JP2015021176A - Copper alloy slide member - Google Patents

Copper alloy slide member Download PDF

Info

Publication number
JP2015021176A
JP2015021176A JP2013151296A JP2013151296A JP2015021176A JP 2015021176 A JP2015021176 A JP 2015021176A JP 2013151296 A JP2013151296 A JP 2013151296A JP 2013151296 A JP2013151296 A JP 2013151296A JP 2015021176 A JP2015021176 A JP 2015021176A
Authority
JP
Japan
Prior art keywords
copper alloy
mass
sliding member
sliding
lubricating oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013151296A
Other languages
Japanese (ja)
Inventor
良政 平井
Yoshimasa Hirai
良政 平井
知広 佐藤
Tomohiro Sato
知広 佐藤
功誠 小野
Kosei Ono
功誠 小野
一 中山
Hajime Nakayama
一 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Oilless Industries Inc
Kurimoto Ltd
Original Assignee
Sankyo Oilless Industries Inc
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Oilless Industries Inc, Kurimoto Ltd filed Critical Sankyo Oilless Industries Inc
Priority to JP2013151296A priority Critical patent/JP2015021176A/en
Publication of JP2015021176A publication Critical patent/JP2015021176A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide member which is usable without supply of a lubricant oil even in an environment so far requiring a supply mechanism supplying a lubricating oil continuously.SOLUTION: A copper alloy slide member contains a sulfide and is dispersed with graphite grains and impregnated with a lubricant oil in voids present in its surface serving as a sliding surface. The copper alloy comprises 0.3-6 mass% of Fe, 3-16 mass% of Sn, 0.3-3 mass% of S and remaining Cu and impurities. The slide member consists of a copper alloy liner serving as a slider of a crank press.

Description

この発明は、銅合金製の摺動部材に関する。特に、回転するクランク軸によりスライドを昇降させるクランクプレスのスライドが摺動するギブライナを始めとする銅合金ライナに関する。   The present invention relates to a sliding member made of copper alloy. More particularly, the present invention relates to a copper alloy liner such as a gibliner on which a slide of a crank press slides up and down by a rotating crankshaft.

摺動面を有する摺動部材には、種々の銅合金が用いられている。銅合金は鉄に較べて比較的柔らかく摺動部材に向いているが、高速、高圧環境での摺動に長時間耐えるためには、継続的な潤滑油の供給を必要とする場合が多い。   Various copper alloys are used for the sliding member having the sliding surface. Copper alloys are relatively soft compared to iron and are suitable for sliding members. However, in order to withstand sliding in a high-speed, high-pressure environment for a long time, it is often necessary to continuously supply lubricating oil.

例えば、特許文献1に記載されたクランクプレスでは、図2において昇降するスライド(8)は、実際にはスライド(8)を高精度な位置でワークをプレスさせるために、周囲に設けられたガイドによって案内されるが、当然にスライドとガイドとが摺動するため、ガイドに銅合金製のギブライナを取り付けて、焼き付きを防いでいる。   For example, in the crank press described in Patent Document 1, the slide (8) that moves up and down in FIG. 2 is actually a guide provided around the slide (8) to press the workpiece at a highly accurate position. However, since the slide and the guide naturally slide, a copper alloy gib liner is attached to the guide to prevent seizure.

特開2012−6057号公報JP 2012-6057 A

しかしながら、クランクプレスの高精度で高速かつ連続的な運転環境を維持するためには、そのギブライナから潤滑油を補充し続けなければならなかった。また、クランクプレスに限らず、潤滑油の供給を必要とする摺動部材は多々あるものの、潤滑油の供給及び回収経路を設けるために機械が複雑化し、製造時の歩留まりを下げたり、加工の際の工数を上げると言った問題があった。   However, in order to maintain a high-speed, high-speed and continuous operating environment of the crank press, it was necessary to continue to replenish the lubricating oil from the give liner. In addition to the crank press, there are many sliding members that require the supply of lubricating oil, but the machine is complicated to provide a lubricating oil supply and recovery path, reducing the manufacturing yield and processing. There was a problem of increasing man-hours.

そこでこの発明は、従来であれば潤滑油の継続的な供給機構を必要としていた環境において、潤滑油の供給を受けずとも利用できる摺動部材を提供することを目的とする。   Therefore, an object of the present invention is to provide a sliding member that can be used without receiving supply of lubricating oil in an environment that conventionally requires a continuous supply mechanism of lubricating oil.

