JP2009013395A - Composite material powder for selective laser sintering - Google Patents

Composite material powder for selective laser sintering Download PDF

Info

Publication number
JP2009013395A
JP2009013395A JP2008107369A JP2008107369A JP2009013395A JP 2009013395 A JP2009013395 A JP 2009013395A JP 2008107369 A JP2008107369 A JP 2008107369A JP 2008107369 A JP2008107369 A JP 2008107369A JP 2009013395 A JP2009013395 A JP 2009013395A
Authority
JP
Japan
Prior art keywords
composite material
spherical
laser sintering
average particle
sphericity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008107369A
Other languages
Japanese (ja)
Other versions
JP5214313B2 (en
Inventor
Kazutake Iizuka
一毅 飯塚
Akihiro Okubo
明浩 大久保
Takashi Ogino
貴史 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2008107369A priority Critical patent/JP5214313B2/en
Publication of JP2009013395A publication Critical patent/JP2009013395A/en
Application granted granted Critical
Publication of JP5214313B2 publication Critical patent/JP5214313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite material powder, excellent in recycling property, used for the process of selective laser sintering and does not cause degradation of mechanical strength and separation of a resin powder and a filler even if used repeatedly; to provide a composite material having high bending elastic modulus, high tensile modulus and light weight compared to a molded product formed of a resin alone; and further to provide a composite material having antistatic properties and conductivity. <P>SOLUTION: The composite material, which is prepared by mixing a spherical aggregate having a true specific gravity of 0.8-2.0, a sphericity of 0.8-1.0 and an average particle diameter of 10-150 μm and a resin particle having an average particle diameter of 30-150 μm, is subjected to the process of selective laser burning. Also, when spherical carbon black is used as the aggregate, the composite material having antistatic properties and conductivity can be obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は選択的レーザー焼結法の基材となる複合材料粉末並びにその成形体に関する。   The present invention relates to a composite powder as a base material for a selective laser sintering method and a molded body thereof.

選択的レーザー焼結用の材料として一般的にポリアミド12粉末が用いられている(例えば、特許文献1参照。)。しかし、ポリアミド12単独で成形物を造形した場合、弾性率が低いため様々な外力による成形物の変形がしばしば問題となる。   Generally, polyamide 12 powder is used as a material for selective laser sintering (see, for example, Patent Document 1). However, when a molded article is formed with the polyamide 12 alone, deformation of the molded article due to various external forces often becomes a problem because of its low elastic modulus.

この問題を解決するために、ガラス繊維、カーボン繊維といった繊維状フィラーを樹脂粉末と混合し、造形することで成形物の弾性率を向上させるといった、変形への対策がなされている。   In order to solve this problem, countermeasures against deformation such as improving the elastic modulus of a molded product by mixing a fibrous filler such as glass fiber or carbon fiber with resin powder and shaping the material are taken.

しかしながら、上記の方法ではリサイクル、つまり一度使用したがレーザー未照射で粉末の状態で回収した材料を再度使用することができないという問題を生じる。例えば、ポリアミド12粉末といった樹脂粉末のみで造形する場合、選択的レーザー焼結後、レーザー未照射の粉末を回収し、篩を通し、再度選択的レーザー焼結用基材として用いることができる。繊維状フィラーを含有した場合、メッシュに引っかかるため篩を通過しにくく、繊維状フィラーと樹脂粉末が分離しやすい。その結果リサイクルができず、多量の廃棄物を生じるため、コストアップとなりほとんど利用されていない。さらに、造形する際に繊維が配行するため、3次元的に均一な強度が発現しないという性能上の問題を有している。   However, in the above method, there is a problem that recycling, that is, a material that has been used once but recovered in a powder state without being irradiated with a laser cannot be used again. For example, in the case of modeling only with resin powder such as polyamide 12 powder, after selective laser sintering, the powder not irradiated with laser can be collected, passed through a sieve, and used again as a substrate for selective laser sintering. When the fibrous filler is contained, it is difficult to pass through the sieve because it is caught by the mesh, and the fibrous filler and the resin powder are easily separated. As a result, it cannot be recycled and a large amount of waste is generated, which increases costs and is hardly used. Furthermore, since the fibers are distributed during modeling, there is a problem in performance that a three-dimensional uniform strength is not exhibited.

一方、ガラスビーズ、アルミニウム粉末といった篩を通過するフィラーと樹脂粉末を混合した材料を使用する技術がある。(例えば、特許文献2参照。)   On the other hand, there is a technique that uses a material in which a filler that passes through a sieve such as glass beads and aluminum powder and a resin powder are mixed. (For example, see Patent Document 2.)

しかしながら、これらのフィラー粉末は樹脂粉末との比重差が大きいため、複合材料粉末に篩等で衝撃を与えると容易にフィラーと樹脂粉末が分離し、粉末が均一でなくなる。そのため、リサイクルした材料では、均質な成形物ができないので廃棄することになる。その結果、それぞれ多量の廃棄物が生じ、コスト高となってしまう。さらに、成形体が重いため、機能性を十分満たさないこともある。   However, since these filler powders have a large specific gravity difference from the resin powder, when the composite material powder is impacted with a sieve or the like, the filler and the resin powder are easily separated, and the powder is not uniform. Therefore, the recycled material cannot be made into a homogeneous molded product, and is discarded. As a result, a large amount of waste is generated, resulting in high costs. Furthermore, since a molded object is heavy, it may not fully satisfy functionality.

また従来の成形技術である射出成形や押出成形では成形できない複雑な形状の成形体が求められており、形状を自由に設計可能な選択的レーザー焼結法が着目されている。しかしながら、体積固有抵抗率を自由に調節し、静電防止から導電性を有する材料を用いた場合、機械的制約などもあり選択的レーザー焼結法で自由に成形できるまでには至っていない。例えば、電子機器の試作品を選択的レーザー焼結法で作成するケースが多いが、従来の選択的レーザー焼結法の材料では帯電防止性能が付与されていないため、不具合の発生するケースが多々見られた。複写機の複写用紙搬送用ガイド部品を選択的レーザー焼結法で作成した場合、材料に電気絶縁性を持つナイロン12を用いると、紙とガイド部品との摩擦により静電気が発生し、紙詰まりを起こす。この問題を解決する手段として、ナイロン12で作成したガイド部品に帯電防止塗料を塗布する等の手法がとられてきた。   Further, there is a demand for a molded body having a complicated shape that cannot be molded by injection molding or extrusion molding, which are conventional molding techniques, and a selective laser sintering method capable of freely designing the shape has attracted attention. However, when a volume specific resistivity is freely adjusted and a conductive material is used from the prevention of static electricity, there are mechanical limitations and the like, and it has not yet been possible to mold freely by a selective laser sintering method. For example, many prototypes of electronic equipment are created by selective laser sintering. However, conventional selective laser sintering materials do not have antistatic properties, so there are many cases where defects occur. It was. When the copy paper transport guide parts of a copying machine are made by selective laser sintering, if nylon 12 with electrical insulation is used as the material, static electricity will be generated due to friction between the paper and the guide parts, and paper jams will occur. Wake up. As a means for solving this problem, a method of applying an antistatic coating to a guide part made of nylon 12 has been taken.

