JP2017002125A - Recycled carbon fiber bundle - Google Patents

Recycled carbon fiber bundle Download PDF

Info

Publication number
JP2017002125A
JP2017002125A JP2015114774A JP2015114774A JP2017002125A JP 2017002125 A JP2017002125 A JP 2017002125A JP 2015114774 A JP2015114774 A JP 2015114774A JP 2015114774 A JP2015114774 A JP 2015114774A JP 2017002125 A JP2017002125 A JP 2017002125A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
cfrp
heat treatment
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015114774A
Other languages
Japanese (ja)
Inventor
博英 和田
Hirohide Wada
博英 和田
山崎 真明
Masaaki Yamazaki
真明 山崎
寛 越智
Hiroshi Ochi
寛 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2015114774A priority Critical patent/JP2017002125A/en
Publication of JP2017002125A publication Critical patent/JP2017002125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recycled carbon fiber bundle excellent in reinforcement effect as well as dispersibility in a matrix resin not by conventional thermal recycling for burning wastes, end materials or the like and collecting thermal energy at the burning, but by heat decomposing a matrix resin of CFRP wastes, extracting a desired carbon fiber bundle.SOLUTION: There is provided a recycled carbon fiber bundle obtained by thermal decomposition of a matrix resin of CFRP and resin residue amount is 0.1 to 6% of the carbon fiber bundle.SELECTED DRAWING: Figure 1

Description

本発明は、再生炭素繊維及びその回収方法に関する。樹脂に炭素繊維を強化材として添加したCFRP(Carbon Fiber Reinforced Plastics)から成る廃材のリサイクル化を図るとともに、含有炭素繊維を有効利用するための、CFRPから成る廃材のリサイクル方法に関する。   The present invention relates to a regenerated carbon fiber and a method for recovering the same. The present invention relates to a method for recycling a waste material made of CFRP in order to recycle a waste material made of CFRP (Carbon Fiber Reinforced Plastics) in which carbon fiber is added to a resin as a reinforcing material and to effectively use the contained carbon fiber.

FRP(Fiber Reinforced Plastics)とは、各種繊維(ガラス繊維やカーボン繊維等)で補強された樹脂をいい、耐熱性及び耐圧性に優れ強度の高い素材として、ロケットや航空機等に代表される高付加価値部品の他、各種日用品等に適用されるに至り、汎用的に用いられるようになっている。しかし、かかるFRPから成る製品を製造する過程で発生する端材や屑、及び廃棄の対象とされるFRP製品から成る廃材は、その性質上、リサイクルが困難であり、一般に、破砕又は焼却した後に埋め立て処理されていた。   FRP (Fiber Reinforced Plastics) is a resin reinforced with various fibers (glass fiber, carbon fiber, etc.), and has high heat resistance, high pressure resistance, high strength, and high addition such as rockets and aircraft In addition to value parts, it has been applied to various daily necessities and is now used for general purposes. However, scraps and scraps generated in the process of manufacturing such FRP products, and waste materials consisting of FRP products that are subject to disposal are difficult to recycle due to their nature, and generally after being crushed or incinerated. It was being landfilled.

近年、埋め立て処分場の問題やエポキシ樹脂から発生する環境ホルモン等の問題等が社会問題化されてきているため、そのリサイクル技術の確立が強く求められており、廃材や端材等を焼却し、その焼却の際の熱エネルギを回収するサーマルリサイクルや、廃材を微粉砕して別の製品を製造する際の原材料に一部添加して再利用するマテリアルリサイクルを図ることが提案されていた。しかしながら、焼却後に残る炭素繊維は依然埋め立てなければならず、再利用の際の原材料への添加量も限られており、理想的なリサイクル技術ではなかった。特に、FRPのうち樹脂に炭素繊維を強化材として添加したCFRPについては、樹脂と炭素繊維との分別を図ることができず、また、ガラス繊維等を補強材とした他のFRPに比べ、完全に溶融して成形するのが困難であるという事情から、リサイクル技術の確立が極めて難しいという問題があった。   In recent years, problems such as landfill disposal sites and environmental hormones generated from epoxy resins have become social issues, so the establishment of recycling technology has been strongly demanded. There have been proposals for thermal recycling to recover thermal energy during the incineration, and material recycling to be reused by adding a part of the raw material to pulverize the waste material to produce another product. However, the carbon fibers remaining after incineration still have to be landfilled, and the amount added to the raw materials during reuse is limited, which is not an ideal recycling technique. In particular, CFRP in which carbon fiber is added as a reinforcing material to resin among FRP cannot be separated from resin and carbon fiber, and is completely in comparison with other FRPs using glass fiber or the like as a reinforcing material. Due to the fact that it is difficult to melt and mold, it has been extremely difficult to establish recycling technology.

