JP2015017315A - Surface treatment apparatus and manufacturing method of surface-treated substrate - Google Patents

Surface treatment apparatus and manufacturing method of surface-treated substrate Download PDF

Info

Publication number
JP2015017315A
JP2015017315A JP2013147159A JP2013147159A JP2015017315A JP 2015017315 A JP2015017315 A JP 2015017315A JP 2013147159 A JP2013147159 A JP 2013147159A JP 2013147159 A JP2013147159 A JP 2013147159A JP 2015017315 A JP2015017315 A JP 2015017315A
Authority
JP
Japan
Prior art keywords
substrate
treatment
plating solution
surface treatment
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147159A
Other languages
Japanese (ja)
Inventor
崇 中根
Takashi Nakane
崇 中根
良寛 西尾
Yoshihiro Nishio
良寛 西尾
義樹 河合
Yoshiki Kawai
義樹 河合
晃禎 久田
Akitada Hisada
晃禎 久田
高野 尾関
takano Ozeki
高野 尾関
充貴 内藤
Mitsutaka Naito
充貴 内藤
豊哉 志知
Yutaka Shichi
豊哉 志知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2013147159A priority Critical patent/JP2015017315A/en
Priority to US14/331,319 priority patent/US20150017328A1/en
Priority to CN201410337273.5A priority patent/CN104302107A/en
Publication of JP2015017315A publication Critical patent/JP2015017315A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0278Arrangement or mounting of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/04Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape in flat form, e.g. fan-like, sheet-like
    • B05B1/044Slits, i.e. narrow openings defined by two straight and parallel lips; Elongated outlets for producing very wide discharges, e.g. fluid curtains
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/02Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work
    • B05B13/0221Means for supporting work; Arrangement or mounting of spray heads; Adaptation or arrangement of means for feeding work characterised by the means for moving or conveying the objects or other work, e.g. conveyor belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B13/00Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00
    • B05B13/06Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies
    • B05B13/069Machines or plants for applying liquids or other fluent materials to surfaces of objects or other work by spraying, not covered by groups B05B1/00 - B05B11/00 specially designed for treating the inside of hollow bodies the hollow bodies having a closed end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/60Arrangements for mounting, supporting or holding spraying apparatus
    • B05B15/68Arrangements for adjusting the position of spray heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/40Construction elements specially adapted therefor, e.g. floors, walls or ceilings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/90Spray booths comprising conveying means for moving objects or other work to be sprayed in and out of the booth, e.g. through the booth
    • B05B16/95Spray booths comprising conveying means for moving objects or other work to be sprayed in and out of the booth, e.g. through the booth the objects or other work to be sprayed lying on, or being held above the conveying means, i.e. not hanging from the conveying means

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface treatment apparatus which allows satisfactory flowing process liquid on an object surface to be surface-treated in a substrate, and a manufacturing method of a surface-treated substrate.SOLUTION: An surface treatment apparatus according to the present invention is a surface treatment apparatus which transports a substrate in an in-plane direction and supplies process liquid to the surface to perform a surface treatment. The surface treatment apparatus includes: a treatment tank in which the substrate passes through and a surface treatment is performed to the substrate; and an injection part which is provided inside the treatment tank and injects the process liquid to the surface of the substrate from an injection port. Further, an injection direction of the process liquid in the injection port of the injection part is either parallel to or slant to a plane surface of the substrate.

Description

本発明は,基板の表面に表面処理を施す表面処理装置,および,基板の表面に表面処理を施してなる表面処理基板の製造方法に関する。さらに詳細には,処理液を基板の表面に噴射することにより基板の表面処理を行う表面処理装置および表面処理基板の製造方法に関する。   The present invention relates to a surface treatment apparatus for performing a surface treatment on a surface of a substrate, and a method for manufacturing a surface-treated substrate obtained by performing a surface treatment on a surface of a substrate. More specifically, the present invention relates to a surface treatment apparatus that performs surface treatment of a substrate by spraying a treatment liquid onto the surface of the substrate and a method for manufacturing the surface treatment substrate.

従来より,多層構造の配線板は,配線パターンが形成された導体層を,絶縁層を介して複数積層することにより製造される。また,配線板の製造工程では,その製造過程における基板材に対して,デスミア処理やソフトエッチング,めっき処理などの種々の表面処理が行われる。基板の表面処理は,例えば,基板をその搬送経路に沿って配置された複数の搬送ローラー対によって搬送しつつ,基板における積層方向の両端である主面に対して,処理液を噴射することにより行われる(特許文献1)。   Conventionally, a multilayer wiring board is manufactured by laminating a plurality of conductor layers on which a wiring pattern is formed via an insulating layer. In the manufacturing process of the wiring board, various surface treatments such as desmearing, soft etching, and plating are performed on the substrate material in the manufacturing process. The surface treatment of the substrate is performed, for example, by spraying a treatment liquid onto the main surfaces at both ends of the substrate in the stacking direction while the substrate is transported by a plurality of transport roller pairs arranged along the transport path. (Patent Document 1).

