JP2015025068A - Polycarbonate resin composition for thin optical component, and thin optical component - Google Patents

Polycarbonate resin composition for thin optical component, and thin optical component Download PDF

Info

Publication number
JP2015025068A
JP2015025068A JP2013155539A JP2013155539A JP2015025068A JP 2015025068 A JP2015025068 A JP 2015025068A JP 2013155539 A JP2013155539 A JP 2013155539A JP 2013155539 A JP2013155539 A JP 2013155539A JP 2015025068 A JP2015025068 A JP 2015025068A
Authority
JP
Japan
Prior art keywords
polycarbonate resin
resin composition
thin
bis
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013155539A
Other languages
Japanese (ja)
Other versions
JP5699188B2 (en
Inventor
恵介 冨田
Keisuke Tomita
恵介 冨田
松本 晋
Susumu Matsumoto
晋 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP2013155539A priority Critical patent/JP5699188B2/en
Priority to CN201480042499.0A priority patent/CN105431488B/en
Priority to KR1020167001809A priority patent/KR102121093B1/en
Priority to US14/894,671 priority patent/US9701835B2/en
Priority to PCT/JP2014/064717 priority patent/WO2015011994A1/en
Publication of JP2015025068A publication Critical patent/JP2015025068A/en
Application granted granted Critical
Publication of JP5699188B2 publication Critical patent/JP5699188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polycarbonate resin composition for a thin optical component, and a thin optical component, which have high transmittance and good hue.SOLUTION: The polycarbonate resin composition for a thin optical component is characterized by containing, based on 100 pts.mass of a polycarbonate resin (A), 0.1-2 pts.mass of a polyalkylene ether glycol compound (B) represented by the general formula (1) in the figure.

Description

本発明は薄肉光学部品用ポリカーボネート樹脂組成物および薄肉光学部品に関し、詳しくは、高透過率性および良好な色相を有する薄肉光学部品用ポリカーボネート樹脂組成物およびそれを成形して成る薄肉光学部品に関する。   The present invention relates to a polycarbonate resin composition for thin optical parts and a thin optical part, and more particularly to a polycarbonate resin composition for thin optical parts having high transmittance and good hue and a thin optical part formed by molding the same.

パーソナルコンピュータ、携帯電話等に使用される液晶表示装置には、その薄型化、軽量化、省力化、高精細化の要求に対応するために、面状光源装置が組み込まれている。そして、この面状光源装置には、入光する光を液晶表示側に均一かつ効率的に導く役割を果たす目的で、一面が一様な傾斜面を有する楔型断面の導光板や平板形状の導光板が備えられている。また導光板の表面に凹凸パターンを形成して光散乱機能を付与するものもある。   A surface light source device is incorporated in a liquid crystal display device used for a personal computer, a cellular phone and the like in order to meet demands for thinning, lightening, labor saving, and high definition. The surface light source device has a wedge-shaped cross-section light guide plate or a flat plate shape with a uniform inclined surface for the purpose of uniformly and efficiently guiding incident light to the liquid crystal display side. A light guide plate is provided. In some cases, an uneven pattern is formed on the surface of the light guide plate to provide a light scattering function.

このような導光板は、熱可塑性樹脂の射出成形によって得られ、上記の凹凸パターンは入れ子の表面に形成された凹凸部の転写によって付与される。従来、導光板はポリメチルメタクリレート(PMMA)等の樹脂材料から成形されてきたが、最近では、より鮮明な画像を映し出す表示装置が求められ、光源近傍で発生する熱によって機器装置内が高温化する傾向にあるため、より耐熱性の高いポリカーボネート樹脂材料に置き換えられつつある。   Such a light guide plate is obtained by injection molding of a thermoplastic resin, and the above concavo-convex pattern is imparted by transferring a concavo-convex portion formed on the surface of the nest. Conventionally, the light guide plate has been molded from a resin material such as polymethylmethacrylate (PMMA). Recently, however, a display device that displays a clearer image has been demanded, and the temperature inside the device is increased by heat generated near the light source. Therefore, it is being replaced with a polycarbonate resin material having higher heat resistance.

ポリカーボネート樹脂は、機械的性質、熱的性質、電気的性質、耐候性に優れるが、光線透過率は、PMMA等に比べて低いことから、ポリカーボネート樹脂製の導光板と光源とから面光源体を構成した場合、輝度が低いという問題がある。また最近では導光板の入光部と入光部から離れた場所の色度差を少なくすることが求められているが、ポリカーボネート樹脂はPMMA樹脂と比べて黄変しやすいという問題がある。   Polycarbonate resin is excellent in mechanical properties, thermal properties, electrical properties, and weather resistance, but its light transmittance is lower than that of PMMA, etc., so that a surface light source body is formed from a light guide plate made of polycarbonate resin and a light source. When configured, there is a problem that the luminance is low. Recently, it has been demanded to reduce the difference in chromaticity between the light incident portion of the light guide plate and a location away from the light incident portion, but there is a problem that the polycarbonate resin is more easily yellowed than the PMMA resin.

特許文献1には、アクリル樹脂および脂環式エポキシを添加することにより光線透過率および輝度を向上させる方法、特許文献2には、ポリカーボネート樹脂末端を変性し導光板への凹凸部の転写性を上げることにより輝度を向上させる方法、特許文献3には、脂肪族セグメントを有するコポリエステルカーボネートを導入して上記の転写性を向上させることにより輝度を向上させる方法が提案されている。   Patent Document 1 describes a method for improving light transmittance and luminance by adding an acrylic resin and an alicyclic epoxy. Patent Document 2 describes a method for modifying the end of the polycarbonate resin to transfer the uneven portion to the light guide plate. A method for improving the brightness by increasing the brightness, and Patent Document 3 propose a method for improving the brightness by introducing a copolyester carbonate having an aliphatic segment to improve the transferability.

しかしながら、特許文献1の方法は、アクリル樹脂の添加により色相は良好になるが白濁するために光線透過率および輝度を上げることができず、脂環式エポキシを添加することにより、透過率が向上する可能性はあるが、色相の改善効果は認められない。特許文献2および特許文献3の場合、流動性や転写性の改善効果は期待できるものの、耐熱性が低下するという欠点がある。   However, although the method of Patent Document 1 improves the hue by adding an acrylic resin, the light transmittance and luminance cannot be increased due to white turbidity, and the transmittance is improved by adding an alicyclic epoxy. Although there is a possibility, the effect of improving the hue is not recognized. In the case of Patent Document 2 and Patent Document 3, although an improvement effect of fluidity and transferability can be expected, there is a drawback that heat resistance is lowered.

一方、ポリエチレンエーテルグリコール又はポリ(2−メチル)エチレンエーテルグリコール等をポリカーボネート樹脂等の熱可塑性樹脂に配合することが知られており、特許文献4にはこれを含有する耐γ線照射性のポリカーボネート樹脂が、特許文献5ではPMMA等に配合した帯電防止性と表面外観に優れた熱可塑性樹脂組成物が記載されている。
そして、特許文献6では、式:X−О−[CH(−R)−CH−O]n−Y (Rは水素原子または炭素数1〜3のアルキル基)で表わされるポリエチレンエーテルグリコールまたはポリ(2−アルキル)エチレンエーテルグリコールを配合することにより、透過率や色相を改良する提案がなされている。ポリエチレンエーテルグリコールまたはポリ(2−アルキル)エチレンエーテルグリコールを配合することで透過率や黄変度(イェローインデックス:YI)は若干の改善が見られる。
On the other hand, it is known that polyethylene ether glycol or poly (2-methyl) ethylene ether glycol is blended with a thermoplastic resin such as a polycarbonate resin. Patent Document 4 discloses a γ-ray-irradiation-resistant polycarbonate containing the same. Patent Document 5 describes a thermoplastic resin composition having excellent antistatic properties and surface appearance, which is blended with PMMA or the like.
In Patent Document 6, polyethylene ether glycol represented by the formula: X—O— [CH (—R) —CH 2 —O] n—Y (R is a hydrogen atom or an alkyl group having 1 to 3 carbon atoms) The proposal which improves the transmittance | permeability and a hue by mix | blending poly (2-alkyl) ethylene ether glycol is made | formed. By adding polyethylene ether glycol or poly (2-alkyl) ethylene ether glycol, the transmittance and yellowing degree (yellow index: YI) are slightly improved.

しかし、特に最近、スマートフォンやタブレット型端末等の各種携帯端末においては、薄肉化や大型薄肉化が著しいスピードで進行しており、導光板への入光を直下型から横側エッジから行うエッジ型が採用されるようになり、超薄型の光源として十分な輝度が要求されてきている。このようなハイエンドの導光板においては、上記従来技術が達成する透過率やYIレベルでは要求スペックを満たさないというのが現状である。   However, in recent years, especially in various portable terminals such as smartphones and tablet terminals, thinning and large-sized thinning are proceeding at a remarkable speed, and the edge type in which light is incident on the light guide plate from the direct edge type to the side edge. Has been adopted, and sufficient luminance as an ultra-thin light source has been required. In such a high-end light guide plate, at present, the required specifications are not satisfied at the transmittance and YI level achieved by the above-described conventional technology.

特開平11−158364号公報JP-A-11-158364 特開2001−208917号公報JP 2001-208917 A 特開2001−215336号公報JP 2001-215336 A 特開平1−22959号公報JP-A-1-22959 特開平9−227785号公報JP-A-9-227785 特許第4069364号公報Japanese Patent No. 4069364

本発明は、上記実情に鑑みなされたものであり、その目的は、ポリカーボネート樹脂本来の特性を何ら損なうことなく、透過率および色相の良好な薄肉光学部品用ポリカーボネート樹脂組成物を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a polycarbonate resin composition for a thin-walled optical component having good transmittance and hue without impairing the original properties of the polycarbonate resin. .

本発明者は、上記課題を達成すべく、鋭意検討を重ねた結果、ポリカーボネート樹脂に特定のポリアルキレンエーテルグリコールを特定の量で配合することにより、驚くべきことに、従来技術に記載のポリエチレンエーテルグリコールまたはポリ(2−アルキル)エチレンエーテルグリコールと比べても、より優れた透過率と極めて良好な色相を達成することができることを見出し、本発明を完成するに至った。
本発明は、以下の薄肉光学部品用ポリカーボネート樹脂組成物、薄肉光学部品及び薄肉光学部品の製造方法を提供する。
As a result of intensive studies to achieve the above-mentioned problems, the present inventors have surprisingly found that the polyethylene ether described in the prior art is blended with a specific amount of a specific polyalkylene ether glycol in a polycarbonate resin. As compared with glycol or poly (2-alkyl) ethylene ether glycol, it has been found that better transmittance and a very good hue can be achieved, and the present invention has been completed.
The present invention provides the following polycarbonate resin composition for thin-walled optical parts, thin-walled optical parts, and methods for producing thin-walled optical parts.

[1]ポリカーボネート樹脂(A)100質量部に対し、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1〜2質量部を含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。

Figure 2015025068
(式中、X及びYは水素原子、炭素数1〜22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3〜6の整数、nは6〜100の整数を示す。)
[2]ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000〜15,000である上記[1]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[3]ポリアルキレンエーテルグリコール化合物(B)がポリテトラメチレンエーテルグリコールである上記[1]または[2]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[4]300nmの光路長で測定した波長420nmでの分光透過率が55%以上である上記[1]〜[3]のいずれかに記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[5]上記[1]〜[4]のいずれかに記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。
[6]1mm以下の厚みを有する導光板である上記[5]に記載の薄肉光学部品。
[7]上記[1]〜[4]のいずれかに記載のポリカーボネート樹脂組成物を305〜380℃で射出成形する肉厚が1mm以下の薄肉光学部品の製造方法。 [1] Thin-walled optics characterized by containing 0.1 to 2 parts by mass of the polyalkylene ether glycol compound (B) represented by the following general formula (1) with respect to 100 parts by mass of the polycarbonate resin (A). Polycarbonate resin composition for parts.
Figure 2015025068
(In the formula, X and Y represent a hydrogen atom, an aliphatic acyl group or an alkyl group having 1 to 22 carbon atoms, X and Y may be different from each other, m is an integer of 3 to 6, and n is Represents an integer of 6 to 100.)
[2] The polycarbonate resin composition for thin-walled optical components according to the above [1], wherein the polycarbonate resin (A) has a viscosity average molecular weight (Mv) of 10,000 to 15,000.
[3] The polycarbonate resin composition for thin-walled optical components according to the above [1] or [2], wherein the polyalkylene ether glycol compound (B) is polytetramethylene ether glycol.
[4] The polycarbonate resin composition for thin-walled optical components according to any one of [1] to [3], wherein the spectral transmittance at a wavelength of 420 nm measured with an optical path length of 300 nm is 55% or more.
[5] A thin optical component obtained by molding the polycarbonate resin composition according to any one of [1] to [4].
[6] The thin optical component according to [5], which is a light guide plate having a thickness of 1 mm or less.
[7] A method for producing a thin optical component having a thickness of 1 mm or less, which is obtained by injection molding the polycarbonate resin composition according to any one of [1] to [4] at 305 to 380 ° C.