しかしながら、この方法では工程数が増える、複写機を繰り返し使用することでガイド部品が磨耗し、帯電防止塗料が剥がれる等の問題があった。これらの問題を解決するために導電性の材料を添加する検討が行われてきたが、カーボン繊維を30質量%以上添加すると流動性が悪くなり、導電性フィラーとしてカーボンブラックを添加すると、カーボンブラックの平均粒径が数十nmと小さいことから材料の流動性が大きく低下し、どちらの場合も選択的レーザー焼結法では造形できず、静電防止を有する複合材料を得ることはできなかった。
特開平11−216779号公報 特表平11−509485号公報
However, this method has problems such as an increase in the number of processes, repeated use of the copying machine, wear of the guide parts, and peeling of the antistatic paint. In order to solve these problems, studies have been made to add a conductive material. However, when carbon fiber is added in an amount of 30% by mass or more, fluidity is deteriorated, and when carbon black is added as a conductive filler, carbon black is added. Since the average particle size of the material is as small as several tens of nanometers, the fluidity of the material is greatly reduced. In either case, the selective laser sintering method cannot be used to form a composite material having antistatic properties. .
Japanese Patent Laid-Open No. 11-216779 Japanese National Patent Publication No. 11-509485

本発明の目的は、主として選択的レーザー焼結に用いられ、リサイクルが可能で低コストであり、樹脂単独の成形物に比べ弾性率が高い上、軽量な複合材料並びにその成形物を提供することにある。さらに、選択的レーザー焼結法による成形が可能であり、かつ静電防止から導電性を有する複合材料を提供することにある。   An object of the present invention is to provide a composite material that is mainly used for selective laser sintering, is recyclable and low in cost, has a higher elastic modulus than a resin-only molded product, and is lightweight, and its molded product. It is in. It is another object of the present invention to provide a composite material that can be molded by a selective laser sintering method and has conductivity from antistatic.

本発明者らは、鋭意検討を行った結果、特定の球状骨材と樹脂粉末を混合することにより、上記目的を達成し得る複合材料が得られることを知見した。本発明は上記知見に基づいてなされたもので、真比重が樹脂に近い球状骨材を樹脂粉末と混合した、選択的レーザー焼結に使用する複合材料を提供するものである。さらに本発明は、複合材料の骨材として球状カーボンを用いることで、静電防止から導電性を有する複合材料を提供するものである。   As a result of intensive studies, the present inventors have found that a composite material that can achieve the above object can be obtained by mixing a specific spherical aggregate and a resin powder. The present invention has been made based on the above findings, and provides a composite material used for selective laser sintering in which a spherical aggregate having a true specific gravity close to that of a resin is mixed with a resin powder. Furthermore, this invention provides the composite material which has electroconductivity from electrostatic prevention by using spherical carbon as an aggregate of a composite material.

球状骨材を含有する複合材料粉末は、リサイクルの際に篩を通過することができる。また、比重が樹脂粉末に近いため、リサイクルの際に球状カーボンと樹脂粉末が均一に混合したまま回収することができる。その結果、リサイクルした材料を同等の機械強度を保ったまま、5回以上選択的レーザー焼結法で造形することが可能である。   The composite powder containing the spherical aggregate can pass through a sieve during recycling. Further, since the specific gravity is close to that of the resin powder, the spherical carbon and the resin powder can be recovered while being uniformly mixed during recycling. As a result, it is possible to form the recycled material by selective laser sintering five or more times while maintaining the same mechanical strength.

さらに、球状骨材を用いることで、機械強度が優れた成形物を得ることができる。特に、引張弾性率、曲げ弾性率、曲げ強度が著しく向上する。   Furthermore, a molded article having excellent mechanical strength can be obtained by using a spherical aggregate. In particular, the tensile elastic modulus, bending elastic modulus, and bending strength are remarkably improved.

また、本発明の複合材料粉末を構成する骨材として、導電材料である球状カーボンを使用し、その添加量を変えることで、体積固有抵抗率を調節することができる。そのため骨材として球状カーボンを添加し、選択的レーザー焼結法により造形した成形物は、静電気防止から導電性が必要とされる分野まで幅広く使用することができる。   Further, the volume specific resistivity can be adjusted by using spherical carbon which is a conductive material as the aggregate constituting the composite material powder of the present invention and changing the amount of addition. Therefore, a molded product obtained by adding spherical carbon as an aggregate and shaped by a selective laser sintering method can be widely used in fields where static electricity prevention and conductivity are required.

以下に本発明の複合材料粉末及びその製造方法について詳述する。本発明の複合材料粉末を構成する球状骨材は、真比重0.8〜2.0g/cm、平均粒径10〜150μmの融点を持たない球状骨材で、さらには球状熱硬化性樹脂硬化物、及び球状カーボンである。球状熱硬化性樹脂降下物としては、例えばフェノール樹脂の球状硬化物が挙げられ、水性媒体中で縮合反応触媒と乳化分散剤の存在下にフェノール類とアルデヒド類とを高温高圧下に縮合反応させることにより得ることができる。具体的には群栄化学工業株式会社製のHFタイプが好ましい。球状カーボンとしては、例えば球状熱硬化性硬化物を400〜1000℃、窒素雰囲気下で炭化することによって得ることができ、具体的には群栄化学工業株式会社製のGCタイプが好ましい。これらの骨材を接着能力を有する樹脂粉末と混合することにより、高強度高弾性率を有する選択的レーザー焼結法用材料となりうる。これらの骨材は高温でも溶けず融点を持たない。また、これの球状骨材はナイロンより高融点を持つガラス粉末、セラミック粉末、金属粉末と比べて真比重が0.8〜2.0g/cmと軽く、樹脂粉末に近い為、リサイクルの際の篩による衝撃で球状骨材と樹脂粉末が分離することがない。したがって、廃棄による環境負荷を低減すると同時に生産コストを低減できるという大きな産業上のメリットを有する。さらに、球状骨材として導電材料である球状カーボンを用いた場合、その添加量を変えることで静電気防止から導電性に必要とする範囲の体積固有抵抗率を調節することが可能であり、選択的レーザー焼結法により容易に成形することが可能である。 The composite material powder of the present invention and the production method thereof will be described in detail below. The spherical aggregate constituting the composite material powder of the present invention is a spherical aggregate having a true specific gravity of 0.8 to 2.0 g / cm 3 and an average particle size of 10 to 150 μm and having no melting point, and further a spherical thermosetting resin. It is a cured product and spherical carbon. Examples of the spherical thermosetting resin dropping product include a spherical cured product of a phenol resin, and a phenol and an aldehyde are condensed in an aqueous medium in the presence of a condensation reaction catalyst and an emulsifying dispersant under high temperature and high pressure. Can be obtained. Specifically, the HF type manufactured by Gunei Chemical Industry Co., Ltd. is preferable. As the spherical carbon, for example, a spherical thermosetting cured product can be obtained by carbonizing at 400 to 1000 ° C. in a nitrogen atmosphere, and specifically, the GC type manufactured by Gunei Chemical Industry Co., Ltd. is preferable. By mixing these aggregates with resin powder having adhesive ability, a material for selective laser sintering having high strength and high elastic modulus can be obtained. These aggregates do not melt at high temperatures and do not have a melting point. In addition, this spherical aggregate has a true specific gravity of 0.8 to 2.0 g / cm 3, which is lighter than glass powder, ceramic powder, and metal powder, which have a higher melting point than nylon, and is close to resin powder. The spherical aggregate and the resin powder are not separated by the impact of the sieve. Therefore, it has a great industrial merit that the environmental load due to disposal can be reduced and at the same time the production cost can be reduced. In addition, when spherical carbon, which is a conductive material, is used as the spherical aggregate, it is possible to adjust the volume resistivity in the range required for electrical conductivity prevention and conductivity by changing the amount of addition, which is selective. It can be easily molded by laser sintering.