上述のような問題を解決すべく、例えば、特許文献1には、炭化物の付着量が10%以下としたCFRPのリサイクル方法に関して記載されている。しかし、付着量が10%では炭素繊維束が強固に結びついているため分散性が悪く、混錬時に炭素繊維が開繊せず、マトリックス樹脂に均一に混ざらず、所望の物性が得られない可能性がある。また、粉砕物を層厚300mm以内になるように、と記載されているが、層厚300mmでは厚すぎて、熱が伝わり切らず熱処理が不十分になる可能性があり、現実的ではない。   In order to solve the above-described problem, for example, Patent Document 1 describes a CFRP recycling method in which the amount of adhered carbide is 10% or less. However, when the adhesion amount is 10%, the carbon fiber bundles are tightly bound, so the dispersibility is poor, the carbon fibers do not open at the time of kneading, and they are not uniformly mixed with the matrix resin, and the desired physical properties cannot be obtained. There is sex. Further, it is described that the pulverized product has a layer thickness of 300 mm or less. However, if the layer thickness is 300 mm, the pulverized material is too thick, and heat may not be transmitted and heat treatment may be insufficient, which is not realistic.

特許文献2に記載されたCFRPのリサイクル方法では、実施例において2回の熱処理で炭素繊維重量が約1.7%減少しており、炭素繊維自体が一部焼き飛ばされ、傷んでいることから、所望の物性が得られない可能性があり、現実的ではない。   In the CFRP recycling method described in Patent Document 2, the weight of the carbon fiber is reduced by about 1.7% by two heat treatments in the examples, and the carbon fiber itself is partially burned and damaged. The desired physical properties may not be obtained, which is not realistic.

特開2005−307121号公報JP-A-2005-307121 特許第3283967号Japanese Patent No. 3283967

本発明は、このような事情に鑑みてなされたもので、CFRP廃材のマトリックス樹脂を熱分解し、所望の炭素繊維束を取り出し、補強効果に優れ、マトリックス樹脂への分散性にも優れる、リサイクル炭素繊維束を提供することにある。   The present invention has been made in view of such circumstances, pyrolyzing the matrix resin of CFRP waste material, taking out a desired carbon fiber bundle, having excellent reinforcing effect, and excellent dispersibility in the matrix resin. It is to provide a carbon fiber bundle.

上記課題を解決する手段としては、CFRPのマトリックス樹脂を熱分解して得られる炭素繊維束であって、樹脂残渣重量が炭素繊維束の0.1〜6%であることが重要である。また、炭素繊維束のアスペクト比(炭素繊維束の長さ/炭素繊維束の幅)が1〜10であることが好ましい。さらに、該炭素繊維束に含まれる炭素繊維の平均長さが1〜10mmであることや、炭素繊維束の嵩密度が0.34g/cc以下であること、熱処理する炭素繊維複合材料が廃材であることも好ましい態様である。またさらに、熱処理工程における温度が300〜700℃であることも好ましい。このような炭素繊維束の製造方法としては、複数回の熱処理によって炭素繊維複合材料のマトリクス樹脂を熱分解し、樹脂残渣重量を炭素繊維束の0.1〜6%に制御することが重要である。また、複数回の熱処理によって炭素繊維複合材料のマトリクス樹脂を熱分解する際、最終回の熱処理を空気雰囲気中にて実施することが好ましい。 As means for solving the above problems, it is important that the carbon fiber bundle is obtained by thermally decomposing a CFRP matrix resin, and the resin residue weight is 0.1 to 6% of the carbon fiber bundle. The aspect ratio of the carbon fiber bundle (the length of the carbon fiber bundle / the width of the carbon fiber bundle) is preferably 1 to 10. Further, the average length of the carbon fibers contained in the carbon fiber bundle is 1 to 10 mm, the bulk density of the carbon fiber bundle is 0.34 g / cc or less, and the carbon fiber composite material to be heat-treated is a waste material. It is also a preferred embodiment. Furthermore, it is also preferable that the temperature in the heat treatment step is 300 to 700 ° C. As a method for producing such a carbon fiber bundle, it is important to thermally decompose the matrix resin of the carbon fiber composite material by a plurality of heat treatments and control the resin residue weight to 0.1 to 6% of the carbon fiber bundle. is there. Further, when the matrix resin of the carbon fiber composite material is thermally decomposed by a plurality of heat treatments, it is preferable to perform the final heat treatment in an air atmosphere.

本発明によれば、CFRP廃材のマトリックス樹脂を熱分解し、所望の炭素繊維束を取り出し、補強効果に優れ、マトリックス樹脂への分散性にも優れる、リサイクル炭素繊維束を提供することができる。   According to the present invention, it is possible to provide a recycled carbon fiber bundle that is obtained by thermally decomposing a matrix resin of a CFRP waste material, taking out a desired carbon fiber bundle, having an excellent reinforcing effect, and excellent dispersibility in the matrix resin.

本発明で用いるリサイクル炭素繊維束の各種形状を示す概略図である。It is the schematic which shows the various shapes of the recycled carbon fiber bundle used by this invention.