本発明によれば、ポリカーボネート樹脂本来の特性を何ら損なうことなく、更に、透過率および色相の良好な、薄肉光学部品用ポリカーボネート樹脂組成物が提供され、透過率および色相の良好な薄肉光学部品を提供することができる。   According to the present invention, there is provided a polycarbonate resin composition for thin-walled optical components having a good transmittance and hue without impairing the original properties of the polycarbonate resin, and a thin-walled optical component having a good transmittance and hue. Can be provided.

以下、本発明について実施形態及び例示物等を示して詳細に説明する。
なお、本願明細書において、「〜」とは、特に断りがない場合、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
Hereinafter, the present invention will be described in detail with reference to embodiments and examples.
In addition, in this-application specification, "-" is used in the meaning which includes the numerical value described before and behind that as a lower limit and an upper limit unless there is particular notice.

[概要]
本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、前記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1〜2質量部を含有することを特徴とする。
以下、本発明のポリカーボネート樹脂組成物を構成する各成分、薄肉光学部品等につき、詳細に説明する。
[Overview]
The polycarbonate resin composition for thin optical components of the present invention is 0.1 to 2 parts by mass of the polyalkylene ether glycol compound (B) represented by the general formula (1) with respect to 100 parts by mass of the polycarbonate resin (A). It is characterized by containing.
Hereinafter, each component, thin-walled optical component and the like constituting the polycarbonate resin composition of the present invention will be described in detail.

[ポリカーボネート樹脂(A)]
本発明において使用するポリカーボネート樹脂の種類に制限はなく、ポリカーボネート樹脂は、1種類を用いてもよく、2種類以上を任意の組み合わせ及び任意の比率で併用してもよい。
[Polycarbonate resin (A)]
There is no restriction | limiting in the kind of polycarbonate resin used in this invention, A polycarbonate resin may use 1 type and may use 2 or more types together by arbitrary combinations and arbitrary ratios.

ポリカーボネート樹脂は、式:−[−O−X−O−C(=O)−]−で示される炭酸結合を有する基本構造の重合体である。
式中、Xは一般には炭化水素であるが、種々の特性付与のためヘテロ原子、ヘテロ結合の導入されたXを用いてもよい。
The polycarbonate resin is a polymer having a basic structure having a carbonic acid bond represented by the formula: — [— O—X—O—C (═O) —] —.
In the formula, X is generally a hydrocarbon, but for imparting various properties, X into which a hetero atom or a hetero bond is introduced may be used.

また、ポリカーボネート樹脂は、炭酸結合に直接結合する炭素がそれぞれ芳香族炭素である芳香族ポリカーボネート樹脂、及び脂肪族炭素である脂肪族ポリカーボネート樹脂に分類できるが、いずれを用いることもできる。なかでも、耐熱性、機械的物性、電気的特性等の観点から、芳香族ポリカーボネート樹脂が好ましい。   The polycarbonate resin can be classified into an aromatic polycarbonate resin in which carbon directly bonded to a carbonic acid bond is aromatic carbon and an aliphatic polycarbonate resin in which aliphatic carbon is aliphatic carbon, either of which can be used. Of these, aromatic polycarbonate resins are preferred from the viewpoints of heat resistance, mechanical properties, electrical characteristics, and the like.

ポリカーボネート樹脂の具体的な種類に制限はないが、例えば、ジヒドロキシ化合物とカーボネート前駆体とを反応させてなるポリカーボネート重合体が挙げられる。この際、ジヒドロキシ化合物及びカーボネート前駆体に加えて、ポリヒドロキシ化合物等を反応させるようにしてもよい。また、二酸化炭素をカーボネート前駆体として、環状エーテルと反応させる方法も用いてもよい。またポリカーボネート重合体は、直鎖状でもよく、分岐鎖状でもよい。さらに、ポリカーボネート重合体は1種の繰り返し単位からなる単重合体であってもよく、2種以上の繰り返し単位を有する共重合体であってもよい。このとき共重合体は、ランダム共重合体、ブロック共重合体等、種々の共重合形態を選択することができる。なお、通常、このようなポリカーボネート重合体は、熱可塑性の樹脂となる。   Although there is no restriction | limiting in the specific kind of polycarbonate resin, For example, the polycarbonate polymer formed by making a dihydroxy compound and a carbonate precursor react is mentioned. At this time, in addition to the dihydroxy compound and the carbonate precursor, a polyhydroxy compound or the like may be reacted. Further, a method of reacting carbon dioxide with a cyclic ether using a carbonate precursor may be used. The polycarbonate polymer may be linear or branched. Further, the polycarbonate polymer may be a homopolymer composed of one type of repeating unit or a copolymer having two or more types of repeating units. At this time, the copolymer can be selected from various copolymerization forms such as a random copolymer and a block copolymer. In general, such a polycarbonate polymer is a thermoplastic resin.

芳香族ポリカーボネート樹脂の原料となるモノマーのうち、芳香族ジヒドロキシ化合物の例を挙げると、   Among monomers used as raw materials for aromatic polycarbonate resins, examples of aromatic dihydroxy compounds include:

1,2−ジヒドロキシベンゼン、1,3−ジヒドロキシベンゼン(即ち、レゾルシノール)、1,4−ジヒドロキシベンゼン等のジヒドロキシベンゼン類;
2,5−ジヒドロキシビフェニル、2,2’−ジヒドロキシビフェニル、4,4’−ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
Dihydroxybenzenes such as 1,2-dihydroxybenzene, 1,3-dihydroxybenzene (ie, resorcinol), 1,4-dihydroxybenzene;
Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2′-dihydroxybiphenyl, 4,4′-dihydroxybiphenyl;

2,2’−ジヒドロキシ−1,1’−ビナフチル、1,2−ジヒドロキシナフタレン、1,3−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等のジヒドロキシナフタレン類; 2,2′-dihydroxy-1,1′-binaphthyl, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, , 7-dihydroxynaphthalene, dihydroxynaphthalene such as 2,7-dihydroxynaphthalene;

2,2’−ジヒドロキシジフェニルエーテル、3,3’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシジフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエーテル、1,4−ビス(3−ヒドロキシフェノキシ)ベンゼン、1,3−ビス(4−ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類; 2,2′-dihydroxydiphenyl ether, 3,3′-dihydroxydiphenyl ether, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy-3,3′-dimethyldiphenyl ether, 1,4-bis (3-hydroxyphenoxy) Dihydroxy diaryl ethers such as benzene and 1,3-bis (4-hydroxyphenoxy) benzene;

2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)、
1,1−ビス(4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−メトキシ−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−メトキシ−4−ヒドロキシフェニル)プロパン、
1,1−ビス(3−tert−ブチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、
2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
2−(4−ヒドロキシフェニル)−2−(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、
α,α’−ビス(4−ヒドロキシフェニル)−1,4−ジイソプロピルベンゼン、
1,3−ビス[2−(4−ヒドロキシフェニル)−2−プロピル]ベンゼン、
ビス(4−ヒドロキシフェニル)メタン、
ビス(4−ヒドロキシフェニル)シクロヘキシルメタン、
ビス(4−ヒドロキシフェニル)フェニルメタン、
ビス(4−ヒドロキシフェニル)(4−プロペニルフェニル)メタン、
ビス(4−ヒドロキシフェニル)ジフェニルメタン、
ビス(4−ヒドロキシフェニル)ナフチルメタン、
1,1−ビス(4−ヒドロキシフェニル)エタン、
1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、
1,1−ビス(4−ヒドロキシフェニル)−1−ナフチルエタン、
1,1−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ブタン、
2,2−ビス(4−ヒドロキシフェニル)ペンタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
1,1−ビス(4−ヒドロキシフェニル)オクタン、
2,2−ビス(4−ヒドロキシフェニル)オクタン、
1,1−ビス(4−ヒドロキシフェニル)ヘキサン、
2,2−ビス(4−ヒドロキシフェニル)ヘキサン、
4,4−ビス(4−ヒドロキシフェニル)ヘプタン、
2,2−ビス(4−ヒドロキシフェニル)ノナン、
1,1−ビス(4−ヒドロキシフェニル)デカン、
1,1−ビス(4−ヒドロキシフェニル)ドデカン、
等のビス(ヒドロキシアリール)アルカン類;
2,2-bis (4-hydroxyphenyl) propane (ie, bisphenol A),
1,1-bis (4-hydroxyphenyl) propane,
2,2-bis (3-methyl-4-hydroxyphenyl) propane,
2,2-bis (3-methoxy-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-methoxy-4-hydroxyphenyl) propane,
1,1-bis (3-tert-butyl-4-hydroxyphenyl) propane,
2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane,
2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane,
2- (4-hydroxyphenyl) -2- (3-cyclohexyl-4-hydroxyphenyl) propane,
α, α′-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene,
1,3-bis [2- (4-hydroxyphenyl) -2-propyl] benzene,
Bis (4-hydroxyphenyl) methane,
Bis (4-hydroxyphenyl) cyclohexylmethane,
Bis (4-hydroxyphenyl) phenylmethane,
Bis (4-hydroxyphenyl) (4-propenylphenyl) methane,
Bis (4-hydroxyphenyl) diphenylmethane,
Bis (4-hydroxyphenyl) naphthylmethane,
1,1-bis (4-hydroxyphenyl) ethane,
1,1-bis (4-hydroxyphenyl) -1-phenylethane,
1,1-bis (4-hydroxyphenyl) -1-naphthylethane,
1,1-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) butane,
2,2-bis (4-hydroxyphenyl) pentane,
1,1-bis (4-hydroxyphenyl) hexane,
2,2-bis (4-hydroxyphenyl) hexane,
1,1-bis (4-hydroxyphenyl) octane,
2,2-bis (4-hydroxyphenyl) octane,
1,1-bis (4-hydroxyphenyl) hexane,
2,2-bis (4-hydroxyphenyl) hexane,
4,4-bis (4-hydroxyphenyl) heptane,
2,2-bis (4-hydroxyphenyl) nonane,
1,1-bis (4-hydroxyphenyl) decane,
1,1-bis (4-hydroxyphenyl) dodecane,
Bis (hydroxyaryl) alkanes such as;

1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、
1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,4−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,5−ジメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシ−3,5−ジメチルフェニル)−3,3,5−トリメチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−プロピル−5−メチルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−tert−ブチル−シクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−3−フェニルシクロヘキサン、
1,1−ビス(4−ヒドロキシフェニル)−4−フェニルシクロヘキサン、
等のビス(ヒドロキシアリール)シクロアルカン類;
1,1-bis (4-hydroxyphenyl) cyclopentane,
1,1-bis (4-hydroxyphenyl) cyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,4-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,5-dimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxy-3,5-dimethylphenyl) -3,3,5-trimethylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-propyl-5-methylcyclohexane,
1,1-bis (4-hydroxyphenyl) -3-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -4-tert-butyl-cyclohexane,
1,1-bis (4-hydroxyphenyl) -3-phenylcyclohexane,
1,1-bis (4-hydroxyphenyl) -4-phenylcyclohexane,
Bis (hydroxyaryl) cycloalkanes such as;

9,9−ビス(4−ヒドロキシフェニル)フルオレン、
9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
9,9-bis (4-hydroxyphenyl) fluorene,
Cardio structure-containing bisphenols such as 9,9-bis (4-hydroxy-3-methylphenyl) fluorene;

4,4’−ジヒドロキシジフェニルスルフィド、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;
4,4′-dihydroxydiphenyl sulfide,
Dihydroxydiaryl sulfides such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfide;

4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類; Dihydroxydiaryl sulfoxides such as 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfoxide;

4,4’−ジヒドロキシジフェニルスルホン、
4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
等が挙げられる。
4,4′-dihydroxydiphenyl sulfone,
Dihydroxydiaryl sulfones such as 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfone;
Etc.

これらの中ではビス(ヒドロキシアリール)アルカン類が好ましく、中でもビス(4−ヒドロキシフェニル)アルカン類が好ましく、特に耐衝撃性、耐熱性の点から2,2−ビス(4−ヒドロキシフェニル)プロパン(即ち、ビスフェノールA)が好ましい。
なお、芳香族ジヒドロキシ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
Among these, bis (hydroxyaryl) alkanes are preferable, and bis (4-hydroxyphenyl) alkanes are particularly preferable, and 2,2-bis (4-hydroxyphenyl) propane (especially from the viewpoint of impact resistance and heat resistance). That is, bisphenol A) is preferred.
In addition, 1 type may be used for an aromatic dihydroxy compound and it may use 2 or more types together by arbitrary combinations and a ratio.

