JP2014188871A - Composite material powder and method of producing molding - Google Patents

Composite material powder and method of producing molding Download PDF

Info

Publication number
JP2014188871A
JP2014188871A JP2013067250A JP2013067250A JP2014188871A JP 2014188871 A JP2014188871 A JP 2014188871A JP 2013067250 A JP2013067250 A JP 2013067250A JP 2013067250 A JP2013067250 A JP 2013067250A JP 2014188871 A JP2014188871 A JP 2014188871A
Authority
JP
Japan
Prior art keywords
average particle
polyamide
particle size
spherical
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013067250A
Other languages
Japanese (ja)
Other versions
JP6057806B2 (en
Inventor
Kazutake Iizuka
一毅 飯塚
Kohei Kanaya
康平 金谷
Takashi Ogino
貴史 荻野
Akihiro Okubo
明浩 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gun Ei Chemical Industry Co Ltd
Original Assignee
Gun Ei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gun Ei Chemical Industry Co Ltd filed Critical Gun Ei Chemical Industry Co Ltd
Priority to JP2013067250A priority Critical patent/JP6057806B2/en
Publication of JP2014188871A publication Critical patent/JP2014188871A/en
Application granted granted Critical
Publication of JP6057806B2 publication Critical patent/JP6057806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide composite material powder for selective laser sintering, which can improve strength of a molding while maintaining moldability (difficulty of occurrence of thermal shrinkage) and recyclability.SOLUTION: Provided is composite powder used for selective laser sintering, comprising: spherical aggregates having absolute specific gravity of 0.8 to 2.0, an average particle size of 10 to 150 μm, and no melting point; and polyamide 11 having an average particle diameter of 30 to 150 μm. A difference in particle diameter is within ±25%, which is defined by the following formula: difference in particle diameter(%)={(average particle size of spherical aggregates - average particle diameter of polyamide 11)/(average particle diameter of polyamide 11)}×100.

Description

本発明は、複合材料粉末、及び、複合材料粉末を選択的にレーザー焼結することにより成形体を製造する方法に関する。   The present invention relates to a composite material powder and a method for producing a molded body by selectively laser sintering the composite material powder.

選択的レーザー焼結法(SLS法:Selective Laser Sintering法)は、積層造形法の一つであり、最終目的物の成形体に関する、一定間隔の断面形状の3Dデータを予め作成し、この3Dデータに基づいて、選択的レーザー焼結用の粉末材料を敷き詰め、レーザーを走査照射して加熱することにより該粉末材料を焼結するという操作を、前記一定間隔ごとに行うことで成形体を製造する方法である。   The selective laser sintering method (SLS method: Selective Laser Sintering method) is one of the additive manufacturing methods, and 3D data of a cross-sectional shape at a constant interval is created in advance for the molded object of the final object. Based on the above, the powder material for selective laser sintering is spread, and the powder material is sintered by scanning and irradiating the laser, and the molded material is manufactured by performing the operation at regular intervals. Is the method.

選択的レーザー焼結用の粉末材料には、一般的に、ポリアミド12の樹脂粉末が用いられている。ポリアミド12を用いた場合、ポリアミド11を用いた場合に比べて、熱収縮が生じにくいため、所望の寸法を有する成形体が得られやすく、成形性が良い。ところが、粉末材料としてポリアミド12の樹脂粉末を単独で用いた場合、得られる成形体は、弾性率が低いため、外力によって変形しやすい、という問題があった。
この問題を解決するため、ポリアミド12に、特定の球状骨材を組み合わせた複合材料粉末が提案されている(特許文献1参照)。この複合材料粉末によれば、ポリアミド12の樹脂粉末を単独で用いた場合に比べて、得られる成形体の弾性率が高まり、強度が向上する。加えて、ポリアミド12と球状骨材とが分離しにくいため、SLS法においてリサイクルが可能であり、成形性も向上する。
Generally, resin powder of polyamide 12 is used as a powder material for selective laser sintering. When polyamide 12 is used, heat shrinkage is less likely to occur than when polyamide 11 is used, and thus a molded body having a desired dimension can be easily obtained and the moldability is good. However, when the polyamide 12 resin powder is used alone as the powder material, the resulting molded article has a problem of being easily deformed by an external force because of its low elastic modulus.
In order to solve this problem, a composite material powder in which a specific spherical aggregate is combined with polyamide 12 has been proposed (see Patent Document 1). According to this composite material powder, the elastic modulus of the obtained molded body is increased and the strength is improved as compared with the case where the resin powder of polyamide 12 is used alone. In addition, since the polyamide 12 and the spherical aggregate are difficult to separate, they can be recycled by the SLS method and the moldability is improved.

特開2009−13395号公報JP 2009-13395 A

しかしながら、特許文献1に記載の複合材料粉末を用いて製造される成形体は、引張破壊ひずみ、曲げ強さが不充分であり、強度の点で未だ問題がある。
本発明は、上記事情に鑑みてなされたものであり、成形性(熱収縮の生じにくさ)及びリサイクル性を維持しつつ、成形体の強度を向上できる選択的レーザー焼結用の複合材料粉末を提供することを課題とする。
However, the molded body produced using the composite material powder described in Patent Document 1 has insufficient tensile fracture strain and bending strength, and still has problems in terms of strength.
The present invention has been made in view of the above circumstances, and is a composite material powder for selective laser sintering that can improve the strength of a molded product while maintaining moldability (hardness of heat shrinkage) and recyclability. It is an issue to provide.

本発明者らは、樹脂粉末のなかでポリアミド11を選択し、特定の骨材と組み合わせることで、SLS法により製造される成形体の強度が格段に向上することを見出し、本発明を完成するに至った。   The present inventors have found that the strength of a molded article produced by the SLS method is remarkably improved by selecting polyamide 11 among resin powders and combining with a specific aggregate, thereby completing the present invention. It came to.

本発明の第一の態様は、SLS法に使用する複合材料粉末において、真比重0.8〜2.0、平均粒径10〜150μmの融点を持たない球状骨材と、平均粒径が30〜150μmのポリアミド11と、を含有し、下式で定義される粒径差が±25%の範囲内であることを特徴とする複合材料粉末である。
粒径差(%)={(球状骨材の平均粒径−ポリアミド11の平均粒径)/ポリアミド11の平均粒径}×100
The first aspect of the present invention is a composite powder used in the SLS method, a spherical aggregate having a true specific gravity of 0.8 to 2.0 and an average particle size of 10 to 150 μm and no melting point, and an average particle size of 30. And a polyamide 11 having a particle size of ˜150 μm, and having a particle size difference defined by the following formula within a range of ± 25%.
Particle size difference (%) = {(average particle size of spherical aggregate−average particle size of polyamide 11) / average particle size of polyamide 11} × 100

本発明の複合材料粉末においては、前記球状骨材の球形度が0.7〜1.0であり、かつ、該球状骨材の含有量が10〜80質量%であることが好ましい。
また、本発明の複合材料粉末においては、前記球状骨材が、球状熱硬化性樹脂硬化物及び球状カーボンからなる群より選ばれる少なくとも一種を含有することが好ましい。
また、本発明の複合材料粉末においては、前記ポリアミド11の球形度が0.6〜1.0であることが好ましい。
In the composite material powder of the present invention, it is preferable that the sphericity of the spherical aggregate is 0.7 to 1.0 and the content of the spherical aggregate is 10 to 80% by mass.
Moreover, in the composite material powder of the present invention, it is preferable that the spherical aggregate contains at least one selected from the group consisting of a spherical thermosetting resin cured product and spherical carbon.
Moreover, in the composite material powder of the present invention, the sphericity of the polyamide 11 is preferably 0.6 to 1.0.