特開2006−32394号公報JP 2006-32394 A

しかしながら,上記の従来技術においては,以下のような問題があった。まず,処理液を適切に作用させるためには,処理液を表面処理の対象面に良好に流動させることが重要である。一般的に,処理液が滞留した箇所では,処理液の成分に偏りが生じてしまい,表面処理の速度が低下しがちだからである。また,表面処理が施される際の基板には,ドリル加工やレーザー加工によって空けられた穴や,その穴にめっき処理を施してなるビアが形成されていることがある。ビアは,穴の内壁面に形成されためっき層により,異なる導体層の配線パターン同士を導通するためのものである。   However, the above prior art has the following problems. First, in order for the treatment liquid to act appropriately, it is important to cause the treatment liquid to flow well on the target surface of the surface treatment. This is because, in general, in the portion where the treatment liquid stays, the components of the treatment liquid are biased, and the surface treatment speed tends to decrease. In addition, a hole formed by drilling or laser processing or a via formed by plating the hole may be formed on the substrate when the surface treatment is performed. The via is used to connect the wiring patterns of different conductor layers with a plating layer formed on the inner wall surface of the hole.

そして,従来技術では,基板の主面に対して垂直に処理液を噴射している。このため,基板の主面に沿った処理液の流れが発生しにくく,処理液が滞留しやすいという問題があった。また,処理液の滞留は特に,有底穴の内部において生じやすい。例えば,めっき処理を施すための処理液が穴の内部で滞留した場合,その有底穴の内壁面などに適切にめっきを施すことができない。すなわち,有底穴の内部でめっきを施すための処理液が滞留してしまった場合には,完成後の配線板における導通不良の原因となるおそれがあった。   In the prior art, the processing liquid is jetted perpendicularly to the main surface of the substrate. For this reason, there is a problem that the flow of the processing liquid along the main surface of the substrate hardly occurs and the processing liquid tends to stay. In addition, the retention of the treatment liquid is particularly likely to occur inside the bottomed hole. For example, when the treatment liquid for performing the plating treatment stays inside the hole, the inner wall surface of the bottomed hole cannot be appropriately plated. In other words, if the processing solution for plating is retained inside the bottomed hole, there is a risk of causing a conduction failure in the completed wiring board.

またこのような問題は,デスミア処理やソフトエッチングなどの処理液を噴射することにより行われるその他の化成処理においても共通である。すなわち,例えば,有底穴の内部で処理液が滞留し,その部分において処理液が適切に作用しないことにより,配線板に不良が発生してしまうおそれがあった。   Such a problem is also common to other chemical conversion processes performed by spraying a processing liquid such as desmear process or soft etching. That is, for example, the processing liquid stays inside the bottomed hole, and the processing liquid does not act appropriately at that portion, so that there is a possibility that the wiring board may be defective.

本発明は,前記した従来の技術が有する問題点の解決を目的としてなされたものである。すなわちその課題とするところは,基板における表面処理の対象面上に,処理液を良好に流動させることのできる表面処理装置および表面処理基板の製造方法を提供することである。   The present invention has been made for the purpose of solving the problems of the prior art described above. That is, the problem is to provide a surface treatment apparatus and a method for producing a surface-treated substrate that can cause the treatment liquid to flow well on the target surface of the substrate.

この課題の解決を目的としてなされた本発明の表面処理装置は,基板をその板面内方向に搬送しつつその表面に処理液を供給して表面処理を施す表面処理装置であって,内部に基板を通すとともにその基板への表面処理が内部で行われる処理槽と,処理槽の内部に設けられ,基板の表面上へ噴射口より処理液を噴射する噴射部とを有し,噴射部の噴射口における処理液の噴射方向が,基板の板面に対して平行または斜めであることを特徴とする表面処理装置である。   The surface treatment apparatus of the present invention, which has been made for the purpose of solving this problem, is a surface treatment apparatus that supplies a treatment liquid to the surface of the substrate while conveying the substrate in the direction of the plate surface, and performs surface treatment. A treatment tank in which the substrate is passed and surface treatment is performed on the substrate inside; and an injection unit that is provided inside the treatment tank and injects the treatment liquid from the injection port onto the surface of the substrate. The surface treatment apparatus is characterized in that the treatment liquid is ejected in a direction parallel to or oblique to the substrate surface of the substrate.

本発明の表面処理装置の噴射部は,基板の板面に対して斜めまたは平行に処理液を噴射することにより,基板の板面上に流速の速い処理液の流れを発生させることができる。よって,基板の表面処理の対象面である板面上に処理液を良好に流動させることができる。さらには,基板の板面上に流速の速い処理液の流れを発生させることにより,基板の有底穴や貫通孔の内部にも,処理液を良好に流動させることができる。そして,基板の表面に短時間で良好な表面処理を施すことができることにより,基板の生産性の向上,表面処理装置の小型化,処理液の劣化の抑制などを図ることができる。また,その表面処理装置によって表面処理を施して得られた表面処理基板により,品質の高い配線板を製造することができる。   The spray unit of the surface processing apparatus of the present invention can generate a flow of a processing liquid having a high flow velocity on the plate surface of the substrate by spraying the processing solution obliquely or parallel to the plate surface of the substrate. Therefore, the processing liquid can be favorably flowed on the plate surface that is the target surface of the substrate surface treatment. Furthermore, by generating a flow of the processing liquid having a high flow velocity on the plate surface of the substrate, the processing liquid can be favorably flowed into the bottomed hole and the through hole of the substrate. Since the surface of the substrate can be satisfactorily surface-treated in a short time, the productivity of the substrate can be improved, the surface treatment apparatus can be downsized, and the deterioration of the treatment liquid can be suppressed. Moreover, a high quality wiring board can be manufactured with the surface treatment board | substrate obtained by surface-treating with the surface treatment apparatus.