本発明は、CFRPのマトリックス樹脂を熱分解して得られる炭素繊維束であって、樹脂残渣重量が炭素繊維束の0.1〜6%であることを特徴とするリサイクル炭素繊維束である。   The present invention is a carbon fiber bundle obtained by pyrolyzing a CFRP matrix resin, wherein the resin residue weight is 0.1 to 6% of the carbon fiber bundle.

最初に、CFRPの熱分解について説明する。   First, thermal decomposition of CFRP will be described.

破砕および分級を施した廃CFRP片を、金属バット上に均一に広げ、電気マッフル炉に入れて、炉内に窒素ガスを導入しながら、処理温度を所定温度に保って熱処理を行う。その後同様に、炉内に空気を導入しながら、処理温度を所定温度に保って、熱処理を行うことで、リサイクル炭素繊維束10が得られる。   The waste CFRP pieces that have been crushed and classified are spread uniformly on a metal vat, placed in an electric muffle furnace, and heat treatment is performed while maintaining the treatment temperature at a predetermined temperature while introducing nitrogen gas into the furnace. Similarly, a recycled carbon fiber bundle 10 is obtained by performing heat treatment while introducing the air into the furnace while maintaining the treatment temperature at a predetermined temperature.

リサイクル炭素繊維束の樹脂残渣量は0.1〜6%であることが重要である。樹脂残渣量が6%より高くなると、炭素繊維束の表面が硬くなり、分散性が不良となり、十分な補強効果が得られない。逆に0.1%未満になると、炭素繊維束の収束性がなくなり、単糸が飛散して作業に支障を来たすため、取り扱い性が不良となる。また、微粉が多いため混錬時に、微粉が炭素繊維束の分散を阻害し、分散性が不良となり、十分な補強効果が得られない。   It is important that the amount of resin residue in the recycled carbon fiber bundle is 0.1 to 6%. If the resin residue amount is higher than 6%, the surface of the carbon fiber bundle becomes hard, the dispersibility becomes poor, and a sufficient reinforcing effect cannot be obtained. On the other hand, if it is less than 0.1%, the convergence of the carbon fiber bundle is lost, and the single yarn is scattered to hinder the work. Moreover, since there are many fine powders, at the time of kneading, fine powder inhibits dispersion | distribution of a carbon fiber bundle, dispersibility becomes poor, and sufficient reinforcement effect is not acquired.

したがって、適度な樹脂残渣量があると、炭素繊維束の収束性、即ち形態保持性を付与し、均一に分散しやすく、高い補強効果を発現する。なお、本発明における樹脂残渣量(%)は、
樹脂残渣量(%)=[熱処理後の炭素繊維束重量/熱処理前のCFRP重量×100]−CFRPのWf(CFRP繊維重量含有率)
として計算した。
Therefore, when there is an appropriate amount of resin residue, the carbon fiber bundle is converged, that is, the shape is retained, easily dispersed uniformly, and a high reinforcing effect is exhibited. The resin residue amount (%) in the present invention is:
Resin residue amount (%) = [carbon fiber bundle weight after heat treatment / CFRP weight before heat treatment × 100] −CFRP Wf (CFRP fiber weight content)
As calculated.

リサイクル炭素繊維束のアスペクト比(炭素繊維束の長さ/炭素繊維束の幅)は1〜10が好ましい。アスペクト比が10を超えると、炭素繊維束の幅が微細になり、投入時に単糸が飛散して作業に支障を来たすため、取扱い性が不良になる。逆にアスペクト比が1未満になると、炭素繊維束の幅が大きくなり、分散性が不良となり、十分な補強効果が得られなくなる。   The aspect ratio of the recycled carbon fiber bundle (the length of the carbon fiber bundle / the width of the carbon fiber bundle) is preferably 1 to 10. When the aspect ratio exceeds 10, the width of the carbon fiber bundle becomes fine, and the single yarn scatters at the time of loading, which hinders the work, resulting in poor handling. On the other hand, when the aspect ratio is less than 1, the width of the carbon fiber bundle becomes large, the dispersibility becomes poor, and a sufficient reinforcing effect cannot be obtained.

ここで、本発明における炭素繊維束のアスペクト、平均長さ、および幅はn=50の測定値の数平均である。なお、得られるリサイクル炭素繊維束の形態はまちまちであることから、図1(a)から(h)に示すように、炭素繊維の長さは繊維方向の最大長さを測定し(L)、炭素繊維の幅は繊維方向の90°方向の最大長さを測定し(W)、アスペクト比はL/Wとして算出した。   Here, the aspect, average length, and width of the carbon fiber bundle in the present invention are the number average of the measured values of n = 50. In addition, since the form of the recycled carbon fiber bundle obtained varies, as shown in FIGS. 1 (a) to (h), the length of the carbon fiber is determined by measuring the maximum length in the fiber direction (L), For the width of the carbon fiber, the maximum length in the 90 ° direction of the fiber direction was measured (W), and the aspect ratio was calculated as L / W.