本発明の第二の態様は、前記第一の態様の複合材料粉末を選択的にレーザー焼結することにより成形体を製造することを特徴とする成形体の製造方法である。   According to a second aspect of the present invention, there is provided a method for producing a molded article, wherein the molded article is produced by selectively laser sintering the composite material powder of the first aspect.

本発明によれば、成形性(熱収縮の生じにくさ)及びリサイクル性を維持しつつ、成形体の強度を向上できる選択的レーザー焼結用の複合材料粉末を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the composite material powder for selective laser sintering which can improve the intensity | strength of a molded object can be provided, maintaining moldability (it is hard to produce heat shrink) and recyclability.

<複合材料粉末>
本発明の複合材料粉末は、SLS法に使用する材料であり、特定の球状骨材と、特定のポリアミド11と、を含有する。
<Composite material powder>
The composite material powder of the present invention is a material used for the SLS method, and contains a specific spherical aggregate and a specific polyamide 11.

(球状骨材)
本発明における球状骨材は、融点を持たない、すなわち、加熱されても溶けない粒子状の材料である。
球状骨材の真比重は、0.8〜2.0であり、好ましくは1.0〜1.5であり、ナイロンより高融点を持つガラス粉末、セラミック粉末又は金属粉末の真比重に比べて小さく、ポリアミド11の比重1.03〜1.05(ポリアミド樹脂(福本修編)日刊工業新聞社,第47頁)に近い。このため、リサイクルの際、球状骨材とポリアミド11との分離が生じにくく、両者を均一に混合した状態で回収できることから、SLS法においてリサイクルが可能であり、これに伴って生産コストの低減化も図れる。
(Spherical aggregate)
The spherical aggregate in the present invention is a particulate material that does not have a melting point, that is, does not melt even when heated.
The true specific gravity of the spherical aggregate is 0.8 to 2.0, preferably 1.0 to 1.5, compared to the true specific gravity of glass powder, ceramic powder or metal powder having a higher melting point than nylon. It is small and close to the specific gravity of polyamide 11 of 1.03 to 1.05 (polyamide resin (Fukumoto Osamu), Nikkan Kogyo Shimbun, page 47). For this reason, it is difficult to separate the spherical aggregate from the polyamide 11 during recycling, and both can be collected in a uniformly mixed state, and therefore can be recycled in the SLS method, and the production cost is reduced accordingly. Can also be planned.

本発明において「平均粒径」とは、レーザー回折散乱法により測定される体積平均粒径を意味する。
球状骨材の平均粒径は、10〜150μmであり、好ましくは20〜80μmであり、より好ましくは40〜60μmである。
球状骨材の平均粒径が下限値未満では、積層の際に複合材料粉末を敷きにくく、該平均粒径が上限値を超えると、微細な形状の成形体が得られにくい。
In the present invention, the “average particle diameter” means a volume average particle diameter measured by a laser diffraction scattering method.
The average particle diameter of the spherical aggregate is 10 to 150 μm, preferably 20 to 80 μm, and more preferably 40 to 60 μm.
When the average particle size of the spherical aggregate is less than the lower limit value, it is difficult to spread the composite material powder during lamination, and when the average particle size exceeds the upper limit value, it is difficult to obtain a compact shaped product.

本発明において「球形度」とは、(粒子の投影面積に等しい円の直径)/(粒子の投影像に外接する最小円の直径)で決定される指数である。この指数が1.0に近いほど、真球体に近い粒子であることを意味する。
球状骨材の球形度は、0.7〜1.0であることが好ましく、より好ましくは0.8〜1.0であり、さらに好ましくは0.95〜1.0である。
球状骨材の球形度が好ましい下限値未満では、積層の際に複合材料粉末を均一に敷くことが難しく、成形不良を起こす場合がある。球状骨材の球形度が好ましい下限値以上であると、成形体における部位ごとの強度のばらつきがより少なくなる。
In the present invention, “sphericity” is an index determined by (the diameter of a circle equal to the projected area of the particle) / (the diameter of the smallest circle circumscribing the projected image of the particle). The closer this index is to 1.0, the closer to a true sphere.
The sphericity of the spherical aggregate is preferably 0.7 to 1.0, more preferably 0.8 to 1.0, and still more preferably 0.95 to 1.0.
If the sphericity of the spherical aggregate is less than the preferred lower limit, it is difficult to uniformly spread the composite material powder during lamination, which may cause molding failure. When the sphericity of the spherical aggregate is equal to or more than the preferable lower limit value, the variation in strength of each part in the molded body is further reduced.

球状骨材としては、球状熱硬化性樹脂硬化物、球状カーボン等が挙げられる。
球状熱硬化性樹脂硬化物としては、たとえばフェノール樹脂の球状硬化物を用いることができる。フェノール樹脂の球状硬化物は、フェノール類とアルデヒド類とを、水性媒体中で、縮合反応触媒及び乳化分散剤の存在下、高温高圧の条件で縮合反応させることにより得ることができる。具体的には、完全硬化型球状フェノール樹脂が挙げられ、より具体的には、群栄化学工業株式会社製のHFシリーズが好ましい。
球状カーボンとしては、たとえば前記球状熱硬化性樹脂硬化物を、温度400〜1000℃、窒素雰囲気下で炭化することにより得ることができる。具体的には、群栄化学工業株式会社製のGCシリーズが好ましい。
Examples of the spherical aggregate include a spherical thermosetting resin cured product and spherical carbon.
As the spherical thermosetting resin cured product, for example, a spherical cured product of a phenol resin can be used. A spherical cured product of a phenol resin can be obtained by subjecting phenols and aldehydes to a condensation reaction in an aqueous medium in the presence of a condensation reaction catalyst and an emulsifying dispersant under high temperature and high pressure conditions. Specifically, a fully curable spherical phenol resin is mentioned, and more specifically, HF series manufactured by Gunei Chemical Industry Co., Ltd. is preferable.
The spherical carbon can be obtained, for example, by carbonizing the spherical thermosetting resin cured product at a temperature of 400 to 1000 ° C. in a nitrogen atmosphere. Specifically, GC series manufactured by Gunei Chemical Industry Co., Ltd. is preferable.