また上記に記載の表面処理装置において,噴射部の噴射口における処理液の噴射方向の基板の板面に対する傾斜角が,15°以上45°以下の範囲内であることが好ましい。基板の表面処理の対象面上に,処理液を良好に流動させることができるからである。   Moreover, in the surface treatment apparatus described above, it is preferable that the inclination angle of the treatment liquid ejection direction at the ejection port of the ejection unit with respect to the plate surface of the substrate is in the range of 15 ° to 45 °. This is because the processing liquid can be flowed satisfactorily on the target surface of the substrate surface treatment.

また上記に記載の表面処理装置において,噴射部の噴射口における処理液の噴射方向が,基板の板面に対する垂直な方向から見たときに基板の搬送方向の上流側から下流側へ向かう向きであってもよい。   Further, in the surface treatment apparatus described above, the injection direction of the processing liquid at the injection port of the injection unit is directed from the upstream side to the downstream side in the substrate transport direction when viewed from a direction perpendicular to the plate surface of the substrate. There may be.

また本発明は,基板をその板面内方向に搬送しつつその表面に処理液を供給して表面処理を施す表面処理基板の製造方法であって,基板を処理槽の内部に通しつつその基板の表面上への処理液を噴射するとともに,処理液の噴射口における処理液の噴射方向を,基板の板面に対して平行または斜めとすることを特徴とする表面処理基板の製造方法にもおよぶ。   The present invention also relates to a method of manufacturing a surface-treated substrate for carrying out a surface treatment by supplying a treatment liquid to the surface of the substrate while transporting the substrate in the in-plane direction of the substrate. And a method for producing a surface-treated substrate, wherein the treatment liquid is ejected onto the surface of the substrate and the treatment liquid is ejected in a direction parallel to or oblique to the plate surface of the substrate. It extends.

また上記に記載の表面処理基板の製造方法において,処理液の噴射口における処理液の噴射方向の基板の板面に対する傾斜角を,15°以上45°以下の範囲内とすることが好ましい。   In the method for manufacturing a surface-treated substrate described above, it is preferable that an inclination angle of the treatment liquid ejection direction at the treatment liquid ejection port with respect to the plate surface of the substrate is in a range of 15 ° to 45 °.

また上記に記載の表面処理基板の製造方法において,処理液の噴射口における処理液の噴射方向を,基板の板面に対する垂直な方向から見たときに基板の搬送方向の上流側から下流側へ向かう向きとしてもよい。   Further, in the method for manufacturing a surface-treated substrate described above, when the treatment liquid spray direction at the treatment liquid spray port is viewed from a direction perpendicular to the plate surface of the substrate, from the upstream side to the downstream side in the substrate transport direction. It may be the direction to go.

また上記に記載の表面処理基板の製造方法において,有底穴が表面に形成されている基板を表面処理の対象とし,処理液として,基板の有底穴の内部の表面に表面処理を施すものを用いることとしてもよい。本発明により,処理液の滞留が生じやすい基板の有底穴の内部についても,処理液を良好に流動させることができるからである。   Further, in the method for manufacturing a surface-treated substrate described above, a substrate having a bottomed hole formed on the surface is subjected to surface treatment, and the surface treatment is performed on the surface inside the bottomed hole of the substrate as a treatment liquid. It is good also as using. This is because, according to the present invention, it is possible to cause the treatment liquid to flow well even inside the bottomed hole of the substrate where the retention of the treatment liquid is likely to occur.

本発明によれば,基板における表面処理の対象面上に,処理液を良好に流動させることのできる表面処理装置および表面処理基板の製造方法が提供されている。   ADVANTAGE OF THE INVENTION According to this invention, the surface treatment apparatus and the manufacturing method of a surface treatment board | substrate which can make a process liquid flow favorably on the surface of the surface treatment in a board | substrate are provided.