リサイクル炭素繊維束に含まれる炭素繊維の平均長さは1〜10mmが好ましく、さらに好ましくは5〜10mmである。繊維長のバラツキが狭い範囲にあれば、繊維束は均一に分散しやすく、高い補強効果を発現する。炭素繊維の平均長さが10mmを超えると分散性が不良となり、十分な補強効果が得られない。逆に炭素繊維の長さが1mm未満であると、炭素繊維束が短いため、補強効果が期待出来なくなる。   The average length of the carbon fibers contained in the recycled carbon fiber bundle is preferably 1 to 10 mm, more preferably 5 to 10 mm. If the variation in fiber length is within a narrow range, the fiber bundle is easily dispersed uniformly and exhibits a high reinforcing effect. If the average length of the carbon fiber exceeds 10 mm, the dispersibility becomes poor and a sufficient reinforcing effect cannot be obtained. Conversely, if the carbon fiber length is less than 1 mm, the carbon fiber bundle is short, so that the reinforcing effect cannot be expected.

炭素繊維束の嵩密度は0.2〜0.34g/ccであることが好ましい。0.2g/cc未満の場合は、炭素繊維束のアスペクト比および炭素繊維の平均長さが、本発明の範囲内にあるにも関わらず、樹脂残渣量が本発明の範囲外に低い状態で、炭素繊維束の収束性がなくなり、単糸が飛散して作業に支障を来たすため、取り扱い性が不良となる。また、微粉が多いため混錬時に、微粉が炭素繊維束の分散を阻害し、分散性が不良となり、十分な補強効果が得られない。一方、0.34g/ccを超える場合は、炭素繊維束のアスペクト比および炭素繊維の平均長さが、本発明の範囲内にあるにも関わらず、樹脂残渣量が本発明の範囲外に高い状態にあり、炭素繊維束の表面が硬くなり、分散性が不良となり、十分な補強効果が得られなくなる。なお、本発明における炭素繊維束の嵩密度(g/cc)は、500ccのメスシリンダーに炭素繊維束を400cc入れ、重量を計測後、メスシリンダーを約3cmの高さから10回タッピングし、容量を読み取り、炭素繊維束の重量/10回タッピングの容量で、2回の測定値を平均した値とした。   The bulk density of the carbon fiber bundle is preferably 0.2 to 0.34 g / cc. When the amount is less than 0.2 g / cc, the resin residue amount is low outside the scope of the present invention even though the aspect ratio of the carbon fiber bundle and the average length of the carbon fibers are within the scope of the present invention. Since the convergence property of the carbon fiber bundle is lost and the single yarn is scattered, the work is hindered, resulting in poor handling. Moreover, since there are many fine powders, at the time of kneading, fine powder inhibits dispersion | distribution of a carbon fiber bundle, dispersibility becomes poor, and sufficient reinforcement effect is not acquired. On the other hand, if it exceeds 0.34 g / cc, the resin residue amount is outside the scope of the present invention even though the aspect ratio of the carbon fiber bundle and the average length of the carbon fibers are within the scope of the present invention. In this state, the surface of the carbon fiber bundle becomes hard, the dispersibility becomes poor, and a sufficient reinforcing effect cannot be obtained. The bulk density (g / cc) of the carbon fiber bundle according to the present invention is such that 400 cc of the carbon fiber bundle is put into a 500 cc graduated cylinder, the weight is measured, and the graduated cylinder is tapped 10 times from a height of about 3 cm to obtain a capacity. Then, the weight of the carbon fiber bundle / the capacity of tapping 10 times was used as an average value of the two measurements.

またさらに、熱処理工程における空気雰囲気下での熱処理温度は300℃〜700℃が好ましい。空気雰囲気下熱処理温度が700℃を超えると、樹脂残渣は完全になくなり、炭素繊維のみの状態になり、炭素繊維束の収束性がなくなり、単糸が飛散して作業に支障を来たすため、取り扱い性が不良となる。また、炭素繊維束表面が傷んでしまうため、補強効果も期待出来ない。逆に熱処理温度が300℃未満になると、樹脂残渣量が多く、炭素繊維束の表面が硬くなり、分散性が不良となり、十分な補強効果が得られなくなる。   Furthermore, the heat treatment temperature in the air atmosphere in the heat treatment step is preferably 300 ° C to 700 ° C. If the heat treatment temperature in the air atmosphere exceeds 700 ° C, the resin residue will be completely lost, the carbon fiber will be in a state only, the convergence of the carbon fiber bundle will be lost, and the single yarn will be scattered and hinder the work. It becomes inferior. Moreover, since the carbon fiber bundle surface is damaged, the reinforcing effect cannot be expected. Conversely, when the heat treatment temperature is less than 300 ° C., the amount of resin residue is large, the surface of the carbon fiber bundle becomes hard, the dispersibility becomes poor, and a sufficient reinforcing effect cannot be obtained.