また、脂肪族ポリカーボネート樹脂の原料となるモノマーの例を挙げると、
エタン−1,2−ジオール、プロパン−1,2−ジオール、プロパン−1,3−ジオール、2,2−ジメチルプロパン−1,3−ジオール、2−メチル−2−プロピルプロパン−1,3−ジオール、ブタン−1,4−ジオール、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、デカン−1,10−ジオール等のアルカンジオール類;
In addition, examples of monomers that are raw materials for aliphatic polycarbonate resins
Ethane-1,2-diol, propane-1,2-diol, propane-1,3-diol, 2,2-dimethylpropane-1,3-diol, 2-methyl-2-propylpropane-1,3- Alkanediols such as diol, butane-1,4-diol, pentane-1,5-diol, hexane-1,6-diol, decane-1,10-diol;

シクロペンタン−1,2−ジオール、シクロヘキサン−1,2−ジオール、シクロヘキサン−1,4−ジオール、1,4−シクロヘキサンジメタノール、4−(2−ヒドロキシエチル)シクロヘキサノール、2,2,4,4−テトラメチル−シクロブタン−1,3−ジオール等のシクロアルカンジオール類;   Cyclopentane-1,2-diol, cyclohexane-1,2-diol, cyclohexane-1,4-diol, 1,4-cyclohexanedimethanol, 4- (2-hydroxyethyl) cyclohexanol, 2,2,4, Cycloalkanediols such as 4-tetramethyl-cyclobutane-1,3-diol;

エチレングリコール、2,2’−オキシジエタノール(即ち、ジエチレングリコール)、トリエチレングリコール、プロピレングリコール、スピログリコール等のグリコール類;   Glycols such as ethylene glycol, 2,2'-oxydiethanol (ie, diethylene glycol), triethylene glycol, propylene glycol, spiro glycol and the like;

1,2−ベンゼンジメタノール、1,3−ベンゼンジメタノール、1,4−ベンゼンジメタノール、1,4−ベンゼンジエタノール、1,3−ビス(2−ヒドロキシエトキシ)ベンゼン、1,4−ビス(2−ヒドロキシエトキシ)ベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、1,6−ビス(ヒドロキシエトキシ)ナフタレン、4,4’−ビフェニルジメタノール、4,4’−ビフェニルジエタノール、1,4−ビス(2−ヒドロキシエトキシ)ビフェニル、ビスフェノールAビス(2−ヒドロキシエチル)エーテル、ビスフェノールSビス(2−ヒドロキシエチル)エーテル等のアラルキルジオール類;   1,2-benzenedimethanol, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 1,4-benzenediethanol, 1,3-bis (2-hydroxyethoxy) benzene, 1,4-bis ( 2-hydroxyethoxy) benzene, 2,3-bis (hydroxymethyl) naphthalene, 1,6-bis (hydroxyethoxy) naphthalene, 4,4′-biphenyldimethanol, 4,4′-biphenyldiethanol, 1,4- Aralkyl diols such as bis (2-hydroxyethoxy) biphenyl, bisphenol A bis (2-hydroxyethyl) ether, bisphenol S bis (2-hydroxyethyl) ether;

1,2−エポキシエタン(即ち、エチレンオキシド)、1,2−エポキシプロパン(即ち、プロピレンオキシド)、1,2−エポキシシクロペンタン、1,2−エポキシシクロヘキサン、1,4−エポキシシクロヘキサン、1−メチル−1,2−エポキシシクロヘキサン、2,3−エポキシノルボルナン、1,3−エポキシプロパン等の環状エーテル類;等が挙げられる。   1,2-epoxyethane (ie ethylene oxide), 1,2-epoxypropane (ie propylene oxide), 1,2-epoxycyclopentane, 1,2-epoxycyclohexane, 1,4-epoxycyclohexane, 1-methyl And cyclic ethers such as -1,2-epoxycyclohexane, 2,3-epoxynorbornane, and 1,3-epoxypropane;

ポリカーボネート樹脂の原料となるモノマーのうち、カーボネート前駆体の例を挙げると、カルボニルハライド、カーボネートエステル等が使用される。なお、カーボネート前駆体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Among the monomers used as the raw material for the polycarbonate resin, carbonyl halides, carbonate esters and the like are used as examples of the carbonate precursor. In addition, 1 type may be used for a carbonate precursor and it may use 2 or more types together by arbitrary combinations and a ratio.

カルボニルハライドとしては、具体的には例えば、ホスゲン;ジヒドロキシ化合物のビスクロロホルメート体、ジヒドロキシ化合物のモノクロロホルメート体等のハロホルメート等が挙げられる。   Specific examples of carbonyl halides include phosgene; haloformates such as bischloroformate of dihydroxy compounds and monochloroformate of dihydroxy compounds.

カーボネートエステルとしては、具体的には例えば、ジフェニルカーボネート、ジトリルカーボネート等のジアリールカーボネート類;ジメチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート類;ジヒドロキシ化合物のビスカーボネート体、ジヒドロキシ化合物のモノカーボネート体、環状カーボネート等のジヒドロキシ化合物のカーボネート体等が挙げられる。   Specific examples of the carbonate ester include diaryl carbonates such as diphenyl carbonate and ditolyl carbonate; dialkyl carbonates such as dimethyl carbonate and diethyl carbonate; biscarbonate bodies of dihydroxy compounds, monocarbonate bodies of dihydroxy compounds, and cyclic carbonates. And carbonate bodies of dihydroxy compounds such as

・ポリカーボネート樹脂の製造方法
ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、任意の方法を採用できる。その例を挙げると、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法などを挙げることができる。
以下、これらの方法のうち、特に好適なものについて具体的に説明する。
-Manufacturing method of polycarbonate resin The manufacturing method of polycarbonate resin is not specifically limited, Arbitrary methods are employable. Examples thereof include an interfacial polymerization method, a melt transesterification method, a pyridine method, a ring-opening polymerization method of a cyclic carbonate compound, and a solid phase transesterification method of a prepolymer.
Hereinafter, a particularly preferable one of these methods will be described in detail.

・界面重合法
まず、ポリカーボネート樹脂を界面重合法で製造する場合について説明する。
界面重合法では、反応に不活性な有機溶媒及びアルカリ水溶液の存在下で、通常pHを9以上に保ち、ジヒドロキシ化合物とカーボネート前駆体(好ましくは、ホスゲン)とを反応させた後、重合触媒の存在下で界面重合を行うことによってポリカーボネート樹脂を得る。なお、反応系には、必要に応じて分子量調整剤(末端停止剤)を存在させるようにしてもよく、ジヒドロキシ化合物の酸化防止のために酸化防止剤を存在させるようにしてもよい。
-Interfacial polymerization method First, the case where a polycarbonate resin is manufactured by the interfacial polymerization method will be described.
In the interfacial polymerization method, a dihydroxy compound and a carbonate precursor (preferably phosgene) are reacted in the presence of an organic solvent inert to the reaction and an aqueous alkaline solution, usually at a pH of 9 or higher. Polycarbonate resin is obtained by interfacial polymerization in the presence. In the reaction system, a molecular weight adjusting agent (terminal terminator) may be present as necessary, or an antioxidant may be present to prevent the oxidation of the dihydroxy compound.

ジヒドロキシ化合物及びカーボネート前駆体は、前述のとおりである。なお、カーボネート前駆体の中でもホスゲンを用いることが好ましく、ホスゲンを用いた場合の方法は特にホスゲン法と呼ばれる。   The dihydroxy compound and the carbonate precursor are as described above. Of the carbonate precursors, phosgene is preferably used, and a method using phosgene is particularly called a phosgene method.

反応に不活性な有機溶媒としては、例えば、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素;などが挙げられる。なお、有機溶媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the organic solvent inert to the reaction include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene; It is done. In addition, 1 type may be used for an organic solvent and it may use 2 or more types together by arbitrary combinations and a ratio.

アルカリ水溶液に含有されるアルカリ化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸水素ナトリウム等のアルカリ金属化合物やアルカリ土類金属化合物が挙げられるが、中でも水酸化ナトリウム及び水酸化カリウムが好ましい。なお、アルカリ化合物は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the alkali compound contained in the alkaline aqueous solution include alkali metal compounds and alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, lithium hydroxide, and sodium hydrogen carbonate, among which sodium hydroxide and water Potassium oxide is preferred. In addition, 1 type may be used for an alkali compound and it may use 2 or more types together by arbitrary combinations and a ratio.

アルカリ水溶液中のアルカリ化合物の濃度に制限はないが、通常、反応のアルカリ水溶液中のpHを10〜12にコントロールするために、5〜10質量%で使用される。また、例えばホスゲンを吹き込むに際しては、水相のpHが10〜12、好ましくは10〜11になる様にコントロールするために、ビスフェノール化合物とアルカリ化合物とのモル比を、通常1:1.9以上、中でも1:2.0以上、また、通常1:3.2以下、中でも1:2.5以下とすることが好ましい。   Although there is no restriction | limiting in the density | concentration of the alkali compound in alkaline aqueous solution, Usually, in order to control pH in the alkaline aqueous solution of reaction to 10-12, it is used at 5-10 mass%. For example, when phosgene is blown, the molar ratio of the bisphenol compound and the alkali compound is usually 1: 1.9 or more in order to control the pH of the aqueous phase to be 10 to 12, preferably 10 to 11. Among these, it is preferable that the ratio is 1: 2.0 or more, usually 1: 3.2 or less, and more preferably 1: 2.5 or less.

重合触媒としては、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、トリプロピルアミン、トリヘキシルアミン等の脂肪族三級アミン;N,N’−ジメチルシクロヘキシルアミン、N,N’−ジエチルシクロヘキシルアミン等の脂環式三級アミン;N,N’−ジメチルアニリン、N,N’−ジエチルアニリン等の芳香族三級アミン;トリメチルベンジルアンモニウムクロライド、テトラメチルアンモニウムクロライド、トリエチルベンジルアンモニウムクロライド等の第四級アンモニウム塩等;ピリジン;グアニン;グアニジンの塩;等が挙げられる。なお、重合触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the polymerization catalyst include aliphatic tertiary amines such as trimethylamine, triethylamine, tributylamine, tripropylamine, and trihexylamine; alicyclic rings such as N, N′-dimethylcyclohexylamine and N, N′-diethylcyclohexylamine. Formula tertiary amines; aromatic tertiary amines such as N, N′-dimethylaniline and N, N′-diethylaniline; quaternary ammonium salts such as trimethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium chloride, etc. Pyridine; guanine; guanidine salt; and the like. In addition, 1 type may be used for a polymerization catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.

分子量調節剤としては、例えば、一価のフェノール性水酸基を有する芳香族フェノール;メタノール、ブタノールなどの脂肪族アルコール;メルカプタン;フタル酸イミド等が挙げられるが、中でも芳香族フェノールが好ましい。このような芳香族フェノールとしては、具体的に、m−メチルフェノール、p−メチルフェノール、m−プロピルフェノール、p−プロピルフェノール、p−tert−ブチルフェノール、p−長鎖アルキル置換フェノール等のアルキル基置換フェノール;イソプロパニルフェノール等のビニル基含有フェノール;エポキシ基含有フェノール;o−ヒドロキシ安息香酸、2−メチル−6−ヒドロキシフェニル酢酸等のカルボキシル基含有フェノール;等が挙げられる。なお、分子量調整剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the molecular weight regulator include aromatic phenols having a monohydric phenolic hydroxyl group; aliphatic alcohols such as methanol and butanol; mercaptans; phthalimides and the like. Of these, aromatic phenols are preferred. Specific examples of such aromatic phenols include alkyl groups such as m-methylphenol, p-methylphenol, m-propylphenol, p-propylphenol, p-tert-butylphenol, and p-long chain alkyl-substituted phenol. Examples thereof include substituted phenols; vinyl group-containing phenols such as isopropanyl phenol; epoxy group-containing phenols; carboxyl group-containing phenols such as o-hydroxybenzoic acid and 2-methyl-6-hydroxyphenylacetic acid; In addition, a molecular weight regulator may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

分子量調節剤の使用量は、ジヒドロキシ化合物100モルに対して、通常0.5モル以上、好ましくは1モル以上であり、また、通常50モル以下、好ましくは30モル以下である。分子量調整剤の使用量をこの範囲とすることで、樹脂組成物の熱安定性及び耐加水分解性を向上させることができる。   The usage-amount of a molecular weight regulator is 0.5 mol or more normally with respect to 100 mol of dihydroxy compounds, Preferably it is 1 mol or more, and is 50 mol or less normally, Preferably it is 30 mol or less. By making the usage-amount of a molecular weight modifier into this range, the thermal stability and hydrolysis resistance of a resin composition can be improved.