本発明の複合材料粉末を構成する球状骨材の平均粒径について、好ましくは10〜150μm、さらに好ましくは40〜60μmである。平均粒径10μm以下の場合、造形時に材料を敷きにくく、平均粒径150μm以上の場合、微細な形状の造形物が得られない。   About the average particle diameter of the spherical aggregate which comprises the composite material powder of this invention, Preferably it is 10-150 micrometers, More preferably, it is 40-60 micrometers. When the average particle size is 10 μm or less, it is difficult to lay the material during modeling, and when the average particle size is 150 μm or more, a finely shaped shaped product cannot be obtained.

本発明の複合材料を構成する球状骨材は、その形状が真球状であり、好ましくは球形度0.7〜1.0、さらに好ましくは球形度0.95〜1.0である。ここで、球形度とは粒子の球形度を、(粒子の投影面積に等しい円の直径)/(粒子の投影像に外接する最小円の直径)で測る指数であり、この指数が1.0に近いほど真球体に近い粒子であることを意味する。球状骨材の球形度が0.7以下の場合成形の際に粉末を均一に撒くことができず、成形することができない。また、球状である為、成形物の機械強度が等方性であるというメリットを有する。繊維状フィラーの場合、成形物の機械強度に異方性が生じる為、出来上がった成形物は部位によって強度のばらつきが大きいものとなってしまう。   The spherical aggregate constituting the composite material of the present invention has a true spherical shape, preferably a sphericity of 0.7 to 1.0, more preferably a sphericity of 0.95 to 1.0. Here, the sphericity is an index for measuring the sphericity of a particle by (the diameter of a circle equal to the projected area of the particle) / (the diameter of the smallest circle circumscribing the projected image of the particle). The closer to, the closer to a true sphere. When the spherical aggregate has a sphericity of 0.7 or less, the powder cannot be uniformly dispersed during molding and cannot be molded. Moreover, since it is spherical, it has the merit that the mechanical strength of the molded product is isotropic. In the case of a fibrous filler, since anisotropy occurs in the mechanical strength of the molded product, the finished molded product has a large variation in strength depending on the part.

また、複合材料中の球状骨材の含有量が、好ましくは10質量%から80質量%、さらに好ましくは20質量%から60質量%である。上記球状骨材の含有量が10質量%以下では、弾性率がほとんど向上せず、90質量%より多い場合では成形不良を生じる。   Further, the content of the spherical aggregate in the composite material is preferably 10% by mass to 80% by mass, and more preferably 20% by mass to 60% by mass. When the content of the spherical aggregate is 10% by mass or less, the elastic modulus is hardly improved, and when it is more than 90% by mass, a molding defect occurs.

特に、複合材料として球状カーボンを使用した場合、複合材料中の球状カーボンの含有量が35質量%以上55質量%未満の場合、体積固有抵抗率が10Ω・cm以上1010Ω・cm以下であり、静電気防止効果を持つ。一方、球状カーボンの含有量が55質量%以上80質量%以下の場合、体積固有抵抗率が10Ω・cm以上10Ω・cm未満であり、電気電子分野の包装用部品やOA機器用部品に応用可能である。球状カーボンの含有量が10質量%以上、35質量%未満の場合、体積固有抵抗率が1010Ω・cmを超えてしまい、上記用途には使用できない。 In particular, when spherical carbon is used as the composite material, the volume resistivity is 10 6 Ω · cm or more and 10 10 Ω · cm or less when the content of the spherical carbon in the composite material is 35% by mass or more and less than 55% by mass. It has antistatic effect. On the other hand, when the content of spherical carbon is 55% by mass or more and 80% by mass or less, the volume resistivity is 10 1 Ω · cm or more and less than 10 6 Ω · cm. Applicable to parts. When the content of the spherical carbon is 10% by mass or more and less than 35% by mass, the volume resistivity exceeds 10 10 Ω · cm and cannot be used for the above applications.

本発明の複合材料粉末を構成する樹脂粉末について、熱可塑性樹脂、熱硬化性樹脂のいずれでもよく、好ましくはポリアミド、ポリスチレン、ポリブチレンテレフタレート、ポリアセタール、ポリプロピレン、ポリエチレン、ポリアリールエーテルケトン、フェノール樹脂、エポキシ樹脂、メラミン樹脂、さらに好ましくはポリアミドであり、2種以上混合して使用してもよい。粉末樹脂の球形度について、好ましくは0.6〜1.0である。粉末樹脂の平均粒径について、好ましくは30〜150μmである。   The resin powder constituting the composite material powder of the present invention may be either a thermoplastic resin or a thermosetting resin, preferably polyamide, polystyrene, polybutylene terephthalate, polyacetal, polypropylene, polyethylene, polyaryletherketone, phenol resin, An epoxy resin, a melamine resin, more preferably a polyamide, may be used as a mixture of two or more. The sphericity of the powder resin is preferably 0.6 to 1.0. The average particle size of the powder resin is preferably 30 to 150 μm.