実施の形態に係る表面処理装置の概略構成図である。It is a schematic block diagram of the surface treatment apparatus which concerns on embodiment. 同表面処理装置の噴射ノズルを説明するための図である。It is a figure for demonstrating the injection nozzle of the surface treatment apparatus. 基板の主面に対して垂直にめっき液が噴射されている際の,有底穴の内部のめっき液の流れを説明するための図である。It is a figure for demonstrating the flow of the plating solution inside a bottomed hole when the plating solution is injected perpendicularly | vertically with respect to the main surface of a board | substrate. 基板の主面に対して斜めにめっき液が噴射されている際の,有底穴の内部のめっき液の流れを説明するための図である。It is a figure for demonstrating the flow of the plating solution inside a bottomed hole when the plating solution is injected diagonally with respect to the main surface of a board | substrate. 従来の噴射ノズルを説明するための図である。It is a figure for demonstrating the conventional injection nozzle. 本形態の噴射ノズルおよび従来の噴射ノズルについて,めっきの析出速度を示す図である。It is a figure which shows the deposition rate of plating about the injection nozzle of this form, and the conventional injection nozzle.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態に係る表面処理装置の概略構成図を図1に示す。本形態の表面処理装置1は,処理槽10の内部にめっき液11を備えるめっき処理装置である。また,表面処理装置1は,基板90の表面に,めっき液11によって化学銅めっきを施すものである。めっき液11としては,従来より化学銅めっきに使用されているものを用いることができる。基板90は,配線パターンが形成された導体層を,絶縁層を介しつつ複数積層してなる積層基板である。図1には,その積層方向の両端である基板90の主面を,主面91,92として示している。なお,基板90は最終的には,主面91,92の上にさらに上層が形成されることなどにより,電子機器などに搭載される配線板となるものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 shows a schematic configuration diagram of a surface treatment apparatus according to the present embodiment. The surface treatment apparatus 1 according to this embodiment is a plating treatment apparatus including a plating solution 11 inside a treatment tank 10. Further, the surface treatment apparatus 1 performs chemical copper plating on the surface of the substrate 90 with the plating solution 11. As the plating solution 11, those conventionally used for chemical copper plating can be used. The substrate 90 is a laminated substrate in which a plurality of conductor layers on which wiring patterns are formed are laminated with an insulating layer interposed therebetween. In FIG. 1, main surfaces of the substrate 90 which are both ends in the stacking direction are shown as main surfaces 91 and 92. The substrate 90 eventually becomes a wiring board mounted on an electronic device or the like by further forming an upper layer on the main surfaces 91 and 92.

また,処理槽10の内部には,基板90を,その搬送経路80に沿って図1中左から右に向かって搬送するためのローラー対である搬送ローラー20が複数配置されている。複数の搬送ローラー20は,そのローラー対の対面位置において,基板90の搬送経路80に沿って配置されている。搬送ローラー20は,基板90を,その主面91,92において挟み込みつつ回転することにより搬送するものである。さらに,表面処理装置1は,処理槽10内における搬送経路80の上下に,複数の噴射ノズル30を有している。噴射ノズル30は,搬送経路80を搬送される基板90の主面91,92上にめっき液11を噴射するためのものである。そのため,噴射ノズル30は,基板90の主面91,92と対面する箇所に,めっき液11を噴射するための噴射口31を有している。   In addition, a plurality of transport rollers 20 which are roller pairs for transporting the substrate 90 from the left to the right in FIG. 1 along the transport path 80 are disposed inside the processing tank 10. The plurality of transport rollers 20 are arranged along the transport path 80 of the substrate 90 at the facing position of the roller pair. The transport roller 20 transports the substrate 90 by rotating while sandwiching the main surfaces 91 and 92 therebetween. Furthermore, the surface treatment apparatus 1 has a plurality of injection nozzles 30 above and below a conveyance path 80 in the treatment tank 10. The spray nozzle 30 is for spraying the plating solution 11 onto the main surfaces 91 and 92 of the substrate 90 transported through the transport path 80. Therefore, the injection nozzle 30 has an injection port 31 for injecting the plating solution 11 at a location facing the main surfaces 91 and 92 of the substrate 90.

また,表面処理装置1は,図1に示すように,処理槽10と噴射ノズル30とを接続する流路41を有している。流路41の途中には,ポンプ40が接続されている。ポンプ40は,処理槽10から流路41にめっき液11を吸い込み,これを噴射ノズル30に向かって送り出すためのものである。めっき液11は,このポンプ40によって流路41に送り出されることにより,噴射ノズル30の噴射口31より噴射される。   Moreover, the surface treatment apparatus 1 has the flow path 41 which connects the processing tank 10 and the injection nozzle 30, as shown in FIG. A pump 40 is connected in the middle of the flow path 41. The pump 40 sucks the plating solution 11 from the processing tank 10 into the flow path 41 and sends it out toward the spray nozzle 30. The plating solution 11 is ejected from the ejection port 31 of the ejection nozzle 30 by being sent out to the flow path 41 by the pump 40.