また、最終回の熱処理を空気雰囲気中にて実施することが好ましい。初回に窒素ガス雰囲気下700℃で2時間熱処理すると、樹脂残渣量は7〜8%となる。不活性な窒素ガス雰囲気下では、2時間を超えて、熱処理しても、樹脂残渣量は変化しない。最終の熱処理を活性な空気雰囲気下で行うことで、所望の樹脂残渣量を持ったリサイクル炭素繊維束を得ることができる。   Further, it is preferable to perform the final heat treatment in an air atmosphere. When the heat treatment is first performed at 700 ° C. for 2 hours in a nitrogen gas atmosphere, the resin residue amount becomes 7 to 8%. In an inert nitrogen gas atmosphere, the amount of resin residue does not change even after heat treatment for more than 2 hours. By performing the final heat treatment in an active air atmosphere, a recycled carbon fiber bundle having a desired resin residue amount can be obtained.

本発明においては、CFRP成形物を破砕したものを用いるが、破砕する場合は、その後の加工性を考慮すると、粉砕後の最大長は20mm以下に破砕するのが好ましい。このようなCFRPの破砕機としては、せん断式破砕機、衝撃式破砕機、切断式破砕機、圧縮式破砕機が適用できる。どの破砕機を使用しても問題なく、組み合わせることも可能である。また、破砕品の分級機としては、振動ふるい機、ジャイロ式ふるい機、遠心式ふるい機が適用できる。破砕機の破砕能力および破砕物の形態に合わせて使用するのが好ましい。   In the present invention, a product obtained by crushing a CFRP molded product is used. However, in the case of crushing, the maximum length after crushing is preferably crushed to 20 mm or less in consideration of subsequent workability. As such a CFRP crusher, a shear crusher, an impact crusher, a cutting crusher, and a compression crusher can be applied. Any crusher can be used without any problem. Moreover, a vibration sieve machine, a gyro-type sieve machine, and a centrifugal sieve machine can be applied as a classifier for crushed products. It is preferable to use according to the crushing capacity of the crusher and the form of the crushed material.

以下、本発明に係る実施例、比較例を説明する。なお、本発明はこれらの実施例、比較例によって何ら制限されるものではない。   Examples of the present invention and comparative examples will be described below. In addition, this invention is not restrict | limited at all by these Examples and a comparative example.

(炭素繊維束の分散性評価)
リサイクル炭素繊維束の分散性についてはニーダーテストにて評価した。(株)井上製作所製のディファレンシャル・ニーダーKHD−10を使用し、ベース材料(油系材料、硬いモチ状)に対して1重量%のリサイクル炭素繊維束をベース材料と併せて投入し、ニーダーにて30分混練した。混錬物を採取し、押し潰して平らな状態にし、表面の50×50mmの範囲に1mm以下の炭素繊維束が5個以下の場合に分散性が良好であると判断した。
(Dispersibility evaluation of carbon fiber bundles)
The dispersibility of the recycled carbon fiber bundle was evaluated by a kneader test. Using a differential kneader KHD-10 manufactured by Inoue Seisakusho Co., Ltd., a 1% by weight recycled carbon fiber bundle is added to the base material (oil-based material, hard sticky shape) together with the base material. And kneaded for 30 minutes. The kneaded material was sampled and crushed into a flat state, and when the number of carbon fiber bundles of 1 mm 2 or less was 5 or less in the range of 50 × 50 mm on the surface, the dispersibility was judged to be good.

(実施例1)
破砕および分級を施した廃CFRP片200gを、金属バット上に均一に広げ、内容積59リットルの、電気マッフル炉に入れて、炉内に窒素ガスを導入しながら、処理温度を所定温度(700℃)に保って、処理時間2時間で熱処理を行った。その後同様に、炉内に空気を導入しながら、処理温度を所定温度(300℃)に保って、処理時間2時間で熱処理を行うことで、表1に示すリサイクル炭素繊維束を得た。リサイクル炭素繊維束の分散性についてはニーダーテストにて評価した。
Example 1
200 g of waste CFRP pieces that have been crushed and classified are spread evenly on a metal bat and placed in an electric muffle furnace having an internal volume of 59 liters. While introducing nitrogen gas into the furnace, the processing temperature is set to a predetermined temperature (700 And the heat treatment was performed for 2 hours. Thereafter, similarly, while introducing air into the furnace, the treatment temperature was maintained at a predetermined temperature (300 ° C.), and heat treatment was performed for a treatment time of 2 hours, thereby obtaining recycled carbon fiber bundles shown in Table 1. The dispersibility of the recycled carbon fiber bundle was evaluated by a kneader test.

