JP2015021016A - Method for regenerating spherical aggregate in laminate molding material, regenerated laminate molding material, and method for producing laminate molded article - Google Patents

Method for regenerating spherical aggregate in laminate molding material, regenerated laminate molding material, and method for producing laminate molded article Download PDF

Info

Publication number
JP2015021016A
JP2015021016A JP2013147651A JP2013147651A JP2015021016A JP 2015021016 A JP2015021016 A JP 2015021016A JP 2013147651 A JP2013147651 A JP 2013147651A JP 2013147651 A JP2013147651 A JP 2013147651A JP 2015021016 A JP2015021016 A JP 2015021016A
Authority
JP
Japan
Prior art keywords
additive manufacturing
spherical
spherical aggregate
aggregate
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013147651A
Other languages
Japanese (ja)
Other versions
JP6212772B2 (en
Inventor
一毅 飯塚
Kazutake Iizuka
一毅 飯塚
康平 金谷
Kohei Kanaya
康平 金谷
荻野 貴史
Takashi Ogino
貴史 荻野
大久保 明浩
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2013147651A priority Critical patent/JP6212772B2/en
Publication of JP2015021016A publication Critical patent/JP2015021016A/en
Application granted granted Critical
Publication of JP6212772B2 publication Critical patent/JP6212772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To solve a problem in laminate molding using a laminate molding material that a portion of the laminate molding material becomes a laminate molded article but most of the rest becomes a waste material, the problem being specifically that, even though this waste material can be reused as is as the laminate molding material, a laminate molding material which has been used for a selective laser sintering method and the like contains a resin component which is thermally degraded, and therefore, when 100% of this waste material is used as the laminate molding material, a molded article obtained has inferior strength, develops an orange peel surface, and has inferior quality, thus necessitating, when using the waste material, addition of a large amount of a new synthetic resin and spherical aggregate to maintain quality of the molded article, resulting in generation of a large quantity of a waste material every time molding is performed, which is not reused and, thus, makes recycling of all of the waste material practically impossible.SOLUTION: A method for regenerating spherical aggregate in a laminate molding material comprises removing a synthetic resin in the laminate molding material by pyrolysis to obtain regenerated spherical aggregate.

Description

本発明は、積層造形用材料中の球状骨材の再生方法、再生積層造形用材料、及び積層造形物の製造方法に関する。   The present invention relates to a method for regenerating a spherical aggregate in an additive manufacturing material, an additive manufacturing material, and an additive manufacturing method.

立体的な試作品やモデル等の造形物の作製においては、光造形法、選択的レーザー焼結(SLS)法、熱溶融積層(FDM)法、インクジェット法等の積層造形技術が採用されている。この積層造形技術は、製品開発、建築、医療、教育等、様々な分野にわたって有用な技術である。   In the production of three-dimensional prototypes and models, models such as stereolithography, selective laser sintering (SLS), hot melt lamination (FDM), and ink jet are used. . This additive manufacturing technique is a useful technique in various fields such as product development, architecture, medical care, and education.

積層造形技術には、種々の合成樹脂材料が用いられている。しかし、合成樹脂のみで造形物を作製した場合、弾性率が低いため、様々な外力により、造形物に変形を引き起こし易い。
そこで最近では、合成樹脂に骨材を加えた積層造形用材料を用いることで、弾性率を向上させた造形物を得る技術が採用されている。例えば、特許文献1には、樹脂粉末に球状カーボンを加えた積層造形用材料が開示されている。
Various synthetic resin materials are used in the additive manufacturing technique. However, when a modeled object is produced using only a synthetic resin, since the elastic modulus is low, the modeled object is easily deformed by various external forces.
Therefore, recently, a technique for obtaining a modeled object with an improved elastic modulus by using a layered modeling material obtained by adding an aggregate to a synthetic resin has been adopted. For example, Patent Literature 1 discloses an additive manufacturing material in which spherical carbon is added to resin powder.

積層造形用材料を用いた積層造形においては、該積層造形用材料の一部は積層造形物となり、その他の大部分は廃棄材料となる問題がある。
この廃棄材料は、積層造形用材料としてそのまま再利用できる。しかし、一度積層造形に供しているため、熱や光等の影響を多少なりとも受けており、積層造形用材料として廃棄材料を多量に使用した造形物は、強度に劣り、また、ユズ肌も生じ易い。ユズ肌とは、造形物の表面に蜜柑の皮のような凹凸ができる現象である。
このため、積層造形用材料を再利用する場合、造形物の品質を維持するためには、新しい積層造形用材料と併用する廃棄材料の割合を制限する必要があり、造形毎に、再利用できない余剰の廃棄材料が大量に生じてしまっていた。
In the additive manufacturing using the additive manufacturing material, there is a problem that a part of the additive manufacturing material becomes an additive manufacturing object, and the other part becomes a waste material.
This waste material can be reused as it is as an additive manufacturing material. However, since it is once subjected to additive manufacturing, it is somewhat affected by heat, light, etc., and the object that uses a large amount of waste material as additive manufacturing material is inferior in strength, It is likely to occur. Yuzu skin is a phenomenon in which the surface of a model has irregularities such as tangerine skin.
For this reason, when reusing a layered modeling material, in order to maintain the quality of the modeled object, it is necessary to limit the ratio of the waste material used in combination with the new layered modeling material, which cannot be reused for each modeling. A large amount of excess waste material was generated.

特開2009−13395号公報JP 2009-13395 A

本発明は、上記事情に鑑みてなされたものであって、積層造形物の品質を低下させずに球状骨材を含む積層造形用材料を再利用できる、積層造形用材料中の球状骨材の再生方法、該再生方法により得られる再生された球状骨材を含む積層造形用材料、及び、該再生された球状骨材を含む積層造形用材料を用いる積層造形物の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and the spherical aggregate in the additive manufacturing material can be reused without including the deterioration of the quality of the additive manufacturing object. It is intended to provide a reproduction method, a layered modeling material including the regenerated spherical aggregate obtained by the reproduction method, and a method of manufacturing a layered structure using the layered modeling material including the regenerated spherical aggregate. Objective.

上記の課題を達成するために、本発明は、以下の構成を採用した。
[1]球状骨材と合成樹脂とを含む積層造形用材料中の合成樹脂を熱分解して除去することを特徴とする、積層造形用材料中の球状骨材の再生方法。
[2]前記球状骨材と合成樹脂とを含む積層造形用材料が、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料である、前記[1]に記載の積層造形用材料中の球状骨材の再生方法。
[3]前記積層造形用材料が、選択的レーザー焼結法の材料である、前記[1]又は[2]に記載の積層造形用材料中の球状骨材の再生方法。
[4]前記球状骨材が、球状カーボンである、前記[1]〜[3]のいずれか一に記載の積層造形用材料中の球状骨材の再生方法。
[5]前記合成樹脂が、熱可塑性樹脂、熱硬化性樹脂及び光硬化性樹脂からなる群から選択される1以上である、前記[1]〜[4]のいずれか一に記載の積層造形用材料中の球状骨材の再生方法。
[6]前記熱可塑性樹脂が、ポリアミド11又はポリアミド12である、前記[5]に記載の積層造形用材料中の球状骨材の再生方法。
[7]前記[1]〜[6]のいずれか一に記載の積層造形用材料中の球状骨材の再生方法によって得られた再生された球状骨材と、合成樹脂とを含む、再生積層造形用材料。
[8]前記[1]〜[6]のいずれか一に記載の積層造形用材料中の球状骨材の再生方法によって得られた再生された球状骨材と、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料と、積層造形に供していない合成樹脂と、積層造形に供していない球状骨材とを含む、再生積層造形用材料。
[9]前記[7]又は[8]に記載の再生積層造形用材料を積層造形することを特徴とする、積層造形物の製造方法。
In order to achieve the above object, the present invention employs the following configuration.
[1] A method for regenerating a spherical aggregate in an additive manufacturing material, wherein the synthetic resin in the additive manufacturing material containing the spherical aggregate and the synthetic resin is thermally decomposed and removed.
[2] The material for additive manufacturing including the spherical aggregate and the synthetic resin is a discarded material that has not become an additive manufacturing object in the additive manufacturing material provided for additive manufacturing. A method for regenerating a spherical aggregate in an additive manufacturing material.
[3] The method for regenerating a spherical aggregate in the additive manufacturing material according to [1] or [2], wherein the additive manufacturing material is a material of a selective laser sintering method.
[4] The method for regenerating a spherical aggregate in the additive manufacturing material according to any one of [1] to [3], wherein the spherical aggregate is spherical carbon.
[5] The additive manufacturing according to any one of [1] to [4], wherein the synthetic resin is one or more selected from the group consisting of a thermoplastic resin, a thermosetting resin, and a photocurable resin. To regenerate spherical aggregates in construction materials.
[6] The method for regenerating a spherical aggregate in the additive manufacturing material according to [5], wherein the thermoplastic resin is polyamide 11 or polyamide 12.
[7] A regenerated laminate including a regenerated spherical aggregate obtained by the method for regenerating a spherical aggregate in the additive manufacturing material according to any one of [1] to [6], and a synthetic resin. Material for modeling.
[8] Regenerated spherical aggregate obtained by the method for regenerating spherical aggregate in the additive manufacturing material according to any one of [1] to [6], and additive manufacturing for additive manufacturing Recycled additive manufacturing material including a waste material that has not become an additive manufacturing object, a synthetic resin that is not subjected to additive manufacturing, and a spherical aggregate that is not subjected to additive manufacturing.
[9] A method for producing a layered object, wherein the reproduction layered material according to [7] or [8] is layered.