球状骨材は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
なかでも、球状骨材としては、球状熱硬化性樹脂硬化物及び球状カーボンからなる群より選ばれる少なくとも一種を含有するものが好ましく、球状カーボンを含有するものがより好ましい。
本発明の複合材料粉末中、球状骨材の含有量は、10〜80質量%であることが好ましく、より好ましくは20〜60質量%である。球状骨材の含有量が好ましい下限値未満では、得られる成形体の収縮率が大きいため、良好な成形性が得られにくく、該含有量が好ましい上限値を超えると、成形不良を生じやすい。
One kind of spherical aggregate may be used alone, or two or more kinds may be used in combination.
Especially, as a spherical aggregate, what contains at least 1 type chosen from the group which consists of spherical thermosetting resin hardened | cured material and spherical carbon is preferable, and what contains spherical carbon is more preferable.
In the composite material powder of the present invention, the content of the spherical aggregate is preferably 10 to 80% by mass, and more preferably 20 to 60% by mass. When the content of the spherical aggregate is less than the preferred lower limit, the resulting molded article has a high shrinkage rate, and therefore, it is difficult to obtain good moldability. When the content exceeds the preferred upper limit, molding defects tend to occur.

球状骨材として球状カーボンを用いる場合、その配合量を変えることにより、成形体の体積固有抵抗率を調節することが可能である。
たとえば、複合材料粉末中、球状カーボンの含有量が35質量%以上55質量%未満の場合、得られる成形体の体積固有抵抗率を10〜1010Ω・cmの範囲に容易に調節でき、該成形体は静電気防止効果を有する。
複合材料粉末中、球状カーボンの含有量が55〜80質量%の場合、得られる成形体の体積固有抵抗率を10Ω・cm以上10Ω・cm未満の範囲に容易に調節でき、該成形体は、電気電子分野の包装用部品やOA機器用部品に応用可能である。
When spherical carbon is used as the spherical aggregate, it is possible to adjust the volume resistivity of the molded body by changing the blending amount.
For example, in the composite material powder, when the content of spherical carbon is 35% by mass or more and less than 55% by mass, the volume resistivity of the obtained molded body can be easily adjusted to a range of 10 6 to 10 10 Ω · cm, The molded body has an antistatic effect.
When the content of spherical carbon in the composite material powder is 55 to 80% by mass, the volume resistivity of the obtained molded body can be easily adjusted to a range of 10 1 Ω · cm to less than 10 6 Ω · cm, The molded body can be applied to packaging parts and OA equipment parts in the electrical and electronic field.

尚、球状骨材は、カップリング剤等によって表面処理が施されたものを用いてもよい。球状骨材に対して表面処理を施すことで、成形時に球状骨材とポリアミド11との接着性を向上させることができる。
かかるカップリング剤としては、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤などが挙げられる。
シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N,N−ビス[3−(トリメトキシシリル)プロピル]アミン、N,N−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、N,N−ビス[3−(トリメトキシシリル)プロピル]メタクリルアミド、N−グリシジル−N,N−ビス[3−(トリメトキシシリル)プロピル]アミン、γ−アミノプロピルテトラエトキシジシロオキサン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]エチレンジアミン、N,N−ビス[3−(メチルジメトキシシリル)プロピル]メタクリルアミド、N−グリシジル−N,N−ビス[3−(メチルジメトキシシリル)プロピル]アミン等が挙げられる。
チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルイソステアロイルジアクリルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2、2−ジアリルオキシメチル−1−ブチル)ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピレート、ジイソプロポキシアルミニウムエチルアセトアセテート、ジイソプロポキシアルミニウムアルキルアセトアセテート、イソプロポキシアルミニウムアルキルアセトアセテートモノ(ジオクチルホスフェート)、ジイソプロポキシアルミニウムモノメタクリレート、アルミニウム−2−エチルヘキサノエートオキサイドトリマー、アルミニウムステアレートオキサイドトリマー、アルキルアセトアセテートアルミニウムオキサイドトリマー等が挙げられる。
カップリング剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Note that the spherical aggregate may be subjected to surface treatment with a coupling agent or the like. By subjecting the spherical aggregate to surface treatment, the adhesion between the spherical aggregate and the polyamide 11 can be improved during molding.
Examples of such coupling agents include silane coupling agents, titanate coupling agents, aluminum coupling agents and the like.
Examples of the silane coupling agent include γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, N, N-bis [3- (tri Methoxysilyl) propyl] amine, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, N, N-bis [3- (trimethoxysilyl) propyl] methacrylamide, N-glycidyl-N, N- Bis [3- (trimethoxysilyl) propyl] amine, γ-aminopropyltetraethoxydisilooxane, N, N-bis [3- (methyldimethoxysilyl) propyl] amine, N, N-bis [3- (methyl Dimethoxysilyl) propyl] ethylenediamine, N, N-bis [3- (methyldimethoxysilyl) Propyl] methacrylamide, N- glycidyl -N, N- bis [3- (methyldimethoxysilyl) propyl] amine.
The titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl isostearoyl diacryl titanate, isopropyl tris (dioctylpyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphate). Phyto) titanate, tetra (2,2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate and the like.
Aluminum coupling agents include acetoalkoxyaluminum diisopropylate, diisopropoxyaluminum ethyl acetoacetate, diisopropoxyaluminum alkyl acetoacetate, isopropoxyaluminum alkyl acetoacetate mono (dioctyl phosphate), diisopropoxyaluminum monomethacrylate, Examples thereof include aluminum-2-ethylhexanoate oxide trimer, aluminum stearate oxide trimer, and alkyl acetoacetate aluminum oxide trimer.
A coupling agent may be used individually by 1 type, and may be used in combination of 2 or more type.

(ポリアミド11)
ポリアミド11は、ウンデカンラクタムを開環重縮合したポリアミド、いわゆるナイロン11である。
ポリアミド11の平均粒径は、30〜150μmであり、好ましくは40〜100μmであり、より好ましくは45〜60μmである。
ポリアミド11の平均粒径が下限値未満では、積層の際に複合材料粉末を敷きにくく、該平均粒径が上限値を超えると、微細な形状の成形体が得られにくい。
(Polyamide 11)
The polyamide 11 is a polyamide obtained by ring-opening polycondensation of undecane lactam, so-called nylon 11.
The average particle diameter of the polyamide 11 is 30 to 150 μm, preferably 40 to 100 μm, and more preferably 45 to 60 μm.
When the average particle size of the polyamide 11 is less than the lower limit value, it is difficult to spread the composite material powder at the time of lamination, and when the average particle size exceeds the upper limit value, it is difficult to obtain a compact shaped product.