本発明の複合材料を構成する球状骨材は、カップリング剤等で表面処理を行うことができる。表面処理を行うことで成形時に球状骨材と樹脂の接着性が向上する。表面処理を行うものとして好ましくは、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤である。シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N,N−ビス[3−(トリメトキシシリル)プロピル]アミン、N,N−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、N,N−ビス[3−(トリメトキシシリル)プロピル]メタクリルアミド、N−グリシジル−N,N−ビス[3−(トリメトキシシリル)プロピル]アミン、γ−アミノプロピルテトラエトキシジシロオキサン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]エチレンジアミン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]メタクリルアミド、N−グリシジル−N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン等が挙げられ、チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられ、アルミネート系としては、アセトアルコキシアルミニウムジイソプロピレート、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムアルキルアセトアセテート、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)、ジイソプロポキシアルミニウムモノメタクリレート、アルミニウム−2−エチルヘキサノエートオキサイドトリマー、アルミニウムステアレートオキサイドトリマー、アルキルアセトアセテートアルミニウムオキサイドトリマー等が挙げられる。また、添加量は0.05〜0.1質量%が好ましく、2種以上混合して使用してもよい。   The spherical aggregate constituting the composite material of the present invention can be surface treated with a coupling agent or the like. By performing the surface treatment, adhesion between the spherical aggregate and the resin is improved during molding. Preferably, the surface treatment is a silane coupling agent, a titanate coupling agent, or an aluminum coupling agent. Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, N, N-bis [3- (tri Methoxysilyl) propyl] amine, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N, N-bis [3- (trimethoxysilyl) propyl] methacrylamide, N-glycidyl-N, N- Bis [3- (trimethoxysilyl) propyl] amine, γ-aminopropyltetraethoxydisilooxane, N, N-bis [3- (methyldimethoxysilyl) propyl] amine, N, N-bis [3- (methyl Dimethoxysilyl) propyl] ethylenediamine, N, N-bis [3- (methyldimethoxysilyl) Propyl] methacrylamide, N-glycidyl-N, N-bis [3- (methyldimethoxysilyl) propyl] amine and the like, and titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, Isopropyldimethacrylisostearoyl titanate, isopropylisostearoyldiacryl titanate, isopropyltris (dioctylpyrophosphate) titanate, tetraoctylbis (ditridecylphosphite) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis ( Ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate Examples of aluminates include acetoalkoxy aluminum diisopropylate, diisopropoxy aluminum ethyl acetoacetate, diisopropoxy aluminum alkyl acetoacetate, isopropoxy aluminum alkyl acetoacetate mono (dioctyl phosphate), diisopropoxy Examples thereof include aluminum monomethacrylate, aluminum-2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer, and alkyl acetoacetate aluminum oxide trimer. Further, the addition amount is preferably 0.05 to 0.1% by mass, and two or more kinds may be mixed and used.

本発明の複合材料は必要によって、帯電防止剤、滑剤といった助剤を添加することができる。帯電防止剤、滑剤を添加することで粉末の流動性が向上し、成形し易くなる。帯電防止剤、滑剤として、好ましくは、界面活性剤、シリコーン樹脂、金属石鹸である。また、添加量は0.05〜0.1質量%が好ましく、2種以上混合して使用してもよい。   If necessary, the composite material of the present invention may contain auxiliary agents such as antistatic agents and lubricants. By adding an antistatic agent and a lubricant, the fluidity of the powder is improved and molding becomes easier. As antistatic agents and lubricants, surfactants, silicone resins, and metal soaps are preferable. Further, the addition amount is preferably 0.05 to 0.1% by mass, and two or more kinds may be mixed and used.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited at all by these Examples.

[実施例1]
真比重1.25g/cm、球形度0.95、平均粒径45μmの球状フェノール樹脂硬化物40質量部、球形度0.9の球状ポリアミド12(平均粒径50μm)60質量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 1]
40 parts by mass of a spherical phenol resin cured product having a true specific gravity of 1.25 g / cm 3 , a sphericity of 0.95 and an average particle size of 45 μm, and 60 parts by mass of a spherical polyamide 12 having a sphericity of 0.9 (average particle size of 50 μm) A modeling test was performed with a laser sintering machine (EOSINT P360 manufactured by EOS) using a sample mixed for 5 minutes with a mixer.

[実施例2]
真比重1.25g/cm、球形度0.95、平均粒径45μmの球状フェノール樹脂硬化物60重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)40重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 2]
60 parts by weight of a spherical phenol resin cured product having a true specific gravity of 1.25 g / cm 3 , a sphericity of 0.95 and an average particle size of 45 μm, and 40 parts by weight of a spherical polyamide 12 having a sphericity of 0.9 (average particle size of 50 μm) A modeling test was performed with a laser sintering machine (EOSINT P360 manufactured by EOS) using a sample mixed for 5 minutes with a mixer.

[実施例3]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン40重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)60重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 3]
True specific gravity 1.35 g / cm 3 , sphericity 0.95, spherical carbon 40 parts by weight with an average particle size 45 μm, spherical polyamide 12 with a sphericity 0.9 (average particle size 50 μm) 60 parts by weight 5 A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例4]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン20重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)80重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 4]
True specific gravity 1.35 g / cm 3 , sphericity 0.95, 20 parts by weight of spherical carbon having an average particle diameter of 45 μm, and 80 parts by weight of spherical polyamide 12 having a sphericity of 0.9 (average particle diameter of 50 μm) are 5 with a screw mixer. A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例5]
真比重1.35g/cm、球形度0.95、平均粒径55μmの球状カーボン40重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)60重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 5]
True specific gravity 1.35 g / cm 3 , sphericity 0.95, spherical carbon 40 parts by weight with an average particle size 55 μm, spherical polyamide 12 with a sphericity 0.9 (average particle size 50 μm) 60 parts by weight 5 A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例6]
真比重1.35g/cm、球形度0.85、平均粒径45μmの球状カーボン40重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)60重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 6]
True specific gravity 1.35 g / cm 3 , sphericity 0.85, 40 parts by weight of spherical carbon having an average particle diameter of 45 μm, and 60 parts by weight of spherical polyamide 12 having a sphericity of 0.9 (average particle diameter of 50 μm) are 5 with a screw mixer. A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例7]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン40重量部、球形度0.9の球状ポリアミド12(平均粒径40μm)60重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 7]
True specific gravity 1.35 g / cm 3 , sphericity 0.95, 40 parts by weight of spherical carbon having an average particle diameter of 45 μm, and 60 parts by weight of spherical polyamide 12 having a sphericity of 0.9 (average particle diameter of 40 μm) are 5 with a screw mixer. A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例8]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン50質量部、球形度0.9の球状ポリアミド12(平均粒径50μm)50質量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 8]
50 parts by weight of spherical carbon having a true specific gravity of 1.35 g / cm 3 , a sphericity of 0.95, an average particle diameter of 45 μm, and a spherical polyamide 12 having an sphericity of 0.9 (average particle diameter of 50 μm) was 5 with a screw mixer. A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例9]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン60質量部、球形度0.9の球状ポリアミド12(平均粒径50μm)40質量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 9]
The true specific gravity is 1.35 g / cm 3 , the sphericity is 0.95, the spherical carbon having an average particle size of 45 μm is 60 parts by mass, and the spherical polyamide having a sphericity of 0.9 is 12 (average particle size is 50 μm). A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[実施例10]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン70質量部、球形度0.9の球状ポリアミド12(平均粒径50μm)30質量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Example 10]
True specific gravity 1.35 g / cm 3 , sphericity 0.95, spherical carbon 70 parts by mass with an average particle size of 45 μm, spherical polyamide 12 (average particle size 50 μm) 30 parts by mass with a screw mixer 5 A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[比較例1]
球形度0.9の球状ポリアミド12粉末(平均粒径50μm)用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Comparative Example 1]
A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using spherical polyamide 12 powder having an sphericity of 0.9 (average particle size 50 μm).