この発明は、硫化物を含み、かつ黒鉛粒子が分散され、摺動面となる表面に存在する空隙に潤滑油が含浸されている銅合金摺動部材により上記の課題を解決したのである。   The present invention solves the above problems by a copper alloy sliding member containing sulfide, in which graphite particles are dispersed, and in which a gap existing on a surface serving as a sliding surface is impregnated with lubricating oil.

銅合金を焼結させる際に硫化物を含み、これが表面に露出していると固体潤滑剤として働く。また、焼結させる際の材料中に黒鉛粒子が含まれていると、銅合金を構成する成分と固溶せずに、組織の内部で分散することになる。この組織内で分散した黒鉛粒子は摺動されるにつれて組織内の領域から周囲に拡散していき、やはり固体潤滑剤として働く。さらにこれに加えて、表面空隙に潤滑油が含浸される。   When the copper alloy is sintered, it contains sulfides, and if it is exposed on the surface, it acts as a solid lubricant. Further, if graphite particles are contained in the material to be sintered, the graphite particles are dispersed in the structure without dissolving with the components constituting the copper alloy. As the graphite particles dispersed in the structure are slid, the graphite particles diffuse from the region in the structure to the surroundings, and also function as a solid lubricant. In addition to this, the surface gap is impregnated with lubricating oil.

このようにして潤滑油を含浸させた摺動部材は、組織の表面に分散して存在する硫化物と黒鉛粒子によって固体潤滑されるとともに、それらの析出部分を含む表面空隙から徐々に潤滑油が滲み出てくることによって、外部からの潤滑油の供給が無くても、良好な潤滑性能を維持することができる。   The sliding member impregnated with the lubricating oil in this manner is solid-lubricated by sulfides and graphite particles that are dispersed on the surface of the tissue, and the lubricating oil is gradually removed from the surface voids including the precipitated portions. By exuding, good lubrication performance can be maintained even if there is no supply of lubricating oil from the outside.

この発明にかかる銅合金摺動部材により、クランクプレスなどの摺動面を保持しなければならない機械において、潤滑油の供給機構を設けなくても、摺動面を保持することができる。   With the copper alloy sliding member according to the present invention, a sliding surface such as a crank press can be held without providing a lubricating oil supply mechanism in a machine that must hold the sliding surface.

この発明に係る銅合金摺動部材の例であるクランクプレスの一実施形態の概略縦断面図Schematic longitudinal sectional view of an embodiment of a crank press which is an example of a copper alloy sliding member according to the present invention 図1のII−II線断面図II-II sectional view of FIG. 実施例で得られた黒鉛粒子分散型銅合金材料の表面写真Surface photograph of graphite particle-dispersed copper alloy material obtained in Examples

以下、この発明について詳細に説明する。この発明は、硫化物を含み、黒鉛粒子が分散され、表面に存在する空隙に潤滑油が含浸された銅合金系摺動部材である。この摺動部材を構成する黒鉛粒子分散銅合金は、一般的な銅合金の製造と同じく材料を焼結して製造する際に、銅合金を構成する元素の材料とともに、所定量の黒鉛粒子を混合させた上で焼結することにより得ることができる。   The present invention will be described in detail below. The present invention is a copper alloy-based sliding member containing a sulfide, in which graphite particles are dispersed, and voids existing on the surface are impregnated with lubricating oil. The graphite particle-dispersed copper alloy that constitutes the sliding member is produced by sintering a material in the same manner as in the production of a general copper alloy. It can be obtained by mixing and sintering.

本発明は硫化物が銅合金の組織内で少なくとも一部が特定の領域に偏在して析出していることが必要である。硫化物自体は合金中のどの元素との硫化物でもある程度効果がある。このような硫化物を析出させるため、本発明にかかる銅合金摺動部材の材料には所定量の硫黄が含まれている必要がある。この硫黄の量の最適な範囲は、銅合金に含まれる他の元素との組み合わせにより上限下限ともに前後すると考えられるが、少なくとも銅合金のうち0.2質量%以上を占めていなければ、析出される硫化物が少なすぎて固体潤滑性の向上効果が見込みにくいため、0.2質量%以上であると好ましい。一方で5.0質量%を越えると銅合金との相性上、銅合金の強度を低下させすぎてしまう恐れがあるため、5.0質量%以下であることが好ましい。   In the present invention, it is necessary that at least a part of the sulfide is deposited unevenly in a specific region in the structure of the copper alloy. The sulfide itself is effective to some extent with any element in the alloy. In order to precipitate such sulfides, the material of the copper alloy sliding member according to the present invention needs to contain a predetermined amount of sulfur. The optimum range of the amount of sulfur is considered to be around the upper and lower limits depending on the combination with other elements contained in the copper alloy. However, at least 0.2% by mass or more of the copper alloy is precipitated. Since there are too few sulfides and it is difficult to expect the effect of improving solid lubricity, the content is preferably 0.2% by mass or more. On the other hand, if it exceeds 5.0% by mass, the strength of the copper alloy may be excessively reduced due to the compatibility with the copper alloy.