ポリアミド11の球形度は、0.6〜1.0であることが好ましく、より好ましくは0.7〜1.0であり、さらに好ましくは0.75〜1.0である。
ポリアミド11の球形度が好ましい下限値未満では、積層の際に複合材料粉末を均一に敷くことが難しく、成形不良を起こす場合がある。
The sphericity of the polyamide 11 is preferably 0.6 to 1.0, more preferably 0.7 to 1.0, and still more preferably 0.75 to 1.0.
When the sphericity of the polyamide 11 is less than the preferred lower limit, it is difficult to uniformly spread the composite material powder during lamination, which may cause molding failure.

ポリアミド11は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明の複合材料粉末中、ポリアミド11の含有量は、20〜90質量%であることが好ましく、より好ましくは40〜80質量%である。ポリアミド11の含有量が好ましい下限値未満では、得られる成形体の引張破壊ひずみ、曲げ強さで表される強度が向上しにくく、該含有量が好ましい上限値を超えると、成形不良を生じやすい。
本発明の複合材料粉末においては、ポリアミド11を採用することで、ポリアミド12を用いる場合に比べて、理由は定かではないが、成形性を良好に維持したまま、成形体の強度が向上する。
Polyamide 11 may be used alone or in combination of two or more.
In the composite material powder of the present invention, the content of polyamide 11 is preferably 20 to 90% by mass, and more preferably 40 to 80% by mass. If the content of polyamide 11 is less than the preferred lower limit, the strength represented by the tensile fracture strain and bending strength of the resulting molded product is difficult to improve, and if the content exceeds the preferred upper limit, molding defects tend to occur. .
In the composite material powder of the present invention, the use of polyamide 11 improves the strength of the molded body while maintaining good moldability, although the reason is not clear as compared with the case of using polyamide 12.

本発明の複合材料粉末においては、球状骨材とポリアミド11との粒径差が、下式で定義される粒径差で±25%の範囲内であり、好ましくは±20%の範囲内である。
粒径差(%)={(球状骨材の平均粒径−ポリアミド11の平均粒径)/ポリアミド11の平均粒径}×100
該粒径差が±25%の範囲内であることにより、得られる成形体の引張破壊ひずみ、曲げ強さで表される強度が向上する。
In the composite material powder of the present invention, the particle size difference between the spherical aggregate and the polyamide 11 is within a range of ± 25%, preferably within a range of ± 20%, as a particle size difference defined by the following formula. is there.
Particle size difference (%) = {(average particle size of spherical aggregate−average particle size of polyamide 11) / average particle size of polyamide 11} × 100
When the particle size difference is within a range of ± 25%, the strength represented by the tensile fracture strain and the bending strength of the obtained molded body is improved.

また、本発明の複合材料粉末において、球状骨材とポリアミド11との混合比率は、球状骨材/ポリアミド11で表される質量比で10/90〜80/20であることが好ましく、より好ましくは30/70〜60/40であり、さらに好ましくは40/60〜50/50である。
該質量比が好ましい下限値以上である(球状骨材の割合が好ましい下限値以上である)と、得られる成形体の収縮率が低下し、成形性がより向上する。該質量比が好ましい上限値以下である(ポリアミド11の割合が好ましい下限値以上である)と、得られる成形体の引張破壊ひずみで表される強度がより向上する。
Moreover, in the composite material powder of the present invention, the mixing ratio of the spherical aggregate and the polyamide 11 is preferably 10/90 to 80/20 in terms of mass ratio represented by the spherical aggregate / polyamide 11 and more preferably. Is 30 / 70-60 / 40, more preferably 40 / 60-50 / 50.
When the mass ratio is not less than the preferred lower limit (the ratio of the spherical aggregate is not less than the preferred lower limit), the shrinkage rate of the obtained molded article is reduced, and the moldability is further improved. When the mass ratio is less than or equal to the preferred upper limit (the ratio of polyamide 11 is greater than or equal to the preferred lower limit), the strength represented by the tensile fracture strain of the obtained molded body is further improved.

本発明の複合材料粉末は、さらに、任意成分として帯電防止剤、滑剤などを含有してもよい。帯電防止剤、滑剤を添加することで、複合材料粉末の流動性が向上し、成形しやすくなる。帯電防止剤、滑剤として具体的には、界面活性剤、シリコーン樹脂、金属石鹸などが挙げられる。
本発明の複合材料粉末中、任意成分の含有量は、0.05〜0.1質量%が好ましい。
The composite material powder of the present invention may further contain an antistatic agent, a lubricant and the like as optional components. By adding an antistatic agent and a lubricant, the fluidity of the composite material powder is improved and molding becomes easier. Specific examples of the antistatic agent and the lubricant include a surfactant, a silicone resin, and a metal soap.
In the composite material powder of the present invention, the content of optional components is preferably 0.05 to 0.1% by mass.