反応の際に、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望のポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。例えば、カーボネート前駆体としてホスゲンを用いた場合には、分子量調節剤はジヒドロキシ化合物とホスゲンとの反応(ホスゲン化)の時から重合反応開始時までの間であれば任意の時期に混合できる。
なお、反応温度は通常0〜40℃であり、反応時間は通常は数分(例えば、10分)〜数時間(例えば、6時間)である。
In the reaction, the order of mixing the reaction substrate, reaction medium, catalyst, additive and the like is arbitrary as long as a desired polycarbonate resin is obtained, and an appropriate order may be arbitrarily set. For example, when phosgene is used as the carbonate precursor, the molecular weight regulator can be mixed at any time as long as it is between the reaction (phosgenation) of the dihydroxy compound and phosgene and the start of the polymerization reaction.
In addition, reaction temperature is 0-40 degreeC normally, and reaction time is normally several minutes (for example, 10 minutes)-several hours (for example, 6 hours).

・溶融エステル交換法
次に、ポリカーボネート樹脂を溶融エステル交換法で製造する場合について説明する。
溶融エステル交換法では、例えば、炭酸ジエステルとジヒドロキシ化合物とのエステル交換反応を行う。
-Melt transesterification method Next, the case where polycarbonate resin is manufactured by the melt transesterification method is demonstrated.
In the melt transesterification method, for example, a transesterification reaction between a carbonic acid diester and a dihydroxy compound is performed.

ジヒドロキシ化合物は、前述の通りである。
一方、炭酸ジエステルとしては、例えば、ジメチルカーボネート、ジエチルカーボネート、ジ−tert−ブチルカーボネート等の炭酸ジアルキル化合物;ジフェニルカーボネート;ジトリルカーボネート等の置換ジフェニルカーボネートなどが挙げられる。中でも、ジフェニルカーボネート及び置換ジフェニルカーボネートが好ましく、特にジフェニルカーボネートがより好ましい。なお、炭酸ジエステルは1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
The dihydroxy compound is as described above.
On the other hand, examples of the carbonic acid diester include dialkyl carbonate compounds such as dimethyl carbonate, diethyl carbonate, and di-tert-butyl carbonate; diphenyl carbonate; substituted diphenyl carbonate such as ditolyl carbonate, and the like. Among these, diphenyl carbonate and substituted diphenyl carbonate are preferable, and diphenyl carbonate is more preferable. In addition, carbonic acid diester may use 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

ジヒドロキシ化合物と炭酸ジエステルとの比率は、所望のポリカーボネート樹脂が得られる限り任意であるが、ジヒドロキシ化合物1モルに対して、炭酸ジエステルを等モル量以上用いることが好ましく、中でも1.01モル以上用いることがより好ましい。なお、上限は通常1.30モル以下である。このような範囲にすることで、末端水酸基量を好適な範囲に調整できる。   The ratio of the dihydroxy compound and the carbonic acid diester is arbitrary as long as the desired polycarbonate resin is obtained, but it is preferable to use an equimolar amount or more of the carbonic acid diester with respect to 1 mol of the dihydroxy compound, and above all, 1.01 mol or more. It is more preferable. The upper limit is usually 1.30 mol or less. By setting it as such a range, the amount of terminal hydroxyl groups can be adjusted to a suitable range.

ポリカーボネート樹脂では、その末端水酸基量が熱安定性、加水分解安定性、色調等に大きな影響を及ぼす傾向がある。このため、公知の任意の方法によって末端水酸基量を必要に応じて調整してもよい。エステル交換反応においては、通常、炭酸ジエステルと芳香族ジヒドロキシ化合物との混合比率;エステル交換反応時の減圧度などを調整することにより、末端水酸基量を調整したポリカーボネート樹脂を得ることができる。なお、この操作により、通常は得られるポリカーボネート樹脂の分子量を調整することもできる。   In the polycarbonate resin, the amount of terminal hydroxyl groups tends to have a great influence on thermal stability, hydrolysis stability, color tone and the like. For this reason, you may adjust the amount of terminal hydroxyl groups as needed by a well-known arbitrary method. In the transesterification reaction, a polycarbonate resin in which the amount of terminal hydroxyl groups is adjusted can be usually obtained by adjusting the mixing ratio of the carbonic diester and the aromatic dihydroxy compound; the degree of vacuum during the transesterification reaction, and the like. In addition, the molecular weight of the polycarbonate resin usually obtained can also be adjusted by this operation.

炭酸ジエステルとジヒドロキシ化合物との混合比率を調整して末端水酸基量を調整する場合、その混合比率は前記の通りである。
また、より積極的な調整方法としては、反応時に別途、末端停止剤を混合する方法が挙げられる。この際の末端停止剤としては、例えば、一価フェノール類、一価カルボン酸類、炭酸ジエステル類などが挙げられる。なお、末端停止剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
When adjusting the amount of terminal hydroxyl groups by adjusting the mixing ratio of the carbonic acid diester and the dihydroxy compound, the mixing ratio is as described above.
Further, as a more aggressive adjustment method, there may be mentioned a method in which a terminal terminator is mixed separately during the reaction. Examples of the terminal terminator at this time include monohydric phenols, monovalent carboxylic acids, carbonic acid diesters, and the like. In addition, 1 type may be used for a terminal terminator and it may use 2 or more types together by arbitrary combinations and a ratio.

溶融エステル交換法によりポリカーボネート樹脂を製造する際には、通常、エステル交換触媒が使用される。エステル交換触媒は任意のものを使用できる。なかでも、例えばアルカリ金属化合物及び/又はアルカリ土類金属化合物を用いることが好ましい。また補助的に、例えば塩基性ホウ素化合物、塩基性リン化合物、塩基性アンモニウム化合物、アミン系化合物などの塩基性化合物を併用してもよい。なお、エステル交換触媒は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   When producing a polycarbonate resin by the melt transesterification method, a transesterification catalyst is usually used. Any transesterification catalyst can be used. Among them, it is preferable to use, for example, an alkali metal compound and / or an alkaline earth metal compound. In addition, auxiliary compounds such as basic boron compounds, basic phosphorus compounds, basic ammonium compounds, and amine compounds may be used in combination. In addition, 1 type may be used for a transesterification catalyst and it may use 2 or more types together by arbitrary combinations and a ratio.

溶融エステル交換法において、反応温度は通常100〜320℃である。また、反応時の圧力は通常2mmHg以下の減圧条件である。具体的操作としては、前記の条件で、芳香族ヒドロキシ化合物等の副生成物を除去しながら、溶融重縮合反応を行えばよい。   In the melt transesterification method, the reaction temperature is usually 100 to 320 ° C. The pressure during the reaction is usually a reduced pressure condition of 2 mmHg or less. As a specific operation, a melt polycondensation reaction may be performed under the above-mentioned conditions while removing a by-product such as an aromatic hydroxy compound.

溶融重縮合反応は、バッチ式、連続式の何れの方法でも行うことができる。バッチ式で行う場合、反応基質、反応媒、触媒、添加剤等を混合する順番は、所望の芳香族ポリカーボネート樹脂が得られる限り任意であり、適切な順番を任意に設定すればよい。ただし中でも、ポリカーボネート樹脂の安定性等を考慮すると、溶融重縮合反応は連続式で行うことが好ましい。   The melt polycondensation reaction can be performed by either a batch method or a continuous method. When performing by a batch type, the order which mixes a reaction substrate, a reaction medium, a catalyst, an additive, etc. is arbitrary as long as a desired aromatic polycarbonate resin is obtained, What is necessary is just to set an appropriate order arbitrarily. However, considering the stability of the polycarbonate resin and the like, the melt polycondensation reaction is preferably carried out continuously.

溶融エステル交換法においては、必要に応じて、触媒失活剤を用いてもよい。触媒失活剤としてはエステル交換触媒を中和する化合物を任意に用いることができる。その例を挙げると、イオウ含有酸性化合物及びその誘導体などが挙げられる。なお、触媒失活剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   In the melt transesterification method, a catalyst deactivator may be used as necessary. As the catalyst deactivator, a compound that neutralizes the transesterification catalyst can be arbitrarily used. Examples thereof include sulfur-containing acidic compounds and derivatives thereof. In addition, 1 type may be used for a catalyst deactivator and it may use 2 or more types together by arbitrary combinations and a ratio.

触媒失活剤の使用量は、前記のエステル交換触媒が含有するアルカリ金属又はアルカリ土類金属に対して、通常0.5当量以上、好ましくは1当量以上であり、また、通常10当量以下、好ましくは5当量以下である。更には、ポリカーボネート樹脂に対して、通常1ppm以上であり、また、通常100ppm以下、好ましくは20ppm以下である。   The amount of the catalyst deactivator used is usually 0.5 equivalents or more, preferably 1 equivalent or more, and usually 10 equivalents or less, relative to the alkali metal or alkaline earth metal contained in the transesterification catalyst. Preferably it is 5 equivalents or less. Furthermore, it is 1 ppm or more normally with respect to polycarbonate resin, and is 100 ppm or less normally, Preferably it is 20 ppm or less.

ポリカーボネート樹脂(A)の分子量は、溶媒としてメチレンクロライドを用い、温度25℃で測定された溶液粘度より換算した粘度平均分子量(Mv)で、10,000〜15,000であることが好ましく、より好ましくは10,500以上、さらに好ましくは11,000以上、特には11,500以上、最も好ましくは12,000以上であり、より好ましくは14,500以下である。粘度平均分子量を上記範囲の下限値以上とすることにより、本発明のポリカーボネート樹脂組成物の機械的強度をより向上させることができ、粘度平均分子量を上記範囲の上限値以下とすることにより、本発明のポリカーボネート樹脂組成物の流動性低下を抑制して改善でき、成形加工性を高めて薄肉成形加工を容易に行えるようになる。
なお、粘度平均分子量の異なる2種類以上のポリカーボネート樹脂を混合して用いてもよく、この場合には、粘度平均分子量が上記の好適な範囲外であるポリカーボネート樹脂を混合してもよい。
The molecular weight of the polycarbonate resin (A) is preferably 10,000 to 15,000 in terms of viscosity average molecular weight (Mv) converted from the solution viscosity measured at a temperature of 25 ° C. using methylene chloride as a solvent. Preferably it is 10,500 or more, More preferably, it is 11,000 or more, Especially, 11,500 or more, Most preferably, it is 12,000 or more, More preferably, it is 14,500 or less. By making the viscosity average molecular weight more than the lower limit of the above range, the mechanical strength of the polycarbonate resin composition of the present invention can be further improved, and by making the viscosity average molecular weight not more than the upper limit of the above range, The fluidity of the polycarbonate resin composition of the invention can be suppressed and improved, and the molding processability can be improved and the thin-wall molding process can be easily performed.
Two or more types of polycarbonate resins having different viscosity average molecular weights may be mixed and used, and in this case, a polycarbonate resin having a viscosity average molecular weight outside the above-mentioned preferred range may be mixed.

なお、粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10−4Mv0.83 から算出される値を意味する。また、極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。

Figure 2015025068
The viscosity average molecular weight [Mv] is obtained by using methylene chloride as a solvent and obtaining an intrinsic viscosity [η] (unit: dl / g) at a temperature of 20 ° C. using an Ubbelohde viscometer. , Η = 1.23 × 10 −4 Mv 0.83 . The intrinsic viscosity [η] is a value calculated from the following equation by measuring the specific viscosity [η sp ] at each solution concentration [C] (g / dl).
Figure 2015025068

ポリカーボネート樹脂の末端水酸基濃度は任意であり、適宜選択して決定すればよいが、通常1000ppm以下、好ましくは800ppm以下、より好ましくは600ppm以下である。これによりポリカーボネート樹脂の滞留熱安定性及び色調をより向上させることができる。また、その下限は、特に溶融エステル交換法で製造されたポリカーボネート樹脂では、通常10ppm以上、好ましくは30ppm以上、より好ましくは40ppm以上である。これにより、分子量の低下を抑制し、樹脂組成物の機械的特性をより向上させることができる。   The terminal hydroxyl group concentration of the polycarbonate resin is arbitrary and may be appropriately selected and determined, but is usually 1000 ppm or less, preferably 800 ppm or less, more preferably 600 ppm or less. Thereby, the residence heat stability and color tone of polycarbonate resin can be improved more. In addition, the lower limit is usually 10 ppm or more, preferably 30 ppm or more, more preferably 40 ppm or more, particularly for polycarbonate resins produced by the melt transesterification method. Thereby, the fall of molecular weight can be suppressed and the mechanical characteristic of a resin composition can be improved more.