本発明の積層造形用材料中の球状骨材の再生方法によって得られる球状骨材は、大量に使用しても、積層造形物の品質を低下させないので、効率的に再利用できる。また、本発明による球状骨材の再生を繰り返し行っても、球状骨材の質を低下させない。さらに、この再生骨材を含む積層造形用材料を用いると、強度に優れた積層造形物が得られる。さらに、積層造形の作業性も向上する。   Since the spherical aggregate obtained by the method for regenerating a spherical aggregate in the additive manufacturing material of the present invention does not deteriorate the quality of the additive manufacturing object even when used in a large amount, it can be reused efficiently. Moreover, even if the reproduction of the spherical aggregate according to the present invention is repeated, the quality of the spherical aggregate is not deteriorated. Furthermore, when a layered modeling material including the recycled aggregate is used, a layered model having excellent strength can be obtained. Furthermore, the workability of additive manufacturing is also improved.

本発明による積層造形リサイクルシステムのモデルを示す。1 shows a model of an additive manufacturing recycling system according to the present invention. 従来の積層造形リサイクルシステムのモデルを示す。The model of the conventional additive manufacturing recycling system is shown.

[積層造形用材料中の球状骨材の再生方法]
本発明の積層造形用材料中の球状骨材の再生方法は、積層造形用材料中の合成樹脂を熱分解して除去することにより、再生された球状骨材(以下、「再生球状骨材」という。)を得る工程を備える。積層造形用材料は、球状骨材と合成樹脂を含む。
[Recycling method of spherical aggregate in additive manufacturing material]
The method for regenerating a spherical aggregate in the additive manufacturing material of the present invention is a method of regenerating the spherical aggregate (hereinafter referred to as “regenerated spherical aggregate”) by thermally decomposing and removing the synthetic resin in the additive manufacturing material. The process of obtaining. The additive manufacturing material includes a spherical aggregate and a synthetic resin.

(積層造形用材料)
本発明において再生の対象となる積層造形用材料としては、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料、積層造形処理には未だ使用していないが長期保存により合成樹脂が経年劣化した積層造形用材料、及び不要になった積層造形物等が挙げられる。中でも、前記廃棄材料は、積層造形において大量に発生するため、本発明の積層造形用材料中の球状骨材の再生方法に好適な材料である。
また、廃棄材料の中でも、粉体流動性が高く劣化の程度が低い低劣化廃棄材料は、そのまま積層造形用材料として再利用し易い。そのため、廃棄材料の中でも、造形処理の際にダマができる等を生じ易い、劣化の程度が比較的に高い材料を対象として、本発明の積層造形用材料中の球状骨材の再生方法を適用することが好ましい。
(Layered material)
In the present invention, the material for layered modeling to be recycled is a waste material that has not become a layered model in the layered modeling material subjected to layered modeling, but has not yet been used for layered modeling processing, but is stored for a long time As a result, a layered material in which the synthetic resin has deteriorated over time, a layered product that has become unnecessary, and the like can be cited. Especially, since the said waste material generate | occur | produces in large quantities in additive manufacturing, it is a material suitable for the reproduction | regenerating method of the spherical aggregate in the additive manufacturing material of this invention.
Among waste materials, low-degradation waste materials with high powder flowability and low degree of degradation are easy to reuse as additive manufacturing materials. Therefore, among the waste materials, the method for regenerating the spherical aggregate in the additive manufacturing material of the present invention is applied to a material that is likely to cause lumps during the modeling process and has a relatively high degree of deterioration. It is preferable to do.

積層造形用材料は、光造形法、選択的レーザー焼結法、熱溶融積層法、インクジェット法等の積層造形法の材料として使用されるものである。これらの中でも、本発明の積層造形用材料中の球状骨材の再生方法は、熱劣化が生じ易い選択的レーザー焼結法の材料に好適に適用できる。   The additive manufacturing material is used as a material for additive manufacturing methods such as stereolithography, selective laser sintering, hot-melt lamination, and inkjet methods. Among these, the method for regenerating a spherical aggregate in the additive manufacturing material of the present invention can be suitably applied to a material of a selective laser sintering method that easily causes thermal deterioration.

本発明の積層造形用材料は、球状骨材と合成樹脂とを含む。
骨材は、弾性率を向上させる等により積層造形物が変形しないように積層造形用材料に含ませるものであり、本発明では、特に、球状骨材を用いる。
球状骨材の球形の程度は、球形度で表すことができる。
The additive manufacturing material of the present invention includes a spherical aggregate and a synthetic resin.
The aggregate is included in the additive manufacturing material so that the additive object is not deformed, for example, by improving the elastic modulus. In the present invention, a spherical aggregate is used in particular.
The degree of the spherical shape of the spherical aggregate can be expressed by sphericity.

球形度とは、「粒子の投影面積に等しい円の直径/粒子の投影像に外接する最小円の直径」により算出される指数であり、1.0に近いほど真球体に近い粒子である。そして、本発明の球状骨材の球形度は、0.7以上が好ましく、0.95以上がより好ましく、1.0(真球体)であることが最も好ましい。
前記下限値以上であれば、造形の際、球状骨材の粉末を均一に撒くことができ、造形し易くなる。
The sphericity is an index calculated by “the diameter of a circle equal to the projected area of the particle / the diameter of the smallest circle circumscribing the projected image of the particle”, and the closer to 1.0, the closer to a true sphere. The sphericity of the spherical aggregate of the present invention is preferably 0.7 or more, more preferably 0.95 or more, and most preferably 1.0 (true sphere).
If it is more than the said lower limit, in the case of modeling, the powder of a spherical aggregate can be sprinkled uniformly and it becomes easy to model.

球状骨材の平均粒径は、積層造形用材料に通常用いられる球状骨材の粒径の範囲内であれば、特に限定されない。
本明細書において平均粒径とは、レーザー回折散乱法により測定される体積平均粒径を意味する。
本発明において、球状骨材の平均粒径の例としては、10〜150μmが好ましく、40〜60μmがより好ましい。前記下限値以上であれば、造形時に材料を敷き易く、また、前記上限値以下であれば、微細な形状の成形体が得られる。
The average particle diameter of the spherical aggregate is not particularly limited as long as it is within the range of the particle diameter of the spherical aggregate usually used for the additive manufacturing material.
In this specification, the average particle diameter means a volume average particle diameter measured by a laser diffraction scattering method.
In this invention, 10-150 micrometers is preferable as an example of the average particle diameter of a spherical aggregate, and 40-60 micrometers is more preferable. If it is at least the lower limit value, it is easy to spread the material at the time of modeling, and if it is not more than the upper limit value, a molded product with a fine shape can be obtained.

球状骨材の融点は、特に限定されないが、本発明の効果を得るためには、配合する合成樹脂の熱分解温度よりも高ければよい。
例えば、合成樹脂にポリアミド11が用いられる場合、ポリアミド11の熱分解温度が350℃であるから、球状骨材の融点は、450℃以上であることが好ましい。
The melting point of the spherical aggregate is not particularly limited, but may be higher than the thermal decomposition temperature of the synthetic resin to be blended in order to obtain the effects of the present invention.
For example, when polyamide 11 is used as the synthetic resin, the melting point of the spherical aggregate is preferably 450 ° C. or higher because the thermal decomposition temperature of polyamide 11 is 350 ° C.