一方、この発明にかかる銅合金摺動部材には、黒鉛粒子が分散している必要がある。生成時に焼結させるため、ここで用いる黒鉛粒子の材料は、粉末冶金用黒鉛を用いることが望ましい。耐熱性が無いと加熱時に変性して固体潤滑性能を十分に発揮できなくなるおそれがあるためである。   On the other hand, the graphite particles need to be dispersed in the copper alloy sliding member according to the present invention. It is desirable to use graphite for powder metallurgy as the material of the graphite particles used here for sintering at the time of production. This is because if there is no heat resistance, it may be denatured during heating and the solid lubricating performance may not be fully exhibited.

この銅合金摺動部材に対して分散させる黒鉛粒子の量は、銅合金との合計質量の内、0.5%以上10%以下であると好ましい。0.5%より少なすぎると固体潤滑性能がほとんど発揮されなくなってしまう。一方で10%を越えると黒鉛粒子が多すぎて、摺動部材の強度が保てなくなるおそれが生じる。   The amount of graphite particles dispersed in the copper alloy sliding member is preferably 0.5% or more and 10% or less of the total mass with the copper alloy. If it is less than 0.5%, the solid lubricating performance is hardly exhibited. On the other hand, if it exceeds 10%, the graphite particles are too much, and the strength of the sliding member may not be maintained.

この銅合金摺動部材に対して分散させる黒鉛粒子の粒径は、2μm以上200μm以下であると好ましい。小さすぎると摺動性の向上効果が十分に発揮されない。一方で大きすぎると銅合金の組織を脆弱化させてしまう。   The particle size of the graphite particles dispersed in the copper alloy sliding member is preferably 2 μm or more and 200 μm or less. If it is too small, the effect of improving the slidability is not sufficiently exhibited. On the other hand, if it is too large, the structure of the copper alloy is weakened.

この発明にかかる銅合金摺動部材は、体積に占める空隙が5%以上あると好ましい。空隙が少なすぎると、内部に潤滑油を蓄えられる容積も少なすぎて長時間の摺動を維持できなくなる。また、空隙が少ないことで、含浸させにくく、摺動中における滲み出しの効率も悪くなってしまう。一方で、空隙が20%を越えると、銅合金自体の強度不足のために、摺動部材が破損しやすくなってしまう。このため、空隙が占める体積は銅合金部分の20%以下であることが好ましい。   The copper alloy sliding member according to the present invention preferably has 5% or more voids in the volume. If the air gap is too small, the volume in which lubricating oil can be stored is too small, and long-term sliding cannot be maintained. Moreover, since there are few voids, it is difficult to impregnate, and the efficiency of oozing during sliding also deteriorates. On the other hand, if the gap exceeds 20%, the sliding member is likely to be damaged due to insufficient strength of the copper alloy itself. For this reason, the volume occupied by the voids is preferably 20% or less of the copper alloy portion.

このような空隙率を達成するために、この発明にかかる摺動部材に用いる銅合金を調製する際には、内部に空隙を有する粉末の混合体を焼結することが望ましい。粉体の間に存在する空隙が焼結時に変形しながらも残存することで、表面空隙から合金組織の内部の隙間まで潤滑油が通るルートが残ることになる。   In order to achieve such a porosity, it is desirable to sinter a powder mixture having voids therein when preparing a copper alloy used in the sliding member according to the present invention. Since the voids existing between the powders remain while being deformed during sintering, a route through which the lubricating oil passes from the surface voids to the gaps inside the alloy structure remains.

本発明の実施形態の一つとして、単独でも摺動性が高い硫黄含有銅合金と黒鉛粒子との分散混合材料について説明する。以下の合金の構成はあくまで一例であり、本発明はこれに限られる物ではない。この実施形態で合金部分に用いる銅合金は、スズ、鉄、硫黄を所定量含有し、残分が銅と不純物とからなる銅合金である。   As one embodiment of the present invention, a dispersion mixed material of a sulfur-containing copper alloy and graphite particles having high slidability alone will be described. The configuration of the following alloy is merely an example, and the present invention is not limited to this. The copper alloy used for the alloy part in this embodiment is a copper alloy containing a predetermined amount of tin, iron, and sulfur, with the balance being copper and impurities.