なお、末端水酸基濃度の単位は、ポリカーボネート樹脂の質量に対する、末端水酸基の質量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。   In addition, the unit of a terminal hydroxyl group density | concentration represents the mass of the terminal hydroxyl group with respect to the mass of polycarbonate resin in ppm. The measurement method is colorimetric determination (method described in Macromol. Chem. 88 215 (1965)) by the titanium tetrachloride / acetic acid method.

ポリカーボネート樹脂は、ポリカーボネート樹脂単独(ポリカーボネート樹脂単独とは、ポリカーボネート樹脂の1種のみを含む態様に限定されず、例えば、モノマー組成や分子量が互いに異なる複数種のポリカーボネート樹脂を含む態様を含む意味で用いる。)で用いてもよく、ポリカーボネート樹脂と他の熱可塑性樹脂とのアロイ(混合物)とを組み合わせて用いてもよい。さらに、例えば、難燃性や耐衝撃性をさらに高める目的で、ポリカーボネート樹脂を、シロキサン構造を有するオリゴマーまたはポリマーとの共重合体;熱酸化安定性や難燃性をさらに向上させる目的でリン原子を有するモノマー、オリゴマーまたはポリマーとの共重合体;熱酸化安定性を向上させる目的で、ジヒドロキシアントラキノン構造を有するモノマー、オリゴマーまたはポリマーとの共重合体;光学的性質を改良するためにポリスチレン等のオレフィン系構造を有するオリゴマーまたはポリマーとの共重合体;耐薬品性を向上させる目的でポリエステル樹脂オリゴマーまたはポリマーとの共重合体;等の、ポリカーボネート樹脂を主体とする共重合体として構成してもよい。   The polycarbonate resin is a polycarbonate resin alone (the polycarbonate resin alone is not limited to an embodiment containing only one type of polycarbonate resin, and is used in a sense including an embodiment containing a plurality of types of polycarbonate resins having different monomer compositions and molecular weights, for example. .), Or an alloy (mixture) of a polycarbonate resin and another thermoplastic resin may be used in combination. Further, for example, for the purpose of further improving flame retardancy and impact resistance, a polycarbonate resin is copolymerized with an oligomer or polymer having a siloxane structure; for the purpose of further improving thermal oxidation stability and flame retardancy A monomer, oligomer or polymer having a copolymer; a monomer, oligomer or polymer having a dihydroxyanthraquinone structure for the purpose of improving thermal oxidation stability; A copolymer with an oligomer or polymer having an olefin structure; a copolymer with a polyester resin oligomer or polymer for the purpose of improving chemical resistance; Good.

また、成形品の外観の向上や流動性の向上を図るため、ポリカーボネート樹脂は、ポリカーボネートオリゴマーを含有していてもよい。このポリカーボネートオリゴマーの粘度平均分子量[Mv]は、通常1500以上、好ましくは2000以上であり、また、通常9500以下、好ましくは9000以下である。さらに、含有されるポリカーボネートリゴマーは、ポリカーボネート樹脂(ポリカーボネートオリゴマーを含む)の30質量%以下とすることが好ましい。   Further, in order to improve the appearance of the molded product and improve the fluidity, the polycarbonate resin may contain a polycarbonate oligomer. The viscosity average molecular weight [Mv] of this polycarbonate oligomer is usually 1500 or more, preferably 2000 or more, and is usually 9500 or less, preferably 9000 or less. Furthermore, the polycarbonate ligomer contained is preferably 30% by mass or less of the polycarbonate resin (including the polycarbonate oligomer).

さらにポリカーボネート樹脂は、バージン原料だけでなく、使用済みの製品から再生されたポリカーボネート樹脂(いわゆるマテリアルリサイクルされたポリカーボネート樹脂)であってもよい。
ただし、再生されたポリカーボネート樹脂は、ポリカーボネート樹脂のうち、80質量%以下であることが好ましく、中でも50質量%以下であることがより好ましい。再生されたポリカーボネート樹脂は、熱劣化や経年劣化等の劣化を受けている可能性が高いため、このようなポリカーボネート樹脂を前記の範囲よりも多く用いた場合、色相や機械的物性を低下させる可能性があるためである。
Further, the polycarbonate resin may be not only a virgin raw material but also a polycarbonate resin regenerated from a used product (so-called material-recycled polycarbonate resin).
However, the regenerated polycarbonate resin is preferably 80% by mass or less of the polycarbonate resin, and more preferably 50% by mass or less. Recycled polycarbonate resin is likely to have undergone deterioration such as heat deterioration and aging deterioration, so when such polycarbonate resin is used more than the above range, hue and mechanical properties can be reduced. It is because there is sex.

[ポリアルキレンエーテルグリコール化合物(B)]
本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を含有する。

Figure 2015025068
(式中、X及びYは水素原子、炭素数1〜22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3〜6の整数、nは6〜100の整数を示す。) [Polyalkylene ether glycol compound (B)]
The polycarbonate resin composition for thin optical parts of the present invention contains a polyalkylene ether glycol compound (B) represented by the following general formula (1).
Figure 2015025068
(In the formula, X and Y represent a hydrogen atom, an aliphatic acyl group or an alkyl group having 1 to 22 carbon atoms, X and Y may be different from each other, m is an integer of 3 to 6, and n is Represents an integer of 6 to 100.)

上記一般式(1)において、n(重合度)は、6〜100の整数であるが、好ましくは8以上、より好ましくは10以上であり、好ましくは90以下、より好ましくは80以下である。重合度nが6未満の場合、成形時にガスが発生するので好ましくない。一方、重合度nが100を超える場合、相溶性が低下するので好ましくない。
ポリアルキレンエーテルグリコール化合物(B)としては、他の共重合成分との共重合体であってもよいが、ポリアルキレンエーテルグリコール単独重合体が好ましい。
In the general formula (1), n (degree of polymerization) is an integer of 6 to 100, preferably 8 or more, more preferably 10 or more, preferably 90 or less, more preferably 80 or less. A polymerization degree n of less than 6 is not preferable because gas is generated during molding. On the other hand, when the polymerization degree n exceeds 100, the compatibility is lowered, which is not preferable.
The polyalkylene ether glycol compound (B) may be a copolymer with another copolymer component, but a polyalkylene ether glycol homopolymer is preferred.

ポリアルキレンエーテルグリコール化合物(B)としては、式(1)中のX及びYが水素原子で、mが3であるポリトリメチレンエーテルグリコール、mが4であるポリテトラメチレンエーテルグリコール、mが5であるポリペンタメチレンエーテルグリコール、mが6であるポリヘキサメチレンエーテルグリコールが好ましく挙げられ、より好ましくはポリトリメチレンエーテルグリコール、ポリテトラメチレンエーテルグリコールあるいはそのエステル化物またはエーテル化物である。   As polyalkylene ether glycol compound (B), in formula (1), X and Y are hydrogen atoms, m is 3, polytrimethylene ether glycol, m is 4, polytetramethylene ether glycol, m is 5 Preferred examples include polypentamethylene ether glycol and polyhexamethylene ether glycol in which m is 6. More preferred are polytrimethylene ether glycol, polytetramethylene ether glycol, esterified products or etherified products thereof.

また、ポリアルキレンエーテルグリコール化合物(B)として、その片末端あるいは両末端が脂肪酸またはアルコールで封鎖されていてもその性能発現に影響はなく、脂肪酸エステル化物またはエーテル化物が同様に使用でき、式(1)中のX及び/又は炭素数1〜22である、脂肪族アシル基またはアルキル基であってもよい。   In addition, as the polyalkylene ether glycol compound (B), even if one or both ends thereof are blocked with a fatty acid or alcohol, there is no influence on the performance expression, and a fatty acid ester or ether can be used in the same manner. It may be an aliphatic acyl group or an alkyl group having X and / or 1 to 22 carbon atoms in 1).

脂肪酸エステル化物としては、直鎖状又は分岐状脂肪酸エステルのいずれも使用でき、脂肪酸エステルを構成する脂肪酸は、飽和脂肪酸であってもよく不飽和脂肪酸であってもよい。また、一部の水素原子がヒドロキシル基などの置換基で置換されたものも使用できる。
脂肪酸エステルを構成する脂肪酸としては、炭素数1〜22の1価又は2価の脂肪酸、例えば、1価の飽和脂肪酸、例えば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキジン酸、ベヘン酸や、1価の不飽和脂肪酸、例えば、オレイン酸、エライジン酸、リノール酸、リノレン酸、アラキドン酸などの不飽和脂肪酸、また炭素数10以上の二価の脂肪酸、例えば、セバシン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、タプシア酸及びデセン二酸、ウンデセン二酸、ドデセン二酸である。
これらの脂肪酸は一種又は二種以上組み合せて使用できる。前記脂肪酸には、1つ又は複数のヒドロキシル基を分子内に有する脂肪酸も含まれる。
As the fatty acid ester product, either a linear or branched fatty acid ester can be used, and the fatty acid constituting the fatty acid ester may be a saturated fatty acid or an unsaturated fatty acid. Also, those in which some hydrogen atoms are substituted with a substituent such as a hydroxyl group can be used.
The fatty acid constituting the fatty acid ester is a monovalent or divalent fatty acid having 1 to 22 carbon atoms, such as a monovalent saturated fatty acid, such as formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid. , Caprylic acid, capric acid, lauric acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid and monounsaturated fatty acids such as oleic acid, elaidic acid, Unsaturated fatty acids such as linoleic acid, linolenic acid, and arachidonic acid, and divalent fatty acids having 10 or more carbon atoms such as sebacic acid, undecanedioic acid, dodecanedioic acid, tetradecanedioic acid, tapsiaic acid and decenedioic acid, undecene Diacid, dodecenedioic acid.
These fatty acids can be used alone or in combination. The fatty acid also includes a fatty acid having one or more hydroxyl groups in the molecule.

ポリアルキレンエーテルグリコール脂肪酸エステルの好ましい具体例としては、ポリアルキレンエーテルグリコールモノパルミチン酸エステル、ポリアルキレンエーテルグリコールジパルミチン酸エステル、ポリアルキレンエーテルグリコールモノステアリン酸エステル、ポリアルキレンエーテルグリコールジステアリン酸エステル、ポリアルキレンエーテルグリコール(モノパルミチン酸・モノステアリン酸)エステル、ポリアルキレンエーテルグリコールベヘネート等が挙げられる。   Preferable specific examples of the polyalkylene ether glycol fatty acid ester include polyalkylene ether glycol monopalmitate, polyalkylene ether glycol dipalmitate, polyalkylene ether glycol monostearate, polyalkylene ether glycol distearate, polyalkylene Examples include ether glycol (monopalmitic acid / monostearic acid) ester, polyalkylene ether glycol behenate, and the like.

アルキルエーテルを構成するアルキル基としては、直鎖状又は分岐状のいずれも使用でき、炭素数1〜22のアルキル基、例えばメチル基、エチル基、プロピル基、ブチル基、オクチル基、ラウリル基、ステアリル基等であり、ポリアルキレンエーテルグリコールのアルキルメチルエーテル、エチルエーテル、ブチルエーテル、ラウリルエーテル、ステアリルエーテル等が好ましく例示できる。   As the alkyl group constituting the alkyl ether, either linear or branched can be used, and an alkyl group having 1 to 22 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, an octyl group, a lauryl group, Preferred examples include stearyl groups such as alkyl methyl ether, ethyl ether, butyl ether, lauryl ether and stearyl ether of polyalkylene ether glycol.

また、ポリアルキレンエーテルグリコール化合物(B)の数平均分子量としては、200〜5,000であることが好ましく、より好ましくは300以上、さらに好ましくは500以上であり、より好ましくは4,000以下、さらに好ましくは3,000以下である。上記範囲の上限を超えると、相溶性が低下するので好ましくなく、又上記範囲の下限を下回ると成形時にガスが発生するので好ましくない。ここでいうポリアルキレンエーテルグリコール化合物の数平均分子量はJIS K1577に準拠して測定した水酸基価に基づいて算出した数平均分子量である。   Moreover, as a number average molecular weight of a polyalkylene ether glycol compound (B), it is preferable that it is 200-5,000, More preferably, it is 300 or more, More preferably, it is 500 or more, More preferably, it is 4,000 or less, More preferably, it is 3,000 or less. Exceeding the upper limit of the above range is not preferable because the compatibility is lowered, and if it is lower than the lower limit of the above range, gas is generated during molding, which is not preferable. The number average molecular weight of a polyalkylene ether glycol compound here is the number average molecular weight computed based on the hydroxyl value measured based on JISK1577.