材料となるCFRPとしては、東レ(株)製の炭素繊維プリプレグ(“TORAYCA”プリプレグ(登録商標))P2352W−19(炭素繊維:T800SC−24K、エポキシ樹脂35重量%含有)を180℃で2時間硬化させたものを使用した。   As a CFRP as a material, carbon fiber prepreg ("TORAYCA" prepreg (registered trademark)) P2352W-19 (carbon fiber: T800SC-24K, containing 35% by weight of epoxy resin) manufactured by Toray Industries, Inc. is contained at 180 ° C. for 2 hours. A cured product was used.

ベース材料としては、炭酸カルシウム(三共精粉(株)製の「エスカロン・汎用品」4.64kg)と、ビクトリアインキ(DIC(株)製「1000ビクトリア」1.82kg)を上記ディファレンシャル・ニーダーで前もって混錬した物とした。   As base materials, calcium carbonate (“Escalon, general-purpose product” 4.64 kg manufactured by Sankyo Seimitsu Co., Ltd.) and Victoria Ink (“1000 Victoria” manufactured by DIC Corporation 1.82 kg) are used in the above differential kneader. It was kneaded in advance.

表1に示すとおり、アスペクト比を7.6に、炭素繊維の平均長さを9.5mmに、また、空気雰囲気下での熱処理温度を300℃とした結果、樹脂残渣量は5.8%になり、分散性が良好な炭素繊維束を得られることが確認された。   As shown in Table 1, as a result of setting the aspect ratio to 7.6, the average length of the carbon fibers to 9.5 mm, and the heat treatment temperature in the air atmosphere to 300 ° C., the resin residue amount is 5.8%. It was confirmed that a carbon fiber bundle with good dispersibility can be obtained.

ニーダーテストは、(株)井上製作所製のディファレンシャル・ニーダーKHD−10を使用し、ベース材料(油系材料、硬いモチ状)に対して1重量%(65g)の炭素繊維束をベース材料と併せて投入し、ニーダーにて混練した後、30分後の状態を目視で確認して評価した。混錬物30g程を採取し、押し潰して平らな状態にし、表面の50×50mmの範囲を目視で観察した結果、1mm以下の炭素繊維束は2個であり、分散性が良好であることが確認された。 For the kneader test, a differential kneader KHD-10 manufactured by Inoue Seisakusho Co., Ltd. is used, and a 1% by weight (65 g) carbon fiber bundle is combined with the base material with respect to the base material (oil-based material, hard stretch). Then, after kneading with a kneader, the state after 30 minutes was visually confirmed and evaluated. About 30 g of the kneaded material was sampled and crushed into a flat state. As a result of visually observing a 50 × 50 mm range of the surface, there were two carbon fiber bundles of 1 mm 2 or less, and the dispersibility was good. It was confirmed.

(実施例2)
空気雰囲気下熱処理温度を500℃に変更した以外は実施例1と同様の条件にて処理することで、リサイクル炭素繊維束を得た。樹脂残渣量を測定したところ4.1%であり、ニーダーテストの結果、1mm以下の炭素繊維束は1個であり、分散性は良好であることが確認された。
(Example 2)
A recycled carbon fiber bundle was obtained by processing under the same conditions as in Example 1 except that the heat treatment temperature in the air atmosphere was changed to 500 ° C. The amount of resin residue was measured and found to be 4.1%. As a result of the kneader test, it was confirmed that the number of carbon fiber bundles of 1 mm 2 or less was one and the dispersibility was good.

(実施例3)
空気雰囲気下熱処理温度を700℃に変更した以外は実施例1と同様の条件にて処理することで、リサイクル炭素繊維束を得た。樹脂残渣量を測定したところ0.3%であり、ニーダーテストの結果、1mm以下の炭素繊維束は0個であり、分散性は良好であることが確認された。
(Example 3)
A recycled carbon fiber bundle was obtained by processing under the same conditions as in Example 1 except that the heat treatment temperature in the air atmosphere was changed to 700 ° C. When the amount of resin residue was measured, it was 0.3%. As a result of the kneader test, it was confirmed that the number of carbon fiber bundles of 1 mm 2 or less was 0 and the dispersibility was good.

(比較例1)
空気雰囲気下熱処理温度を200℃に変更した以外は実施例2と同様の条件にて処理することで、リサイクル炭素繊維束を得た。樹脂残渣量を測定したところ6.5%であり、ニーダーテストの結果、1mm以下の炭素繊維束は7個であり、分散性が不良であることが確認された。
(Comparative Example 1)
A recycled carbon fiber bundle was obtained by processing under the same conditions as in Example 2 except that the heat treatment temperature in the air atmosphere was changed to 200 ° C. When the amount of resin residue was measured, it was 6.5%, and as a result of a kneader test, there were 7 carbon fiber bundles of 1 mm 2 or less, and it was confirmed that the dispersibility was poor.