本実施形態にかかる上記銅合金は、スズを3.0質量%以上含むと好ましい。スズは銅合金のマトリックス強度を向上させ、耐摩耗性と耐食性を向上させ、かつ、摺動特性を良好に保つ効果があるが、3.0質量%未満であると、これらの効果が不十分となるおそれがある。一方で、スズの含有量は16.0質量%以下であると好ましい。16.0質量%を超えると、相手材を著しく摩耗させてしまい、良好な摺動特性が得られない可能性がある。   The copper alloy according to the present embodiment preferably contains 3.0% by mass or more of tin. Tin has the effect of improving the matrix strength of copper alloys, improving wear resistance and corrosion resistance, and maintaining good sliding properties. However, if it is less than 3.0% by mass, these effects are insufficient. There is a risk of becoming. On the other hand, the tin content is preferably 16.0% by mass or less. If it exceeds 16.0% by mass, the mating material may be remarkably worn, and good sliding characteristics may not be obtained.

本実施形態にかかる上記銅合金は、鉄を0.3質量%以上含むと好ましい。鉄は、後述する硫黄とともに、上記銅合金の摺動性を向上させるFe−S系化合物を形成する。必要な摺動性を確保するために必要な量のFe−S系化合物が形成されるには、鉄が0.3質量%以上含むと好ましいからである。一方で、鉄の含有量は6.0質量%以下であると好ましい。鉄の含有量が6.0質量%を超えると、上記銅合金の硬度が上がりすぎてしまい、摺動部材として用いたときに、相手材を攻撃して摩耗させてしまうおそれが高くなるためである。   The copper alloy according to the present embodiment preferably contains 0.3 mass% or more of iron. Iron forms an Fe—S-based compound that improves the slidability of the copper alloy together with sulfur described later. This is because iron is preferably contained in an amount of 0.3% by mass or more in order to form a necessary amount of the Fe—S compound in order to ensure the necessary slidability. On the other hand, the iron content is preferably 6.0% by mass or less. If the iron content exceeds 6.0% by mass, the hardness of the copper alloy will increase too much, and when used as a sliding member, there is a high risk of attacking the counterpart material and causing it to wear. is there.

本実施形態にかかる上記銅合金は、硫黄を0.3質量%以上含むと好ましい。硫黄は銅、鉄、又はそれらの両方と反応して上記の硫化物を形成する。この硫化物は、グラファイトや二硫化モリブデンと同様に固体潤滑性を有しており、摩擦係数を低下させ、なじみを良好にし、摺動状態において良好な摺動特性を付与するものとなる。また、これらの硫化物があることにより、上記銅合金は切削の際に切り屑が寸断された短い切粉となるので、切削に用いる刃物に巻き付いたりするといったことが起こりにくく、切削性を向上させることもできる。硫黄が0.3質量%未満であると、これらの効果が得られないか、又は不十分となるおそれがある。一方で、3.0質量%を超えると硫黄が強度を低下させるおそれが高くなってしまうので、3.0質量%以下であると好ましい。さらに、Cu−Sの金属状態図から、十分な摺動性能を発揮させるためには、1.5質量%以下であるとより好ましい。   The copper alloy according to the present embodiment preferably contains 0.3% by mass or more of sulfur. Sulfur reacts with copper, iron, or both to form the above sulfides. This sulfide has solid lubricity like graphite and molybdenum disulfide, reduces the coefficient of friction, improves the familiarity, and provides good sliding characteristics in the sliding state. In addition, the presence of these sulfides makes the above copper alloy short chips in which chips are cut off during cutting, so that the copper alloy is less likely to wrap around the blade used for cutting and improves cutting performance. It can also be made. When sulfur is less than 0.3% by mass, these effects may not be obtained or may be insufficient. On the other hand, if it exceeds 3.0% by mass, there is a high possibility that sulfur will lower the strength, so that it is preferably 3.0% by mass or less. Furthermore, from the metal phase diagram of Cu-S, in order to exhibit sufficient sliding performance, it is more preferable that it is 1.5 mass% or less.

本実施形態にかかる上記銅合金は、上記の元素と残分である銅以外に、その他の残余成分を含んでいても良い。この残余成分としては、微少成分ながら上記銅合金の有効な性質を阻害することなくさらに有益な効果を付与するために意図的に含めても良い成分や、不可避的に含まれてしまう不純物であって、上記銅合金の特性を阻害しない程度に含まれるものなどがある。   The copper alloy according to the present embodiment may contain other residual components in addition to the above-described elements and copper as a residue. This residual component is a component that may be intentionally included in order to provide a more beneficial effect without impairing the effective properties of the copper alloy although it is a minor component, and impurities that are inevitably included. In addition, some of them are included to such an extent that the characteristics of the copper alloy are not impaired.