ポリアルキレンエーテルグリコール化合物(B)の含有量は、ポリカーボネート樹脂(A)100質量部に対し、0.1〜2質量部である。好ましい含有量は0.15質量部以上、より好ましくは0.2質量部以上であり、好ましくは1.9質量部以下、より好ましくは1.7質量部以下、さらに好ましくは1.6質量部以下である。含有量が0.1質量部を下回ると、色相や黄変の改善が十分でなく、2質量部を超えると、押出機による溶融混練の際に、ストランドの断線が多発し、樹脂組成物ペレットの作成が困難となる。   Content of a polyalkylene ether glycol compound (B) is 0.1-2 mass parts with respect to 100 mass parts of polycarbonate resin (A). The preferred content is 0.15 parts by mass or more, more preferably 0.2 parts by mass or more, preferably 1.9 parts by mass or less, more preferably 1.7 parts by mass or less, and further preferably 1.6 parts by mass. It is as follows. When the content is less than 0.1 part by mass, the hue and yellowing are not sufficiently improved. When the content exceeds 2 parts by mass, strand breakage frequently occurs during melt kneading by an extruder, and the resin composition pellets It becomes difficult to create.

[添加剤等]
本発明のポリカーボネート樹脂組成物は、熱安定剤、酸化防止剤、離型剤、紫外線吸収剤、蛍光増白剤、顔料、染料、他のポリマー、難燃剤、耐衝撃改良剤、帯電防止剤、可塑剤、相溶化剤などの添加剤を含有することができる。これらの添加剤は一種または二種以上を配合してもよい。これらのうち、特に、熱安定剤と酸化防止剤を含有することが好ましい。
[Additives, etc.]
The polycarbonate resin composition of the present invention comprises a heat stabilizer, an antioxidant, a release agent, an ultraviolet absorber, a fluorescent brightener, a pigment, a dye, other polymers, a flame retardant, an impact resistance improver, an antistatic agent, Additives such as plasticizers and compatibilizers can be contained. These additives may be used alone or in combination of two or more. Among these, it is particularly preferable to contain a heat stabilizer and an antioxidant.

熱安定剤としては、特に制限はないが、例えばリン系化合物が好ましく挙げられる。リン系化合物としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸、酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩、リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第10族金属のリン酸塩、有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられる。   Although there is no restriction | limiting in particular as a heat stabilizer, For example, a phosphorus compound is mentioned preferably. Any known phosphorous compound can be used. Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, polyphosphoric acid, acidic pyrophosphoric acid metal salts such as acidic sodium pyrophosphate, acidic potassium pyrophosphate, acidic calcium pyrophosphate, and phosphoric acid. Examples include Group 1 or Group 10 metal phosphates such as potassium, sodium phosphate, cesium phosphate, and zinc phosphate, organic phosphate compounds, organic phosphite compounds, and organic phosphonite compounds.

なかでも、トリフェニルホスファイト、トリス(モノノニルフェニル)ホスファイト、トリス(モノノニル/ジノニル・フェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、モノオクチルジフェニルホスファイト、ジオクチルモノフェニルホスファイト、モノデシルジフェニルホスファイト、ジデシルモノフェニルホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリステアリルホスファイト、2,2−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト等の有機ホスファイトが好ましい。   Among them, triphenyl phosphite, tris (monononylphenyl) phosphite, tris (monononyl / dinonyl phenyl) phosphite, tris (2,4-di-tert-butylphenyl) phosphite, monooctyl diphenyl phosphite, Dioctyl monophenyl phosphite, monodecyl diphenyl phosphite, didecyl monophenyl phosphite, tridecyl phosphite, trilauryl phosphite, tristearyl phosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) ) Organic phosphites such as octyl phosphite are preferred.

熱安定剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上、より好ましくは0.03質量部以上であり、また、通常1質量部以下、好ましくは0.7質量部以下、より好ましくは0.5質量部以下である。熱安定剤が少なすぎると熱安定効果が不十分となる可能性があり、熱安定剤が多すぎると効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the heat stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, more preferably 0.03 parts by mass or more with respect to 100 parts by mass of the polycarbonate resin (A). Usually, it is 1 part by mass or less, preferably 0.7 part by mass or less, more preferably 0.5 part by mass or less. If the amount of the heat stabilizer is too small, the heat stabilization effect may be insufficient. If the amount of the heat stabilizer is too large, the effect may reach a peak and may not be economical.

また、酸化防止剤としては、例えばヒンダードフェノール系酸化防止剤が好ましく挙げられる。その具体例としては、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオナミド)、2,4−ジメチル−6−(1−メチルペンタデシル)フェノール、ジエチル[[3,5−ビス(1,1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ホスフォエート、3,3’,3”,5,5’,5”−ヘキサ−tert−ブチル−a,a’,a”−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート]、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン,2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミノ)フェノール等が挙げられる。   Moreover, as an antioxidant, a hindered phenolic antioxidant is mentioned preferably, for example. Specific examples thereof include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl). ) Propionate, thiodiethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], N, N′-hexane-1,6-diylbis [3- (3,5-di-) tert-butyl-4-hydroxyphenylpropionamide), 2,4-dimethyl-6- (1-methylpentadecyl) phenol, diethyl [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl ] Methyl] phosphoate, 3,3 ′, 3 ″, 5,5 ′, 5 ″ -hexa-tert-butyl-a, a ′, a ″ (Mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis (octylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4 -Hydroxy-m-tolyl) propionate], hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris (3,5-di-tert) -Butyl-4-hydroxybenzyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6-bis (Octylthio) -1,3,5-triazin-2-ylamino) phenol and the like.

なかでも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートが好ましい。このようなフェノール系酸化防止剤としては、具体的には、例えば、BASFジャパン社製「イルガノックス1010」(登録商標、以下同じ)、「イルガノックス1076」、ADEKA社製「アデカスタブAO−50」、「アデカスタブAO−60」等が挙げられる。
なお、酸化防止剤は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていても良い。
Among them, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate preferable. Specifically, as such a phenolic antioxidant, for example, “Irganox 1010” (registered trademark, the same shall apply hereinafter) manufactured by BASF Japan, “Irganox 1076”, “ADEKA STAB AO-50” manufactured by ADEKA , “ADK STAB AO-60” and the like.
In addition, 1 type may contain antioxidant and 2 or more types may contain it by arbitrary combinations and a ratio.

酸化防止剤の含有量は、ポリカーボネート樹脂(A)100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常1質量部以下、好ましくは0.5質量部以下である。酸化防止剤の含有量が前記範囲の下限値以下の場合は、酸化防止剤としての効果が不十分となる可能性があり、酸化防止剤の含有量が前記範囲の上限値を超える場合は、効果が頭打ちとなり経済的でなくなる可能性がある。   The content of the antioxidant is usually 0.001 part by mass or more, preferably 0.01 part by mass or more, and usually 1 part by mass or less, preferably 0 with respect to 100 parts by mass of the polycarbonate resin (A). .5 parts by mass or less. When the content of the antioxidant is less than or equal to the lower limit of the range, the effect as an antioxidant may be insufficient, and when the content of the antioxidant exceeds the upper limit of the range, There is a possibility that the effect reaches its peak and is not economical.

[ポリカーボネート樹脂組成物の製造方法]
本発明のポリカーボネート樹脂組成物の製造方法に制限はなく、公知のポリカーボネート樹脂組成物の製造方法を広く採用でき、ポリカーボネート樹脂(A)及びポリアルキレンエーテルグリコール(B)、並びに、必要に応じて配合されるその他の成分を、例えばタンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。なお、溶融混練の温度は特に制限されないが、通常240〜320℃の範囲である。
[Production Method of Polycarbonate Resin Composition]
There is no limitation on the production method of the polycarbonate resin composition of the present invention, and a wide variety of production methods of known polycarbonate resin compositions can be adopted. Polycarbonate resin (A) and polyalkylene ether glycol (B), and blended as necessary For example, after mixing in advance using other mixers such as a tumbler and a Henschel mixer, the components are mixed with a Banbury mixer, roll, brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, or the like. The method of melt-kneading is mentioned. The temperature for melt kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.

本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、高い分光透過率を示し、300mmの光路長で測定した波長420nmでの分光透過率が、好ましくは55%以上、より好ましくは56%以上、さらに好ましくは57%以上という高い分光透過率を有することができる。
波長420nmでの分光透過率は、導光板等の光学部品でも多用される青色LEDの波長領域に近接する波長域での透過率であり、またこの波長域での透過率が低いと黄色味が増加することになる。
なお、波長420nmでの分光透過率は、射出成形された長光路成形品(300mm×7mm×4mm)を用い300mmの光路長で測定され、具体的には後記実施例に記載の方法に従って行われる。
The polycarbonate resin composition for thin optical components of the present invention exhibits high spectral transmittance, and the spectral transmittance measured at an optical path length of 300 mm at a wavelength of 420 nm is preferably 55% or more, more preferably 56% or more, and further Preferably, it can have a high spectral transmittance of 57% or more.
The spectral transmittance at a wavelength of 420 nm is a transmittance in a wavelength region close to the wavelength region of a blue LED often used in optical components such as a light guide plate, and if the transmittance in this wavelength region is low, yellowishness Will increase.
The spectral transmittance at a wavelength of 420 nm is measured with an optical path length of 300 mm using an injection molded long optical path molded product (300 mm × 7 mm × 4 mm), and is specifically performed according to the method described in the examples described later. .

[薄肉光学部品]
本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、上記したポリカーボネート樹脂組成物をペレタイズしたペレットを各種の成形法で成形して薄肉光学部品を製造することができる。またペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して薄肉光学部品にすることもできる。
[Thin optical components]
The polycarbonate resin composition for thin optical components of the present invention can be produced by molding pellets obtained by pelletizing the above-described polycarbonate resin composition by various molding methods. Further, the resin melt-kneaded by an extruder can be directly molded into a thin optical component without going through the pellets.

本発明のポリカーボネート樹脂組成物は、流動性に優れ、薄肉の成形品にした場合でも、白点異物のない成形品外観に優れ、透過率や色相を両立できることから、射出成形法により、薄肉の光学部品を成形するのに好適に用いられる。射出成形の際の樹脂温度は、一般にポリカーボネート樹脂の射出成形に適用される温度である260〜300℃よりも高い樹脂温度にて成形することが好ましく、305〜380℃の樹脂温度が好ましい。樹脂温度は310℃以上であるのがより好ましく、315℃以上がさらに好ましく、320℃以上が特に好ましく、370℃以下がより好ましい。従来のポリカーボネート樹脂組成物を用いた場合には、薄肉成形品を成形するために成形時の樹脂温度を高めと、成形品の表面に白点異物が生じやすくなるという問題もあったが、本発明の樹脂組成物を使用することで、上記の温度範囲であっても、良好な外観を有する薄肉成形品を製造することが可能となる。
なお、樹脂温度とは、直接測定することが困難な場合はバレル設定温度として把握される。
The polycarbonate resin composition of the present invention has excellent fluidity, and even when it is a thin molded product, it has excellent appearance of a molded product without white spot foreign matter, and can achieve both transmittance and hue. It is suitably used for molding optical components. The resin temperature at the time of injection molding is preferably molded at a resin temperature higher than 260 to 300 ° C., which is a temperature generally applied to injection molding of polycarbonate resin, and a resin temperature of 305 to 380 ° C. is preferable. The resin temperature is more preferably 310 ° C or higher, further preferably 315 ° C or higher, particularly preferably 320 ° C or higher, and more preferably 370 ° C or lower. In the case of using a conventional polycarbonate resin composition, there is a problem that white spot foreign matter tends to be generated on the surface of the molded product when the resin temperature at the time of molding is increased in order to mold a thin molded product. By using the resin composition of the invention, it is possible to produce a thin molded article having a good appearance even in the above temperature range.
The resin temperature is grasped as the barrel set temperature when it is difficult to directly measure the resin temperature.

本発明において薄肉成形品とは、通常肉厚が1mm以下、好ましくは0.8mm以下、より好ましくは0.6mm以下の板状部を有する成形品をいう。ここで、板状部は、平板であっても曲板状になっていてもよく、平坦な表面であっても、表面に凹凸等を有してもよく、また断面は傾斜面を有していたり、楔型断面等であってもよい。   In the present invention, the thin-walled molded article refers to a molded article having a plate-like portion having a thickness of usually 1 mm or less, preferably 0.8 mm or less, more preferably 0.6 mm or less. Here, the plate-like portion may be a flat plate or a curved plate, may be a flat surface, may have irregularities on the surface, and the cross section has an inclined surface. Or a wedge-shaped cross section.