[比較例2]
PITCH系繊維状カーボン(平均繊維長1mm)30重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)70重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Comparative Example 2]
Laser sintering machine using a sample prepared by mixing 30 parts by weight of PITCH fibrous carbon (average fiber length 1 mm) and 70 parts by weight of spherical polyamide 12 (average particle size 50 μm) with a sphericity of 0.9 with a screw mixer for 5 minutes A modeling test was performed with EOSINT P360 manufactured by EOS.

[比較例3]
真比重2.50g/cmのガラスビーズ(平均粒径40μm)30重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)70重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Comparative Example 3]
A sample obtained by mixing 30 parts by weight of glass beads (average particle size 40 μm) with a true specific gravity of 2.50 g / cm 3 and 70 parts by weight of spherical polyamide 12 (average particle size 50 μm) with a sphericity of 0.9 with a screw mixer for 5 minutes. Using this, a modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS).

[比較例4]
真比重1.35g/cm、球形度0.95、平均粒径45μmの球状カーボン8重量部、球形度0.9の球状ポリアミド12(平均粒径50μm)92重量部をスクリュー型ミキサーで5分間混合した試料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。
[Comparative Example 4]
5 parts by weight of a true specific gravity of 1.35 g / cm 3 , sphericity of 0.95, 8 parts by weight of spherical carbon having an average particle diameter of 45 μm, and 92 parts by weight of spherical polyamide 12 having a sphericity of 0.9 (average particle diameter of 50 μm) are mixed with a screw mixer. A modeling test was conducted with a laser sintering machine (EOSINT P360 manufactured by EOS) using the sample mixed for a minute.

[比較例5]
真比重1.35g/cmの球状カーボン(球形度0.65、平均粒径45μm)40質量部、球形度0.9の球状ポリアミド12(平均粒径50μm品)60質量部をスクリュー型ミキサーで5分間混合した試料Lを用いてレーザー焼結機(EOS社製EOSINT P360)で成形テストを行った。しかし、粉末を均一に撒くことができず、成形できなかった。
[Comparative Example 5]
40 parts by mass of spherical carbon having a true specific gravity of 1.35 g / cm 3 (sphericity 0.65, average particle size 45 μm) and 60 parts by mass of spherical polyamide 12 having a sphericity of 0.9 (average particle size 50 μm) are screw-type mixers Using the sample L mixed for 5 minutes, a molding test was performed with a laser sintering machine (EOSINT P360 manufactured by EOS). However, the powder could not be uniformly dispersed and could not be molded.

[比較例6]
平均粒径40nmのカーボンブラック30質量部、球形度0.9の球状ポリアミド12(平均粒径50μm)70質量部をスクリュー型ミキサーで5分間混合した材料を用いてレーザー焼結機(EOS社製EOSINT P360)で造形テストを行った。しかし、材料を均一に敷くことができず、成形できなかった。
[Comparative Example 6]
Laser sintering machine (manufactured by EOS Co., Ltd.) using a material in which 30 parts by mass of carbon black having an average particle diameter of 40 nm and 70 parts by mass of spherical polyamide 12 having an sphericity of 0.9 (average particle diameter of 50 μm) were mixed for 5 minutes with a screw mixer. A modeling test was performed at EOSINT P360). However, the material could not be spread uniformly and could not be molded.

実施例1〜10、比較例1〜6の配合割合を表1に示し、得られた造形物の引張強度、引張弾性率、曲げ強度、曲げ弾性率、密度を測定し、この結果を表2に示した。また及び実施例3、4、8〜10、比較例1、2については体積固有抵抗率も測定した。なお、ここでの引張強度、引張弾性率とはJIS K 7162に、曲げ強度、曲げ弾性率とはJIS K 7171に、密度とはISO 1183に、体積固有抵抗率とはJIS K 6911またはJIS K 7194に記載の方法によるものである。なお、曲げ強度、曲げ弾性率、引張強度、引張弾性率については、X軸方向とY軸方向の測定値の平均となっている。   The blending ratios of Examples 1 to 10 and Comparative Examples 1 to 6 are shown in Table 1, and the resulting molded article was measured for tensile strength, tensile elastic modulus, bending strength, bending elastic modulus, and density. It was shown to. In addition, for Examples 3, 4, 8 to 10 and Comparative Examples 1 and 2, volume resistivity was also measured. Here, the tensile strength and tensile modulus are JIS K 7162, the bending strength and flexural modulus are JIS K 7171, the density is ISO 1183, and the volume resistivity is JIS K 6911 or JIS K. 7194. In addition, about bending strength, a bending elastic modulus, tensile strength, and a tensile elastic modulus, it is the average of the measured value of a X-axis direction and a Y-axis direction.

Figure 2009013395
Figure 2009013395

Figure 2009013395
Figure 2009013395

また実施例3と比較例2の引張強度、引張弾性率、曲げ強度、曲げ弾性率の各軸方向の測定値を表3に示した。   Table 3 shows the measured values of Example 3 and Comparative Example 2 in the respective axial directions of tensile strength, tensile elastic modulus, bending strength, and bending elastic modulus.