図2は,図1に示す噴射ノズル30のうち,基板90の主面91側にめっき液11を噴射する噴射ノズル30の拡大図である。また,図2においては,噴射ノズル30の一部断面により,噴射口31を示している。本形態における噴射口31は,基板90の搬送方向と直行する幅方向(図1,2において奥行き方向)について連続するスリット状の形をしている。さらに,基板90の幅方向における噴射口31の長さは,基板90の長さと同じくらいである。また,図2には,噴射ノズル30より噴射されためっき液11の最も流速の速い流れの方向である噴射方向Aを矢印により示している。図2に矢印Aで示すように,本形態の噴射ノズル30は,めっき液11を,基板90の主面91に対して垂直ではなく,主面91に対して斜めに噴射するものである。すなわち,噴射ノズル30の噴射口31より噴射されるめっき液11の噴射方向Aと,基板90の主面91との角度である噴射角度θは,鋭角である。さらに,噴射ノズル30のめっき液11の噴射方向Aは,基板90の搬送方向については上流側から下流側の向きである。加えて,本形態における噴射方向Aは,主面91と垂直な方向から見たときには,基板90の搬送方向と平行である。   FIG. 2 is an enlarged view of the injection nozzle 30 that injects the plating solution 11 onto the main surface 91 side of the substrate 90 in the injection nozzle 30 shown in FIG. 1. In FIG. 2, the injection port 31 is shown by a partial cross section of the injection nozzle 30. The ejection port 31 in this embodiment has a slit-like shape that is continuous in the width direction (the depth direction in FIGS. 1 and 2) perpendicular to the transport direction of the substrate 90. Further, the length of the ejection port 31 in the width direction of the substrate 90 is about the same as the length of the substrate 90. Further, in FIG. 2, an injection direction A that is the direction of the flow of the plating solution 11 sprayed from the spray nozzle 30 with the fastest flow velocity is indicated by an arrow. As shown by an arrow A in FIG. 2, the spray nozzle 30 of the present embodiment sprays the plating solution 11 obliquely with respect to the main surface 91 instead of being perpendicular to the main surface 91 of the substrate 90. That is, the injection angle θ, which is the angle between the injection direction A of the plating solution 11 injected from the injection port 31 of the injection nozzle 30 and the main surface 91 of the substrate 90, is an acute angle. Further, the spraying direction A of the plating solution 11 from the spray nozzle 30 is from the upstream side to the downstream side in the transport direction of the substrate 90. In addition, the ejection direction A in the present embodiment is parallel to the transport direction of the substrate 90 when viewed from a direction perpendicular to the main surface 91.

また,図2に示すように,基板90には随所に,厚さ方向に空けられた有底穴93および貫通孔94が形成されている。有底穴93および貫通孔94は,例えばレーザー加工やドリル加工によって空けられたものである。有底穴93は,基板90の主面91にのみ開口しており,基板90を貫通していない。貫通孔94は,基板90を貫通しており,その主面91と主面92とのいずれにも開口している。前述したように,基板90は,導体層と絶縁層とを複数積層してなるものである。そして,有底穴93および貫通孔94はいずれも,この後,内壁面などにめっき層が形成されることにより,基板90における異なる導体層の配線パターン同士を導通するためのビアとなるものである。   As shown in FIG. 2, the substrate 90 is formed with a bottomed hole 93 and a through hole 94 that are vacated in the thickness direction everywhere. The bottomed hole 93 and the through hole 94 are formed by, for example, laser processing or drilling. The bottomed hole 93 opens only on the main surface 91 of the substrate 90 and does not penetrate the substrate 90. The through hole 94 passes through the substrate 90 and opens on both the main surface 91 and the main surface 92 thereof. As described above, the substrate 90 is formed by laminating a plurality of conductor layers and insulating layers. Then, both the bottomed hole 93 and the through hole 94 serve as vias for electrically connecting the wiring patterns of different conductor layers on the substrate 90 by forming a plating layer on the inner wall surface or the like thereafter. is there.

表面処理装置1は,基板90の主面91,92,さらに有底穴93および貫通孔94の内壁面などにもめっき処理を施すものである。そして,本形態の表面処理装置1は,噴射ノズル30のめっき液11の噴射方向Aが,基板90の主面91に対して傾斜していることにより,基板90の主面91上に,均一で十分な厚さのめっき層を,短時間で形成することができるものである。さらには,有底穴93および貫通孔94の内壁面などにも,均一で十分な厚さのめっき層を,短時間で形成することができる。以下,本形態の噴射ノズル30によってこのような効果を得ることができる理由について詳細に説明する。   The surface treatment apparatus 1 performs plating treatment on the main surfaces 91 and 92 of the substrate 90, the inner wall surfaces of the bottomed holes 93 and the through holes 94, and the like. And the surface treatment apparatus 1 of this form is uniform on the main surface 91 of the board | substrate 90 because the injection direction A of the plating solution 11 of the injection nozzle 30 inclines with respect to the main surface 91 of the board | substrate 90. Thus, a plating layer having a sufficient thickness can be formed in a short time. Furthermore, a uniform and sufficient plating layer can be formed in a short time on the inner wall surface of the bottomed hole 93 and the through hole 94. Hereinafter, the reason why such an effect can be obtained by the injection nozzle 30 of the present embodiment will be described in detail.

まず,基板90の主面91上におけるめっき液11の流れと,その主面91に開口している有底穴93の内部におけるめっき液11の流れとの関係をシミュレーションした結果について説明する。図3は,基板90の主面91に垂直にめっき液11を噴射させた場合の,その噴射位置における有底穴93の内部のめっき液11の流れおよび流速について示した図である。すなわち,図3は,噴射角度θを90°とし,めっき液11を有底穴93の開口部の真上から噴射させた場合のものである。   First, the result of simulating the relationship between the flow of the plating solution 11 on the main surface 91 of the substrate 90 and the flow of the plating solution 11 inside the bottomed hole 93 opened on the main surface 91 will be described. FIG. 3 is a view showing the flow and flow velocity of the plating solution 11 inside the bottomed hole 93 at the injection position when the plating solution 11 is injected perpendicularly to the main surface 91 of the substrate 90. That is, FIG. 3 shows a case where the spray angle θ is 90 ° and the plating solution 11 is sprayed from right above the opening of the bottomed hole 93.