(比較例2)
空気雰囲気下熱処理温度を800℃に変更した以外は実施例2と同様の条件にて処理することで、リサイクル炭素繊維束を得た。樹脂残渣量を測定したところ−0.1%であり、ニーダーテストの結果、1mm以下の炭素繊維束は7個であり、分散性が不良であることが確認された。
(Comparative Example 2)
A recycled carbon fiber bundle was obtained by processing under the same conditions as in Example 2 except that the heat treatment temperature in the air atmosphere was changed to 800 ° C. When the amount of resin residue was measured, it was -0.1%. As a result of the kneader test, there were seven carbon fiber bundles of 1 mm 2 or less, and it was confirmed that the dispersibility was poor.

Figure 2017002125
Figure 2017002125

本発明によれば、CFRP廃材のマトリックス樹脂を熱分解し、所望の炭素繊維束を取り出し、補強効果に優れ、マトリックス樹脂への分散性にも優れる、リサイクル炭素繊維束を提供することが出来る。   According to the present invention, it is possible to provide a recycled carbon fiber bundle which is obtained by thermally decomposing a CFRP waste matrix resin, taking out a desired carbon fiber bundle, having an excellent reinforcing effect and excellent dispersibility in the matrix resin.

10 リサイクル炭素繊維束
L リサイクル炭素繊維束の長さ
W リサイクル炭素繊維束の幅
10 Recycled carbon fiber bundle L Length of recycled carbon fiber bundle W Width of recycled carbon fiber bundle

Claims (8)

CFRPのマトリックス樹脂を熱分解して得られる炭素繊維束であって、樹脂残渣重量が炭素繊維束の0.1〜6%であることを特徴とする、リサイクル炭素繊維束。 A carbon fiber bundle obtained by pyrolyzing a CFRP matrix resin, wherein the resin residue weight is 0.1 to 6% of the carbon fiber bundle. 炭素繊維束のアスペクト比(炭素繊維束の長さ/炭素繊維束の幅)が1〜10であることを特徴とする、請求項1に記載の炭素繊維束。 The carbon fiber bundle according to claim 1, wherein the aspect ratio of the carbon fiber bundle (the length of the carbon fiber bundle / the width of the carbon fiber bundle) is 1 to 10. 該炭素繊維束に含まれる炭素繊維の平均長さが1〜10mmであることを特徴とする、請求項1または2に記載の炭素繊維束。 The carbon fiber bundle according to claim 1 or 2, wherein an average length of carbon fibers contained in the carbon fiber bundle is 1 to 10 mm. 炭素繊維束の嵩密度が0.2〜0.34g/ccであることを特徴とする、請求項1〜3のいずれかに記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 3, wherein the carbon fiber bundle has a bulk density of 0.2 to 0.34 g / cc. 熱処理する炭素繊維複合材料が廃材であることを特徴とする請求項1〜4のいずれかに記載の炭素繊維束。 The carbon fiber bundle according to any one of claims 1 to 4, wherein the carbon fiber composite material to be heat-treated is a waste material. 熱処理工程における温度が300〜700℃である事を特徴とする、請求項1〜5のいずれかに記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to any one of claims 1 to 5, wherein the temperature in the heat treatment step is 300 to 700 ° C. 複数回の熱処理によって炭素繊維複合材料のマトリクス樹脂を熱分解し、樹脂残渣重量を炭素繊維束の0.1〜6%に制御することを特徴とする、炭素繊維束の製造方法。 A method for producing a carbon fiber bundle, wherein the matrix resin of the carbon fiber composite material is thermally decomposed by a plurality of heat treatments, and the resin residue weight is controlled to 0.1 to 6% of the carbon fiber bundle. 最終回の熱処理を空気雰囲気中にて実施することを特徴とする、請求項7に記載の炭素繊維束の製造方法。 The method for producing a carbon fiber bundle according to claim 7, wherein the final heat treatment is performed in an air atmosphere.
JP2015114774A 2015-06-05 2015-06-05 Recycled carbon fiber bundle Pending JP2017002125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015114774A JP2017002125A (en) 2015-06-05 2015-06-05 Recycled carbon fiber bundle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015114774A JP2017002125A (en) 2015-06-05 2015-06-05 Recycled carbon fiber bundle

Publications (1)

Publication Number Publication Date
JP2017002125A true JP2017002125A (en) 2017-01-05

Family

ID=57751343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015114774A Pending JP2017002125A (en) 2015-06-05 2015-06-05 Recycled carbon fiber bundle

Country Status (1)

