、マグネシウム合金部材の生産性の低下を招く。従って、Alの含有量は、5.8質量%以上12質量%以下が好ましく、8.3質量%以上9.5質量%以下であると、強度及び耐食性により優れて好ましい。Mg-Al系合金のAl以外の添加元素の合計含有量は、0.01質量%以上10質量%以下、特に0.1質量%以上5質量%以下が好ましい。   An Mg-Al alloy containing Al is excellent in corrosion resistance, and as the amount of Al increases, the strength improves and the corrosion resistance tends to be excellent. However, if the Al content is too large, the plastic workability including bending may be reduced, and cracking may occur during rolling, straightening, and other various plastic processing. If the temperature of the magnesium alloy at the time of the above processing is increased in order to increase the plastic workability of the magnesium alloy, energy and heating time for heating are required, which leads to a decrease in productivity of the magnesium alloy member. Accordingly, the content of Al is preferably 5.8% by mass or more and 12% by mass or less, and more preferably 8.3% by mass or more and 9.5% by mass or less because of excellent strength and corrosion resistance. The total content of additive elements other than Al in the Mg—Al alloy is preferably 0.01% by mass or more and 10% by mass or less, and particularly preferably 0.1% by mass or more and 5% by mass or less.

上記本発明コイル材は、例えば、以下の本発明製造方法により製造することができる。本発明のマグネシウム合金コイル材の製造方法は、マグネシウム合金を連続鋳造した鋳造材に圧延を施す工程と、得られた圧延板に矯正加工を施す工程と、得られた加工板を円筒状に巻き取って、内径が1000mm以下のコイル材を形成する工程とを具える。特に、上記矯正加工は、上記圧延板に30MPa以上150MPa以下の張力を加えた状態で冷間で行う。   The said coil material of this invention can be manufactured by the following this invention manufacturing methods, for example. The manufacturing method of the magnesium alloy coil material of the present invention includes a step of rolling a cast material obtained by continuously casting a magnesium alloy, a step of correcting the obtained rolled plate, and winding the obtained processed plate in a cylindrical shape. And a step of forming a coil material having an inner diameter of 1000 mm or less. In particular, the straightening process is performed in a cold state with a tension of 30 MPa or more and 150 MPa or less being applied to the rolled plate.

上記製造方法によれば、特定の条件(連続鋳造→圧延)で製造した素材(圧延板)に冷間で、かつ特定の張力を加えた状態で矯正加工を施すことで、平坦性に優れる上に、割れなどが実質的になく表面性状にも優れるマグネシウム合金コイル材が得られる。また、矯正加工を冷間(代表的には室温)で行うことで、素材は、圧延により導入された歪み(せん断帯)が実質的に解放されず、十分に残存できる。従って、上記製造方法によれば、平坦性に優れる上に、表面性状や塑性加工性にも優れるマグネシウム合金コイル材(本発明コイル材)を生産性よく製造できる。   According to the manufacturing method described above, the flatness is excellent by performing a straightening process in a cold and specific tension state on a material (rolled plate) manufactured under specific conditions (continuous casting → rolling). In addition, a magnesium alloy coil material having substantially no cracks and excellent surface properties can be obtained. Further, by performing the straightening process cold (typically at room temperature), the strain (shear band) introduced by the rolling is not substantially released, and the material can remain sufficiently. Therefore, according to the above production method, it is possible to produce a magnesium alloy coil material (the coil material of the present invention) that is excellent in flatness and excellent in surface properties and plastic workability with high productivity.

本発明マグネシウム合金コイル材は、平坦性及び塑性加工性に優れる。本発明マグネシウム合金コイル材の製造方法は、上記コイル材を生産性よく製造できる。本発明マグネシウム合金部材は、各種の構成部品に好適に利用できる。本発明マグネシウム合金部材の製造方法は、本発明マグネシウム合金部材の製造に好適に利用できる。   The magnesium alloy coil material of the present invention is excellent in flatness and plastic workability. The manufacturing method of the magnesium alloy coil material of the present invention can manufacture the coil material with high productivity. The magnesium alloy member of the present invention can be suitably used for various components. The manufacturing method of this invention magnesium alloy member can be utilized suitably for manufacture of this invention magnesium alloy member.

以下、本発明をより詳細に説明する。
[コイル材]
(組成)
本発明コイル材や後述する本発明マグネシウム合金部材を構成するマグネシウム合金は、Mgを母材とする、即ちMgを50質量%以上含有し、かつ上述のように種々の添加元素を含有した形態をとり得る。Alを含有するMg-Al系合金のより具体的な組成は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2質量%〜1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15質量%〜0.5質量%)、AS系合金(Mg-Al-Si系合金、Si:0.01質量%〜20質量%)、その他、Mg-Al-RE(希土類元素)系合金、AX系合金(Mg-Al-Ca系合金、Ca:0.2質量%〜6.0質量%)、AJ系合金(Mg-Al-Sr系合金、Sr:0.2質量%〜7.0質量%)などが挙げられる。Alを5.8質量%以上含有するAZ系合金は、例えば、AZ61合金、AZ80合金、AZ91合金(Al:8.3質量%〜9.5質量%、Zn:0.5質量%〜1.5質量%)が挙げられる。AZ91合金は、AZ31合金などの他のMg-Al系合金と比較して耐食性や強度、硬度といった機械的特性に優れ、汎用性もある。但し、Alの含有量が多いことで、硬度が高くなって塑性加工性に劣り、塑性加工時に割れなどが生じ易いことから、AZ91合金や当該合金と同程度のAlを含有する合金に対して、本発明製造方法を適用することで、平坦性に優れる上に、塑性加工性に優れる長尺な板材が得られる。
The present invention will be described in detail below.
[Coil material]
(composition)
The magnesium alloy constituting the coil material of the present invention and the magnesium alloy member of the present invention to be described later has Mg as a base material, that is, contains 50% by mass or more of Mg and contains various additive elements as described above. It can take. More specific compositions of Mg-Al alloys containing Al include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 mass% to 1.5 mass%), AM alloys (Mg -Al-Mn alloy, Mn: 0.15 mass% to 0.5 mass%), AS alloy (Mg-Al-Si alloy, Si: 0.01 mass% to 20 mass%), others, Mg-Al-RE (rare earth) Element) -based alloy, AX-based alloy (Mg-Al-Ca-based alloy, Ca: 0.2 mass% to 6.0 mass%), AJ-based alloy (Mg-Al-Sr-based alloy, Sr: 0.2 mass% to 7.0 mass%) Etc. Examples of the AZ-based alloy containing 5.8% by mass or more of Al include AZ61 alloy, AZ80 alloy, and AZ91 alloy (Al: 8.3% by mass to 9.5% by mass, Zn: 0.5% by mass to 1.5% by mass). The AZ91 alloy has excellent mechanical properties such as corrosion resistance, strength, and hardness as compared with other Mg-Al alloys such as the AZ31 alloy, and is also versatile. However, because the Al content is high, the hardness is high and the plastic workability is inferior, and cracking and the like are likely to occur during plastic processing, so for AZ91 alloy and alloys containing Al at the same level as the alloy By applying the production method of the present invention, it is possible to obtain a long plate material having excellent flatness and plastic workability.

その他、本発明コイル材や後述する本発明マグネシウム合金部材を構成するマグネシウム合金が、Y,Ce,Ca,及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有すると、耐熱性、難燃性に優れる。   In addition, the magnesium alloy constituting the coil material of the present invention and the magnesium alloy member of the present invention to be described later is a total of 0.001 mass of at least one element selected from Y, Ce, Ca and rare earth elements (excluding Y and Ce). % Or more, preferably 0.1% by mass or more and 5% by mass or less in total, excellent heat resistance and flame retardancy.

(形態)
本発明コイル材は、圧延板に矯正加工が施された加工板により構成される。
(Form)
The coil material of the present invention is composed of a processed plate obtained by correcting a rolled plate.