<成形体の製造方法>
本発明の成形体の製造方法は、上述した本発明の複合材料粉末を選択的にレーザー焼結することにより成形体を製造する方法であり、常法により実施できる。
かかる製造方法においては、成形の際、熱収縮が生じにくいため、所望の寸法を有する成形体が容易に得られる。具体的には、収縮率が2.5%以下の成形体が容易に得られる。
また、かかる製造方法により、従来に比して引張破壊ひずみ及び曲げ強さの高い成形体を製造できる。具体的には、引張破壊ひずみが5〜9%の成形体が容易に得られ、曲げ強さが60〜80MPaの成形体が容易に得られる。
本発明において「引張破壊ひずみ」は、JIS K 7161及びJIS K 7162に準拠した方法により測定される値を示す。
本発明において「曲げ強さ」は、JIS K 7171に準拠した方法により測定される値を示す。
<Method for producing molded body>
The method for producing a molded article of the present invention is a method for producing a molded article by selectively laser sintering the above-mentioned composite material powder of the present invention, and can be carried out by a conventional method.
In such a manufacturing method, since heat shrinkage hardly occurs during molding, a molded body having a desired dimension can be easily obtained. Specifically, a molded article having a shrinkage rate of 2.5% or less can be easily obtained.
Moreover, by this manufacturing method, it is possible to manufacture a molded body having a higher tensile fracture strain and bending strength than conventional ones. Specifically, a molded body having a tensile fracture strain of 5 to 9% can be easily obtained, and a molded body having a bending strength of 60 to 80 MPa can be easily obtained.
In the present invention, “tensile fracture strain” indicates a value measured by a method based on JIS K 7161 and JIS K 7162.
In the present invention, “bending strength” indicates a value measured by a method according to JIS K 7171.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
本実施例で使用した原料を以下に示す。
(骨材)
・球状カーボン(1):群栄化学工業株式会社製、商品名「GC−050」、平均粒径50μm。
・球状カーボン(2):群栄化学工業株式会社製、商品名「GC−050」、平均粒径45μm。
・球状カーボン(3):群栄化学工業株式会社製、商品名「GC−050」、平均粒径59μm。
・球状カーボン(4):群栄化学工業株式会社製、商品名「GC−075」、平均粒径72μm。
・球状カーボン(5):群栄化学工業株式会社製、商品名「GC−010」、平均粒径9μm。
・球状熱硬化性樹脂硬化物:群栄化学工業株式会社製、商品名「HF−050」、平均粒径60μm。
・ガラスビーズ:ポッターズ・バロティーニ株式会社製、ガラスビーズ、平均粒径50μm。
・中空ガラスビーズ:ポッターズ・バロティーニ株式会社製、商品名「Q―CEL」、平均粒径45μm。
(樹脂粉末)
・ポリアミド11(1):アルケマ株式会社製、商品名「RILSAN INVENT NATURAL」、平均粒径50μm。
・ポリアミド11(2):アルケマ株式会社製、商品名「RILSAN INVENT NATURAL」、平均粒径45μm。
・ポリアミド12:EOS社製、商品名「PA2200」、平均粒径50μm。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
The raw materials used in this example are shown below.
(aggregate)
Spherical carbon (1): Gunei Chemical Industry Co., Ltd., trade name “GC-050”, average particle size 50 μm.
Spherical carbon (2): Gunei Chemical Industry Co., Ltd., trade name “GC-050”, average particle size 45 μm.
Spherical carbon (3): manufactured by Gunei Chemical Industry Co., Ltd., trade name “GC-050”, average particle size 59 μm.
Spherical carbon (4): manufactured by Gunei Chemical Industry Co., Ltd., trade name “GC-075”, average particle size 72 μm.
Spherical carbon (5): Gunei Chemical Industry Co., Ltd., trade name “GC-010”, average particle size 9 μm.
Spherical thermosetting resin cured product: manufactured by Gunei Chemical Industry Co., Ltd., trade name “HF-050”, average particle size 60 μm.
Glass beads: manufactured by Potters Barotini Co., Ltd., glass beads, average particle size 50 μm.
Hollow glass beads: Potters Barotini Co., Ltd., trade name “Q-CEL”, average particle size 45 μm.
(Resin powder)
Polyamide 11 (1): manufactured by Arkema Co., Ltd., trade name “RILSAN INVENT NATURAL”, average particle size 50 μm.
Polyamide 11 (2): manufactured by Arkema Co., Ltd., trade name “RILSAN INVENT NATURAL”, average particle size 45 μm.
Polyamide 12: manufactured by EOS, trade name “PA2200”, average particle size 50 μm.

各例の複合材料粉末に用いた骨材及び樹脂粉末について、種類、物性(真比重、平均粒径、球形度)、複合材料粉末中の含有量をそれぞれ表1に示した。
骨材についての真比重、骨材及び樹脂粉末についての平均粒径と球形度は、それぞれ以下のようにして求めた。
Table 1 shows the type, physical properties (true specific gravity, average particle diameter, sphericity), and content in the composite powder for the aggregate and resin powder used in the composite material powder of each example.
The true specific gravity of the aggregate and the average particle diameter and sphericity of the aggregate and resin powder were determined as follows.

[真比重]
骨材についての真比重は、JIS R 7222に準拠した方法により測定した。
[True specific gravity]
The true specific gravity of the aggregate was measured by a method based on JIS R7222.

[平均粒径]
骨材及び樹脂粉末についての平均粒径(μm)は、日機装株式会社製の粒度分析計9320−X−100により測定した。
また、骨材の平均粒径について、樹脂粉末の平均粒径との差を割合で表示した。具体的には、下式で定義される粒径差(%)を算出した。一例として実施例2[球状カーボン(2)の平均粒径が45μm、ポリアミド11の平均粒径が50μm]の場合、以下のようにして算出される。
粒径差(%)
={(骨材の平均粒径−樹脂粉末の平均粒径)/樹脂粉末の平均粒径}×100
={(45−50)/50}×100
=−10
[Average particle size]
The average particle size (μm) of the aggregate and the resin powder was measured with a particle size analyzer 9320-X-100 manufactured by Nikkiso Co., Ltd.
In addition, the average particle size of the aggregate was expressed as a percentage of the difference from the average particle size of the resin powder. Specifically, the particle size difference (%) defined by the following formula was calculated. As an example, in the case of Example 2 [the average particle diameter of the spherical carbon (2) is 45 μm and the average particle diameter of the polyamide 11 is 50 μm], it is calculated as follows.
Particle size difference (%)
= {(Average particle size of aggregate-average particle size of resin powder) / average particle size of resin powder} × 100
= {(45-50) / 50} × 100
= -10

[球形度]
骨材及び樹脂粉末についての球形度は、(粒子の投影面積に等しい円の直径)/(粒子の投影像に外接する最小円の直径)で求めた指数であり、この指数が1.0に近いほど、真球体に近い粒子であることを意味する。
[Sphericality]
The sphericity of the aggregate and the resin powder is an index obtained by (the diameter of a circle equal to the projected area of the particle) / (the diameter of the smallest circle circumscribing the projected image of the particle). The closer it is, the closer the particle is to a true sphere.

Figure 2014188871
Figure 2014188871

<選択的レーザー焼結用の粉末材料の製造:実施例1〜6、比較例1〜7>
表1に示すように骨材と樹脂粉末とを組み合わせて、各例の粉末材料(試料)をそれぞれ以下のようにして製造した。
<Manufacture of powder material for selective laser sintering: Examples 1-6, Comparative Examples 1-7>
As shown in Table 1, aggregates and resin powders were combined to produce powder materials (samples) of each example as follows.

(実施例1)
それぞれ所定量の球状カーボン(1)とポリアミド11とを、スクリュー型ミキサーで5分間混合することにより試料を得た。
Example 1
A sample was obtained by mixing a predetermined amount of spherical carbon (1) and polyamide 11 with a screw mixer for 5 minutes.

(実施例2、3)
骨材を球状カーボン(2)、球状カーボン(3)にそれぞれ変更した以外は、実施例1と同様にして試料を得た。
(Examples 2 and 3)
A sample was obtained in the same manner as in Example 1 except that the aggregate was changed to spherical carbon (2) and spherical carbon (3), respectively.

(実施例4)
樹脂粉末をポリアミド(2)に変更した以外は、実施例1と同様にして試料を得た。
Example 4
A sample was obtained in the same manner as in Example 1 except that the resin powder was changed to polyamide (2).