そして,図3に示すように,有底穴93の内部では,その底面に近いほどめっき液11の流れが遅く,めっき液11が滞留していることがわかる。これは,主面91に対して垂直に噴射されためっき液11の流れと,有底穴93の内部からその外部へ流れ出るめっき液11の流れとが,開口部付近で衝突していることによるものであると考えられる。このため,めっき液11が滞留した有底穴93の内壁面や底面には,適切にめっきが施されないおそれがある。滞留しているめっき液11の成分に偏りが生じてしまうことにより,良好に流動しているめっき液11に接触している面よりもめっきの析出速度が低下してしまうからである。なお,図3に示すように,主面91に垂直に噴射されためっき液11の流れは,基板90の主面91上では,ある程度良好である。つまり,基板90の主面91に沿ってめっき液11が流れている。   Then, as shown in FIG. 3, it can be seen that the closer to the bottom surface of the bottomed hole 93, the slower the flow of the plating solution 11, and the plating solution 11 stays. This is because the flow of the plating solution 11 sprayed perpendicularly to the main surface 91 and the flow of the plating solution 11 flowing out from the inside of the bottomed hole 93 collide in the vicinity of the opening. It is thought to be a thing. For this reason, there is a possibility that the inner wall surface and the bottom surface of the bottomed hole 93 in which the plating solution 11 stays are not properly plated. This is because the depositing rate of the plating is lower than that of the surface in contact with the plating solution 11 that is flowing favorably because the components of the remaining plating solution 11 are biased. As shown in FIG. 3, the flow of the plating solution 11 injected perpendicularly to the main surface 91 is good to some extent on the main surface 91 of the substrate 90. That is, the plating solution 11 flows along the main surface 91 of the substrate 90.

一方,図4は,基板90の主面91に対するめっき液11の噴射角度θを45°とした場合の,その噴射位置における有底穴93の内部のめっき液11の流れおよび流速について示した図である。すなわち,図4において,めっき液11は有底穴93の左上から有底穴93の開口部に向けて噴射されている。なお,噴射されているめっき液11の流速および流量は,図4においても,図3と同様である。   On the other hand, FIG. 4 is a diagram showing the flow and flow velocity of the plating solution 11 inside the bottomed hole 93 at the spraying position when the spraying angle θ of the plating solution 11 with respect to the main surface 91 of the substrate 90 is 45 °. It is. That is, in FIG. 4, the plating solution 11 is sprayed from the upper left of the bottomed hole 93 toward the opening of the bottomed hole 93. Note that the flow velocity and flow rate of the sprayed plating solution 11 are the same as those in FIG. 3 in FIG.

そして,図4に示すように,噴射角度θを45°として噴射されためっき液11の流れは,基板90の主面91上,有底穴93の内部のいずれにおいても良好である。すなわち,基板90の主面91上では,主面91に沿ってめっき液11が流れており,その流速は速い。また,有底穴93の内部においても,有底穴93の内部へ流れ込む流れと有底穴93の内部からその外部へ流れ出る流れとが衝突しておらず,めっき液11が流動している。さらには,有底穴93の内部におけるめっき液11の流速も速いものである。よって,図4では,有底穴93の内壁面や底面に,めっき液11によって適切にめっき処理が施される。すなわち,有底穴93の内壁面や底面におけるめっきの析出速度は速く,形成
されるめっき層の厚さは均一である。従って,図3および図4より,基板90の有底穴
93の内部にめっき液11を流動させ,その内壁面などに適切にめっきを施すためには,有底穴93が開口する基板90の主面91に沿っためっき液11の流れを発生させることが重要であることがわかる。また,噴射角度θを0°とし,めっき液11を基板90の主面91に対して平行に噴射した場合においても,図4とほぼ同様の結果が得られた。これは,基板90の主面91に対して平行に噴射されためっき液11が拡散することなどにより,有底穴93の内部への流れ込みが生じるためであると考えられる。
As shown in FIG. 4, the flow of the plating solution 11 sprayed with the spray angle θ being 45 ° is good both on the main surface 91 of the substrate 90 and inside the bottomed hole 93. That is, on the main surface 91 of the substrate 90, the plating solution 11 flows along the main surface 91, and the flow rate is fast. In addition, even in the bottomed hole 93, the flow flowing into the bottomed hole 93 and the flow flowing out from the bottomed hole 93 to the outside do not collide, and the plating solution 11 flows. Furthermore, the flow rate of the plating solution 11 inside the bottomed hole 93 is also fast. Therefore, in FIG. 4, the inner wall surface and the bottom surface of the bottomed hole 93 are appropriately plated with the plating solution 11. That is, the deposition rate of plating on the inner wall surface and the bottom surface of the bottomed hole 93 is fast, and the thickness of the formed plating layer is uniform. Therefore, as shown in FIGS. 3 and 4, in order to cause the plating solution 11 to flow inside the bottomed hole 93 of the substrate 90 and to perform appropriate plating on the inner wall surface or the like, the substrate 90 in which the bottomed hole 93 opens is shown. It can be seen that it is important to generate a flow of the plating solution 11 along the main surface 91. Further, even when the spray angle θ was set to 0 ° and the plating solution 11 was sprayed in parallel to the main surface 91 of the substrate 90, the same results as in FIG. 4 were obtained. This is considered to be because the plating solution 11 sprayed in parallel to the main surface 91 of the substrate 90 diffuses into the bottomed hole 93 and the like.