(内径)
内径が1000mm超である大径のコイル材では、当該コイル材を構成する板状材に付与される曲げが緩いため、特別な製造条件により製造しなくても巻き癖がつき難く(反りや変形が生じ難く)、平坦性に優れると考えられる。これに対し、本発明は、従来の製造方法では巻き癖がつき易いと考えられる、内径が1000mm以下のコイル材を対象とする。内径が小さいほど小型なコイル材となり、例えば、内径が300mm以下としてもよい。内径が400mm以上700mm以下のコイル材が利用し易いと考えられる。本発明コイル材の外径は、コイルの過剰な大型化を招かない範囲で適宜選択することができ、3000mm以下、特に2000mm以下が利用し易いと考えられる。
(Inner diameter)
For large-diameter coil materials with an inner diameter of more than 1000 mm, the bending imparted to the plate-like material constituting the coil material is loose, so that it is difficult to cause curl even if it is not manufactured under special manufacturing conditions (warping and deformation). It is considered that the flatness is excellent. On the other hand, the present invention is directed to a coil material having an inner diameter of 1000 mm or less, which is considered to be easily wrinkled by a conventional manufacturing method. The smaller the inner diameter, the smaller the coil material. For example, the inner diameter may be 300 mm or less. It is considered that coil materials having an inner diameter of 400 mm or more and 700 mm or less are easy to use. The outer diameter of the coil material of the present invention can be appropriately selected within a range that does not cause an excessive increase in the size of the coil, and it is considered that 3000 mm or less, particularly 2000 mm or less is easy to use.

(厚さ及び幅)
本発明コイル材を構成する板状材の厚さや幅は、代表的には、当該板状材により製造するマグネシウム合金部材の大きさに応じて適宜選択することができる。例えば、携帯用電気・電子機器の筐体などの素材に上記コイル材を利用する場合、このコイル材を構成する板状材の厚さは、0.02mm以上3.0mm以下、特に0.1mm以上1mm以下、同板状材の幅は50mm以上2000mm以下、特に100mm以上、更に200mm以上が利用し易いと考えられる。
(Thickness and width)
The thickness and width of the plate-like material constituting the coil material of the present invention can be typically selected as appropriate according to the size of the magnesium alloy member produced from the plate-like material. For example, when the coil material is used for a material such as a casing of a portable electric / electronic device, the thickness of the plate material constituting the coil material is 0.02 mm to 3.0 mm, particularly 0.1 mm to 1 mm. The width of the plate-like material is considered to be easy to use when it is 50 mm or more and 2000 mm or less, particularly 100 mm or more, and further 200 mm or more.

(平坦度)
本発明コイル材を構成する板状材は、上述のように平坦性に優れており、最も好ましい形態としては、上述した試験片の一面の実質的に全面が水平台に接触する、即ち、上述した平坦度が実質的に0mmである形態が挙げられる。平坦度が小さいほど上記板状材は平坦性に優れることから、3mm以下、更に1mm以下、とりわけ0.5mm以下がより好ましい。平坦度合いの測定には種々の方法が考えられるが、本発明では、自重変形による影響が小さいと考えられることから、上述の方法を採用する。上記試験片は、巻き取られた状態のときに外周側となっていた面、同内周側となっていた面のいずれを水平台に接する面として水平台に載置してもよい。上記外周側となっていた面を水平台に接する面とする場合の方が反り状態が現れ易く、上記鉛直方向の距離が大きくなる傾向にある。
(Flatness)
The plate-like material constituting the coil material of the present invention is excellent in flatness as described above, and in the most preferable form, substantially the entire surface of one surface of the above-mentioned test piece comes into contact with the horizontal base, that is, as described above. And the flatness is substantially 0 mm. The smaller the flatness is, the more excellent the flatness is. Therefore, 3 mm or less, further 1 mm or less, particularly 0.5 mm or less is more preferable. Various methods can be considered for measuring the degree of flatness. In the present invention, the above-described method is adopted because it is considered that the influence of the deformation due to its own weight is small. The test piece may be placed on the horizontal table with either the surface on the outer peripheral side or the surface on the inner peripheral side in the wound state as a surface in contact with the horizontal table. When the surface on the outer peripheral side is a surface in contact with a horizontal base, a warped state is more likely to appear, and the vertical distance tends to increase.

コイル材の最内周側に位置する板状材が上記特定の範囲の平坦度を満たせば、当該板状材よりも外周に位置する板状材は、曲げ径が大きく、緩やかな曲げが加えられた状態であるため、巻き癖がつき難くなっている。従って、上記外周側の板状材は、上記特定の範囲の平坦度を満たすため、本発明では、平坦度の測定にあたり、コイル材の最内周側の板状材を試験片に採用する。   If the plate-like material located on the innermost peripheral side of the coil material satisfies the flatness within the above specific range, the plate-like material located on the outer periphery of the plate-like material has a larger bending diameter and is subjected to gentle bending. Since it is in a state of being applied, it is difficult for the curl to stick. Therefore, since the plate material on the outer peripheral side satisfies the flatness in the specific range, in the present invention, the plate material on the innermost peripheral side of the coil material is used for the test piece in measuring the flatness.

(機械的特性)
〔引張強さ〕
本発明コイル材を構成する板状材は、組成や施された圧延などの製造条件にもよるが、同じ組成の場合、圧延が施されていることでダイキャスト材やチクソモールド材よりも強度に優れ、例えば、引張強さが280MPa以上を満たし得る。組成や製造条件によっては、引張強さが300MPa以上、更に320MPa以上を満たすことができる。室温での引張強さが450MPa以下であると、伸びなどの靭性も十分に有することができて好ましい。
(Mechanical properties)
〔Tensile strength〕
The plate material constituting the coil material of the present invention depends on the composition and manufacturing conditions such as applied rolling, but in the case of the same composition, it is stronger than the die-cast material or thixomold material because it is rolled. For example, the tensile strength can satisfy 280 MPa or more. Depending on the composition and manufacturing conditions, the tensile strength can satisfy 300 MPa or more, and further 320 MPa or more. It is preferable that the tensile strength at room temperature is 450 MPa or less because it can have sufficient toughness such as elongation.

〔0.2%耐力〕
上述のような高強度な板状材は、0.2%耐力にも優れ、例えば、230MPa以上を満たし得る。組成や製造条件によっては、0.2%耐力が250MPa以上を満たすことができる。室温での0.2%耐力が350MPa以下であると、伸びなどの靭性も十分に有することができて好ましい。
[0.2% yield strength]
The high-strength plate-like material as described above is excellent in 0.2% proof stress, and can satisfy, for example, 230 MPa or more. Depending on the composition and manufacturing conditions, 0.2% proof stress can satisfy 250 MPa or more. It is preferable that the 0.2% proof stress at room temperature is 350 MPa or less because it can have sufficient toughness such as elongation.

〔伸び〕
本発明コイル材を構成する板状材は、組成や製造条件にもよるが、高強度でありながら、優れた伸びを有する形態とすることができる。伸びが高いほど、コイル状に巻き取るときや矯正加工時の割れを低減できる上に、塑性加工時にも割れなどが生じ難い。例えば、伸びが1%以上、更に4%以上、特に5%以上、とりわけ8%以上である形態が挙げられる。引張強さや0.2%耐力が高いほど伸びが低下する傾向にあり、伸びの上限は15%程度と考えられる。なお、本発明コイル材は伸びが小さくても、上述のように歪み(せん断帯)が十分に存在して塑性加工時に連続的な再結晶が十分に生じることから、塑性加工性に優れる。
[Elongation]
Although the plate-like material constituting the coil material of the present invention depends on the composition and production conditions, it can have a form having excellent elongation while having high strength. The higher the elongation, the more the cracks during coiling or straightening can be reduced, and cracks are less likely to occur during plastic working. For example, there is a form in which the elongation is 1% or more, further 4% or more, particularly 5% or more, especially 8% or more. Elongation tends to decrease as tensile strength and 0.2% yield strength increase, and the upper limit of elongation is considered to be about 15%. Even if the coil material of the present invention has a small elongation, sufficient strain (shear band) exists as described above, and continuous recrystallization is sufficiently generated during plastic processing, so that it is excellent in plastic workability.