球状骨材の材質としては、球状カーボン、ガラスビーズ、アルミニウム粉末等が挙げられる。中でも、静電気がおきにくい造形物が得られ易いことから、球状カーボンが好ましい。
また、球状カーボンとしては、熱硬化性球状樹脂を原料とする球状カーボンが好ましい。該球状カーボンは、熱硬化性球状樹脂を、温度400〜1000℃、窒素雰囲気下で炭化することにより得られる。具体的には、群栄化学工業株式会社製のGCシリーズが挙げられる。
また、前記熱硬化性球状樹脂の原料としては、例えば、フェノール樹脂又はフラン樹脂の球状硬化物を用いることができる。フェノール樹脂の球状硬化物は、フェノール類とアルデヒド類とを、水性媒体中で、縮合反応触媒及び乳化分散剤の存在下、高温高圧の条件で縮合反応させることにより得られる。具体的には、完全硬化型球状フェノール樹脂が挙げられ、より具体的には、群栄化学工業株式会社製のHFシリーズが好ましい。
フラン樹脂の球状硬化物は、フラン化合物とアルデヒド類とを、水性媒体中反応触媒及び分散剤の存在下で反応させることにより得られる。
Examples of the material of the spherical aggregate include spherical carbon, glass beads, aluminum powder and the like. Among these, spherical carbon is preferable because it is easy to obtain a shaped article that is less prone to static electricity.
The spherical carbon is preferably spherical carbon made from a thermosetting spherical resin. The spherical carbon is obtained by carbonizing a thermosetting spherical resin at a temperature of 400 to 1000 ° C. in a nitrogen atmosphere. Specifically, the GC series made by Gunei Chemical Industry Co., Ltd. can be mentioned.
Moreover, as a raw material of the said thermosetting spherical resin, the spherical hardened | cured material of a phenol resin or a furan resin can be used, for example. A spherical cured product of a phenol resin is obtained by subjecting phenols and aldehydes to a condensation reaction in an aqueous medium under the conditions of high temperature and high pressure in the presence of a condensation reaction catalyst and an emulsifying dispersant. Specifically, a fully curable spherical phenol resin is mentioned, and more specifically, HF series manufactured by Gunei Chemical Industry Co., Ltd. is preferable.
A spherical cured product of furan resin is obtained by reacting a furan compound and an aldehyde in an aqueous medium in the presence of a reaction catalyst and a dispersant.

合成樹脂の種類は、積層造形用材料に通常用いられるものであれば、特に限定されない。例えば、熱可塑性樹脂、熱硬化性樹脂又は光硬化性樹脂が挙げられ、中でも、機械強度の観点から、熱可塑性樹脂又は熱硬化性樹脂が好ましい。
熱可塑性樹脂としては、例えば、ポリアミド、ポリスチレン、ポリアリールエーテルケトン、ポリブチレンテレフタレート、ポリアセタール、ポリプロピレン、ポリエチレンが挙げられる。
熱硬化性樹脂としては、例えば、フェノール樹脂、エポキシ樹脂、メラミン樹脂が挙げられる。
これらの樹脂の中でも、ポリアミド、ポリスチレン、ポリアリールエーテルケトンが好ましく、ポリアミド11、ポリアミド12がより好ましい。
また、合成樹脂は、2種以上を混合して用いてもよい。
The kind of synthetic resin will not be specifically limited if it is normally used for the material for layered modeling. For example, a thermoplastic resin, a thermosetting resin, or a photocurable resin can be used, and among them, a thermoplastic resin or a thermosetting resin is preferable from the viewpoint of mechanical strength.
Examples of the thermoplastic resin include polyamide, polystyrene, polyaryletherketone, polybutylene terephthalate, polyacetal, polypropylene, and polyethylene.
Examples of the thermosetting resin include a phenol resin, an epoxy resin, and a melamine resin.
Among these resins, polyamide, polystyrene, and polyaryl ether ketone are preferable, and polyamide 11 and polyamide 12 are more preferable.
Moreover, you may use a synthetic resin in mixture of 2 or more types.

再生球状骨材を含む積層造形用材料において、球状骨材と合成樹脂との配合比は、「球状骨材/合成樹脂」で表される質量比で、10/90〜80/20が好ましく、30/70〜60/40がより好ましく、40/60〜50/50がさらに好ましく、50/50が最も好ましい。球状骨材の割合が、前記好ましい下限値以上であれば、得られる成形体の収縮率が低下し、成形性がより向上し、また、前記好ましい上限値以下であれば、得られる成形体の引張破壊ひずみで表される強度がより向上する。
特に、球状骨材が球状カーボンである場合、再生球状骨材を含む積層造形用材料中の球状カーボンの含有量が、35〜55質量%の場合、体積固有抵抗率が10〜1010Ω・cmとなり、静電気を防止する効果が高い。また、再生球状骨材を含む積層造形用材料中の球状カーボンの含有量が、55〜80質量%の場合、体積固有抵抗率が10〜10Ω・cmとなり、電気電子分野の包装用部品やOA機器用部品に有用である。
In the additive manufacturing material containing the regenerated spherical aggregate, the blending ratio of the spherical aggregate and the synthetic resin is preferably 10/90 to 80/20 in mass ratio represented by “spherical aggregate / synthetic resin”. 30 / 70-60 / 40 is more preferable, 40 / 60-50 / 50 is further more preferable, and 50/50 is most preferable. If the ratio of the spherical aggregate is equal to or higher than the preferable lower limit, the shrinkage rate of the obtained molded body is reduced, the moldability is further improved, and if it is equal to or lower than the preferable upper limit, The strength represented by the tensile fracture strain is further improved.
In particular, when the spherical aggregate is spherical carbon, the volume resistivity is 10 6 to 10 10 Ω when the content of the spherical carbon in the additive manufacturing material including the regenerated spherical aggregate is 35 to 55% by mass.・ It becomes cm, and the effect of preventing static electricity is high. In addition, when the content of spherical carbon in the additive manufacturing material including the regenerated spherical aggregate is 55 to 80% by mass, the volume resistivity is 10 1 to 10 6 Ω · cm, which is used for packaging in the electrical and electronic field. It is useful for parts and parts for OA equipment.

(再生工程)
本発明の「積層造形用材料中の球状骨材の再生方法」は、積層造形用材料中の合成樹脂を熱分解して除去することにより、再生球状骨材を得る工程を備える。
(Regeneration process)
The “regenerating method of spherical aggregate in the additive manufacturing material” of the present invention includes a step of obtaining a recycled spherical aggregate by thermally decomposing and removing the synthetic resin in the additive manufacturing material.

本明細書において「熱分解」とは、積層造形用材料を加熱することにより、該材料に含まれる合成樹脂を分解することを言う。
熱分解した合成樹脂は、主として、気化により積層造形用材料から除去される。又は、合成樹脂が、加熱炉に混入する空気に含まれる酸素と反応し、燃焼することで、積層造形用材料から除去されることもある。
In this specification, “pyrolysis” means that the synthetic resin contained in the material is decomposed by heating the additive manufacturing material.
The thermally decomposed synthetic resin is mainly removed from the additive manufacturing material by vaporization. Alternatively, the synthetic resin may be removed from the additive manufacturing material by reacting with oxygen contained in the air mixed in the heating furnace and burning.

本明細書では、再生工程により球状骨材が再生された割合を表す指標として、「再生率」が用いられる。
該「再生率」とは、再生工程に供される積層造形用材料中に含まれる全球状骨材の質量に対する、再生球状骨材の質量の割合(%)のことである。
理論的には、再生工程に供される積層造形用材料から合成樹脂が完全に除去され、全球状骨材が再生された場合、再生率は100%である。また、合成樹脂が完全に除去されたが、合成樹脂と共に球状骨材が熱分解を受けた場合、再生率は100%より小さい値となる。
実際には、合成樹脂がススとなって微量に再生球状骨材に付着する場合があるため、合成樹脂が充分に除去されていても、再生率が100%を超える場合もある。再生率が100%を大きく超えた場合は、合成樹脂が充分に除去されていないといえるので、好ましくない。
再生率は、90〜120%であることが好ましく、94〜115%であることがより好ましく、98〜110%であることがさらに好ましい。
In the present specification, “regeneration rate” is used as an index representing the rate at which the spherical aggregate is regenerated by the regeneration process.
The “regeneration rate” is the ratio (%) of the mass of the regenerated spherical aggregate to the mass of the total spherical aggregate contained in the additive manufacturing material subjected to the regeneration process.
Theoretically, when the synthetic resin is completely removed from the additive manufacturing material subjected to the regeneration process and the entire spherical aggregate is regenerated, the regeneration rate is 100%. Further, although the synthetic resin has been completely removed, when the spherical aggregate is thermally decomposed together with the synthetic resin, the regeneration rate becomes a value smaller than 100%.
Actually, since the synthetic resin may become soot and adhere to the regenerated spherical aggregate in a minute amount, even if the synthetic resin is sufficiently removed, the regeneration rate may exceed 100%. When the regeneration rate greatly exceeds 100%, it can be said that the synthetic resin is not sufficiently removed, and therefore, it is not preferable.
The regeneration rate is preferably 90 to 120%, more preferably 94 to 115%, and still more preferably 98 to 110%.