次に,本形態の噴射ノズル30および従来の噴射ノズルにより噴射されためっき液11の流速について測定した結果について説明する。図5は,従来の噴射ノズル130を示したものである。従来の噴射ノズル130は,図5に矢印Dで示す方向を主噴射方向とするものである。すなわち,基板90の主面91に向かって垂直にめっき液11を噴射する噴射口131を有している。そして,噴射ノズル130よりめっき液11が噴射されることにより,基板90の主面91に沿って,図5に矢印Eで示す流れと,矢印Fで示す流れとが発生する。   Next, the result of measuring the flow rate of the plating solution 11 sprayed by the spray nozzle 30 of this embodiment and the conventional spray nozzle will be described. FIG. 5 shows a conventional injection nozzle 130. The conventional injection nozzle 130 has a direction indicated by an arrow D in FIG. 5 as a main injection direction. That is, it has an injection port 131 for injecting the plating solution 11 vertically toward the main surface 91 of the substrate 90. Then, when the plating solution 11 is sprayed from the spray nozzle 130, a flow indicated by an arrow E in FIG. 5 and a flow indicated by an arrow F are generated along the main surface 91 of the substrate 90.

基板90の搬送方向について,流れEは下流側への流れであり,流れFは上流側への流れである。よって,従来の噴射ノズル130により発生しためっき液11の流れEおよび流れFによって,その位置での基板90の有底穴93の内部には,図4に示す流動が発生する。その流動により,有底穴93の内壁面などにはめっき層が形成される。なお,図3で説明したように,噴射ノズル130の噴射口131の真下付近では,有底穴93の内部におけるめっき液11の流動は良好ではない。また,噴射ノズル130による流れEおよび流れFの流速を測定した結果,いずれも,噴射ノズル130の噴射口131の出口における流速の10%以下であった。   In the conveyance direction of the substrate 90, the flow E is a flow toward the downstream side, and the flow F is a flow toward the upstream side. Therefore, the flow shown in FIG. 4 is generated in the bottomed hole 93 of the substrate 90 at that position by the flow E and the flow F of the plating solution 11 generated by the conventional spray nozzle 130. Due to the flow, a plating layer is formed on the inner wall surface of the bottomed hole 93 and the like. As described with reference to FIG. 3, the flow of the plating solution 11 inside the bottomed hole 93 is not good in the vicinity of just below the injection port 131 of the injection nozzle 130. Moreover, as a result of measuring the flow velocity of the flow E and the flow F by the injection nozzle 130, both were 10% or less of the flow velocity at the outlet of the injection port 131 of the injection nozzle 130.

一方,図2に示す本形態の噴射ノズル30においては,矢印Aの方向にめっき液11が噴射されることにより,基板90の主面91に沿って,いずれも基板90の搬送方向の上流側から下流側への向きである流れB,Cが発生する。流れBは,噴射ノズル30によってAの方向に噴射されためっき液11が,基板90の主面91に沿って流れたことにより発生した流れである。流れCは,噴射ノズル30によってAの方向に噴射されためっき液11がBの方向に流れたことにより,噴射ノズル30と基板90の主面91との隙間に負圧が発生したことによるものである。よって,本形態の噴射ノズル30により発生しためっき液11の流れBおよび流れCによって,基板90の有底穴93の内部では図4に示す流動が発生する。その流動により,有底穴93の内壁面などにはめっき層が形成される。   On the other hand, in the spray nozzle 30 of the present embodiment shown in FIG. 2, the plating solution 11 is sprayed in the direction of arrow A, so that both are upstream along the main surface 91 of the substrate 90 in the transport direction of the substrate 90. Flows B and C are generated in the direction from the downstream side to the downstream side. The flow B is a flow generated when the plating solution 11 sprayed in the direction A by the spray nozzle 30 flows along the main surface 91 of the substrate 90. The flow C is due to the negative pressure generated in the gap between the injection nozzle 30 and the main surface 91 of the substrate 90 because the plating solution 11 injected in the direction A by the injection nozzle 30 flows in the direction B. It is. Therefore, the flow shown in FIG. 4 is generated inside the bottomed hole 93 of the substrate 90 by the flow B and the flow C of the plating solution 11 generated by the spray nozzle 30 of this embodiment. Due to the flow, a plating layer is formed on the inner wall surface of the bottomed hole 93 and the like.