〔ビッカース硬度(Hv)〕
本発明コイル材を構成する板状材は、硬度も高い傾向があり、例えば、ビッカース硬度(Hv)が65以上、更に80以上を満たす形態が挙げられる。このような高硬度材であることで、本発明コイル材により製造されたマグネシウム合金部材は、傷がつき難い。ビッカース硬度は、後述する残留応力により主として変化し、残留応力が大きいほど、高硬度である傾向にある。
(Vickers hardness (Hv))
The plate-like material constituting the coil material of the present invention tends to have a high hardness, and examples thereof include a form satisfying a Vickers hardness (Hv) of 65 or more and further 80 or more. Due to such a high hardness material, the magnesium alloy member manufactured by the coil material of the present invention is hardly damaged. The Vickers hardness mainly changes depending on the residual stress described later, and the higher the residual stress, the higher the hardness.

〔残留応力〕
上記板状材は30MPa超といった非常に大きな圧縮性の残留応力を有する。このような板状材は、プレス加工といった塑性加工を行うときの温度域、代表的には200℃〜300℃の温間域で伸びが100%以上、更に150%以上となり得る。従って、この板状材は、種々の形状に対して十分に塑性変形を行え、塑性加工性に優れる。圧延条件、矯正条件にもよるが、残留応力が30MPa超100MPa以下程度、更に30MPa超70MPa以下程度や30MPa超60MPa以下程度のものが挙げられる。
[Residual stress]
The plate-like material has a very large compressive residual stress of over 30 MPa. Such a plate-like material can have an elongation of 100% or more, more preferably 150% or more in a temperature range when plastic processing such as press processing is performed, typically in a warm range of 200 ° C to 300 ° C. Therefore, this plate-like material can be sufficiently plastically deformed with respect to various shapes, and is excellent in plastic workability. Depending on the rolling conditions and straightening conditions, residual stresses of more than 30 MPa to 100 MPa or less, more than 30 MPa to 70 MPa or less, or more than 30 MPa to 60 MPa or less can be mentioned.

[マグネシウム合金部材]
本発明コイル材を巻き戻して、当該コイル材を構成する板状材に塑性加工を施す本発明マグネシウム合金部材の製造方法により、本発明マグネシウム合金部材が得られる。塑性加工は、プレス加工、深絞り加工、鍛造加工、曲げ加工などの種々の加工が採用できる。このような塑性加工が施された本発明マグネシウム合金部材は、代表的には、その全体に塑性加工が施されたもの、例えば、箱などの立体形状の塑性加工部材が挙げられる。その他、本発明マグネシウム合金部材は、上記板状材の一部にのみ塑性加工が施された形態、即ち、塑性加工部を有する形態も含む。塑性加工は、上記板状材を200℃〜300℃に加熱して施すと、割れなどが生じ難く、表面性状に優れるマグネシウム合金部材が得られる。また、上述のように高強度、高靭性な本発明コイル材を素材とすることで、本発明マグネシウム合金部材も高強度、高靭性である。
[Magnesium alloy parts]
The magnesium alloy member of the present invention is obtained by the method of manufacturing the magnesium alloy member of the present invention in which the coil material of the present invention is rewound and plastic processing is performed on the plate-like material constituting the coil material. Various processes such as pressing, deep drawing, forging, and bending can be employed for the plastic processing. The magnesium alloy member of the present invention subjected to such plastic working typically includes a plastic working member having a three-dimensional shape such as a box, which has been subjected to plastic working as a whole. In addition, the magnesium alloy member of the present invention includes a form in which only a part of the plate material is subjected to plastic working, that is, a form having a plastic working portion. When plastic working is performed by heating the above plate-like material to 200 ° C. to 300 ° C., a magnesium alloy member that is hardly cracked and has excellent surface properties can be obtained. Moreover, by using the coil material of the present invention having high strength and high toughness as described above, the magnesium alloy member of the present invention also has high strength and high toughness.

その他、本発明コイル材を巻き戻して、当該コイル材を構成する板状材に適宜切断や打ち抜きなどの形状を変化する種々の加工を施すことで、板状のマグネシウム合金部材とすることができる。   In addition, it is possible to obtain a plate-like magnesium alloy member by rewinding the coil material of the present invention and subjecting the plate-like material constituting the coil material to various processes such as cutting and punching as appropriate. .

得られたマグネシウム合金部材に、化成処理、陽極酸化処理などの防食処理、塗装、研磨、ダイヤカット加工などの表面加工などを行って、耐食性を更に向上させたり、機械的保護を図ったり、装飾性や意匠性、金属質感を高めて商品価値を高めたりすることができる。   The obtained magnesium alloy member is subjected to anticorrosion treatment such as chemical conversion treatment and anodizing treatment, surface treatment such as painting, polishing, diamond cutting, etc. to further improve corrosion resistance, mechanical protection, decoration The product value can be increased by improving the properties, design, and metal texture.

[製造方法]
以下、上記本発明製造方法の各工程をより詳細に説明する。
(鋳造)
本発明コイル材を構成する板状材を長尺材とするには、出発材となる鋳造材も長尺材であることが好ましい。長尺材が得られる鋳造方法として、連続鋳造法が好ましい。連続鋳造法は、急冷凝固が可能であるため、添加元素の含有量が多い場合でも偏析や酸化物などの内部欠陥を低減でき、圧延などの塑性加工性に優れる鋳造材が得られることからも好ましい。即ち、連続鋳造材では、圧延などの塑性加工時に上記内部欠陥が起点となって割れなどが生じ難い。特に、AZ91合金や当該合金と同程度のAlを含有する合金では、鋳造時、晶出物や偏析が生じ易く、鋳造後に圧延などの塑性加工を施しても、これら晶出物や偏析が残存し易い。これに対し、連続鋳造材とすることで、Alといった添加元素の含有量が多い合金種であっても、上記晶出物や偏析を低減し易い。連続鋳造法には、双ロール法、ツインベルト法、ベルトアンドホイール法といった種々の方法があるが、板状の鋳造材の製造には、双ロール法やツインベルト法、特に双ロール法が好適である。特に、WO/2006/003899に記載の鋳造方法で製造した鋳造材を利用することが好ましい。鋳造材の厚さ、幅、長さは所望の圧延板が得られるように適宜選択することができる。鋳造材の厚さは、厚過ぎると偏析が生じ易いため、10mm以下、特に5mm以下が好ましい。鋳造材の幅は、製造設備で製造可能な幅とすることができる。得られた連続鋳造材も円筒状に巻き取ると、次工程に搬送し易い。巻き取り時、鋳造材において特に巻き始め部分の温度が100℃〜200℃程度であると、AZ91合金といった割れが生じ易い合金種であっても曲げ易くなって巻き取り易い。
[Production method]
Hereafter, each process of the said manufacturing method of this invention is demonstrated in detail.
(casting)
In order to make the plate-like material constituting the coil material of the present invention a long material, it is preferable that the casting material as a starting material is also a long material. A continuous casting method is preferred as a casting method for obtaining a long material. Because the continuous casting method can be rapidly solidified, it can reduce internal defects such as segregation and oxides even when the content of additive elements is large, and a cast material with excellent plastic workability such as rolling can be obtained. preferable. That is, in the continuous cast material, cracks are hardly generated due to the above-mentioned internal defect as a starting point during plastic processing such as rolling. In particular, AZ91 alloy and alloys containing almost the same amount of Al as those alloys are prone to crystallization and segregation during casting, and these crystallization and segregation remain even after plastic processing such as rolling after casting. Easy to do. On the other hand, by using a continuous cast material, even if the alloy type has a high content of additive elements such as Al, it is easy to reduce the crystallized matter and segregation. There are various continuous casting methods such as a twin roll method, a twin belt method, and a belt-and-wheel method, but the twin roll method and the twin belt method, particularly the twin roll method are suitable for the production of a plate-shaped cast material. It is. In particular, it is preferable to use a cast material produced by the casting method described in WO / 2006/003899. The thickness, width, and length of the cast material can be appropriately selected so that a desired rolled sheet can be obtained. Since the thickness of the cast material is likely to be segregated if it is too thick, it is preferably 10 mm or less, particularly preferably 5 mm or less. The width of the cast material can be a width that can be manufactured by a manufacturing facility. When the obtained continuous cast material is also rolled up in a cylindrical shape, it is easy to convey to the next process. At the time of winding, when the temperature at the winding start portion is about 100 ° C. to 200 ° C. in the cast material, it is easy to bend and take up even an alloy type such as AZ91 alloy that is liable to crack.