Figure 2009013395
Figure 2009013395

表2より明らかなように、本発明の実施例1〜7と比較例1を比較すると、ポリアミド単独で使用したときと比較し、曲げ強度、弾性率が著しく向上し、ガラスビーズを使用した比較例3と比べて、弾性率及び強度共に同等の効果が得られることがわかった。また本発明の範囲外である、球状カーボンを8質量%含有する比較例4では機械強度が比較例1のポリアミド単独で使用した場合と変わらず、添加効果が得られなかった。さらに表2及び表3より、本発明はX軸方向、Y軸方向の機械強度がほぼ等しくなり、一方繊維状フィラーを使用した比較例2では3方向すべて機械強度の異なる成形物となることが分かった。さらに表2より、導電材料である球状カーボンの添加量を変化させた実施例3、4、8〜10では、添加量により、体積固有抵抗率も変化することがわかった。すなわち球状カーボンの添加量が多いと、体積固有抵抗率が下がり、球状カーボンの添加量が少ないと、体積固有抵抗率が上がる。また、実施例10の球状カーボンの添加量が70質量%の場合でも、選択的レーザー焼結法による成形が可能であるのに対し、比較例6において、導電材料としてカーボンブラックを使用した場合、添加量が30質量%であっても、選択的レーザー焼結法による成形は不可能であった。   As is apparent from Table 2, when Examples 1 to 7 of the present invention are compared with Comparative Example 1, the bending strength and the elastic modulus are remarkably improved as compared with the case of using polyamide alone, and the comparison using glass beads is performed. Compared to Example 3, it was found that the same effects were obtained in both elastic modulus and strength. Further, in Comparative Example 4 containing 8% by mass of spherical carbon, which is outside the scope of the present invention, the mechanical strength was not different from the case where the polyamide of Comparative Example 1 was used alone, and the addition effect was not obtained. Further, from Tables 2 and 3, the present invention has almost the same mechanical strength in the X-axis direction and the Y-axis direction. On the other hand, in Comparative Example 2 in which a fibrous filler is used, all three directions have different mechanical strengths. I understood. Furthermore, from Table 2, it was found that in Examples 3, 4, and 8 to 10 in which the addition amount of the spherical carbon as the conductive material was changed, the volume resistivity also changed depending on the addition amount. That is, when the amount of spherical carbon added is large, the volume resistivity decreases, and when the amount of spherical carbon added is small, the volume resistivity increases. Further, even when the amount of spherical carbon added in Example 10 is 70% by mass, molding by selective laser sintering is possible, whereas in Comparative Example 6, when carbon black is used as the conductive material, Even if the amount added was 30% by mass, molding by selective laser sintering was impossible.

次に成形可能であった、実施例1〜10及び比較例1〜4についてリサイクル性試験を行った。   Next, a recyclability test was performed on Examples 1 to 10 and Comparative Examples 1 to 4 that were moldable.

[リサイクル性試験]
レーザー成形終了後、レーザー未照射の複合粉末を回収し、目開き250μmの篩を通し、再生材料を得た。この再生材料と同一配合の新品の複合材料を質量比1:1にて、スクリュー型ミキサーを用いて混合し、実施例と同様に造形テストを行った。上記と同様に同一の材料で、以降リサイクル性試験を5回行い、曲げ強度推移及びリサイクル性について表4に示した。
[Recyclability test]
After the completion of laser molding, the composite powder not irradiated with laser was collected and passed through a sieve having an opening of 250 μm to obtain a recycled material. A new composite material having the same composition as the recycled material was mixed at a mass ratio of 1: 1 using a screw mixer, and a modeling test was conducted in the same manner as in the example. The same material as above was used, and the recyclability test was conducted five times. Table 4 shows the bending strength transition and recyclability.

Figure 2009013395
Figure 2009013395

表4に示すように、ポリアミド単独で使用した比較例1や、本発明の範囲外である8質量%含有した比較例4と同様に本発明の複合材料粉末は、同一の材料で5回繰り返し使用しても、機械強度の低下や密度の低下といった不良が起こらない、リサイクル性の優れた複合材料である。また、フィラーとしてカーボン繊維を用いた比較例2では、篩を通し再生作業をする際に、カーボン繊維が篩に引っかかりリサイクルできなかった。さらにフィラーとしてガラスビーズを用いた比較例3では、リサイクル1回目の段階で比重が大きく低下し、分析の結果、ガラスが分離、脱落していることが分かり、以後、リサイクルを断念した。   As shown in Table 4, the composite powder of the present invention was repeated five times with the same material as in Comparative Example 1 used alone with polyamide and Comparative Example 4 containing 8% by mass outside the scope of the present invention. Even if it is used, it is a composite material that is excellent in recyclability and does not cause defects such as a decrease in mechanical strength and a decrease in density. Moreover, in the comparative example 2 which used the carbon fiber as a filler, when performing the reproduction | regeneration operation through a sieve, the carbon fiber was caught on the sieve and was not recyclable. Furthermore, in Comparative Example 3 using glass beads as the filler, the specific gravity was greatly reduced at the first stage of recycling, and as a result of analysis, it was found that the glass was separated and dropped out.

以上の結果より、本発明によって得られた成形物は、ポリアミド単独で使用した場合と比較し、機械強度が高く、他の骨材と比較し、遜色ない機械強度を持ち、かつリサイクル可能な成形物を得られることがわかった。また、骨材として球状カーボンを用いた複合材料粉末は、容易に選択的レーザー焼結法により成形が可能なため、球状カーボンの添加量を自由に変化させることができ、静電防止から導電用途に応じた体積抵抗率を得ることができた。   From the above results, the molded product obtained by the present invention has higher mechanical strength compared to the case where polyamide is used alone, has mechanical strength comparable to other aggregates, and can be recycled. I found out I could get something. In addition, composite powders using spherical carbon as an aggregate can be easily molded by selective laser sintering, so the amount of spherical carbon added can be freely changed, preventing static electricity from conducting applications It was possible to obtain a volume resistivity corresponding to.

リサイクル性試験方法Recyclability test method

Claims (5)

選択的レーザー焼結法(SLS)に使用する、真比重0.8〜2.0g/cm、平均粒径10〜150μmの融点を持たない球状骨材、及び平均粒径が30〜150μmの樹脂粉末を必須成分とすることを特徴とする複合材料粉末。 Spherical aggregate having a true specific gravity of 0.8 to 2.0 g / cm 3 , an average particle size of 10 to 150 μm, and a mean particle size of 30 to 150 μm, which are used for selective laser sintering (SLS) A composite material powder comprising a resin powder as an essential component. 球形度0.7〜1.0の球状骨材を10〜80質量%含有することを特徴とする請求項1記載の複合材料粉末。   2. The composite material powder according to claim 1, comprising 10 to 80% by mass of a spherical aggregate having a sphericity of 0.7 to 1.0. 球状骨材として、球状熱硬化性樹脂硬化物、球状カーボンのうち少なくとも一つを含有することを特徴とする請求項1乃至2記載の複合材料粉末。   3. The composite material powder according to claim 1, wherein the spherical aggregate contains at least one of a spherical thermosetting resin cured product and a spherical carbon. 球形度0.6〜1.0の樹脂粉末を含有することを特徴とする請求項1乃至3記載の複合材料粉末。   4. The composite material powder according to claim 1, which contains a resin powder having a sphericity of 0.6 to 1.0. 請求項1乃至4記載の複合材料粉末を選択的にレーザー焼結することにより成形体を製造する方法。   A method for producing a molded body by selectively laser sintering the composite material powder according to claim 1.
JP2008107369A 2007-06-07 2008-04-17 Composite powder for selective laser sintering Active JP5214313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008107369A JP5214313B2 (en) 2007-06-07 2008-04-17 Composite powder for selective laser sintering