本実施形態にかかる上記銅合金は、上記残余成分として、リンを0.01質量%以上含んでいてもよい。リンは、脱酸剤として作用し、ガス欠陥等の発生を抑制し、銅合金の健全性を高める効果がある。ただし、0.01質量%未満であるとその効果が不十分になってしまう。一方で、リンの含有量は0.3質量%以下であると好ましい。0.3質量%を超えてリンが存在すると、鉄との間にFe−P化合物を形成して、銅合金全体の硬度が増加しすぎてしまい、耐焼き付き性が低下してしまうためである。   The said copper alloy concerning this embodiment may contain 0.01 mass% or more of phosphorus as said residual component. Phosphorus acts as a deoxidizer, has the effect of suppressing the occurrence of gas defects and the like and improving the soundness of the copper alloy. However, the effect will become inadequate that it is less than 0.01 mass%. On the other hand, the phosphorus content is preferably 0.3% by mass or less. If phosphorus exceeds 0.3% by mass, an Fe—P compound is formed with iron, the hardness of the entire copper alloy increases excessively, and seizure resistance decreases. .

上記の不純物は、環境に配慮してリサイクル材料を用いる場合や、上記銅合金の調製や摺動部材の鋳造において設備を共有する場合に、不可避的に含まれてしまう成分である。もちろん、物性上はこの不純物の含有量は少ないほど好ましく、無いことがより好ましいが、ゼロにすることは困難である。   The above impurities are components that are inevitably included when using recycled materials in consideration of the environment, or when sharing equipment in the preparation of the copper alloy and the casting of the sliding member. Of course, from the viewpoint of physical properties, the content of this impurity is preferably as small as possible and more preferably not, but it is difficult to make it zero.

上記不純物として本実施形態にかかる上記銅合金に含まれる鉛の量は、0.25質量%以下であると好ましい。鉛は人体に与える影響が無視できない場合があるので、上記銅合金に含まれる鉛の量は少ないほど好ましく、検出限界未満であるとより好ましい。0.25質量%を超えると、摺動部材を切削する際に出る切削分の処理や、上記銅合金を再利用するにあたっても、鉛の存在を無視できなくなるおそれがある。   The amount of lead contained in the copper alloy according to the present embodiment as the impurity is preferably 0.25% by mass or less. Since the influence of lead on the human body cannot be ignored, the amount of lead contained in the copper alloy is preferably as small as possible, and more preferably below the detection limit. If it exceeds 0.25% by mass, the presence of lead may not be negligible even when processing the amount of cutting that occurs when the sliding member is cut or when reusing the copper alloy.

また、上記不純物として本実施形態にかかる上記銅合金に含まれるモリブデンの量は、0.01質量%以下であると好ましく、検出限界未満であるとより好ましい。モリブデンが上記銅合金に硫黄と結合した二硫化モリブデンとして含まれていると、上記銅合金の調製時や、摺動部材の製造時、及び摺動部材の使用時に、二硫化モリブデンが酸化されて意図せぬ硫黄分が生じてしまい、上記銅合金を侵すおそれがあるためである。   Further, the amount of molybdenum contained in the copper alloy according to the present embodiment as the impurity is preferably 0.01% by mass or less, and more preferably less than the detection limit. When molybdenum is contained as molybdenum disulfide combined with sulfur in the copper alloy, molybdenum disulfide is oxidized during the preparation of the copper alloy, the manufacture of the sliding member, and the use of the sliding member. This is because an unintended sulfur content is generated and the copper alloy may be affected.

この他、上記不純物として本実施形態にかかる上記銅合金に含まれうる元素としては、ニッケル、銀、炭素、ジルコニウム、マンガン、ビスマス、インジウム、セレン、アルミニウム、酸素、ホウ素、タングステン、亜鉛、アンチモン、シリコンなどが挙げられるが、これらの含有量はいずれも0.01質量%未満であると好ましく、検出限界未満であるとより好ましい。これらの中でも特に、ニッケルが多いと上記銅合金の硬度が上がってしまい、銀が多いと上記銅合金だけでは固体潤滑剤として不十分で潤滑油と併用する必要が生じてしまい、炭素が多いと上記銅合金から脱落するおそれがある。   In addition, the elements that can be included in the copper alloy according to the present embodiment as the impurities include nickel, silver, carbon, zirconium, manganese, bismuth, indium, selenium, aluminum, oxygen, boron, tungsten, zinc, antimony, Although silicon etc. are mentioned, all of these contents are preferable in it being less than 0.01 mass%, and it is more preferable in it being less than a detection limit. Among these, in particular, if there is a large amount of nickel, the hardness of the copper alloy will increase, and if there is a large amount of silver, the copper alloy alone will be insufficient as a solid lubricant and will need to be used in combination with a lubricating oil. There is a risk of dropping from the copper alloy.