(実施例5)
骨材の含有量を40質量%、樹脂粉末の含有量を60質量%に変更した以外は、実施例1と同様にして試料を得た。
(Example 5)
A sample was obtained in the same manner as in Example 1 except that the aggregate content was changed to 40% by mass and the resin powder content was changed to 60% by mass.

(実施例6)
骨材を球状熱硬化性樹脂硬化物に変更した以外は、実施例1と同様にして試料を得た。
(Example 6)
A sample was obtained in the same manner as in Example 1 except that the aggregate was changed to a spherical thermosetting resin cured product.

(比較例1、2)
骨材を球状カーボン(5)、球状カーボン(4)にそれぞれ変更した以外は、実施例1と同様にして試料を得た。
(Comparative Examples 1 and 2)
A sample was obtained in the same manner as in Example 1 except that the aggregate was changed to spherical carbon (5) and spherical carbon (4), respectively.

(比較例3)
樹脂粉末をポリアミド12に変更した以外は、実施例1と同様にして試料を得た。
(Comparative Example 3)
A sample was obtained in the same manner as in Example 1 except that the resin powder was changed to polyamide 12.

(比較例4)
骨材を用いず、樹脂粉末としてポリアミド12を用い、これを試料とした。
(Comparative Example 4)
An aggregate was not used, but polyamide 12 was used as a resin powder, and this was used as a sample.

(比較例5)
骨材を用いず、樹脂粉末としてポリアミド11を用い、これを試料とした。
(Comparative Example 5)
An aggregate was not used, but polyamide 11 was used as a resin powder, and this was used as a sample.

(比較例6)
骨材をガラスビーズに変更した以外は、実施例1と同様にして試料を得た。
(Comparative Example 6)
A sample was obtained in the same manner as in Example 1 except that the aggregate was changed to glass beads.

(比較例7)
骨材を中空ガラスビーズに変更した以外は、実施例1と同様にして試料を得た。
(Comparative Example 7)
A sample was obtained in the same manner as in Example 1 except that the aggregate was changed to hollow glass beads.

<成形体の製造>
(実施例7〜12、比較例8〜13)
粉末積層造形機(EOS社製、製品名:EOSINT P380)を用いて、各例の試料をそれぞれ選択的にレーザー焼結することにより成形体(試験片)を得た。
(比較例14)
比較例14で用いた比較例7の試料は、リサイクルの際、衝撃が加わることで、骨材と樹脂粉末とが分離し、不均一な混合物となった。SLS法において、この比較例7の試料がリサイクルされた場合、均質な成形体を製造できないため、比較例14は成形不可とした。
<Manufacture of molded body>
(Examples 7-12, Comparative Examples 8-13)
Using a powder additive manufacturing machine (manufactured by EOS, product name: EOSINT P380), a sample (test piece) was obtained by selectively laser sintering the sample of each example.
(Comparative Example 14)
When the sample of Comparative Example 7 used in Comparative Example 14 was subjected to an impact during recycling, the aggregate and the resin powder separated, resulting in a non-uniform mixture. In the SLS method, when the sample of Comparative Example 7 was recycled, a homogeneous molded body could not be produced.

<評価>
リサイクル性についての評価、成形性についての評価、及び、成形体の強度についての評価をそれぞれ行った。これらの結果を表2に示した。
<Evaluation>
Evaluation on recyclability, evaluation on formability, and evaluation on strength of the molded body were performed. These results are shown in Table 2.

[リサイクル性についての評価]
リサイクル性の評価は、以下に示す手順(1)〜(3)により行った。
手順(1):骨材と樹脂粉末とをスクリュー型ミキサーで5分間混合した後、静電気除去のため、室温23℃、相対湿度50%以下で8時間放置する(得られた混合物を試料とする)。
手順(2):8時間放置の後、試料を、目開き150μmの篩にかける。
手順(3):篩を通過した試料について、倍率200倍のマイクロスコープを用い、観察領域を1mm×1mmとしてランダムに10ヶ所、該領域の分散状態(骨材と樹脂粉末との均一性)を目視で観察する。観察の結果、骨材と樹脂粉末とが混ざり合っていることが確認された領域を、骨材と樹脂粉末とが分散している領域と判定した。これに対して、骨材と樹脂粉末とが偏在していることが確認された領域を、骨材と樹脂粉末とは分散していない領域と判定した。
そして、該混合物における骨材と樹脂粉末との均一性を、下記評価基準に基づいて2段階で評価した。
(評価基準)
○:骨材と樹脂粉末とが分散している領域が、10ヶ所中9ヶ所以上で確認された。
×:骨材と樹脂粉末とが分散している領域が、10ヶ所中8ヶ所以下であった。
骨材と樹脂粉末とが混ざりやすい(分離しにくい)ほど、SLS法においてその粉末材料をリサイクルしやすいこと、加えて、リサイクルした際にも、均質な成形体を製造できることを意味する。
[Evaluation of recyclability]
Evaluation of recyclability was performed by the following procedures (1) to (3).
Procedure (1): Aggregate and resin powder are mixed for 5 minutes with a screw-type mixer and then left for 8 hours at room temperature of 23 ° C. and relative humidity of 50% or less to remove static electricity (use the resulting mixture as a sample) ).
Procedure (2): After standing for 8 hours, the sample is passed through a sieve having an opening of 150 μm.
Procedure (3): For the sample that passed through the sieve, using a microscope with a magnification of 200 times, the observation area was 1 mm × 1 mm, and 10 locations were randomly distributed (the uniformity between the aggregate and the resin powder). Observe visually. As a result of observation, a region where the aggregate and the resin powder were confirmed to be mixed was determined as a region where the aggregate and the resin powder were dispersed. On the other hand, the region in which the aggregate and the resin powder were confirmed to be unevenly distributed was determined as the region in which the aggregate and the resin powder were not dispersed.
And the uniformity of the aggregate and resin powder in this mixture was evaluated in two steps based on the following evaluation criteria.
(Evaluation criteria)
○: The region where the aggregate and the resin powder were dispersed was confirmed at 9 or more of 10 locations.
X: The area | region where the aggregate and the resin powder are disperse | distributing was 8 or less places in 10 places.
It means that the more easily the aggregate and the resin powder are mixed (harder to separate), the easier it is to recycle the powder material in the SLS method, and in addition, it is possible to produce a homogeneous molded body even when recycled.

[成形性についての評価]
各例の試料を用いてSLS法により成形する際の、熱収縮の生じにくさを指標とし、成形性を評価した。
尚、比較例14では、成形不可であったことから、熱収縮の生じにくさの評価を行っていない。
[Evaluation of formability]
The moldability was evaluated using as an index the difficulty of thermal shrinkage when molding by the SLS method using the sample of each example.
In Comparative Example 14, since the molding was impossible, the evaluation of the difficulty of heat shrinkage was not performed.