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007151054 2007-06-07
JP2007151054 2007-06-07
JP2008107369A JP5214313B2 (en) 2007-06-07 2008-04-17 Composite powder for selective laser sintering

Publications (2)

Publication Number Publication Date
JP2009013395A true JP2009013395A (en) 2009-01-22
JP5214313B2 JP5214313B2 (en) 2013-06-19

Family

ID=40354684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008107369A Active JP5214313B2 (en) 2007-06-07 2008-04-17 Composite powder for selective laser sintering

Country Status (1)

Country Link
JP (1) JP5214313B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234800A (en) * 2009-03-13 2010-10-21 Gun Ei Chem Ind Co Ltd Mold manufactured by laminate molding method
JP2011068125A (en) * 2009-08-27 2011-04-07 Gun Ei Chem Ind Co Ltd Heat-resistant molding and method for producing the same
JP2014188871A (en) * 2013-03-27 2014-10-06 Gunei-Chemical Industry Co Ltd Composite material powder and method of producing molding
JP2015021016A (en) * 2013-07-16 2015-02-02 群栄化学工業株式会社 Method for regenerating spherical aggregate in laminate molding material, regenerated laminate molding material, and method for producing laminate molded article
WO2015060923A1 (en) * 2013-10-21 2015-04-30 Made In Space, Inc. Manufacturing in microgravity and varying external force environments
JPWO2013129631A1 (en) * 2012-02-29 2015-07-30 株式会社ブリヂストン tire
WO2017046132A1 (en) * 2015-09-14 2017-03-23 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US10052820B2 (en) 2013-09-13 2018-08-21 Made In Space, Inc. Additive manufacturing of extended structures
US10086568B2 (en) 2013-10-21 2018-10-02 Made In Space, Inc. Seamless scanning and production devices and methods
KR20190099460A (en) * 2016-12-22 2019-08-27 셋업 퍼포먼스 Spherical Crosslinkable Polyamide Particle Powder, Manufacturing Method and Uses Using Selective Laser Sintering Technology
US10401832B2 (en) 2013-10-21 2019-09-03 Made In Space, Inc. Terrestrial and space-based manufacturing systems
US10759089B1 (en) 2014-01-25 2020-09-01 Made In Space, Inc. Recycling materials in various environments including reduced gravity environments
US10836108B1 (en) 2017-06-30 2020-11-17 Made In Space, Inc. System and method for monitoring and inspection of feedstock material for direct feedback into a deposition process
US10894893B2 (en) 2017-03-13 2021-01-19 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US10899477B2 (en) 2015-08-03 2021-01-26 Made In Space, Inc. In-space manufacturing and assembly of spacecraft device and techniques
US11066758B2 (en) 2016-07-22 2021-07-20 Ricoh Company, Ltd. Resin powder having pillar shape and specific circularity for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
US11091660B2 (en) 2017-03-13 2021-08-17 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US11285664B2 (en) 2014-02-20 2022-03-29 Redwire Space, Inc. In-situ resource preparation and utilization methods
US11491713B2 (en) 2016-07-22 2022-11-08 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3814112A4 (en) 2018-06-29 2022-03-23 3M Innovative Properties Company Additive layer manufacturing method and articles

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268205A (en) * 1996-03-29 1997-10-14 Asahi Denka Kogyo Kk Resin composition for optically three-dimensional shaping and optically three-dimensional shaping
JP2005048186A (en) * 2003-07-29 2005-02-24 Degussa Ag Powder for selective laser sintering, manufacturing method therefor, method for manufacturing molded article, and such molded article
JP2006248231A (en) * 2005-03-09 2006-09-21 Three D Syst Inc Powder recovery system for laser sintering
JP2007022084A (en) * 2005-07-16 2007-02-01 Degussa Ag Use of cyclic oligomer in molding method and molded article manufactured by the method
JP2007039631A (en) * 2004-12-21 2007-02-15 Degussa Ag Use of poly(arylene ether ketone) powder in manufacturing process using no mold based on three dimensional powder and molding produced therefrom
JP2007062132A (en) * 2005-08-31 2007-03-15 Jsr Corp Micro-biochemical device, its manufacturing method and manufacturing method of mold for micro-biochemical device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268205A (en) * 1996-03-29 1997-10-14 Asahi Denka Kogyo Kk Resin composition for optically three-dimensional shaping and optically three-dimensional shaping
JP2005048186A (en) * 2003-07-29 2005-02-24 Degussa Ag Powder for selective laser sintering, manufacturing method therefor, method for manufacturing molded article, and such molded article
JP2007039631A (en) * 2004-12-21 2007-02-15 Degussa Ag Use of poly(arylene ether ketone) powder in manufacturing process using no mold based on three dimensional powder and molding produced therefrom
JP2006248231A (en) * 2005-03-09 2006-09-21 Three D Syst Inc Powder recovery system for laser sintering
JP2007022084A (en) * 2005-07-16 2007-02-01 Degussa Ag Use of cyclic oligomer in molding method and molded article manufactured by the method
JP2007062132A (en) * 2005-08-31 2007-03-15 Jsr Corp Micro-biochemical device, its manufacturing method and manufacturing method of mold for micro-biochemical device