(溶体化処理)
上記鋳造材に圧延を施す前に溶体化処理を施すと、鋳造材の組成を均質化したり、Alといった元素を含む析出物を再固溶させて靭性を高めたりできる。溶体化処理の条件は、加熱温度:350℃以上、特に380℃以上420℃以下、保持時間:0.5時間以上、特に1時間以上40時間以下が挙げられる。Mg-Al系合金である場合、Alの含有量が多いほど保持時間を長めにすることが好ましい。また、上記保持時間からの冷却工程において、水冷や衝風といった強制冷却などを利用して、冷却速度を速めると(好ましくは50℃/min以上)、粗大な析出物の析出を抑制できる。鋳造コイル材を利用する場合、溶体化処理は巻き取った状態で行ってもよいし(バッチ処理)、巻き戻して加熱炉などに連続的に鋳造材を導入して行ってもよい(連続処理)。
(Solution treatment)
When the solution treatment is performed before rolling the cast material, the composition of the cast material can be homogenized or the precipitate containing an element such as Al can be re-dissolved to increase the toughness. The conditions for the solution treatment include heating temperature: 350 ° C. or more, particularly 380 ° C. or more and 420 ° C. or less, holding time: 0.5 hour or more, particularly 1 hour or more and 40 hours or less. In the case of an Mg—Al-based alloy, it is preferable that the holding time be longer as the Al content is higher. Further, in the cooling step from the above holding time, if the cooling rate is increased by using forced cooling such as water cooling or blast (preferably 50 ° C./min or more), precipitation of coarse precipitates can be suppressed. When using a cast coil material, the solution treatment may be performed in a wound state (batch process), or may be performed by rewinding and continuously introducing the cast material into a heating furnace (continuous process). ).

(圧延)
上記鋳造材や溶体化処理材に施す圧延は、当該鋳造材を含む素材(圧延を施す対象)を150℃以上400℃以下に加熱して行う温間圧延、或いは熱間圧延の工程を含むことが好ましい。素材を上記温度に加熱して圧延を行うことで、1パスあたりの圧下率を高めた場合にも圧延中に割れなどが生じ難く好ましい。上記温度を150℃以上とすることで、圧延時、素材に割れなどが生じ難く、加熱温度を高めるほど、割れなどが少なくなるが、400℃超では、圧延ロールの熱劣化が生じたり、圧延板表面の焼付きなどによる劣化や、圧延板を構成する結晶粒の粗大化により得られる圧延板の機械的特性の低下を招いたりなどする。従って、上記加熱温度は、350℃以下、更に300℃以下、特に280℃以下、とりわけ150℃以上250℃以下とすると上記熱的な劣化や結晶粒の粗大化を抑制し易い。素材の加熱には、雰囲気炉(ヒートボックス)などを利用することが挙げられる。圧延ロールを加熱してもよい。圧延ロールの加熱温度は、100℃〜250℃が挙げられる。素材と圧延ロールとの双方を加熱してもよい。なお、圧下率は、圧延前の素材の厚さをt0、圧延後の圧延板の厚さをt1とするとき、{(t0-t1)/t0}×100で表される値である。
(rolling)
The rolling applied to the cast material and the solution-treated material includes a warm rolling process or a hot rolling process in which a material (target to be rolled) containing the cast material is heated to 150 ° C. or higher and 400 ° C. or lower. Is preferred. It is preferable that the rolling is performed by heating the material to the above temperature, so that cracking and the like are hardly generated during rolling even when the rolling reduction per pass is increased. When the temperature is set to 150 ° C. or higher, cracks and the like are less likely to occur during rolling, and the higher the heating temperature, the fewer cracks and the like. Deterioration due to seizure of the surface of the plate or reduction of mechanical properties of the rolled plate obtained by coarsening of the crystal grains constituting the rolled plate may be caused. Therefore, if the heating temperature is 350 ° C. or less, further 300 ° C. or less, particularly 280 ° C. or less, particularly 150 ° C. or more and 250 ° C. or less, the thermal deterioration and the coarsening of crystal grains can be easily suppressed. For heating the material, an atmosphere furnace (heat box) or the like can be used. The rolling roll may be heated. As for the heating temperature of a rolling roll, 100 to 250 degreeC is mentioned. You may heat both a raw material and a rolling roll. Incidentally, rolling reduction, the thickness of the pre-rolling stock t 0, when the thickness of the rolled sheet after rolling and t 1, is represented by {(t 0 -t 1) / t 0} × 100 Value.

圧延は、1パスでも複数パス行ってもよいが、少なくとも1パスは、上記温間圧延を含むことが好ましい。複数パスの圧延を行う場合、例えば、素材(圧延を施す対象)の加熱温度や圧延ロールの温度、圧下率、ライン速度などの条件をパスごとに変更することができる。複数パスの圧延を行うことで、厚さが薄い板状材が得られる上に、板状材の平均結晶粒径を小さくしたり(例えば、10μm以下、好ましくは5μm以下)、プレス加工といった塑性加工性を高められる。所望の厚さ及び幅の板状材が得られるように、パス数、各パスの圧下率、及び総圧下率を適宜選択するとよい。例えば、1パスあたりの圧下率は、5%以上40%以下、総圧下率は、75%以上85%以下が挙げられる。複数パスの圧延を行う場合、パス間に中間熱処理(加熱温度:150℃〜350℃(好ましくは300℃以下)、保持時間:0.5時間〜3時間)を行ってもよい。また、上記圧延は、潤滑剤を適宜利用すると、圧延時の摩擦抵抗を低減でき、素材の焼き付きなどを防止して、圧延を施し易い。   The rolling may be performed in one pass or a plurality of passes, but at least one pass preferably includes the warm rolling. When performing rolling of a plurality of passes, for example, conditions such as the heating temperature of the raw material (target to be rolled), the temperature of the rolling roll, the rolling reduction, and the line speed can be changed for each pass. By performing multiple passes of rolling, a thin plate-like material can be obtained, and the average crystal grain size of the plate-like material can be reduced (for example, 10 μm or less, preferably 5 μm or less), or plasticity such as pressing. Processability can be improved. The number of passes, the reduction rate of each pass, and the total reduction rate may be appropriately selected so that a plate-like material having a desired thickness and width can be obtained. For example, the rolling reduction per pass is 5% to 40%, and the total rolling reduction is 75% to 85%. When performing multiple passes of rolling, intermediate heat treatment (heating temperature: 150 ° C. to 350 ° C. (preferably 300 ° C. or less), holding time: 0.5 hours to 3 hours) may be performed between passes. Moreover, when the said rolling uses suitably a lubricant, the frictional resistance at the time of rolling can be reduced, the burning of a raw material etc. is prevented and it is easy to perform rolling.