なお、ここで記載した本実施形態にかかる上記銅合金の成分量は、製造段階での原料の混合比ではなく、原料を溶融して得られる銅合金部分のうち、黒鉛の重量を省いた質量混合比である。また、黒鉛粒子と上記の元素を除いた残分は銅である。   The component amount of the copper alloy according to the present embodiment described here is not the mixing ratio of the raw materials in the manufacturing stage, but the mass excluding the weight of graphite in the copper alloy portion obtained by melting the raw materials. Mixing ratio. The remainder excluding the graphite particles and the above elements is copper.

この発明にかかる摺動部材は、一般的な鋳造法や粉末冶金法において、材料に黒鉛粒子を含有させることより加熱溶融、焼結等することにより製造することができる。焼結温度は800℃以上であると好ましい。800℃未満だと組織の生成が不十分であり、摺動性能が発揮されきらないだけでなく、強度も低下してしまうおそれが高い。一方で1100℃を越えると、黒鉛粒子を含むいくつかの元素が変性して合金中から離脱したり、その他予期せぬ変性を起こすおそれもあるため、1100℃以下で焼結するのが好ましい。また、黒鉛粒子が酸化して二酸化炭素になることをできるだけ防ぐために、還元雰囲気下で焼結させるのが好ましい。焼結形態としては特に限定するものではなく、例えば、鋼の板上に粉末を載せて焼結させたバイメタルとし、焼結された部分を研磨するとよい。   The sliding member according to the present invention can be manufactured by heating and melting, sintering, etc. by adding graphite particles to a material in a general casting method or powder metallurgy method. The sintering temperature is preferably 800 ° C. or higher. When the temperature is less than 800 ° C., the formation of the structure is insufficient, and the sliding performance is not fully exhibited, and the strength is likely to be lowered. On the other hand, if the temperature exceeds 1100 ° C., some elements including graphite particles may be modified to leave the alloy, and other unexpected modifications may be caused. Therefore, sintering at 1100 ° C. or lower is preferable. Further, in order to prevent the graphite particles from being oxidized to carbon dioxide as much as possible, it is preferable to sinter in a reducing atmosphere. The form of sintering is not particularly limited, and for example, a bimetal obtained by placing powder on a steel plate to be sintered may be used, and the sintered portion may be polished.

また、この発明にかかる摺動部材は、焼結後に表面をやすり、サンドペーパーその他の素材で研磨して、表面の表面空隙以外の凹凸を出来るだけ減らして平坦にしておくことが摺動性向上の点から望ましい。   In addition, the sliding member according to the present invention improves the slidability by filing the surface after sintering and polishing it with sandpaper or other materials so as to reduce irregularities other than the surface voids on the surface as much as possible. From the point of view is desirable.

さらに、この発明にかかる摺動部材は、上記の焼結後、又はその研磨後に、潤滑油に接触させて上記の空隙から内部の隙間に潤滑油を含浸させることが必要である。また、潤滑油の粘度は、ISO粘度グレードで、10cSt以上500cSt以下(40°C)であると好ましい。なお、この際潤滑油が含浸される範囲は表面のみでその効果を発揮するが、銅合金全体に含浸させるものとしても良い。
粘度が高すぎると上記の空隙から合金組織の隙間に入っていかなくなってしまう。一方で粘度が低すぎると摺動時に速やかに漏出して摺動性能の維持が難しくなってしまう。
Furthermore, the sliding member according to the present invention needs to be brought into contact with the lubricating oil after impregnation with the lubricating oil after the sintering or the polishing. Further, the viscosity of the lubricating oil is preferably an ISO viscosity grade of 10 cSt or more and 500 cSt or less (40 ° C.). In this case, the range in which the lubricating oil is impregnated exhibits the effect only on the surface, but the entire copper alloy may be impregnated.
If the viscosity is too high, it will not be possible to enter the gap in the alloy structure from the above gap. On the other hand, if the viscosity is too low, it quickly leaks during sliding and it becomes difficult to maintain sliding performance.

この発明にかかる銅合金摺動部材として具体的に用いる機械用部材としては、例えば図1及び図2に記載のクランクプレスPのギブライナ10が挙げられる。   As a mechanical member specifically used as the copper alloy sliding member according to the present invention, for example, the give liner 10 of the crank press P shown in FIGS.