熱分解の際の加熱炉の設定温度と熱分解時間は、合成樹脂の熱分解温度と球状骨材の耐熱性とを考慮して、適宜設定すればよい。
例えば、合成樹脂がポリアミドで、球状骨材が球状カーボンである場合は、350〜800℃が好ましく、400〜600℃がより好ましい。前記下限値以上であれば、合成樹脂が除去され易く、また、前記上限値以下であれば、球状骨材が合成樹脂と共に熱分解することを抑制し易い。
また、熱分解時間は、合成樹脂の熱分解による除去が完了すればよいため、材料の種類、量及び熱分解温度により異なり、特に制限されるものではないが、0.5〜10時間が好ましく、1〜8時間がより好ましく、3〜5時間がさらに好ましい。
What is necessary is just to set the preset temperature and thermal decomposition time of the heating furnace in the case of thermal decomposition suitably in consideration of the thermal decomposition temperature of a synthetic resin and the heat resistance of a spherical aggregate.
For example, when the synthetic resin is polyamide and the spherical aggregate is spherical carbon, 350 to 800 ° C is preferable, and 400 to 600 ° C is more preferable. If it is more than the said lower limit, a synthetic resin will be easy to be removed, and if it is less than the said upper limit, it will be easy to suppress that a spherical aggregate is thermally decomposed with a synthetic resin.
In addition, the thermal decomposition time is not particularly limited, and is preferably 0.5 to 10 hours because it is sufficient that the removal by the thermal decomposition of the synthetic resin is completed, and varies depending on the type and amount of the material and the thermal decomposition temperature. 1 to 8 hours is more preferable, and 3 to 5 hours is more preferable.

熱分解用の装置としては、例えば、工業上一般的に用いられる加熱炉を用いることができる。具体的な加熱炉としては、バッチ式炭化炉「CYT−1700」(CFR工業社製)が挙げられる。   As an apparatus for thermal decomposition, for example, a heating furnace generally used in industry can be used. Specific examples of the heating furnace include a batch type carbonization furnace “CYT-1700” (manufactured by CFR Kogyo Co., Ltd.).

[再生積層造形用材料]
本発明の再生積層造形用材料は、上述の積層造形用材料中の球状骨材の再生方法によって得られた再生球状骨材と、合成樹脂とを含む。
再生積層造形用材料に含ませる合成樹脂は、少なくとも積層造形に供していない合成樹脂(以下、「新品の合成樹脂」という。)を含む。
積層造形物に品質の低下を生じさせない範囲であれば、該合成樹脂は、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料に含まれる合成樹脂を含んでいてもよい。
また、本発明の再生積層造形用材料は、合成樹脂及び球状骨材の他、第3成分を含んでいてもよい。
[Recycled additive manufacturing materials]
The regenerative additive manufacturing material of the present invention includes a regenerated spherical aggregate obtained by the above-described method for regenerating a spherical aggregate in the additive manufacturing material, and a synthetic resin.
The synthetic resin to be included in the recycled additive manufacturing material includes at least a synthetic resin that has not been subjected to additive manufacturing (hereinafter referred to as “new synthetic resin”).
The synthetic resin contains a synthetic resin contained in a waste material that has not become a layered object in the layered object material that has been subjected to the layered object as long as the quality of the layered object is not degraded. Also good.
Moreover, the regenerative additive manufacturing material of the present invention may contain a third component in addition to the synthetic resin and the spherical aggregate.

再生積層造形用材料に含ませる球状骨材は、再生球状骨材のみでも、再生球状骨材に、積層造形に供していない球状骨材(以下、「新品の球状骨材」という。)及び積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料に含まれる球状骨材(以下、「使用済み球状骨材」という。)のいずれか一方又は両方を加えたものでもよい。
再生球状骨材に、新品の球状骨材及び使用済み球状骨材のいずれか一方又は両方を加える場合、新品の球状骨材又は使用済み球状骨材は、再生球状骨材と同種のものでもよく、異種のものでもよい。
また、再生球状骨材に、新品の球状骨材及び使用済み球状骨材のいずれか一方又は両方を加える場合、両球状骨材の配合割合は適宜決定され得る。本発明の再生積層造形材料は、再生球状骨材を含んでいればよい。
The spherical aggregate to be included in the recycled additive-molding material may be a recycled spherical aggregate alone, or a spherical aggregate that has not been subjected to additive manufacturing (hereinafter referred to as “new spherical aggregate”) and laminated. Even one or both of the spherical aggregates (hereinafter referred to as “used spherical aggregates”) included in the waste material that has not become a layered product among the additive manufacturing materials provided for modeling. Good.
When adding one or both of a new spherical aggregate and a used spherical aggregate to the recycled spherical aggregate, the new spherical aggregate or the used spherical aggregate may be the same type as the recycled spherical aggregate. , Different types of materials may be used.
In addition, when one or both of a new spherical aggregate and a used spherical aggregate is added to the recycled spherical aggregate, the blending ratio of both spherical aggregates can be determined as appropriate. The regenerative additive manufacturing material of the present invention only needs to contain a regenerated spherical aggregate.

本発明の再生積層造形用材料は、再生球状骨材と、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料と、新品の合成樹脂と、新品の球状骨材とを含むことが好ましい。
再生積層造形用材料にそのまま使用する廃棄材料としては、低劣化廃棄材料が好ましい。低劣化廃棄材料とは、廃棄材料の中でも、粉体流動性が高く劣化の程度が低いものである。再生積層造形用材料に廃棄材料の中でも劣化の程度が高い高劣化廃棄材料をそのまま用いると造形処理の際にダマができ易く、積層造形物の表面にユズ肌が生じ易くなる。そのため、再生積層造形用材料に廃棄材料をそのまま含ませる場合は、低劣化廃棄材料を用いることが好ましい。
Recycled additive manufacturing material of the present invention is a recycled spherical aggregate, a waste material that did not become a laminate modeled material in the additive manufacturing material, a new synthetic resin, and a new spherical aggregate Are preferably included.
As the waste material used as it is for the recycled additive manufacturing material, a low deterioration waste material is preferable. The low-degradation waste material is a waste material having a high powder flowability and a low degree of deterioration. If a highly deteriorated waste material having a high degree of deterioration is used as it is for the recycled additive manufacturing material as it is, the surface of the additive manufacturing object is likely to be crumpled. Therefore, when waste materials are included in the recycled additive manufacturing material as they are, it is preferable to use low-degradation waste materials.

再生積層造形用材料は、再生球状骨材と新品の合成樹脂と、必要に応じて、その他の材料とを混合することにより製造できる。混合には、スクリュー型ミキサー等が用いられる。具体的な手順としては、例えば、スクリュー型ミキサーに再生球状骨材と新品の合成樹脂と、必要に応じて、その他の材料とを所望の配合比となるように入れ、3〜10分間混合して、再生積層造形用材料を得る。   The regenerative additive manufacturing material can be manufactured by mixing the regenerated spherical aggregate, a new synthetic resin, and, if necessary, other materials. For mixing, a screw-type mixer or the like is used. As a specific procedure, for example, a recycled spherical aggregate, a new synthetic resin, and, if necessary, other materials are put into a screw mixer so as to have a desired blending ratio and mixed for 3 to 10 minutes. To obtain a regenerative additive manufacturing material.

[積層造形物の製造方法]
本発明の積層造形物の製造方法は、本発明の再生積層造形用材料を積層造形することを特徴とする。
[Manufacturing method of layered object]
The manufacturing method of the layered object of the present invention is characterized by layering the material for reproduction layered modeling of the present invention.