(前処理)
上記圧延後に得られた圧延コイル材にそのまま矯正加工を施してもよいが、矯正前に研削処理を施して、圧延板の表面に存在する疵や付着している加工油(例えば、潤滑剤)、上記表面に形成された酸化層などを除去して、上記表面を清浄かつ平滑にすることができる。このような表面性状に優れる板状材は、矯正加工を均一的に施し易い。また、例えば、後述するように矯正加工に用いる一対の矯正ローラ間のギャップを比較的大きくして最大押込量が小さい場合にも、上記表面性状に優れる板材を矯正加工に供することで、平坦性に優れるコイル材を得易い。研削処理は、例えば、研削ベルトを用いた湿式処理が挙げられる。
(Preprocessing)
The rolled coil material obtained after the rolling may be subjected to straightening as it is, but is subjected to a grinding treatment before straightening, and wrinkles present on the surface of the rolled plate and attached processing oil (for example, lubricant) The oxide layer and the like formed on the surface can be removed to clean and smooth the surface. Such a plate-like material having excellent surface properties is easily subjected to correction processing uniformly. In addition, for example, even when the gap between a pair of straightening rollers used for straightening is relatively large and the maximum indentation amount is small as described later, flatness is obtained by using the plate material having excellent surface properties for straightening. It is easy to obtain a coil material excellent in Examples of the grinding process include a wet process using a grinding belt.

(矯正)
上記矯正加工は、圧延後、圧延板を巻き取ることで当該圧延板に付いた巻き癖(主として長手方向の反り)や幅方向の反りの修正・除去、圧延時に導入された歪み(残留歪み)量の調整などにより、平坦性の向上、かつせん断帯の維持による良好な塑性加工性の保持を目的として行う。この矯正加工時の素材の温度を冷間、具体的には100℃未満とすることで、圧延により導入された歪みが実質的に解放されず、素材にせん断帯が十分に存在して塑性加工性に優れるコイル材が得られる。素材を100℃未満の範囲で加熱すると、素材の塑性加工性を向上でき、上記巻き癖の矯正などを行い易い。一方、素材を加熱せず素材の温度を室温とすると、塑性加工性により優れるコイル材が得られる上に、加熱のための設備及びエネルギーが不要であり、本発明コイル材の生産性に優れ、本発明マグネシウム合金部材の生産性の向上にも寄与することができる。
(Correction)
The above correction processing is, after rolling, by rolling up the rolled plate, correction and removal of curled wrinkles (mainly warpage in the longitudinal direction) and warpage in the width direction attached to the rolled plate, strain introduced during rolling (residual strain) The purpose is to improve the flatness and maintain good plastic workability by maintaining the shear band by adjusting the amount. By setting the temperature of the material during this straightening process to cold, specifically less than 100 ° C, the strain introduced by rolling is not substantially released, and there is sufficient shear band in the material for plastic working. A coil material having excellent properties can be obtained. When the material is heated in a range of less than 100 ° C., the plastic workability of the material can be improved, and the above curl is easily corrected. On the other hand, when the temperature of the material is set to room temperature without heating the material, a coil material that is superior in plastic workability is obtained, and heating equipment and energy are unnecessary, and the productivity of the coil material of the present invention is excellent. The present invention can also contribute to the improvement of productivity of the magnesium alloy member.

上記矯正加工は、素材を挟むように配置される隣接する一対の矯正ローラを少なくとも一組通過させて曲げを付与することで行うことが挙げられる。例えば、特許文献1に記載される歪み付与手段を利用することができる。室温で矯正加工を行う場合、加熱手段や加熱状態を保持する保温手段などを省略することができる。   The straightening process may be performed by passing at least one pair of adjacent straightening rollers arranged so as to sandwich the material and applying bending. For example, the strain applying means described in Patent Document 1 can be used. When straightening is performed at room temperature, the heating means, the heat retaining means for maintaining the heating state, and the like can be omitted.

更に、上記矯正加工は、素材に特定の大きさの張力を加えて行う。ここで、圧延コイル材といった長尺材に連続的に矯正加工を施す場合、繰出しリールに素材を設置して巻き戻し、巻取りリールで巻き取ることで、当該素材を、繰出しリールと巻取りリールとの間を走行させて矯正加工を行うことが挙げられる。上記走行のために素材に加えられる張力は実質的に0であり(せいぜい3MPa以下程度)、実質的に張力が加わっていない状態である。これに対して、30MPa以上の張力を加えることで、冷間であっても割れなどを生じることなく平坦性に優れるコイル材が得られ、付与する張力が大きくなるほど板状材の平坦性を高められる傾向にある。一方、付与する張力を150MPa以下とすることで素材が破断することなく、板状材の平坦性を高められる。より好ましい張力は、40MPa以上120MPa以下である。張力は、上記繰出しリール及び巻取りリールの回転速度により調整したり、ダンサロールを具える張力調整装置を適宜利用したりすることができる。   Further, the straightening process is performed by applying a specific amount of tension to the material. Here, when continuous correction processing is performed on a long material such as a rolled coil material, the material is placed on the supply reel, rewound, and taken up by the take-up reel, so that the material is supplied to the supply reel and the take-up reel. It is mentioned that the straightening process is performed by running between the two. The tension applied to the material for the traveling is substantially 0 (at most about 3 MPa or less), and the tension is not substantially applied. On the other hand, by applying a tension of 30 MPa or more, a coil material with excellent flatness can be obtained without causing cracks even when it is cold, and the flatness of the plate-like material increases as the applied tension increases. It tends to be. On the other hand, when the applied tension is 150 MPa or less, the flatness of the plate material can be improved without breaking the material. A more preferable tension is 40 MPa or more and 120 MPa or less. The tension can be adjusted by the rotation speed of the feeding reel and the take-up reel, or a tension adjusting device including a dancer roll can be used as appropriate.

矯正加工後に得られる加工板の平坦度や加工板に存在するせん断帯の量の調整は、例えば、上記矯正ローラの径、通過させる矯正ローラの数、素材を挟むように配置される一対の矯正ローラ間のギャップ(両矯正ローラによる最大押込量)、素材の進行方向において隣り合う矯正ローラ間の距離、素材の走行速度、付与する張力などを調整することが挙げられる。例えば、矯正ローラの径:φ10mm〜50mm程度、矯正ローラの合計数:10本〜40本程度、最大押込量:-4.0mm〜0mm程度が挙げられる。   The adjustment of the flatness of the processed plate obtained after the correction processing and the amount of the shear band existing on the processed plate are, for example, the diameter of the correction roller, the number of correction rollers to be passed, and a pair of corrections arranged so as to sandwich the material. Examples include adjusting the gap between the rollers (maximum pressing amount by both the correction rollers), the distance between the correction rollers adjacent to each other in the moving direction of the material, the traveling speed of the material, the tension to be applied, and the like. For example, the diameter of the straightening roller is about φ10 mm to 50 mm, the total number of straightening rollers is about 10 to 40, and the maximum pushing amount is about −4.0 mm to 0 mm.

このように圧延後に最終熱処理(焼鈍)を行わず、矯正加工を特に冷間で行うことで得られたコイル材は、上述のように圧延により導入された歪み(せん断帯)が実質的にそのまま残存した状態、或いは十分に残存した状態であり、塑性加工時に動的な再結晶を十分に生じることができる。   As described above, the coil material obtained by performing the straightening process in particular cold without performing the final heat treatment (annealing) after rolling is substantially free from the strain (shear band) introduced by rolling as described above. The remaining state or the sufficiently remaining state can sufficiently generate dynamic recrystallization during plastic working.