薄肉光学部品としては、LED、有機EL、白熱電球、蛍光ランプ、陰極管等の光源を直接または間接に利用する機器・器具の部品が挙げられ、導光板や面発光体用部材等が代表的なものとして例示される。
導光板は、液晶バックライトユニットや各種の表示装置、照明装置の中で、LED等の光源の光を導光するためのものであり、側面または裏面等から入れた光を、通常表面に設けられた凹凸により拡散させ、均一の光を出す。その形状は、通常平板状であり、表面には凹凸を有していても有していなくてもよい。
導光板の成形は、通常、好ましくは射出成形法、超高速射出成形法、射出圧縮成形法などにより行われる。
本発明の樹脂組成物を用いて成形した導光板は、白濁や透過率の低下がなく、透過率および色相が極めて良好である。
Thin-walled optical components include components of equipment and instruments that directly or indirectly use light sources such as LEDs, organic EL, incandescent bulbs, fluorescent lamps, and cathode tubes, and light guide plates and surface light emitter members are typical. It is illustrated as a thing.
The light guide plate is used to guide light from a light source such as an LED in a liquid crystal backlight unit, various display devices, and lighting devices. It diffuses by the unevenness and emits uniform light. The shape is usually flat, and the surface may or may not have irregularities.
The light guide plate is usually formed preferably by an injection molding method, an ultra-high speed injection molding method, an injection compression molding method, or the like.
The light guide plate molded using the resin composition of the present invention does not have white turbidity or a decrease in transmittance, and has a very good transmittance and hue.

本発明のポリカーボネート樹脂組成物による導光板は、液晶バックライトユニットや各種の表示装置、照明装置の分野で好適に使用できる。このような装置の例としては、携帯電話、モバイルノート、ネットブック、スレートPC、タブレットPC、スマートフォン、タブレット型端末等の各種携帯端末、カメラ、時計、ノートパソコン、各種ディスプレイ、照明機器等が挙げられる。   The light guide plate made of the polycarbonate resin composition of the present invention can be suitably used in the fields of liquid crystal backlight units, various display devices, and lighting devices. Examples of such devices include mobile phones, mobile notebooks, netbooks, slate PCs, tablet PCs, smartphones, tablet terminals, and other portable terminals, cameras, watches, notebook computers, various displays, lighting devices, and the like. It is done.

以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定して解釈されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not construed as being limited to the following examples.

以下の実施例及び比較例で使用した原料および評価方法は次の通りである。 なお、ポリカーボネート樹脂(A)の粘度平均分子量は、ウベローデ粘度計を用いて塩化メチレン中20℃の極限粘度[η]を測定し、以下の式より求めた。
[η]=1.23×10−4×(Mv)0.83
The raw materials and evaluation methods used in the following examples and comparative examples are as follows. The viscosity average molecular weight of the polycarbonate resin (A) was determined from the following equation by measuring the intrinsic viscosity [η] at 20 ° C. in methylene chloride using an Ubbelohde viscometer.
[Η] = 1.23 × 10 −4 × (Mv) 0.83

Figure 2015025068
Figure 2015025068

(実施例1〜7、比較例1〜5)
[樹脂組成物ペレットの製造]
上記した各成分を、表2及び表3に記した割合(質量部)で配合し、タンブラーにて20分混合した後、スクリュー径40mmのベント付単軸押出機(田辺プラスチック機械社製「VS−40」)により、シリンダー温度240℃で溶融混練し、ストランドカットによりペレットを得た。
(Examples 1-7, Comparative Examples 1-5)
[Production of resin composition pellets]
Each component described above was blended in the proportions (parts by mass) shown in Table 2 and Table 3, mixed for 20 minutes with a tumbler, and then a single screw extruder with a vent with a screw diameter of 40 mm (“VS” manufactured by Tanabe Plastic Machinery Co., Ltd.). −40 ”), the mixture was melt-kneaded at a cylinder temperature of 240 ° C., and pellets were obtained by strand cutting.

[色相(YI)と光線透過率の測定]
得られたペレットを120℃で5〜7時間、熱風循環式乾燥機により乾燥した後、射出成形機(東芝機械社製「EC100SX−2A」)により、樹脂温度340℃、金型温度80℃で長光路成形品(300mm×7mm×4mm)を成形した。
この長光路成形品について、300mmの光路長でYI(黄変度)と波長420mmの分光透過率(単位:%)の測定を行った。測定には長光路分光透過色計(日本電色工業社製「ASA 1」、C光源、2°視野)を使用した。
以上の評価結果を以下の表2および表3に示す。
[Measurement of hue (YI) and light transmittance]
The obtained pellets were dried at 120 ° C. for 5 to 7 hours with a hot air circulating dryer, and then with an injection molding machine (“EC100SX-2A” manufactured by Toshiba Machine Co., Ltd.) at a resin temperature of 340 ° C. and a mold temperature of 80 ° C. A long optical path molded product (300 mm × 7 mm × 4 mm) was molded.
With respect to this long optical path molded product, YI (degree of yellowing) and spectral transmittance (unit:%) at a wavelength of 420 mm were measured at an optical path length of 300 mm. For the measurement, a long optical path spectral transmission color meter (“ASA 1” manufactured by Nippon Denshoku Industries Co., Ltd., C light source, 2 ° visual field) was used.
The above evaluation results are shown in Table 2 and Table 3 below.

Figure 2015025068
Figure 2015025068

Figure 2015025068
Figure 2015025068

[比較例5]
実施例1において、B1成分を4質量部にした以外は実施例1と同様の方法でペレット化を検討したが、押出機による溶融混練の際のストランドの断線が多発し、樹脂組成物ペレットの作成が困難であった。
[Comparative Example 5]
In Example 1, except that the B1 component was changed to 4 parts by mass, pelletization was examined in the same manner as in Example 1. However, strand breakage occurred frequently during melt-kneading by an extruder, and the resin composition pellets Creation was difficult.

表2から明らかなように、実施例の成形品は光路長の長い300mmでのYIが小さく、黄変が少ないことを示している。さらに420nmでの光線透過率も高く、透明性にも優れる。
一方、表3の比較例のものは300mmのYIが実施例のものに較べて、悪いことが分かる。さらに光線透過率も低い。
したがって、本発明の、透過率および色相の良好な薄肉光学部品用ポリカーボネート樹脂組成物を提供するという目的は、本発明の要件を全て満たして、はじめて達成されるということが分かる。
As is apparent from Table 2, the molded product of the example has a small YI at 300 mm with a long optical path length, and shows little yellowing. Furthermore, the light transmittance at 420 nm is high and the transparency is excellent.
On the other hand, in the comparative example of Table 3, it can be seen that YI of 300 mm is worse than that of the example. Furthermore, the light transmittance is also low.
Therefore, it can be seen that the object of the present invention to provide a polycarbonate resin composition for thin optical parts having good transmittance and hue is achieved only when all the requirements of the present invention are satisfied.

本発明のポリカーボネート樹脂組成物は、透過率および色相が極めて良好なので、薄肉光学部品に極めて好適に利用でき、産業上の利用性は非常に高い。   Since the polycarbonate resin composition of the present invention has very good transmittance and hue, it can be used very favorably for thin-walled optical components, and industrial applicability is very high.

[1]ポリカーボネート樹脂(A)100質量部に対し、ポリテトラメチレンエーテルグリコール(B)を0.1〜2質量部、リン系熱安定剤(C)を0.01〜0.5質量部含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。
[2]ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000〜15,000である上記[1]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[3300nmの光路長で測定した波長420nmでの分光透過率が55%以上である上記1または2に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
]上記[1]〜[]のいずれかに記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。
]1mm以下の厚みを有する導光板である上記[]に記載の薄肉光学部品。
]上記[1]〜[]のいずれかに記載のポリカーボネート樹脂組成物を305〜380℃で射出成形する肉厚が1mm以下の薄肉光学部品の製造方法。
[1] 0.1 to 2 parts by mass of polytetramethylene ether glycol (B ) and 0.01 to 0.5 parts by mass of a phosphorus thermal stabilizer (C) with respect to 100 parts by mass of the polycarbonate resin (A) A polycarbonate resin composition for thin-walled optical parts.
[2] The polycarbonate resin composition for thin-walled optical components according to the above [1], wherein the polycarbonate resin (A) has a viscosity average molecular weight (Mv) of 10,000 to 15,000.
[3 ] The polycarbonate resin composition for thin-walled optical components as described in 1 or 2 above, wherein the spectral transmittance at a wavelength of 420 nm measured with an optical path length of 300 nm is 55% or more.
[ 4 ] A thin optical part obtained by molding the polycarbonate resin composition according to any one of [1] to [ 3 ].
[ 5 ] The thin-walled optical component according to [ 4 ], which is a light guide plate having a thickness of 1 mm or less.
[ 6 ] A method for producing a thin optical part having a thickness of 1 mm or less, which is obtained by injection molding the polycarbonate resin composition according to any one of [1] to [ 3 ] at 305 to 380 ° C.

[概要]
本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、ポリテトラメチレンエーテルグリコール(B)を0.1〜2質量部、リン系熱安定剤(C)を0.01〜0.5質量部含有することを特徴とする。
以下、本発明のポリカーボネート樹脂組成物を構成する各成分、薄肉光学部品等につき、詳細に説明する。
[Overview]
The polycarbonate resin composition for thin-walled optical components of the present invention comprises 0.1 to 2 parts by mass of polytetramethylene ether glycol (B) and phosphorus-based heat stabilizer (C) with respect to 100 parts by mass of the polycarbonate resin (A). 0.01-0.5 mass part is contained, It is characterized by the above-mentioned.
Hereinafter, each component, thin-walled optical component and the like constituting the polycarbonate resin composition of the present invention will be described in detail.

Figure 2015025068
Figure 2015025068

Figure 2015025068
Figure 2015025068

Figure 2015025068
Figure 2015025068

[1]ポリカーボネート樹脂(A)100質量部に対し、数平均分子量が500〜5,000のポリテトラメチレンエーテルグリコール(B)を0.1〜2質量部、リン系熱安定剤(C)を0.01〜0.5質量部含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。
[2]ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000〜15,000である上記[1]に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[3]300nmの光路長で測定した波長420nmでの分光透過率が55%以上である上記1または2に記載の薄肉光学部品用ポリカーボネート樹脂組成物。
[4]上記[1]〜[3]のいずれかに記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。
[5]1mm以下の厚みを有する導光板である上記[4]に記載の薄肉光学部品。
[6]上記[1]〜[3]のいずれかに記載のポリカーボネート樹脂組成物を305〜380℃で射出成形する肉厚が1mm以下の薄肉光学部品の製造方法。
[1] 0.1 to 2 parts by mass of a polytetramethylene ether glycol (B) having a number average molecular weight of 500 to 5,000 and a phosphorus thermal stabilizer (C) with respect to 100 parts by mass of the polycarbonate resin (A). A polycarbonate resin composition for thin-walled optical parts, characterized by containing 0.01 to 0.5 parts by mass.
[2] The polycarbonate resin composition for thin-walled optical components according to the above [1], wherein the polycarbonate resin (A) has a viscosity average molecular weight (Mv) of 10,000 to 15,000.
[3] The polycarbonate resin composition for thin-walled optical components as described in 1 or 2 above, wherein the spectral transmittance at a wavelength of 420 nm measured with an optical path length of 300 nm is 55% or more.
[4] A thin optical component obtained by molding the polycarbonate resin composition according to any one of [1] to [3].
[5] The thin-walled optical component according to [4], which is a light guide plate having a thickness of 1 mm or less.
[6] A method for producing a thin optical part having a thickness of 1 mm or less, which is obtained by injection molding the polycarbonate resin composition according to any one of [1] to [3] at 305 to 380 ° C.

[概要]
本発明の薄肉光学部品用ポリカーボネート樹脂組成物は、ポリカーボネート樹脂(A)100質量部に対し、数平均分子量が500〜5,000のポリテトラメチレンエーテルグリコール(B)を0.1〜2質量部、リン系熱安定剤(C)を0.01〜0.5質量部含有することを特徴とする。
以下、本発明のポリカーボネート樹脂組成物を構成する各成分、薄肉光学部品等につき、詳細に説明する。
[Overview]
The polycarbonate resin composition for thin optical components of the present invention is 0.1 to 2 parts by mass of polytetramethylene ether glycol (B) having a number average molecular weight of 500 to 5,000 with respect to 100 parts by mass of the polycarbonate resin (A). The phosphorous heat stabilizer (C) is contained in an amount of 0.01 to 0.5 parts by mass.
Hereinafter, each component, thin-walled optical component and the like constituting the polycarbonate resin composition of the present invention will be described in detail.