積層造形法に用いる装置は、各積層造形法において通常用いられるものでよい。例えば、選択的レーザー焼結法に用いる装置として、粉末積層造形機「EOSINT P380」(EOS社製)が挙げられる。
積層造形物は、積層造形を選択的レーザー焼結法等により行った後、積層造形用材料中から取り出されて、完成する。
The apparatus used for the additive manufacturing method may be one that is normally used in each additive manufacturing method. For example, as an apparatus used for the selective laser sintering method, a powder additive manufacturing machine “EOSINT P380” (manufactured by EOS) can be mentioned.
The layered object is completed by performing layered modeling by a selective laser sintering method or the like and then taken out from the layered modeling material.

[積層造形リサイクルシステム]
本発明によれば、球状骨材を再生できるため、球状骨材を無駄にしない積層造形リサイクルシステムを構築できる。以下に、ポリアミド11と球状カーボンを50:50で配合する積層造形用材料を用いる場合を例にとって、積層造形リサイクルシステムについて説明する。
図1は、本発明の積層造形用材料中の球状骨材の再生方法を利用した積層造形リサイクルシステムのモデルを、図2は、従来の積層造形リサイクルシステムのモデルである。
[Multiple modeling recycling system]
According to the present invention, since the spherical aggregate can be regenerated, it is possible to construct an additive manufacturing recycling system that does not waste the spherical aggregate. The additive manufacturing recycling system will be described below by taking as an example the case of using additive manufacturing materials in which polyamide 11 and spherical carbon are blended at 50:50.
FIG. 1 shows a model of an additive manufacturing recycling system using the method for regenerating a spherical aggregate in the additive manufacturing material of the present invention, and FIG. 2 shows a model of a conventional additive manufacturing recycling system.

図2に示すように、従来は、積層造形物の品質を低下させないために、リサイクルに回せる廃棄材料は、低劣化廃棄材料のみであり、しかも、その量も制限されていた。例えば、図2のモデルは、積層造形用材料を計30kg用いて積層造形を行うシステムにおいて、低劣化廃棄材料15kgをリサイクルするモデルである。この場合、ポリアミド11と球状カーボンを7.5kgずつ新たに追加し、合計30kgとしなければならない。そして、これを用い積層造形処理をした場合、積層造形用材料30kgのうち2.9kgが積層造形物等となり、残りの27.1kgは廃棄材料となる。このリサイクルシステムにおいては、廃棄材料27.1kgのうち、低劣化廃棄材料15kgは再び積層造形用材料としてリサイクルされるが、残りの12.1kgは、毎回システム外に廃棄され続けることになる。   As shown in FIG. 2, conventionally, in order not to deteriorate the quality of the layered object, the waste material that can be recycled is only the low-degradation waste material, and the amount thereof is also limited. For example, the model in FIG. 2 is a model that recycles 15 kg of low-degradation waste material in a system that performs additive manufacturing using a total of 30 kg of additive manufacturing materials. In this case, 7.5 kg of polyamide 11 and spherical carbon must be newly added to make a total of 30 kg. When layered modeling processing is performed using this, 2.9 kg of the layered modeling material 30 kg becomes a layered model and the remaining 27.1 kg becomes waste material. In this recycling system, out of the 27.1 kg of the waste material, 15 kg of the low deterioration waste material is recycled again as the additive manufacturing material, but the remaining 12.1 kg is continuously discarded outside the system every time.

一方、本発明によるリサイクルシステムのモデル(図1)では、廃棄材料の劣化の程度にかかわらず、再生球状骨材を得ることができる。そのため、図2で毎回排出されていた12.1kgの廃棄材料をすべて排出せず利用して、球状カーボンを再生することができる。このモデルでは、再生球状カーボンは6.3kg得られ(再生率が104%の場合)、新たに添加する球状カーボンの量は1.2kgでよい。図1で新たに追加した球状カーボンの量は、図2で新たに追加した球状カーボン7.5kgの16%である。   On the other hand, in the model (FIG. 1) of the recycling system according to the present invention, recycled spherical aggregate can be obtained regardless of the degree of degradation of the waste material. Therefore, it is possible to regenerate the spherical carbon by using all the 12.1 kg of waste material discharged every time in FIG. 2 without discharging. In this model, 6.3 kg of regenerated spherical carbon is obtained (when the regeneration rate is 104%), and the amount of newly added spherical carbon may be 1.2 kg. The amount of spherical carbon newly added in FIG. 1 is 16% of 7.5 kg of spherical carbon newly added in FIG.

[本発明により得られる作用効果]
本発明の積層造形用材料中の球状骨材の再生方法で得た再生球状骨材を含む積層造形用材料を積層造形して得た積層造形物は、充分な曲げ強度と密度を有し、また、該積層造形物の表面にユズ肌を発生させない。従来、廃棄材料のみから積層造形用材料を構成すると積層造形物の品質が低下していたのは、廃棄材料中の合成樹脂部分の劣化が主たる原因であったと考えられる。
本発明の積層造形用材料中の球状骨材の再生方法は、合成樹脂を熱分解して除去するため、再生球状骨材を含有する積層造形用材料は、積層造形物に品質の低下を生じさせない。
[Operational effects obtained by the present invention]
The layered object obtained by layering the layered material including the layered spherical aggregate obtained by the method of regenerating the spherical aggregate in the layered material of the present invention has sufficient bending strength and density, In addition, the skin is not generated on the surface of the layered object. Conventionally, when the additive manufacturing material is composed only of the waste material, the quality of the additive manufacturing object has been deteriorated because the deterioration of the synthetic resin portion in the waste material is the main cause.
Since the method for regenerating a spherical aggregate in the additive manufacturing material of the present invention removes the synthetic resin by pyrolysis, the additive manufacturing material containing the recycled spherical aggregate causes a deterioration in the quality of the additive manufacturing object. I won't let you.

また、本発明の再生積層造形用材料を用いると、積層造形後、材料中から積層造形物を取り出し易いため、作業の効率化を図ることができる。
これは、再生球状骨材の粒子表面に付着した合成樹脂由来の微量のススが、滑材の機能を果たすことで、積層造形物を取り出し易くしているものと考えられる。
また、本発明による球状骨材の再生を繰り返し行っても、球状骨材の質を低下させない。
Moreover, when the reproduction | regeneration layered modeling material of this invention is used, since the layered object is easily taken out from the material after the layered modeling, the work efficiency can be improved.
It is considered that this is because a small amount of soot derived from the synthetic resin attached to the particle surface of the regenerated spherical aggregate fulfills the function of the lubricant, making it easy to take out the layered object.
Moreover, even if the reproduction of the spherical aggregate according to the present invention is repeated, the quality of the spherical aggregate is not deteriorated.

以下、実施例により本発明を詳述するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to the following Example.

[評価方法]
後述の各実施例及び比較例において、積層造形物として80mm×10mm×4mmの試験片を得て、曲げ強度及び密度を測定した。
曲げ強度は、JIS K 7171に準拠する方法により測定した。曲げ強度は、60MPa以上であれば充分な強度を有すると言える。
密度は、得られた試験片5本の体積をそれぞれノギスで測定し、さらに精密秤を用いて重量を測定し、「密度」=試験片重量(g)/試験片体積(cm)で各試験片の密度を求め、その平均値を用いた。密度は、1.05g/cmあれば充分な密度であると言える。
また、ユズ肌は、後述の各実施例及び比較例で得られた積層造形物の表面におけるユズ肌の有無を、目視により評価した。
また、作業性は、後述の各実施例及び比較例の積層造形の際、積層造形物を積層造形用材料中から取り出す作業時間(分間)で評価した。
[Evaluation method]
In each Example and Comparative Example described later, a test piece of 80 mm × 10 mm × 4 mm was obtained as a layered object, and the bending strength and density were measured.
The bending strength was measured by a method based on JIS K 7171. It can be said that the bending strength is sufficient if it is 60 MPa or more.
The density is determined by measuring the volume of each of the obtained five test pieces with a caliper, and further measuring the weight using a precision balance. Each of the “density” = the weight of the test piece (g) / the test piece volume (cm 3 ). The density of the test piece was obtained and the average value was used. If the density is 1.05 g / cm 3, it can be said that the density is sufficient.
Moreover, the yuzu skin evaluated visually the presence or absence of the yuzu skin in the surface of the laminate-molded article obtained by each below-mentioned Example and comparative example.
Moreover, workability | operativity evaluated in the working time (minutes) which takes out a layered modeling thing from the material for layered modeling in the case of the layered modeling of each below-mentioned Example and comparative example.