上記鋳造後の溶体化処理以降、最終製品(マグネシウム合金部材)が得られるまでの工程において、マグネシウム合金からなる素材が150℃〜300℃に保持される総合計時間を0.5時間〜12時間(好ましくは1時間〜6時間)とし、300℃超の加熱がなされないようにすると、微細な金属間化合物(例えば、平均粒径:0.5μm以下)が均一的に分散した組織(例えば、上記金属間化合物の合計面積割合が11%以下である組織)とすることができる。このような組織を有するマグネシウム合金部材は、耐食性や耐衝撃性に優れる。   After the solution treatment after casting, until the final product (magnesium alloy member) is obtained, the total time for which the material made of the magnesium alloy is maintained at 150 ° C. to 300 ° C. is 0.5 hours to 12 hours (preferably 1 hour to 6 hours), and when heating above 300 ° C. is not performed, a structure in which fine intermetallic compounds (for example, average particle size: 0.5 μm or less) are uniformly dispersed (for example, between the above metals) A structure in which the total area ratio of the compound is 11% or less). A magnesium alloy member having such a structure is excellent in corrosion resistance and impact resistance.

(その他の処理)
得られた平坦性に優れるコイル材は、そのままでもプレス加工などの塑性加工部材の素材に利用することができる。このコイル材にプレス加工などの塑性加工や切断などの種々の加工を施す前に、上述した湿式ベルト研磨などの研削処理を施してもよい。研削処理により、上述のように素材表面の疵や加工油、酸化層などを除去して、清浄かつ平滑な表面を有するコイル材にすることができる。また、上記塑性加工や切断などの種々の加工前に、或いは加工後に、化成処理や陽極酸化処理などの防食処理を施すことができる。
(Other processing)
The obtained coil material having excellent flatness can be used as a raw material for plastic working members such as press working as it is. The coil material may be subjected to grinding processing such as wet belt polishing described above before being subjected to plastic processing such as press processing or various processing such as cutting. By the grinding process, wrinkles, processing oil, oxide layers, and the like on the surface of the material can be removed as described above to obtain a coil material having a clean and smooth surface. Further, before or after various processes such as plastic processing and cutting, anticorrosion treatment such as chemical conversion treatment and anodizing treatment can be performed.

以下、試験例を挙げて、本発明のより具体的な実施の形態を説明する。
<試験例>
種々の条件でマグネシウム合金からなる板状材を作製し、平坦度及び残留応力を調べた。この試験では、マグネシウム合金として、AZ91合金相当の組成からなるコイル材及びシート材を作製した。
Hereinafter, more specific embodiments of the present invention will be described with reference to test examples.
<Test example>
Plate-like materials made of magnesium alloy were prepared under various conditions, and the flatness and residual stress were examined. In this test, a coil material and a sheet material having a composition equivalent to AZ91 alloy were produced as a magnesium alloy.

[コイル材:試料No.1,2,50]
コイル材は、以下のように作製した。AZ91合金相当の組成のインゴット(市販品)を不活性雰囲気中で650℃〜700℃に加熱して溶湯を作製し、この溶湯を用いて不活性雰囲気中で双ロール連続鋳造法により、長尺な鋳造板(厚さ4mm)を作製して、コイル状に巻き取った。この鋳造コイル材に400℃×24時間の溶体化処理を施した。
[Coil material: Sample No.1,2,50]
The coil material was produced as follows. An ingot (commercially available product) with a composition equivalent to AZ91 alloy is heated to 650 ° C to 700 ° C in an inert atmosphere to produce a molten metal, and this molten metal is used to create a long length by a twin roll continuous casting method in an inert atmosphere. A cast plate (thickness 4 mm) was prepared and wound into a coil. The cast coil material was subjected to a solution treatment at 400 ° C. for 24 hours.

溶体化処理が施されたコイル材を素材とし、巻き戻し/巻き取りを繰り返して複数パスの圧延を施した。圧延はいずれのパスも、5%/パス〜40%/パス、素材の加熱温度:150℃〜250℃、ロール温度:100℃〜250℃とし、上記溶体化処理以降の製造工程において、150℃〜300℃の温度域に保持する総合計時間が0.5時間〜12時間となるようにした。得られた圧延板(厚さ:0.6mm、幅:210mm)を巻き取り径(内径):500mm(≦1000mm)としてコイル状に巻き取って圧延コイル材を得た。なお、圧延前、或いは圧延途中の適宜なときに素材の両縁を適宜切断すると、縁割れが生じていても、圧延により縁割れが進展することを防止でき、歩留まりを向上できる。   The coil material subjected to the solution treatment was used as a raw material, and rewinding / winding was repeated to perform multiple passes of rolling. In any of the passes, 5% / pass to 40% / pass, heating temperature of the material: 150 ° C to 250 ° C, roll temperature: 100 ° C to 250 ° C, and 150 ° C in the manufacturing process after the above solution treatment The total time kept in the temperature range of ˜300 ° C. was set to 0.5 hours to 12 hours. The obtained rolled plate (thickness: 0.6 mm, width: 210 mm) was wound into a coil shape with a winding diameter (inner diameter): 500 mm (≦ 1000 mm) to obtain a rolled coil material. If both edges of the material are appropriately cut before rolling or during rolling, even if edge cracking occurs, it is possible to prevent the edge crack from progressing due to rolling, and to improve the yield.

得られた圧延コイル材を繰出しリールに配置して巻き戻して、圧延板に更に矯正加工を施し、得られた加工板を巻取りリールにより円筒状に巻き取って、当該加工板からなるコイル材を作製し、このコイル材を試料No.1,2,50とした。上記矯正加工は、素材となる圧延板に連続的に曲げを付与する複数のロールを有するロールレベラ装置を用いて行う。上記複数のロールは、上下に対向して千鳥状に配置されている。ここでは、表1に示す条件で、圧延板に張力を加えて矯正加工を行った(大気雰囲気)。なお、表1において最大押込量とは、表1に示すロール径と、素材を挟むように配置された一対のロールの中心間の距離xとの差の最大値である。   The obtained rolled coil material is placed on a supply reel and rewound, and further correction processing is performed on the rolled plate, and the obtained processed plate is wound into a cylindrical shape by a take-up reel, and the coil material made of the processed plate This coil material was designated as Sample Nos. 1, 2, and 50. The straightening process is performed using a roll leveler apparatus having a plurality of rolls that continuously bend the rolled sheet as a material. The plurality of rolls are arranged in a staggered manner so as to face each other in the vertical direction. Here, straightening was performed by applying tension to the rolled sheet under the conditions shown in Table 1 (atmosphere). In Table 1, the maximum pushing amount is the maximum value of the difference between the roll diameter shown in Table 1 and the distance x between the centers of a pair of rolls arranged so as to sandwich the material.

表1に示す張力が加えられた状態の素材(圧延板)は、上記ロールレベラ装置に具える千鳥状に配置されたロールに送られて、上下のロール間を通過するごとに、これらのロールにより順次曲げが付与される。試料No.1,2,50のそれぞれについて、このようなコイル材を複数作製した。なお、矯正加工前に素材の両縁を適宜切断すると、圧延などにより縁割れが生じていても、矯正加工により縁割れが進展することを防止でき、歩留まりを向上できる。   The material (rolled sheet) in a state where the tension shown in Table 1 is applied is sent to the rolls arranged in a staggered manner in the roll leveler device, and each time it passes between the upper and lower rolls, Sequential bending is applied. A plurality of such coil materials were prepared for each of Sample Nos. 1, 2, and 50. In addition, if both edges of the material are appropriately cut before the straightening process, even if the edge crack is generated by rolling or the like, the edge crack can be prevented from progressing by the straightening process, and the yield can be improved.