Country Link
JP (1) JP2017002125A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202810A (en) * 2017-06-08 2018-12-27 富士加飾株式会社 Recycled carbon fiber bundles and manufacturing method thereof
JP2019127040A (en) * 2018-01-25 2019-08-01 東レ株式会社 Method of manufacturing recycled carbon fibers
WO2022124332A1 (en) * 2020-12-09 2022-06-16 三菱エンジニアリングプラスチックス株式会社 Resin composition, pellet, molded article and method for producing resin composition
WO2024004748A1 (en) * 2022-06-30 2024-01-04 東レ株式会社 Fiber-reinforced resin molding material and molded article
WO2024004749A1 (en) * 2022-06-30 2024-01-04 東レ株式会社 Member for electronic device housing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323009A (en) * 1991-04-23 1992-11-12 Toray Ind Inc Regenerating and reusing method for carbon fiber reinforced resin formed body
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH0733904A (en) * 1993-06-28 1995-02-03 Toray Ind Inc Processing of carbon fiber reinforced plastic and production of reclaimed carbon fiber
JPH07118440A (en) * 1993-10-25 1995-05-09 Toray Ind Inc Carbon fiber block and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04323009A (en) * 1991-04-23 1992-11-12 Toray Ind Inc Regenerating and reusing method for carbon fiber reinforced resin formed body
JPH06298993A (en) * 1993-04-15 1994-10-25 Kobe Steel Ltd Method for carrying out thermal decomposition treatment of carbon fiber reinforced composite material
JPH0733904A (en) * 1993-06-28 1995-02-03 Toray Ind Inc Processing of carbon fiber reinforced plastic and production of reclaimed carbon fiber
JPH07118440A (en) * 1993-10-25 1995-05-09 Toray Ind Inc Carbon fiber block and its production

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018202810A (en) * 2017-06-08 2018-12-27 富士加飾株式会社 Recycled carbon fiber bundles and manufacturing method thereof
JP2019127040A (en) * 2018-01-25 2019-08-01 東レ株式会社 Method of manufacturing recycled carbon fibers
JP7326752B2 (en) 2018-01-25 2023-08-16 東レ株式会社 Manufacturing method of recycled carbon fiber
WO2022124332A1 (en) * 2020-12-09 2022-06-16 三菱エンジニアリングプラスチックス株式会社 Resin composition, pellet, molded article and method for producing resin composition
JPWO2022124332A1 (en) * 2020-12-09 2022-06-16
JP7212816B2 (en) 2020-12-09 2023-01-25 三菱エンジニアリングプラスチックス株式会社 Resin composition, pellets, molded article, and method for producing resin composition
CN116568744A (en) * 2020-12-09 2023-08-08 三菱化学株式会社 Resin composition, pellet, molded article, and method for producing resin composition
WO2024004748A1 (en) * 2022-06-30 2024-01-04 東レ株式会社 Fiber-reinforced resin molding material and molded article
WO2024004749A1 (en) * 2022-06-30 2024-01-04 東レ株式会社 Member for electronic device housing

Similar Documents

Publication Publication Date Title
JP2017002125A (en) Recycled carbon fiber bundle
US11359060B2 (en) Method of producing reclaimed carbon fiber bundles, reclaimed carbon fibers, or reclaimed milled carbon fibers, device for producing reclaimed carbon fiber bundles, method of producing carbon fiber reinforced resin, and reclaimed carbon fiber bundles
US20200002619A1 (en) Method for recovering carbon fibers from composite material waste
CA2958409C (en) Titanium-based compositions, methods of manufacture and uses thereof
CN107522196A (en) A kind of superhard isostatic pressing formed graphite and preparation method thereof
JP2005307121A (en) Reclaimed carbon fiber and method for recovering the same
EP0636428A1 (en) Process for the recycling of carbon fiber composites
JP3215783U (en) Recycled carbon fiber bundles
JP2016108460A (en) Fuel, method for producing the fuel and combustion treatment method of waste containing carbon fiber
JP3468690B2 (en) Carbon fiber production method
JP3212543B2 (en) Method for producing short carbon fiber
JPH04323009A (en) Regenerating and reusing method for carbon fiber reinforced resin formed body
Ismail et al. Effect of Oil Palm Ash on the Properties of Polypropylene/Recycled Natural Rubber Gloves/Oil Palm Ash Composites.
Kumar et al. Multi-stage primary and secondary recycled PLA composite matrix for 3D printing applications
JP3535972B2 (en) Highly conductive carbon fiber and method for producing the same
JP5809019B2 (en) Short carbon fiber, method for producing short carbon fiber, short carbon fiber reinforced resin composition, and short carbon fiber reinforced cement composition
Mansour et al. Investigating the compressive strength of CFRP Pre-Preg Scrap from aerospace industries: Compression molding
Lodha et al. Sustainable 3D printing with recycled materials: a review
DE102014225604B4 (en) Recycling process of carbon fibers and carbon fiber reinforced plastics
JP2021133687A (en) Method of manufacturing recycled carbon fiber
JP6212772B2 (en) Reproduction method of spherical aggregate in additive manufacturing material, reproduction additive manufacturing material, and additive manufacturing method
JP2021138077A (en) Recycled carbon fiber bundle
JP3799344B2 (en) Thermoplastic resin composition
JP3580689B2 (en) Thermoplastic resin composition
EP2864061A1 (en) Method for producing secondary carbon fibers and/or glass fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191126