・熱収縮の生じにくさ
熱収縮の生じにくさの評価は、SLS法により成形する際の成形体(試験片)の収縮率を測定することにより行った。
試験片の収縮率は、以下のようにして測定した。
粉末積層造形機(EOS社製、製品名:EOSINT P380)を用い、最終的に得られる直方体状の試験片のサイズが、該試験片の縦の長さをx(mm)とした際、縦x(mm)×横10(mm)×高さ4(mm)[x=20,50,100,150,200]となる各設定条件で、粉末材料(試料)を選択的にレーザー焼結することにより試験片を得た。
得られた試験片の縦の長さを実測し、下式より縦方向の収縮率を算出した。
縦方向の収縮率(%)={(x−実測値)/x}×100
x=20,50,100,150,200の場合ごとに算出した、縦方向の収縮率を平均した値を「収縮率(%)」として表2に示した。この「収縮率(%)」が2.5%以下であれば、成形の際に熱収縮が生じにくく、所望の寸法を有する成形体が得られやすいことを意味する。
-Hardness of heat shrinkage Evaluation of the difficulty of heat shrinkage was performed by measuring the shrinkage rate of a molded body (test piece) when molded by the SLS method.
The shrinkage rate of the test piece was measured as follows.
Using a powder additive manufacturing machine (manufactured by EOS, product name: EOSINT P380), the size of the finally obtained rectangular parallelepiped test piece is vertical when the vertical length of the test piece is x (mm). A powder material (sample) is selectively laser-sintered under each setting condition of x (mm) × width 10 (mm) × height 4 (mm) [x = 20, 50, 100, 150, 200]. A test piece was obtained.
The vertical length of the obtained test piece was measured, and the vertical shrinkage was calculated from the following formula.
Vertical shrinkage (%) = {(x−actual measurement value) / x} × 100
Table 2 shows the average value of the shrinkage ratio in the vertical direction calculated for each case of x = 20, 50, 100, 150, and 200 as “shrinkage ratio (%)”. If this “shrinkage rate (%)” is 2.5% or less, it means that heat shrinkage hardly occurs during molding, and a molded body having a desired dimension can be easily obtained.

[成形体の強度についての評価]
各例の成形体(試験片)について、引張破壊ひずみ、曲げ強さをそれぞれ測定することにより、成形体の強度を評価した。
尚、比較例14では、成形不可であったことから、成形体の強度についての評価を行っていない。
[Evaluation of strength of molded body]
About the molded object (test piece) of each example, the strength of the molded object was evaluated by measuring the tensile fracture strain and the bending strength, respectively.
In Comparative Example 14, since the molding was impossible, the strength of the molded body was not evaluated.

・引張破壊ひずみ
試験片の引張破壊ひずみは、JIS K 7161及びJIS K 7162に準拠した方法により測定した。この引張破壊ひずみが5%以上であれば、充分な強度を有すると言える。
-Tensile fracture strain The tensile fracture strain of the test piece was measured by a method based on JIS K 7161 and JIS K 7162. If this tensile fracture strain is 5% or more, it can be said that it has sufficient strength.

・曲げ強さ
試験片の曲げ強さは、JIS K 7171に準拠した方法により測定した。この曲げ強さが60MPa以上であれば、充分な強度を有すると言える。
-Bending strength The bending strength of the test piece was measured by the method based on JISK7171. If this bending strength is 60 MPa or more, it can be said that it has sufficient strength.

Figure 2014188871
Figure 2014188871

表2に示す結果から、本発明を適用した実施例1〜6の複合材料粉末を、SLS法に用いることで、成形性(熱収縮の生じにくさ)及びリサイクル性を維持しつつ、強度が向上した成形体を製造できることが分かる。   From the results shown in Table 2, the composite material powders of Examples 1 to 6 to which the present invention is applied are used for the SLS method, so that the moldability (hardness of heat shrinkage) and the recyclability are maintained and the strength is increased. It can be seen that an improved molded body can be produced.

Claims (5)

選択的レーザー焼結法に使用する複合材料粉末において、
真比重0.8〜2.0、平均粒径10〜150μmの融点を持たない球状骨材と、
平均粒径が30〜150μmのポリアミド11と、
を含有し、
下式で定義される粒径差が±25%の範囲内であることを特徴とする複合材料粉末。
粒径差(%)={(球状骨材の平均粒径−ポリアミド11の平均粒径)/ポリアミド11の平均粒径}×100
In composite powders used for selective laser sintering,
A spherical aggregate not having a melting point with a true specific gravity of 0.8 to 2.0 and an average particle size of 10 to 150 μm;
Polyamide 11 having an average particle size of 30 to 150 μm;
Containing
A composite powder characterized by having a particle size difference defined by the following formula within a range of ± 25%.
Particle size difference (%) = {(average particle size of spherical aggregate−average particle size of polyamide 11) / average particle size of polyamide 11} × 100
前記球状骨材の球形度が0.7〜1.0であり、かつ、該球状骨材の含有量が10〜80質量%であることを特徴とする、請求項1に記載の複合材料粉末。   2. The composite material powder according to claim 1, wherein the spherical aggregate has a sphericity of 0.7 to 1.0 and a content of the spherical aggregate of 10 to 80 mass%. . 前記球状骨材が、球状熱硬化性樹脂硬化物及び球状カーボンからなる群より選ばれる少なくとも一種を含有することを特徴とする、請求項1又は2に記載の複合材料粉末。   The composite material powder according to claim 1 or 2, wherein the spherical aggregate contains at least one selected from the group consisting of a spherical thermosetting resin cured product and a spherical carbon. 前記ポリアミド11の球形度が0.6〜1.0であることを特徴とする、請求項1〜3のいずれか一項に記載の複合材料粉末。   The composite material powder according to any one of claims 1 to 3, wherein the sphericity of the polyamide 11 is 0.6 to 1.0. 請求項1〜4のいずれか一項に記載の複合材料粉末を選択的にレーザー焼結することにより成形体を製造することを特徴とする成形体の製造方法。   A method for producing a molded article, comprising producing a molded article by selectively laser sintering the composite material powder according to any one of claims 1 to 4.
JP2013067250A 2013-03-27 2013-03-27 COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE Active JP6057806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067250A JP6057806B2 (en) 2013-03-27 2013-03-27 COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067250A JP6057806B2 (en) 2013-03-27 2013-03-27 COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE

Publications (2)

Publication Number Publication Date
JP2014188871A true JP2014188871A (en) 2014-10-06
JP6057806B2 JP6057806B2 (en) 2017-01-11

Family

ID=51835658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067250A Active JP6057806B2 (en) 2013-03-27 2013-03-27 COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE

Country Status (1)