[シート材:試料No.100]
シート材は、以下のように作製した。AZ91合金相当の組成のインゴット(市販品)を不活性雰囲気中で650℃〜700℃に加熱して溶湯を作製し、この溶湯を用いて不活性雰囲気中で双ロール連続鋳造法により鋳造板を作製し、所定の長さに切断して、厚さ4mmの鋳造板を複数用意した。各鋳造板に400℃×24時間の溶体化処理を施した後、複数パスの圧延を施して、厚さ0.6mmの圧延板を作製した。圧延の条件は、上述した試料No.1,2,50のコイル材と同様とした。得られた各圧延板に上述したロールレベラ装置を用いて表1に示す条件で、張力を加えずに矯正加工を行った(大気雰囲気)。得られた加工板(幅:210mm、長さ:1000mm)を試料No.100とした。
[Sheet material: Sample No. 100]
The sheet material was produced as follows. An ingot (commercial product) with a composition equivalent to AZ91 alloy is heated to 650 ° C to 700 ° C in an inert atmosphere to produce a molten metal, and this molten metal is used to cast a cast plate by a twin roll continuous casting method in an inert atmosphere. It was produced and cut to a predetermined length to prepare a plurality of cast plates having a thickness of 4 mm. Each cast plate was subjected to a solution treatment at 400 ° C. for 24 hours, and then subjected to multiple passes of rolling to produce a rolled plate having a thickness of 0.6 mm. The rolling conditions were the same as those for the coil materials of Samples Nos. 1, 2, and 50 described above. Each of the obtained rolled plates was subjected to straightening processing without applying tension under the conditions shown in Table 1 using the above-described roll leveler apparatus (atmosphere). The obtained processed plate (width: 210 mm, length: 1000 mm) was designated as sample No. 100.

≪平坦度≫
作製した試料No.1,2,50のコイル材、及び試料No.100のシート材の平坦度を測定した。コイル材については、巻き戻して最内周側に位置する板状材を長さ:1000mmに切断して試験片とし、この試験片を、巻き取られた状態のときに外周側となっていた面を水平台への載置面として水平台に載置する。そして、水平台の表面と、試験片の載置面において水平台に接触しない箇所との間の鉛直方向の最大距離を測定し、これをこの試験片の平坦度とする。n=3の平均値を表1に示す。シート材についても同様に水平台に載置して上述のように平坦度を測定し、n=3の平均値を表1に示す。
≪Flatness≫
The flatness of the produced coil materials of Sample Nos. 1, 2, and 50 and the sheet material of Sample No. 100 was measured. For the coil material, the plate-like material that was unwound and was positioned on the innermost peripheral side was cut into a length: 1000 mm to make a test piece, and this test piece was on the outer peripheral side when it was wound up The surface is placed on the horizontal base as a mounting surface on the horizontal base. And the maximum distance of the vertical direction between the surface of a horizontal stand and the location which does not contact a horizontal stand in the mounting surface of a test piece is measured, and let this be the flatness of this test piece. The average value of n = 3 is shown in Table 1. Similarly, the sheet material was placed on a horizontal table and the flatness was measured as described above. The average value of n = 3 is shown in Table 1.

≪残留応力≫
試料No.1,2,50のコイル材の残留応力を測定した。残留応力は、以下の微小部X線応力測定装置を用いて、(1004)面を測定面とし、sin2Ψ法にて測定を行った。測定は、各試験片の圧延方向について行い、測定結果を表1に示す。表1においてマイナス(-)の数値は、圧縮性の残留応力を示す。測定条件を以下に示す。
≪Residual stress≫
The residual stress of the coil material of sample No.1,2,50 was measured. The residual stress was measured by the sin 2 Ψ method using the following micro-part X-ray stress measurement apparatus with the (1004) plane as the measurement plane. The measurement is performed in the rolling direction of each test piece, and the measurement results are shown in Table 1. In Table 1, minus (-) numbers indicate compressive residual stress. The measurement conditions are shown below.

使用装置:微小部X線応力測定装置(株式会社リガク製 MSF-SYSTEM)
使用X線:Cr-Kα(V フィルター)
励起条件:30kV 20mA
測定領域:φ2mm(使用コリメータ径)
測定法 :sin2Ψ法(並傾法、揺動有り)
Ψ=0゜,10゜,15゜,20゜,25゜,30゜,35゜,40゜,45゜
測定面 :Mg(1004)面
使用定数:ヤング率=45,000MPa、ポアソン比=0.306
測定箇所:サンプルの中央部
測定方向:圧延方向
Equipment used: Micro X-ray stress measurement system (MSF-SYSTEM, manufactured by Rigaku Corporation)
X-ray used: Cr-Kα (V filter)
Excitation conditions: 30kV 20mA
Measurement area: φ2mm (used collimator diameter)
Measurement method: sin 2 Ψ method (parallel tilt method, with oscillation)
Ψ = 0 °, 10 °, 15 °, 20 °, 25 °, 30 °, 35 °, 40 °, 45 ° Measuring surface: Mg (1004) surface Usage constant: Young's modulus = 45,000 MPa, Poisson's ratio = 0.306
Measurement location: center of sample Measurement direction: rolling direction

表1に示すように、特定の張力を加えながら冷間で矯正加工を施した試料No.1,2のコイル材は、張力を加えない場合や張力が小さい場合に比較して、巻き戻しても平坦度が小さく、平坦性に優れていることが分かる。また、矯正条件を変化させることで、平坦度が1mm以下、更には0.5mm以下といった平坦性に非常に優れるコイル材が得られることが分かる。かつ、試料No.1,2のコイル材は、圧縮性の残留応力が大きく、即ちせん断帯が多く存在しており、塑性加工性に優れると期待される。   As shown in Table 1, the coil materials of sample Nos. 1 and 2 that were cold-corrected while applying a specific tension were rewound compared to when no tension was applied or when the tension was low. It can be seen that the flatness is small and the flatness is excellent. In addition, it can be seen that by changing the correction conditions, a coil material having excellent flatness such as a flatness of 1 mm or less, and further 0.5 mm or less can be obtained. In addition, the coil material of Sample Nos. 1 and 2 has a large compressive residual stress, that is, there are many shear bands, and is expected to be excellent in plastic workability.

また、得られた各試料のコイル材やシート材を目視にて確認したところ、試料No.1,2,50のコイル材は割れが見られなかったが(表1で○で示す)、試料No.100のシート材は割れが見られた。従って、張力を加えながら矯正加工を施すことで、冷間であっても割れなどが生じず、表面性状に優れるコイル材が得られることが分かる。   Further, when the coil material and sheet material of each obtained sample were visually confirmed, no cracks were found in the coil materials of sample Nos. 1, 2, and 50 (indicated by ○ in Table 1). No.100 sheet material was cracked. Therefore, it can be seen that by performing straightening while applying tension, a coil material having excellent surface properties can be obtained without cracks or the like even in the cold state.

このように特定の張力を加えながら冷間で矯正加工を施すことで、巻き取り径が1000mm以下と小径であっても、巻き癖がつき難く平坦性に非常に優れる上に、残留応力が大きく塑性加工性にも優れ、更に表面性状にも優れるコイル材が得られることが分かる。   In this way, by applying cold straightening while applying a specific tension, even if the winding diameter is as small as 1000 mm or less, it is difficult to curl and has excellent flatness and a large residual stress. It turns out that the coil material which is excellent also in plastic workability and also in the surface property is obtained.

得られた試料No.1,2のコイル材にプレス加工や打ち抜き加工を施したところ、割れなどが生じることなく、マグネシウム合金部材が得られた。   When the obtained coil materials of Sample Nos. 1 and 2 were subjected to press working or punching, a magnesium alloy member was obtained without causing cracks.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、マグネシウム合金の組成(添加元素の種類、含有量)、コイル材の内径、板状材の厚さ、幅、矯正条件(素材の温度、張力など)などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition (type and content of additive element) of the magnesium alloy, the inner diameter of the coil material, the thickness and width of the plate material, the correction conditions (temperature, tension, etc. of the material) can be appropriately changed.