この実施形態のクランクプレスPも、従来と同様に、平面視四角形の四角に立設された支柱1内にスライド2を昇降自在に設けている。このスライド2はクランク軸5にコンロッド6及び支軸7を介して連結されており、クランク軸5の回転に伴い、図1の鎖線状態と実線状態の間を上下に昇降する。このため、スライド2のボルスタ3a下面と支柱1下部のボルスタ3b上面に所要の金型を取付け、その金型間にワークを設置すれば、スライド2の昇降によって金型を介してワークがプレス成形される。   The crank press P of this embodiment is also provided with a slide 2 that can be moved up and down in a column 1 that is erected in a quadrangular square in plan view, as in the prior art. The slide 2 is connected to the crankshaft 5 via a connecting rod 6 and a support shaft 7 and moves up and down between the chain line state and the solid line state in FIG. 1 as the crankshaft 5 rotates. For this reason, if a required metal mold is attached to the lower surface of the bolster 3a of the slide 2 and the upper surface of the bolster 3b below the support column 1, and a work is placed between the metal molds, the work is press-molded through the metal mold by raising and lowering the slide 2. Is done.

そのスライド2の昇降する範囲に対応する支柱1表面にガイド4がボルト(ビス)止めされている。そのガイド4のスライド2との摺動面にこの発明に係る銅合金摺動部材であるギブライナ10、10’がボルト止めによって取付けられている。図中、8は上下方向のタイロッドである。   A guide 4 is bolted to the surface of the column 1 corresponding to the range in which the slide 2 moves up and down. Gibbers 10, 10 ', which are copper alloy sliding members according to the present invention, are attached to the sliding surface of the guide 4 with the slide 2 by bolting. In the figure, 8 is a vertical tie rod.

平面視四角形の四角に立設された支柱1内にスライド2を昇降自在に設け、そのスライド2下面と支柱1下部の両ボルスタ3a、3bに所要の金型(図示せず)を取付け、その金型間にワークを設置し、スライド2の昇降(図1の実線と鎖線状態)によって金型を介してワークをプレス成形するものである。   A slide 2 is provided so as to be movable up and down in a column 1 standing upright in a quadrilateral square in plan view, and a required mold (not shown) is attached to both the bottom surface of the slide 2 and the bolsters 3a and 3b below the column 1, A work is placed between the dies, and the work is press-molded through the dies by raising and lowering the slide 2 (solid line and chain line state in FIG. 1).

従来の潤滑油供給形のクランクプレスPでは、このギブライナ10には潤滑油の流通溝を形成させて随時潤滑油を導入しておくだけでなく、油溜まりや飛散防止機構などを設けておく必要があったが、この発明にかかる銅合金摺動部材を用いることにより、潤滑油の供給にかかるそれらの機構を省くことができる。   In the conventional crank press P of the lubricating oil supply type, it is necessary not only to form a lubricating oil flow groove in the gibbliner 10 and introduce the lubricating oil as needed, but also to provide an oil reservoir, a scattering prevention mechanism, and the like. However, by using the copper alloy sliding member according to the present invention, those mechanisms relating to the supply of the lubricating oil can be omitted.

以下、この発明を具体的に実施した例について説明する。次の表1に記載の質量%だけそれぞれの元素を含む銅合金と黒鉛粒子を、黒鉛粒子が銅合金との合計質量の内、0.5%以上10%以下となるように材料を混合し、約1000℃の温度で焼結した。黒鉛粒子を混合させる前の材料粉末の見掛け密度は2.5Mg/mであった。 Hereinafter, examples in which the present invention is specifically implemented will be described. The copper alloy and graphite particles containing each element by mass% listed in Table 1 below are mixed so that the graphite particles are 0.5% to 10% of the total mass with the copper alloy. And sintered at a temperature of about 1000 ° C. The apparent density of the material powder before mixing the graphite particles was 2.5 Mg / m 3 .

このようにして得られた黒鉛粒子分散型銅合金材料の表面写真を図3に示す。この銅合金材料に潤滑油を十分に含浸させた。   A surface photograph of the graphite particle-dispersed copper alloy material thus obtained is shown in FIG. This copper alloy material was sufficiently impregnated with lubricating oil.