Country Link
JP (1) JP6057806B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016102229A (en) * 2014-11-27 2016-06-02 山陽特殊製鋼株式会社 Metal powder for molding
EP3272501A1 (en) * 2016-07-20 2018-01-24 Xerox Corporation Method of selective laser sintering
JP2018144354A (en) * 2017-03-06 2018-09-20 セイコーエプソン株式会社 Paste, and method for manufacturing three-dimensional shaped article
JP2018149800A (en) * 2017-03-14 2018-09-27 株式会社リコー Resin powder for stereoscopic shaping and device for manufacturing stereoscopic shaping object
US10649355B2 (en) 2016-07-20 2020-05-12 Xerox Corporation Method of making a polymer composite
CN114349988A (en) * 2021-12-29 2022-04-15 湖南华曙高科技股份有限公司 High polymer powder material for selective laser sintering and preparation method thereof
CN114350144A (en) * 2021-12-29 2022-04-15 湖南华曙高科技股份有限公司 High-molecular powder material for selective laser sintering and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537064A (en) * 2004-05-14 2007-12-20 デグサ ゲーエムベーハー POLYMER POWDER HAVING POLYAMIDE, USE IN FORMING METHOD, AND MOLDED BODY MADE FROM THE POLYMER POWDER
JP2009013395A (en) * 2007-06-07 2009-01-22 Gun Ei Chem Ind Co Ltd Composite material powder for selective laser sintering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537064A (en) * 2004-05-14 2007-12-20 デグサ ゲーエムベーハー POLYMER POWDER HAVING POLYAMIDE, USE IN FORMING METHOD, AND MOLDED BODY MADE FROM THE POLYMER POWDER
JP2009013395A (en) * 2007-06-07 2009-01-22 Gun Ei Chem Ind Co Ltd Composite material powder for selective laser sintering

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016032716; 水鳥正路、萩原茂示、川添邦太朗、福田義民: 'カーボンブラックの真比重' 工業化学雑誌 第66巻第12号(1963), 20110902, 1757-1759 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266772B1 (en) 2014-11-27 2021-06-18 산요오도꾸슈세이꼬 가부시키가이샤 Metal Powder for Modeling
KR102266771B1 (en) 2014-11-27 2021-06-18 산요오도꾸슈세이꼬 가부시키가이샤 Metal Powder for Modeling
WO2016084832A1 (en) * 2014-11-27 2016-06-02 山陽特殊製鋼株式会社 Metal powder for modeling
KR20180115366A (en) * 2014-11-27 2018-10-22 산요오도꾸슈세이꼬 가부시키가이샤 Metal Powder for Modeling
KR20180115365A (en) * 2014-11-27 2018-10-22 산요오도꾸슈세이꼬 가부시키가이샤 Metal Powder for Modeling
JP2016102229A (en) * 2014-11-27 2016-06-02 山陽特殊製鋼株式会社 Metal powder for molding
KR20170048438A (en) * 2014-11-27 2017-05-08 산요오도꾸슈세이꼬 가부시키가이샤 Metal Powder for Modeling
CN106794515A (en) * 2014-11-27 2017-05-31 山阳特殊制钢株式会社 Appearance metal dust
US10315409B2 (en) 2016-07-20 2019-06-11 Xerox Corporation Method of selective laser sintering
US10649355B2 (en) 2016-07-20 2020-05-12 Xerox Corporation Method of making a polymer composite
EP3272501A1 (en) * 2016-07-20 2018-01-24 Xerox Corporation Method of selective laser sintering
JP2018144354A (en) * 2017-03-06 2018-09-20 セイコーエプソン株式会社 Paste, and method for manufacturing three-dimensional shaped article
JP7351363B2 (en) 2017-03-14 2023-09-27 株式会社リコー Resin powder for three-dimensional modeling and method for producing three-dimensional objects
JP7043865B2 (en) 2017-03-14 2022-03-30 株式会社リコー Equipment for manufacturing resin powder for 3D modeling and 3D modeling
JP2022075764A (en) * 2017-03-14 2022-05-18 株式会社リコー Resin powder for three-dimensional modeling, and manufacturing method of three-dimensional modeling product
JP2018149800A (en) * 2017-03-14 2018-09-27 株式会社リコー Resin powder for stereoscopic shaping and device for manufacturing stereoscopic shaping object
CN114349988A (en) * 2021-12-29 2022-04-15 湖南华曙高科技股份有限公司 High polymer powder material for selective laser sintering and preparation method thereof
CN114350144A (en) * 2021-12-29 2022-04-15 湖南华曙高科技股份有限公司 High-molecular powder material for selective laser sintering and preparation method thereof

Also Published As

Publication number Publication date
JP6057806B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
JP6057806B2 (en) COMPOSITE MATERIAL POWDER AND METHOD FOR PRODUCING MOLDED ARTICLE
JP5214313B2 (en) Composite powder for selective laser sintering
US10328491B2 (en) Surface modified particulate and sintered or injection molded products
EP3419399A1 (en) Heat conductive sheet
CN104086983B (en) Graphene/nylon composite materials and its preparation method and application
Çantı et al. Effects of micro particle reinforcement on mechanical properties of 3D printed parts
KR102574040B1 (en) Synthetic modified thermoplastic polymer composite with cellulose nanomaterial
EP3620283B1 (en) Resin powder, as well as method of and device for manufacturing a solid freeform object using said powder
CN107109070A (en) The manufacture method of moulding material, products formed and products formed
DE212013000158U1 (en) Composite materials for use in injection molding processes
Siqueiros et al. In situ wire drawing of phosphate glass in polymer matrices for material extrusion 3D printing
US10510471B2 (en) Composition for bonded magnets, bonded magnet and integrally molded component
JP2015108126A (en) Method for recycling fluororesin
Gonzalez-Gutierrez et al. Time-dependent properties of multimodal polyoxymethylene based binder for powder injection molding
EP3882300A1 (en) Resin powder and resin powder for producing three-dimensional object, and three-dimensional object producing method and three-dimensional object producing apparatus
JP2006070233A (en) Mixed type of non-melt processable fluororesins
KR100825092B1 (en) A preparation method of graphite solid
JP2011068125A (en) Heat-resistant molding and method for producing the same
KR20160063537A (en) Expanded graphite, method for preparing the same and thermal conductive resin composition comprising the same
Ong et al. Electrically conductive polyamide 11 nanocomposites for selective laser sintering: properties characterization
WO2024048376A1 (en) Boron nitride particle, boron nitride particle production method, and resin composition
JP7393714B1 (en) Flat cross-section glass fibers, glass fiber reinforced resin compositions and glass fiber reinforced resin molded products
JP5179956B2 (en) Method for producing polyimide powder
EP4317292A1 (en) Molded product and processed article
Hammiche et al. Correlation between composites behavior and the manufacturing process used

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161206

R150 Certificate of patent or registration of utility model

Ref document number: 6057806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250