Claims (7)

ポリカーボネート樹脂(A)100質量部に対し、下記一般式(1)で表されるポリアルキレンエーテルグリコール化合物(B)を0.1〜2質量部を含有することを特徴とする薄肉光学部品用ポリカーボネート樹脂組成物。
Figure 2015025068
(式中、X及びYは水素原子、炭素数1〜22の、脂肪族アシル基またはアルキル基を示し、XとYは相互に異なっていてもよく、mは3〜6の整数、nは6〜100の整数を示す。)
A polycarbonate for thin-walled optical parts, comprising 0.1 to 2 parts by mass of a polyalkylene ether glycol compound (B) represented by the following general formula (1) with respect to 100 parts by mass of the polycarbonate resin (A) Resin composition.
Figure 2015025068
(In the formula, X and Y represent a hydrogen atom, an aliphatic acyl group or an alkyl group having 1 to 22 carbon atoms, X and Y may be different from each other, m is an integer of 3 to 6, and n is Represents an integer of 6 to 100.)
ポリカーボネート樹脂(A)の粘度平均分子量(Mv)が10,000〜15,000である請求項1に記載の薄肉光学部品用ポリカーボネート樹脂組成物。   The polycarbonate resin composition for thin optical parts according to claim 1, wherein the polycarbonate resin (A) has a viscosity average molecular weight (Mv) of 10,000 to 15,000. ポリアルキレンエーテルグリコール化合物(B)がポリテトラメチレンエーテルグリコールである請求項1または2に記載の薄肉光学部品用ポリカーボネート樹脂組成物。   The polycarbonate resin composition for thin-walled optical parts according to claim 1 or 2, wherein the polyalkylene ether glycol compound (B) is polytetramethylene ether glycol. 300nmの光路長で測定した波長420nmでの分光透過率が55%以上である請求項1〜3のいずれか1項に記載の薄肉光学部品用ポリカーボネート樹脂組成物。   The polycarbonate resin composition for thin-walled optical components according to any one of claims 1 to 3, wherein the spectral transmittance at a wavelength of 420 nm measured with an optical path length of 300 nm is 55% or more. 請求項1〜4のいずれか1項に記載のポリカーボネート樹脂組成物を成形した薄肉光学部品。   The thin optical component which shape | molded the polycarbonate resin composition of any one of Claims 1-4. 1mm以下の厚みを有する導光板である請求項5に記載の薄肉光学部品。   The thin optical component according to claim 5, which is a light guide plate having a thickness of 1 mm or less. 請求項1〜4のいずれか1項に記載のポリカーボネート樹脂組成物を305〜380℃で射出成形する肉厚が1mm以下の薄肉光学部品の製造方法。   The manufacturing method of the thin optical component whose thickness is 1 mm or less which carries out injection molding of the polycarbonate resin composition of any one of Claims 1-4 at 305-380 degreeC.
JP2013155539A 2013-07-26 2013-07-26 Polycarbonate resin composition for thin optical parts and thin optical parts Active JP5699188B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013155539A JP5699188B2 (en) 2013-07-26 2013-07-26 Polycarbonate resin composition for thin optical parts and thin optical parts
CN201480042499.0A CN105431488B (en) 2013-07-26 2014-06-03 Thin walled optical component poly carbonate resin composition and thin walled optical component
KR1020167001809A KR102121093B1 (en) 2013-07-26 2014-06-03 Polycarbonate resin composition for thin optical component, and thin optical component
US14/894,671 US9701835B2 (en) 2013-07-26 2014-06-03 Polycarbonate resin composition for thin optical component, and thin optical component
PCT/JP2014/064717 WO2015011994A1 (en) 2013-07-26 2014-06-03 Polycarbonate resin composition for thin optical component, and thin optical component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013155539A JP5699188B2 (en) 2013-07-26 2013-07-26 Polycarbonate resin composition for thin optical parts and thin optical parts

Publications (2)

Publication Number Publication Date
JP2015025068A true JP2015025068A (en) 2015-02-05
JP5699188B2 JP5699188B2 (en) 2015-04-08

Family

ID=52489995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013155539A Active JP5699188B2 (en) 2013-07-26 2013-07-26 Polycarbonate resin composition for thin optical parts and thin optical parts

Country Status (1)

Country Link
JP (1) JP5699188B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093913A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Polycarbonate resin molding material
JP2015093914A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Aromatic polycarbonate resin molded body
JP2016169397A (en) * 2016-06-20 2016-09-23 出光興産株式会社 Polycarbonate resin molding material
JP2016210895A (en) * 2015-05-08 2016-12-15 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and thin-walled optical component
JP2016216617A (en) * 2015-05-21 2016-12-22 住化スタイロンポリカーボネート株式会社 Light guide film
WO2017090310A1 (en) * 2015-11-27 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded article of same
JP2017105978A (en) * 2015-11-27 2017-06-15 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded article thereof
JP2017115016A (en) * 2015-12-24 2017-06-29 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for optical components, and optical component
KR20180013894A (en) 2015-05-29 2018-02-07 이데미쓰 고산 가부시키가이샤 Polycarbonate resin composition and molded article of same
JP2018510919A (en) * 2015-06-12 2018-04-19 エルジー・ケム・リミテッド Polycarbonate resin composition and optical molded article comprising the same
JP2018095725A (en) * 2016-12-13 2018-06-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for optical components
JP2018171800A (en) * 2017-03-31 2018-11-08 三菱エンジニアリングプラスチックス株式会社 Molding method of thin wall optical member
JP2018184557A (en) * 2017-04-27 2018-11-22 日油株式会社 Coloring prevention agent for polycarbonate resin
JP6441538B1 (en) * 2017-02-01 2018-12-19 出光興産株式会社 Polycarbonate resin composition
WO2021059902A1 (en) * 2019-09-25 2021-04-01 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP7443739B2 (en) 2019-12-12 2024-03-06 三菱瓦斯化学株式会社 Polycarbonate resin compositions and optical components

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016200032A1 (en) * 2015-06-12 2016-12-15 주식회사 엘지화학 Polycarbonate resin composition and optical molded article comprising same
WO2018193702A1 (en) 2017-04-18 2018-10-25 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for optical component and optical component
JP6630872B1 (en) 2018-03-27 2020-01-15 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
WO2021059884A1 (en) 2019-09-25 2021-04-01 三菱瓦斯化学株式会社 Polycarbonate resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422959A (en) * 1987-06-26 1989-01-25 Mobay Corp Polycarbonate composition
JPH1135692A (en) * 1997-07-23 1999-02-09 Mitsubishi Eng Plast Kk Polycarbonate molding material for optical disk substrate
JP2000234052A (en) * 1999-02-16 2000-08-29 Mitsubishi Engineering Plastics Corp Polycarbonate molding material for optical disk base plate
WO2011083635A1 (en) * 2010-01-07 2011-07-14 出光興産株式会社 Aromatic polycarbonate resin composition and molded articles for optical use which are made using same
JP2013000913A (en) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp Extruder and melting and kneading method using the same
JP2013139097A (en) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd Polycarbonate resin composition pellet and method of manufacturing the same
JP2013231899A (en) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition for light guide plate and light guide plate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422959A (en) * 1987-06-26 1989-01-25 Mobay Corp Polycarbonate composition
JPH1135692A (en) * 1997-07-23 1999-02-09 Mitsubishi Eng Plast Kk Polycarbonate molding material for optical disk substrate
JP2000234052A (en) * 1999-02-16 2000-08-29 Mitsubishi Engineering Plastics Corp Polycarbonate molding material for optical disk base plate
WO2011083635A1 (en) * 2010-01-07 2011-07-14 出光興産株式会社 Aromatic polycarbonate resin composition and molded articles for optical use which are made using same
JP2013000913A (en) * 2011-06-13 2013-01-07 Asahi Kasei Chemicals Corp Extruder and melting and kneading method using the same
JP2013139097A (en) * 2011-12-28 2013-07-18 Idemitsu Kosan Co Ltd Polycarbonate resin composition pellet and method of manufacturing the same
JP2013231899A (en) * 2012-05-01 2013-11-14 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition for light guide plate and light guide plate

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015093914A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Aromatic polycarbonate resin molded body
JP7106809B2 (en) 2013-11-11 2022-07-27 出光興産株式会社 Aromatic polycarbonate resin molding
JP2015093913A (en) * 2013-11-11 2015-05-18 出光興産株式会社 Polycarbonate resin molding material
US10221279B2 (en) 2013-11-11 2019-03-05 Idemitsu Kosan Co., Ltd. Polycarbonate resin molding material
JP2016210895A (en) * 2015-05-08 2016-12-15 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and thin-walled optical component
JP2016216617A (en) * 2015-05-21 2016-12-22 住化スタイロンポリカーボネート株式会社 Light guide film
US11034834B2 (en) 2015-05-29 2021-06-15 Idemitsu Kosan Co., Ltd. Polycarbonate resin composition and molded article of same
KR20180013894A (en) 2015-05-29 2018-02-07 이데미쓰 고산 가부시키가이샤 Polycarbonate resin composition and molded article of same
US10040937B2 (en) 2015-06-12 2018-08-07 Lg Chem, Ltd. Polycarbonate resin composition and optical molded product comprising the same
JP2018510919A (en) * 2015-06-12 2018-04-19 エルジー・ケム・リミテッド Polycarbonate resin composition and optical molded article comprising the same
JP2017105978A (en) * 2015-11-27 2017-06-15 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded article thereof
CN107949604A (en) * 2015-11-27 2018-04-20 三菱工程塑胶株式会社 Aromatic copolycarbonate resin composition and its products formed
US10767043B2 (en) 2015-11-27 2020-09-08 Mitsubishi Enigineering-Plastics Corporation Aromatic polycarbonate resin composition and molded article of the same
CN107949604B (en) * 2015-11-27 2020-10-09 三菱工程塑胶株式会社 Aromatic polycarbonate resin composition and molded article thereof
WO2017090310A1 (en) * 2015-11-27 2017-06-01 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded article of same
JP2017115016A (en) * 2015-12-24 2017-06-29 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for optical components, and optical component
JP2016169397A (en) * 2016-06-20 2016-09-23 出光興産株式会社 Polycarbonate resin molding material
JP2018095725A (en) * 2016-12-13 2018-06-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition for optical components
JP7033051B2 (en) 2017-02-01 2022-03-09 出光興産株式会社 Polycarbonate resin composition
JP6441538B1 (en) * 2017-02-01 2018-12-19 出光興産株式会社 Polycarbonate resin composition
JP2019035098A (en) * 2017-02-01 2019-03-07 出光興産株式会社 Polycarbonate resin composition
JP2018171800A (en) * 2017-03-31 2018-11-08 三菱エンジニアリングプラスチックス株式会社 Molding method of thin wall optical member
JP2018184557A (en) * 2017-04-27 2018-11-22 日油株式会社 Coloring prevention agent for polycarbonate resin
WO2021059902A1 (en) * 2019-09-25 2021-04-01 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP7457728B2 (en) 2019-09-25 2024-03-28 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition
JP7443739B2 (en) 2019-12-12 2024-03-06 三菱瓦斯化学株式会社 Polycarbonate resin compositions and optical components

Also Published As

Publication number Publication date
JP5699188B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5699188B2 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP6101856B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP5699240B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP5893774B1 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
US9701835B2 (en) Polycarbonate resin composition for thin optical component, and thin optical component
WO2015011994A1 (en) Polycarbonate resin composition for thin optical component, and thin optical component
JP6416423B1 (en) Polycarbonate resin composition for optical parts and optical parts
JP2018028025A (en) Polycarbonate resin composition for optical members
JP6587948B2 (en) Polycarbonate resin composition for optical parts and optical parts
JP6893340B2 (en) Polycarbonate resin composition for optical components and optical components
JP6522818B2 (en) Polycarbonate resin composition for optical parts and optical parts
JP2019090044A (en) Polycarbonate resin composition for optical component, and optical component
WO2016111117A1 (en) Polycarbonate resin composition for thin optical components, and thin optical component
JP6526871B2 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
JP6396792B2 (en) Polycarbonate resin composition for light guide member and light guide member
JP6490490B2 (en) Polycarbonate resin composition and thin optical component
JP6522493B2 (en) Polycarbonate resin composition for optical parts and optical parts
JP6446601B1 (en) Polycarbonate resin composition for optical parts and optical parts
JP6422734B2 (en) Polycarbonate resin composition for thin optical parts and thin optical parts
KR102642651B1 (en) Polycarbonate resin composition for optical component and optical component
JP2018095812A (en) Polycarbonate resin composition for optical components
JP2019099651A (en) Polycarbonate resin composition for optical members

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5699188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250