(廃棄材料の作製)
球状カーボン「GC−050」(群栄化学工業(株)社製)15kgとポリアミド11「RILSAN INVENT NATURAL」(アルケマ(株)社製)15kgとを、スクリュー型ミキサーにより5分間混合して積層造形用材料とした。該積層造形用材料から、粉末積層造形機「EOSINT P380」(EOS社製)を用いて、造形温度(プロセスチャンバー内の温度。以下、同じ。)195℃で、選択的レーザー焼結法により、積層造形物を約2.9kg得た。
その際、積層造形物にならなかった積層造形用材料27.1kgを、全廃棄材料とした。また、全廃棄材料のうち低劣化部分を優先的に選んだもの15kgを低劣化廃棄材料とし、残りの12.1kgを残廃棄材料とした。
(Production of waste materials)
15 kg of spherical carbon “GC-050” (manufactured by Gunei Chemical Industry Co., Ltd.) and 15 kg of polyamide 11 “RILSAN INVENT NATURAL” (manufactured by Arkema Co., Ltd.) are mixed by a screw-type mixer for 5 minutes to perform additive manufacturing. The material was used. From this additive manufacturing material, using a powder additive manufacturing machine “EOSINT P380” (manufactured by EOS), at a modeling temperature (temperature in the process chamber; the same applies hereinafter) at 195 ° C., by selective laser sintering, About 2.9 kg of the layered object was obtained.
At that time, 27.1 kg of the additive manufacturing material that did not become an additive manufacturing object was used as a total waste material. Further, 15 kg of the all waste materials, which were selected with a low degradation portion preferentially, were designated as low degradation waste materials, and the remaining 12.1 kg was designated as residual waste materials.

(製造例)
上述の廃棄材料の作製を繰り返して得た残廃棄材料を100kg集め、バッチ式炭化炉「CYT−1700」(CFR工業社製)により、500℃で、5時間、ポリアミドを熱分解、除去し、52.1kg(再生率104.2%)の再生球状カーボンを得た。
(Production example)
100 kg of the remaining waste material obtained by repeating the production of the waste material described above was collected, and the polyamide was pyrolyzed and removed at 500 ° C. for 5 hours in a batch type carbonization furnace “CYT-1700” (manufactured by CFR Kogyo Co., Ltd.) Regenerated spherical carbon of 52.1 kg (regeneration rate: 104.2%) was obtained.

(実施例1)
上記製造例の再生球状カーボン15kgと、ポリアミド11「RILSAN INVENT NATURAL」15kgとを、スクリュー型ミキサーにより、5分間混合し、積層造形用材料とした。
該積層造形用材料から、粉末積層造形機「EOSINT P380」を用いて、造形温度195℃で、選択的レーザー焼結法により、積層造形物(試験片を含む。以下の実施例、比較例において同じ。)を約2.9kg得た。
Example 1
15 kg of the regenerated spherical carbon of the above production example and 15 kg of polyamide 11 “RILSAN INVENT NATURAL” were mixed with a screw mixer for 5 minutes to obtain an additive manufacturing material.
From the additive manufacturing material, an additive manufacturing object (including a test piece) is formed by a selective laser sintering method at a forming temperature of 195 ° C. using a powder additive manufacturing machine “EOSINT P380”. In the following examples and comparative examples The same was obtained.

(実施例2)
上記製造例の再生球状カーボン6.3kgと、球状カーボン「GC−050」1.2kgと、ポリアミド11「RILSAN INVENT NATURAL」7.5kgと、低劣化廃棄材料15kgとを、スクリュー型ミキサーにより、5分間混合し、積層造形用材料とした以外は、上記実施例1と同様に積層造形物を約2.9kg得た。
(Example 2)
Recycled spherical carbon 6.3 kg of the above production example, 1.2 kg of spherical carbon “GC-050”, polyamide 11 “RILSAN INVENT NATURAL” 7.5 kg, and 15 kg of low-deterioration waste material 5 by a screw mixer. About 2.9 kg of the layered object was obtained in the same manner as in Example 1 except that the material was mixed for minutes to obtain the material for layered object modeling.

(実施例3)
上記実施例1の造形処理により得られた廃棄材料40kgを、バッチ式炭化炉「CYT−1700」(CFR工業社製)により、500℃で、5時間、ポリアミドを熱分解、除去し、20.4kg(再生率101.5%)の再生球状カーボンを得た。
該再生球状カーボン15kgと、ポリアミド11「RILSAN INVENT NATURAL」15kgとを、スクリュー型ミキサーにより、5分間混合し、積層造形用材料とした。
該積層造形用材料から、上記実施例1と同様に積層造形物を約2.9kg得た。
Example 3
20. 40 kg of the waste material obtained by the modeling process of Example 1 was pyrolyzed and removed from the polyamide at 500 ° C. for 5 hours in a batch carbonization furnace “CYT-1700” (manufactured by CFR Kogyo Co., Ltd.). 4 kg (regeneration rate 101.5%) of regenerated spherical carbon was obtained.
15 kg of the regenerated spherical carbon and 15 kg of polyamide 11 “RILSAN INVENT NATURAL” were mixed with a screw mixer for 5 minutes to obtain an additive manufacturing material.
About 2.9 kg of a layered object was obtained from the layered material in the same manner as in Example 1 above.

(比較例1)
低劣化廃棄材料30kgから、粉末積層造形機「EOSINT P380」を用いて、造形温度195℃で、選択的レーザー焼結法により、積層造形物を約2.9kg得た。
(Comparative Example 1)
About 30 kg of the layered product was obtained from 30 kg of the low deterioration waste material by a selective laser sintering method at a modeling temperature of 195 ° C. using a powder additive manufacturing machine “EOSINT P380”.

(比較例2)
再生球状カーボンを用いず、球状カーボン「GC−050」7.5kgと、ポリアミド11「RILSAN INVENT NATURAL」7.5kgと、低劣化廃棄材料15kgとを、スクリュー型ミキサーにより、5分間混合し、積層造形用材料とした以外は、上記実施例1と同様に積層造形物を約2.9kg得た。
(Comparative Example 2)
Without using recycled spherical carbon, 7.5 kg of spherical carbon “GC-050”, 7.5 kg of polyamide 11 “RILSAN INVENT NATURAL”, and 15 kg of low-degradation waste material are mixed for 5 minutes with a screw-type mixer and laminated. About 2.9 kg of a layered product was obtained in the same manner as in Example 1 except that the material for modeling was used.

(参考例1)
再生球状カーボンを用いず、球状カーボン「GC−050」15kgと、ポリアミド11「RILSAN INVENT NATURAL」15kgとを、スクリュー型ミキサーにより、5分間混合し、積層造形用材料とした以外は、上記実施例1と同様に積層造形物を約2.9kg得た。
(Reference Example 1)
Except for using regenerated spherical carbon, 15 kg of spherical carbon “GC-050” and polyamide 11 “RILSAN INVENT NATURAL” 15 kg were mixed with a screw mixer for 5 minutes to obtain the material for additive manufacturing. About 2.9 kg of a layered product was obtained in the same manner as in 1.

(評価結果)
上記実施例1〜3、比較例1,2及び参考例1で得られた積層造形物の「曲げ強度」、「密度」及び「ユズ肌の発生の有無」を評価した。これらの評価結果を、以下の表1に示す。
また、作業性の評価結果を表2に示す。
表1,2において、「再生」は再生球状カーボンを、「新品」は新たに加えた球状カーボンを、「再利用」は積層造形用材料としてそのまま再利用した低劣化廃棄材料中に含まれる球状カーボンを、それぞれ意味する。
また、表1において、本発明の再生方法を繰り返した回数を、かっこ内に示した。
(Evaluation results)
“Bending strength”, “density”, and “presence / absence of crushed skin” of the layered objects obtained in Examples 1 to 3, Comparative Examples 1 and 2 and Reference Example 1 were evaluated. These evaluation results are shown in Table 1 below.
Table 2 shows the evaluation results of workability.
In Tables 1 and 2, “recycled” is a recycled spherical carbon, “new” is a newly added spherical carbon, and “reuse” is a spherical contained in a low degradation waste material that is reused as a layered material. Each means carbon.
In Table 1, the number of times the reproduction method of the present invention was repeated is shown in parentheses.