本発明マグネシウム合金部材は、各種の電気・電子機器類の構成部材、特に、携帯用や小型な電気・電子機器類の筐体、高強度であることが望まれる種々の分野の部材、例えば、自動車や航空機といった輸送機器の構成部材に好適に利用することができる。本発明マグネシウム合金コイル材は、上記本発明マグネシウム合金部材の素材に好適に利用することができる。本発明マグネシウム合金部材の製造方法、及び本発明マグネシウム合金コイル材の製造方法は、上記本発明マグネシウム合金部材の製造、上記本発明マグネシウム合金コイル材の製造に好適に利用することができる。   The magnesium alloy member of the present invention is a component member of various electric / electronic devices, particularly a portable or small-sized electric / electronic device housing, members of various fields where high strength is desired, for example, It can be suitably used for a component of transportation equipment such as an automobile or an aircraft. The magnesium alloy coil material of the present invention can be suitably used as a material for the magnesium alloy member of the present invention. The production method of the magnesium alloy member of the present invention and the production method of the magnesium alloy coil material of the present invention can be suitably used for the production of the magnesium alloy member of the present invention and the production of the magnesium alloy coil material of the present invention.

Claims (7)

マグネシウム合金からなる板状材が円筒状に巻き取られたマグネシウム合金コイル材であって、
前記コイル材の内径が1000mm以下であり、
前記コイル材を構成する板状材の残留応力が30MPa超であり、
以下の平坦度を満たすマグネシウム合金コイル材。
(平坦度)
前記コイル材を構成する板状材のうち、最内周側に位置する板状材を長さ:1000mmに切断して試験片とし、この試験片を水平台に載置したとき、前記水平台の表面と、当該試験片の一面において前記水平台に接触しない箇所との鉛直方向の最大距離を平坦度とし、当該平坦度が5mm以下である。
A magnesium alloy coil material in which a plate material made of a magnesium alloy is wound in a cylindrical shape,
The inner diameter of the coil material is 1000 mm or less,
The residual stress of the plate-shaped material constituting the coil material is more than 30 MPa,
Magnesium alloy coil material that satisfies the following flatness.
(Flatness)
Among the plate-like materials constituting the coil material, the plate-like material located on the innermost peripheral side is cut into a length: 1000 mm to form a test piece, and when this test piece is placed on a horizontal table, the horizontal table And the maximum distance in the vertical direction between the surface of the test piece and a portion that does not contact the horizontal table on one surface of the test piece is defined as flatness, and the flatness is 5 mm or less.
前記マグネシウム合金は、添加元素にAlを5.8質量%以上12質量%以下含有する請求項1に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to claim 1, wherein the magnesium alloy contains 5.8 mass% to 12 mass% of Al as an additive element. 前記マグネシウム合金は、添加元素にAlを8.3質量%以上9.5質量%以下含有する請求項1又は請求項2に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to claim 1 or 2, wherein the magnesium alloy contains Al as an additive element in an amount of 8.3 mass% to 9.5 mass%. 前記平坦度が1mm以下である請求項1〜請求項3のいずれか1項に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to any one of claims 1 to 3, wherein the flatness is 1 mm or less. 前記平坦度が0.5mm以下である請求項1〜請求項4のいずれか1項に記載のマグネシウム合金コイル材。   The magnesium alloy coil material according to any one of claims 1 to 4, wherein the flatness is 0.5 mm or less. マグネシウム合金を連続鋳造した鋳造材に圧延を施し、圧延板を巻き取る工程と、
得られた前記圧延板を巻き戻して、前記圧延板を挟むように配置される少なくとも一対の矯正ローラ間を通過させて曲げを付与する矯正加工を施し、加工板を得る工程と、
得られた前記加工板を円筒状に巻き取って、内径が1000mm以下のコイル材を形成する工程とを具え、
前記矯正加工は、前記圧延板に30MPa以上150MPa以下の張力を加えた状態で100℃未満の冷間で行うマグネシウム合金コイル材の製造方法。
Rolling the magnesium alloy continuously cast material and winding the rolled plate;
Rewinding the obtained rolled sheet, passing between at least a pair of straightening rollers arranged so as to sandwich the rolled sheet, and performing a correction process to impart bending, to obtain a processed sheet;
Winding the obtained processed plate into a cylindrical shape, and forming a coil material having an inner diameter of 1000 mm or less,
The said correction process is a manufacturing method of the magnesium alloy coil material performed by the cold below 100 degreeC in the state which applied the tension | tensile_strength of 30 MPa or more and 150 MPa or less to the said rolled sheet.
請求項1〜請求項5のいずれか1項に記載のマグネシウム合金コイル材を巻き戻して、前記板状材に塑性加工を施すマグネシウム合金部材の製造方法。   The manufacturing method of the magnesium alloy member which unwinds the magnesium alloy coil material of any one of Claims 1-5, and plastically processes the said plate-shaped material.
JP2010286601A 2010-12-22 2010-12-22 Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method Active JP5757085B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010286601A JP5757085B2 (en) 2010-12-22 2010-12-22 Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010286601A JP5757085B2 (en) 2010-12-22 2010-12-22 Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method

Publications (2)

Publication Number Publication Date
JP2012130957A JP2012130957A (en) 2012-07-12
JP5757085B2 true JP5757085B2 (en) 2015-07-29

Family

ID=46647176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010286601A Active JP5757085B2 (en) 2010-12-22 2010-12-22 Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method

Country Status (1)

Country Link
JP (1) JP5757085B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014018368A (en) * 2012-07-17 2014-02-03 Sumitomo Electric Ind Ltd Magnesium alloy molded article
CN103962375B (en) * 2014-04-21 2017-05-24 鞍钢股份有限公司 Rolling method capable of preventing steel ingot rolling tilting
TWI537395B (en) * 2014-12-02 2016-06-11 安立材料科技股份有限公司 Magnesium alloy
CN106862272B (en) * 2015-12-14 2020-01-31 宝山钢铁股份有限公司 Preparation method of high-strength high-ductility magnesium alloy plates
TWI545202B (en) 2016-01-07 2016-08-11 安立材料科技股份有限公司 Light magnesium alloy and method for forming the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3521863B2 (en) * 2000-10-24 2004-04-26 住友金属工業株式会社 Manufacturing method of magnesium alloy sheet
JP3659208B2 (en) * 2001-09-28 2005-06-15 住友金属工業株式会社 Manufacturing method and manufacturing apparatus for Mg or Mg alloy strip
US8828158B2 (en) * 2007-06-28 2014-09-09 Sumitomo Electric Industries, Ltd. Magnesium alloy sheet

Also Published As

Publication number Publication date
JP2012130957A (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5796730B2 (en) Magnesium alloy coil material, method for producing magnesium alloy coil material, and method for producing magnesium alloy member
JP5660374B2 (en) Magnesium alloy plate manufacturing method and magnesium alloy coil material
JP4873078B2 (en) Magnesium alloy sheet
JP5757085B2 (en) Magnesium alloy coil material, magnesium alloy coil material manufacturing method, magnesium alloy member, and magnesium alloy member manufacturing method
JP5757105B2 (en) Magnesium alloy material and manufacturing method thereof
JP5939382B2 (en) Magnesium alloy coil material manufacturing method
JP2012166232A (en) Method for manufacturing magnesium alloy material
KR101799619B1 (en) Rolled magnesium alloy material, magnesium alloy structural member, and method for producing rolled magnesium alloy material
US20130337282A1 (en) Magnesium alloy and manufacturing method for same
US20150152527A1 (en) Magnesium alloy sheet and magnesium alloy structural member
JP6274483B2 (en) Magnesium alloy coil material and method for producing magnesium alloy coil material
JP2015172252A (en) magnesium alloy coil material
JP5776874B2 (en) Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
JP5688674B2 (en) Magnesium alloy coil material, magnesium alloy plate, and method for producing magnesium alloy coil material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

R150 Certificate of patent or registration of utility model

Ref document number: 5757085

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250