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234800A (en) * 2009-03-13 2010-10-21 Gun Ei Chem Ind Co Ltd Mold manufactured by laminate molding method
JP2011068125A (en) * 2009-08-27 2011-04-07 Gun Ei Chem Ind Co Ltd Heat-resistant molding and method for producing the same
JPWO2013129631A1 (en) * 2012-02-29 2015-07-30 株式会社ブリヂストン tire
JP2014188871A (en) * 2013-03-27 2014-10-06 Gunei-Chemical Industry Co Ltd Composite material powder and method of producing molding
JP2015021016A (en) * 2013-07-16 2015-02-02 群栄化学工業株式会社 Method for regenerating spherical aggregate in laminate molding material, regenerated laminate molding material, and method for producing laminate molded article
US10052820B2 (en) 2013-09-13 2018-08-21 Made In Space, Inc. Additive manufacturing of extended structures
US10675811B1 (en) 2013-09-13 2020-06-09 Made In Space, Inc. Additive manufacturing of extended structures
US9656426B2 (en) 2013-09-13 2017-05-23 Made In Space, Inc. Manufacturing in microgravity and varying external force environments
US9802355B2 (en) 2013-10-21 2017-10-31 Made In Space, Inc. Nanoparticle filtering environmental control units
US11077607B2 (en) 2013-10-21 2021-08-03 Made In Space, Inc. Manufacturing in microgravity and varying external force environments
US10725451B2 (en) 2013-10-21 2020-07-28 Made In Space, Inc. Terrestrial and space-based manufacturing systems
US10086568B2 (en) 2013-10-21 2018-10-02 Made In Space, Inc. Seamless scanning and production devices and methods
US10350820B2 (en) 2013-10-21 2019-07-16 Made In Space, Inc. Remote operations of additive manufacturing devices
US10401832B2 (en) 2013-10-21 2019-09-03 Made In Space, Inc. Terrestrial and space-based manufacturing systems
WO2015060923A1 (en) * 2013-10-21 2015-04-30 Made In Space, Inc. Manufacturing in microgravity and varying external force environments
US10705509B2 (en) 2013-10-21 2020-07-07 Made In Space, Inc. Digital catalog for manufacturing
US10759089B1 (en) 2014-01-25 2020-09-01 Made In Space, Inc. Recycling materials in various environments including reduced gravity environments
US11285664B2 (en) 2014-02-20 2022-03-29 Redwire Space, Inc. In-situ resource preparation and utilization methods
US10899477B2 (en) 2015-08-03 2021-01-26 Made In Space, Inc. In-space manufacturing and assembly of spacecraft device and techniques
KR102145530B1 (en) 2015-09-14 2020-08-19 타이거 코팅스 게엠베하 운트 코. 카게 Use of thermosetting polymeric powder composition
JP2018529555A (en) * 2015-09-14 2018-10-11 タイガー コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Use of thermosetting polymer powder composition
WO2017046132A1 (en) * 2015-09-14 2017-03-23 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US10780630B2 (en) 2015-09-14 2020-09-22 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
EP3960429A1 (en) * 2015-09-14 2022-03-02 TIGER Coatings GmbH & Co. KG Use of a thermosetting polymeric powder composition
KR20180052709A (en) * 2015-09-14 2018-05-18 타이거 코팅스 게엠베하 운트 코. 카게 Use of Thermosetting Polymeric Powder Composition
US11926931B2 (en) 2016-07-22 2024-03-12 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
US11491713B2 (en) 2016-07-22 2022-11-08 Ricoh Company, Ltd. Resin powder for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
US11066758B2 (en) 2016-07-22 2021-07-20 Ricoh Company, Ltd. Resin powder having pillar shape and specific circularity for solid freeform fabrication, device for solid freeform fabrication object, and method of manufacturing solid freeform fabrication object
KR102534351B1 (en) 2016-12-22 2023-05-22 셋업 퍼포먼스 에스에이에스 Spherical cross-linkable polyamide particle powder, manufacturing method and use using selective laser sintering technology
US11891528B2 (en) 2016-12-22 2024-02-06 SETUP Performance SAS Powder of spherical crosslinkable polyamide particles, preparation process and use with the selective laser sintering technique
JP2020514457A (en) * 2016-12-22 2020-05-21 セットアップ パフォーマンス Powders of spherical, crosslinkable polyamide particles, a process for their production and their use in selective laser sintering techniques
JP7106233B2 (en) 2016-12-22 2022-07-26 セットアップ パフォーマンス エスエーエス Powder of spherical crosslinkable polyamide particles, method of production and use in selective laser sintering technology
KR20190099460A (en) * 2016-12-22 2019-08-27 셋업 퍼포먼스 Spherical Crosslinkable Polyamide Particle Powder, Manufacturing Method and Uses Using Selective Laser Sintering Technology
US11091660B2 (en) 2017-03-13 2021-08-17 Tiger Coatings Gmbh & Co. Kg Use of a thermosetting polymeric powder composition
US10894892B2 (en) 2017-03-13 2021-01-19 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US11499061B2 (en) 2017-03-13 2022-11-15 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US10894891B2 (en) 2017-03-13 2021-01-19 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US11787960B2 (en) 2017-03-13 2023-10-17 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US10894893B2 (en) 2017-03-13 2021-01-19 Tiger Coatings Gmbh & Co. Kg Curable coating material for non-impact printing
US10836108B1 (en) 2017-06-30 2020-11-17 Made In Space, Inc. System and method for monitoring and inspection of feedstock material for direct feedback into a deposition process

Also Published As

Publication number Publication date
JP5214313B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5214313B2 (en) Composite powder for selective laser sintering
Sezer et al. FDM 3D printing of MWCNT re-inforced ABS nano-composite parts with enhanced mechanical and electrical properties
US11718732B2 (en) Resin composition, filament and resin powder for three-dimensional printer, and shaped object and production process therefor
Torrado Perez et al. Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials
Isobe et al. Comparison of strength of 3D printing objects using short fiber and continuous long fiber
JP6096806B2 (en) Resin composition for electromagnetic shielding containing composite carbon material
JP6021946B2 (en) Carbon nanomaterial pellet manufacturing method
Mahmoud et al. Design and testing of high‐density polyethylene nanocomposites filled with lead oxide micro‐and nano‐particles: Mechanical, thermal, and morphological properties
CN105518072A (en) Composite reinforcing material and molding material
JP6057806B2 (en) COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE
JP2009084561A (en) Plastic composite material and method of manufacturing the same
Sivadas et al. Laser sintering of polymer nanocomposites
KR100758341B1 (en) Conductive polymer matrix composites in which metal-nanofiber mixture is dispersed and its fabrication methods
EP3620283B1 (en) Resin powder, as well as method of and device for manufacturing a solid freeform object using said powder
Slapnik et al. Fused filament fabrication of Nd-Fe-B bonded magnets: Comparison of PA12 and TPU matrices
Lamoriniere et al. Carbon nanotube enhanced carbon Fibre-Poly (ether ether ketone) interfaces in model hierarchical composites
DE212013000158U1 (en) Composite materials for use in injection molding processes
Kang et al. Multiwalled carbon nanotube pretreatment to enhance tensile properties, process stability, and filler dispersion of polyamide 66 nanocomposites
Kumar et al. Hybrid fused filament fabrication for manufacturing of Al microfilm reinforced PLA structures
Rinaldi et al. Mechanical performance of 3D printed polyether-ether-ketone nanocomposites: An experimental and analytic approach
Abd-Elaziem et al. Particle-reinforced polymer matrix composites (PMC) fabricated by 3D printing
JP7325277B2 (en) Resin composite material containing recycled carbon fiber and method for producing the same
JP2005054094A (en) Thermally conductive resin material
EP3882300A1 (en) Resin powder and resin powder for producing three-dimensional object, and three-dimensional object producing method and three-dimensional object producing apparatus
EP3447083B1 (en) Carbon nanotube enhanced polymers and methods for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Ref document number: 5214313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250