P クランクプレス
1 支柱
2 スライド
3a,3b ボルスタ
4 スライドのガイド
5 クランク軸
6 コンロッド
8 タイロッド
10 ギブライナ
P Crank press 1 Post 2 Slide 3a, 3b Bolster 4 Slide guide 5 Crankshaft 6 Connecting rod 8 Tie rod 10 Gibliner

Claims (3)

銅合金の摺動面を備えた銅合金摺動部材であって、
前記銅合金は硫化物を含み、かつ前記銅合金には黒鉛粒子が分散され、摺動面となる表面に存在する空隙に潤滑油が含浸されていることを特徴とする銅合金摺動部材。
A copper alloy sliding member having a sliding surface of a copper alloy,
A copper alloy sliding member, wherein the copper alloy contains a sulfide, and graphite particles are dispersed in the copper alloy, and a lubricating oil is impregnated in a void existing on a surface serving as a sliding surface.
上記銅合金は、鉄を0.3質量%以上6.0質量%以下、スズを3.0質量%以上16.0質量%以下、硫黄を0.3質量%以上3.0質量%以下含有し、残分が銅と残余成分であり、上記黒鉛粒子の質量が上記銅合金との合計質量の内、0.5%以上、10%以下である、請求項1に記載の銅合金摺動部材。   The copper alloy contains iron in an amount of 0.3% by mass to 6.0% by mass, tin in an amount of 3.0% by mass to 16.0% by mass, and sulfur in an amount of 0.3% by mass to 3.0% by mass. 2. The copper alloy sliding according to claim 1, wherein the balance is copper and a residual component, and the mass of the graphite particles is 0.5% or more and 10% or less of the total mass with the copper alloy. Element. 請求項1又は2に記載の上記銅合金摺動部材である摺動部材がクランクプレスのスライドを支持するライナである、銅合金ライナ。   A copper alloy liner, wherein the sliding member as the copper alloy sliding member according to claim 1 or 2 is a liner that supports a slide of a crank press.
JP2013151296A 2013-07-22 2013-07-22 Copper alloy slide member Pending JP2015021176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151296A JP2015021176A (en) 2013-07-22 2013-07-22 Copper alloy slide member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013151296A JP2015021176A (en) 2013-07-22 2013-07-22 Copper alloy slide member

Publications (1)

Publication Number Publication Date
JP2015021176A true JP2015021176A (en) 2015-02-02

Family

ID=52485889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151296A Pending JP2015021176A (en) 2013-07-22 2013-07-22 Copper alloy slide member

Country Status (1)

Country Link
JP (1) JP2015021176A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191053A1 (en) * 2022-03-31 2023-10-05 株式会社栗本鐵工所 Copper alloy to be used in sliding member, casting, sliding member, and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023191053A1 (en) * 2022-03-31 2023-10-05 株式会社栗本鐵工所 Copper alloy to be used in sliding member, casting, sliding member, and method for producing same

Similar Documents

Publication Publication Date Title
JP5247329B2 (en) Iron-based sintered bearing and manufacturing method thereof
JP5772498B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
KR101187136B1 (en) Iron-based mixed powder for powder metallurgy and iron powder sinter
KR101287429B1 (en) Method of forming a scroll member and scroll component subassembly
CN102062149B (en) High-performance iron-based powder metallurgy oil-containing self-lubricating bearing and production process thereof
JP5675090B2 (en) Sintered oil-impregnated bearing and manufacturing method thereof
JP2010514935A (en) Powder, parts manufacturing method and parts
CN102943224B (en) Copper alloy base self-lubricating composite material and preparation method thereof
US8845776B2 (en) Lead-free copper-based sintered sliding material and sliding parts
JP6112473B2 (en) Iron-based sintered sliding member
CN102979818A (en) Steel-based iron-nickel alloy diffused-type solid self-lubricating bearing and manufacturing method thereof
EP2918693B1 (en) Sintered alloy superior in wear resistance
JP2014211227A (en) Oil-impregnated sintered bearing and method of manufacturing the same
JP6440297B2 (en) Cu-based sintered bearing
JP2014181381A (en) Iron-based sintered sliding member and production method thereof
CN109692951A (en) The manufacturing method of PM self lubricated bearings
KR102672968B1 (en) Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing
JPH0765133B2 (en) Abrasion resistant copper-based sintered oil-impregnated bearing material
JP2010150649A (en) Copper alloy for sliding member
JP2015021176A (en) Copper alloy slide member
BR112020014828A2 (en) SINTERED BEARING AND METHOD FOR MANUFACTURING A SINTERIZED BEARING
JP7214451B2 (en) Copper alloy
JP4427410B2 (en) Pb-free copper alloy sliding material with excellent seizure resistance
JP2006111975A (en) Self-lubricating sintered sliding material and its production method
JP2009143772A (en) Slide member and method of manufacturing the same