Figure 2015021016
Figure 2015021016

Figure 2015021016
Figure 2015021016

表1から、本発明の再生方法により得た再生球状カーボンを用いて得た実施例1〜3の積層造形物は、球状カーボンとして低劣化廃棄材料と新品の球状カーボンとを併用した比較例2及び新品の球状カーボンのみを用いた参考例1と、曲げ強度、密度が同等であることがわかる。
これに対し、球状カーボンとして低劣化廃棄材料のみを用いて得た比較例1の積層造形物は、曲げ強度及び密度が低下することが確認された。
また、表1に示すように、実施例1〜3、比較例2及び参考例1では、積層造形物の表面にユズ肌が生じなかったのに対し、比較例1では、ユズ肌が生じた。
From Table 1, the layered object of Examples 1 to 3 obtained using the regenerated spherical carbon obtained by the regenerating method of the present invention is a comparative example 2 in which a low degradation waste material and a new spherical carbon are used in combination as the spherical carbon. It can also be seen that the bending strength and density are equivalent to those of Reference Example 1 using only new spherical carbon.
On the other hand, it was confirmed that the laminate structure of Comparative Example 1 obtained by using only the low-degradation waste material as spherical carbon has reduced bending strength and density.
Further, as shown in Table 1, in Examples 1 to 3, Comparative Example 2 and Reference Example 1, there was no crushed skin on the surface of the layered object, whereas in Comparative Example 1 crushed skin was produced. .

以上の表1の結果から、低劣化廃棄材料のみを用いて積層造形物を得ると、積層造形物の品質が低下するのに対し、本発明により得られる再生球状骨材を用いれば、たとえ球状骨材の全量が再生球状骨材であっても、新品の球状骨材を用いて得た積層造形物の品質を、維持できることが分かった。
また、実施例1,3では、新品の球状カーボンは使用していない。また、実施例2では、1.2kgの新品の球状カーボンを加えているのみである。
一方、比較例2又は参考例1では、積層造形用材料に、それぞれ7.5kg又は15kgの新品の球状カーボンを加えている。
したがって、実施例1〜3の本発明の球状骨材の再生方法によれば、比較例2及び参考例1の従来の積層造形方法に比べ、新たに追加しなければならない球状カーボンを大幅に減らすことができ、コストを抑えることができる。
また、特に実施例3により示されているように、本発明の再生方法を繰り返しても、球状カーボンの質の低下を引き起こさないことは、本発明において重要な意義を持つ。
From the results of Table 1 above, when a layered object is obtained using only a low-degradation waste material, the quality of the layered object decreases, whereas if the recycled spherical aggregate obtained according to the present invention is used, it is spherical. It was found that even if the total amount of aggregate was recycled spherical aggregate, the quality of the layered product obtained using the new spherical aggregate could be maintained.
In Examples 1 and 3, new spherical carbon is not used. In Example 2, 1.2 kg of new spherical carbon is only added.
On the other hand, in Comparative Example 2 or Reference Example 1, 7.5 kg or 15 kg of new spherical carbon is added to the additive manufacturing material.
Therefore, according to the method for regenerating spherical aggregates of Examples 1 to 3 of the present invention, compared with the conventional additive manufacturing methods of Comparative Example 2 and Reference Example 1, the amount of spherical carbon that must be newly added is greatly reduced. Can reduce costs.
Further, as particularly shown in Example 3, it is important in the present invention that even if the regeneration method of the present invention is repeated, the quality of the spherical carbon is not reduced.

表2は、本発明の再生方法により得た再生球状カーボンを用いた積層造形物(実施例1,2)の取り出し作業時間が、低劣化廃棄材料のみを用いて作製した積層造形物(比較例2)に比べて、3〜4割短いことを示す。
このことから、本発明で得られる再生球状骨材を用いると、積層造形の作業効率が向上することが分かった。
Table 2 shows a layered product (comparative example) produced using only a low-degradation waste material, in which the operation time for taking out the layered product (Examples 1 and 2) using the regenerated spherical carbon obtained by the regeneration method of the present invention is shown. It is 30-40% shorter than 2).
From this, it was found that the use of the regenerated spherical aggregate obtained in the present invention improves the working efficiency of the layered modeling.

[合成樹脂を熱分解、除去する際の温度による影響]
次に、合成樹脂を熱分解、除去する際の温度による影響を検討した。
[Effect of temperature when pyrolyzing and removing synthetic resin]
Next, the influence of temperature when the synthetic resin was pyrolyzed and removed was examined.

(実験例4)
全廃棄材料のうち0.2gを、マッフル炉「KM−280」(アドバンテック東洋(株)社製)により、500℃、1時間でポリアミド11を熱分解、除去し、球状カーボンを再生した。
その結果、0.1052gの再生球状カーボンが得られた。再生率は、105.2%である。
(Experimental example 4)
Of the total waste material, 0.2 g of polyamide 11 was pyrolyzed and removed at 500 ° C. for 1 hour in a muffle furnace “KM-280” (manufactured by Advantech Toyo Co., Ltd.) to regenerate spherical carbon.
As a result, 0.1052 g of regenerated spherical carbon was obtained. The reproduction rate is 105.2%.

(実験例5)
熱分解、除去の際の温度を400℃にし、かつ、かけた時間を2時間とした以外は、上記実施例4と同様に行った。
その結果、0.1084gの球状カーボンが得られた。再生率は、108.4%である。
(Experimental example 5)
The same procedure as in Example 4 was performed except that the temperature at the time of thermal decomposition and removal was set to 400 ° C. and the time taken was 2 hours.
As a result, 0.1084 g of spherical carbon was obtained. The reproduction rate is 108.4%.

(実験例6)
熱分解、除去の際の温度を700℃にした以外は、上記実施例4と同様に行った。
その結果、0.0942gの球状カーボンが得られた。再生率は、94.2%である。
(Experimental example 6)
The same procedure as in Example 4 was performed, except that the temperature during pyrolysis and removal was set to 700 ° C.
As a result, 0.0942 g of spherical carbon was obtained. The regeneration rate is 94.2%.

(実験例7)
熱分解、除去の際の温度を300℃にし、かつ、かけた時間を2時間とした以外は、上記実施例4と同様に行った。
その結果、ポリアミド11はほとんど消失しなかった。
(Experimental example 7)
The same procedure as in Example 4 was performed except that the temperature during the thermal decomposition and removal was set to 300 ° C. and the time taken was 2 hours.
As a result, the polyamide 11 hardly disappeared.

以上の結果から、熱分解、除去の際の温度を400〜700℃の範囲で行った場合には、再生率が90〜110%の範囲にあり、充分に球状骨材を再生することができたことが分かる。これに対し、300℃で行った場合には、合成樹脂が除去されず、球状骨材を再生することができなかったことが分かる。   From the above results, when the temperature during pyrolysis and removal is performed in the range of 400 to 700 ° C., the regeneration rate is in the range of 90 to 110%, and the spherical aggregate can be sufficiently regenerated. I understand that. On the other hand, when it performed at 300 degreeC, it turns out that a synthetic resin was not removed but a spherical aggregate was not able to be reproduced | regenerated.

Claims (9)

球状骨材と合成樹脂とを含む積層造形用材料中の合成樹脂を熱分解して除去することを特徴とする、積層造形用材料中の球状骨材の再生方法。   A method for regenerating a spherical aggregate in an additive manufacturing material, comprising thermally decomposing and removing the synthetic resin in the additive manufacturing material including the spherical aggregate and the synthetic resin. 前記球状骨材と合成樹脂とを含む積層造形用材料が、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料である、請求項1に記載の積層造形用材料中の球状骨材の再生方法。   The additive manufacturing material according to claim 1, wherein the additive manufacturing material including the spherical aggregate and the synthetic resin is a waste material that has not become an additive manufacturing object in the additive manufacturing material provided for additive manufacturing. Regeneration method of spherical aggregate inside. 前記積層造形用材料が、選択的レーザー焼結法の材料である、請求項1又は2に記載の積層造形用材料中の球状骨材の再生方法。   The method for regenerating a spherical aggregate in the additive manufacturing material according to claim 1 or 2, wherein the additive manufacturing material is a material of a selective laser sintering method. 前記球状骨材が、球状カーボンである、請求項1〜3のいずれか一項に記載の積層造形用材料中の球状骨材の再生方法。   The method for regenerating a spherical aggregate in the additive manufacturing material according to any one of claims 1 to 3, wherein the spherical aggregate is spherical carbon. 前記合成樹脂が、熱可塑性樹脂、熱硬化性樹脂及び光硬化性樹脂からなる群から選択される1以上である、請求項1〜4のいずれか一項に記載の積層造形用材料中の球状骨材の再生方法。   The spherical shape in the additive manufacturing material according to any one of claims 1 to 4, wherein the synthetic resin is one or more selected from the group consisting of a thermoplastic resin, a thermosetting resin, and a photocurable resin. Aggregate regeneration method. 前記熱可塑性樹脂が、ポリアミド11又はポリアミド12である、請求項5に記載の積層造形用材料中の球状骨材の再生方法。   The method for regenerating a spherical aggregate in the additive manufacturing material according to claim 5, wherein the thermoplastic resin is polyamide 11 or polyamide 12. 請求項1〜6のいずれか一項に記載の積層造形用材料中の球状骨材の再生方法によって得られた再生された球状骨材と、合成樹脂とを含む、再生積層造形用材料。   The reproduction | regeneration additive manufacturing material containing the reproduction | regeneration spherical aggregate obtained by the reproduction | regeneration method of the spherical aggregate in the additive manufacturing material as described in any one of Claims 1-6, and a synthetic resin. 請求項1〜6のいずれか一項に記載の積層造形用材料中の球状骨材の再生方法によって得られた再生された球状骨材と、積層造形に供した積層造形用材料の中で積層造形物にならなかった廃棄材料と、積層造形に供していない合成樹脂と、積層造形に供していない球状骨材とを含む、再生積層造形用材料。   The regenerated spherical aggregate obtained by the method for regenerating the spherical aggregate in the additive manufacturing material according to any one of claims 1 to 6, and the additive manufacturing layered material provided for additive manufacturing A material for regenerative additive manufacturing including a waste material that has not been formed, a synthetic resin that is not subjected to additive manufacturing, and a spherical aggregate that is not subjected to additive manufacturing. 請求項7又は8に記載の再生積層造形用材料を積層造形することを特徴とする、積層造形物の製造方法。   A method for manufacturing a layered object, wherein the reproduction layered material according to claim 7 or 8 is layered.
JP2013147651A 2013-07-16 2013-07-16 Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method Active JP6212772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147651A JP6212772B2 (en) 2013-07-16 2013-07-16 Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147651A JP6212772B2 (en) 2013-07-16 2013-07-16 Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method

Publications (2)

Publication Number Publication Date
JP2015021016A true JP2015021016A (en) 2015-02-02
JP6212772B2 JP6212772B2 (en) 2017-10-18

Family

ID=52485764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147651A Active JP6212772B2 (en) 2013-07-16 2013-07-16 Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method

Country Status (1)

Country Link
JP (1) JP6212772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520919A (en) * 2015-07-13 2018-08-02 ストラタシス リミテッド Waste disposal for 3D printing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI747053B (en) * 2018-10-03 2021-11-21 國立成功大學 Additive manufacturing system and method and feature extraction method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122783A (en) * 1992-10-12 1994-05-06 Otsuka Chem Co Ltd Method for recycling filled resin molding
JPH07330946A (en) * 1994-06-07 1995-12-19 Nec Corp Method for recovering inorganic filler from resin composition
JPH08108161A (en) * 1994-10-07 1996-04-30 Takuma Co Ltd Apparatus for recovering inorganic filler from resin composition for reuse
JP2000351907A (en) * 1999-06-11 2000-12-19 Jsr Corp Resin composition and three-dimensional form
JP2004137465A (en) * 2002-10-17 2004-05-13 Degussa Ag Sintering powder for selective laser-sintering, method for producing the same, method for producing formed product and formed product
JP2006321711A (en) * 2005-04-20 2006-11-30 Trial Corp Microsphere used for selective laser sintering, method for producing the same, molding by selective laser sintering, and method for producing the same
JP2009013395A (en) * 2007-06-07 2009-01-22 Gun Ei Chem Ind Co Ltd Composite material powder for selective laser sintering
JP2010189610A (en) * 2009-02-20 2010-09-02 Idemitsu Technofine Co Ltd Composition for laser-sintering laminate, method for producing the same, and molded product
JP2010234800A (en) * 2009-03-13 2010-10-21 Gun Ei Chem Ind Co Ltd Mold manufactured by laminate molding method
JP2011502820A (en) * 2008-05-21 2011-01-27 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method and apparatus for manufacturing layered three-dimensional object using powder

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122783A (en) * 1992-10-12 1994-05-06 Otsuka Chem Co Ltd Method for recycling filled resin molding
JPH07330946A (en) * 1994-06-07 1995-12-19 Nec Corp Method for recovering inorganic filler from resin composition
JPH08108161A (en) * 1994-10-07 1996-04-30 Takuma Co Ltd Apparatus for recovering inorganic filler from resin composition for reuse
JP2000351907A (en) * 1999-06-11 2000-12-19 Jsr Corp Resin composition and three-dimensional form
JP2004137465A (en) * 2002-10-17 2004-05-13 Degussa Ag Sintering powder for selective laser-sintering, method for producing the same, method for producing formed product and formed product
JP2006321711A (en) * 2005-04-20 2006-11-30 Trial Corp Microsphere used for selective laser sintering, method for producing the same, molding by selective laser sintering, and method for producing the same
JP2009013395A (en) * 2007-06-07 2009-01-22 Gun Ei Chem Ind Co Ltd Composite material powder for selective laser sintering
JP2011502820A (en) * 2008-05-21 2011-01-27 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ Method and apparatus for manufacturing layered three-dimensional object using powder
JP2010189610A (en) * 2009-02-20 2010-09-02 Idemitsu Technofine Co Ltd Composition for laser-sintering laminate, method for producing the same, and molded product
JP2010234800A (en) * 2009-03-13 2010-10-21 Gun Ei Chem Ind Co Ltd Mold manufactured by laminate molding method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018520919A (en) * 2015-07-13 2018-08-02 ストラタシス リミテッド Waste disposal for 3D printing
JP2019196013A (en) * 2015-07-13 2019-11-14 ストラタシス リミテッド Disposal of waste material for 3d printing
US11046005B2 (en) 2015-07-13 2021-06-29 Stratasys Ltd. Waste disposal for 3D printing

Also Published As

Publication number Publication date
JP6212772B2 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
Ryder et al. Fabrication and properties of novel polymer-metal composites using fused deposition modeling
Kellens et al. Environmental impact modeling of selective laser sintering processes
Dudek FDM 3D printing technology in manufacturing composite elements
US10052691B2 (en) Surface modified particulate and sintered or injection molded products
Gibson et al. Composites in rapid prototyping
CN104308072A (en) Carbon fiber-based precoated sand material for selective laser sintering and preparation method thereof
CA2958409C (en) Titanium-based compositions, methods of manufacture and uses thereof
EP3481568A1 (en) Metal objects and methods for making metal objects using disposable molds
CN104109343A (en) High-flowability plastic composite powder material and preparation method thereof
CN111836711A (en) Additive manufacturing method and apparatus
JP6212772B2 (en) Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method
JP2017002125A (en) Recycled carbon fiber bundle
Nugroho et al. 3D printing composite materials: A comprehensive review
CN113895051A (en) Preparation method of high-load-bearing polymer functional composite material based on 3D printing technology
CN106832885B (en) Polymer composite material containing polydopamine particles and application thereof
JP5144688B2 (en) Molds created by the laminate molding method
KR20180003086A (en) Photocurable 3d printing material composition and high-strength 3d printed matter manufacturing method using same
Hague et al. Rapid prototyping, tooling and manufacturing
JP2010202928A (en) Method for producing metal shaped-article and metal resin composite powder for rapid prototyping
JP2021042339A (en) Recycled carbon fiber containing resin composite and method for manufacturing the same
Shelare et al. Additive Manufacturing of Polymer Composites: Applications, Challenges and opportunities
Anderson The effect of porosity on mechanical properties of fused deposition manufactured polymers and composites
Yan et al. Multiphase polymeric materials for rapid prototyping and tooling technologies and their applications
JP2011068125A (en) Heat-resistant molding and method for producing the same
Lodha et al. Sustainable 3D printing with recycled materials: a review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6212772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250