さらに,噴射角度θを30°としたときの本形態の噴射ノズル30に係る流れCの流速を測定した結果,噴射ノズル30の噴射口31の出口における流速の20%程度であった。また,流れBの流速については,噴射ノズル30の噴射口31の出口における流速の30%以上であった。すなわち,本形態の噴射ノズル30の方が,従来の噴射ノズル30よりも,基板90の搬送方向の上流側および下流側のいずれにおいても,基板90の主面91に沿った流速の速いめっき液11の流れを発生させることができる。さらには,本形態の噴射ノズル30では,基板90の主面91上におけるめっき液11の流速が速いため,基板90の主面91に沿っためっき液11の流れを,より広い範囲において発生させることができる。   Furthermore, as a result of measuring the flow velocity of the flow C related to the injection nozzle 30 of the present embodiment when the injection angle θ is 30 °, it was about 20% of the flow velocity at the outlet of the injection nozzle 31 of the injection nozzle 30. Further, the flow rate of the flow B was 30% or more of the flow rate at the outlet of the injection port 31 of the injection nozzle 30. That is, the spray nozzle 30 according to the present embodiment has a higher flow velocity along the main surface 91 of the substrate 90 on both the upstream side and the downstream side in the transport direction of the substrate 90 than the conventional spray nozzle 30. Eleven flows can be generated. Furthermore, in the spray nozzle 30 of the present embodiment, the flow rate of the plating solution 11 on the main surface 91 of the substrate 90 is fast, so the flow of the plating solution 11 along the main surface 91 of the substrate 90 is generated in a wider range. be able to.

続いて図6に,本形態の噴射ノズル30および従来の噴射ノズル130によるめっきの析出速度について測定した結果を示す。図6において,横軸は,基板90の搬送経路上の位置を示しており,本形態の噴射ノズル30および従来の噴射ノズル130の配置位置を図中に一点鎖線で示している。また図6は,噴射ノズル30,130をいずれも基板90の搬送経路上に等しい間隔で配置しつつ,それぞれ搬送経路を搬送される基板90の主面91に向けてめっき液11の噴射を行ったときのものである。図6には,本形態の噴射ノズル30によるめっきの析出速度を実線により,従来の噴射ノズル130によるめっきの析出速度を破線により示している。さらに図6には,基板90の主面91におけるめっきの析出速度と,有底穴93の底面におけるめっきの析出速度とを示している。   Next, FIG. 6 shows the results of measurement of the deposition rate of plating by the injection nozzle 30 of this embodiment and the conventional injection nozzle 130. In FIG. 6, the horizontal axis indicates the position of the substrate 90 on the transport path, and the arrangement positions of the injection nozzle 30 of this embodiment and the conventional injection nozzle 130 are indicated by a one-dot chain line in the drawing. Further, FIG. 6 shows that the spraying solution 11 is sprayed toward the main surface 91 of the substrate 90 transported through the transport path while the spray nozzles 30 and 130 are both arranged on the transport path of the substrate 90 at equal intervals. It is a thing when. In FIG. 6, the deposition rate of the plating by the spray nozzle 30 of this embodiment is indicated by a solid line, and the deposition rate of the plating by the conventional spray nozzle 130 is indicated by a broken line. Further, FIG. 6 shows the plating deposition rate on the main surface 91 of the substrate 90 and the plating deposition rate on the bottom surface of the bottomed hole 93.

そして,図6に示すように,従来の噴射ノズル130について,その噴射位置に近い位置におけるめっきの析出速度は速い。噴射ノズル130に近い位置では,めっき液11が滞留しておらず,その成分の偏りが生じていないからである。しかし,噴射ノズル130より離れるほどめっきの析出速度は大きく低下し,特に,有底穴93の底面については,図6中Xで示す噴射ノズル130の間の区間において,ほぼめっきの析出が生じていないことがわかる。   As shown in FIG. 6, the deposition rate of plating at a position close to the spray position of the conventional spray nozzle 130 is fast. This is because the plating solution 11 does not stay at a position close to the spray nozzle 130 and the components are not biased. However, as the distance from the spray nozzle 130 increases, the deposition rate of the plating greatly decreases. In particular, the bottom surface of the bottomed hole 93 is substantially deposited in the section between the spray nozzles 130 indicated by X in FIG. I understand that there is no.

前述したように,噴射ノズル130により発生する基板90の主面91に沿っためっき液11の流れE,Fの流速は遅い。このため,噴射ノズル130から遠い位置では,基板90の主面91上において,めっき液11がほぼ流れていないと考えられる。これにより,噴射ノズル130から遠い位置での主面91におけるめっきの析出速度が大きく低下していると考えられる。さらに,噴射ノズル130から遠い区間Xでは,主面91上においてめっき液11がほぼ流れていないことにより,有底穴93の内部にめっき液11が流れ込むことがない。すなわち,区間Xでは,有底穴93の内部に図4により説明したようなめっき液11の流動が生じていないと考えられる。   As described above, the flow rates E and F of the plating solution 11 along the main surface 91 of the substrate 90 generated by the spray nozzle 130 are slow. For this reason, it is considered that the plating solution 11 hardly flows on the main surface 91 of the substrate 90 at a position far from the spray nozzle 130. Thereby, it is considered that the deposition rate of the plating on the main surface 91 at a position far from the injection nozzle 130 is greatly reduced. Further, in the section X far from the spray nozzle 130, the plating solution 11 does not flow on the main surface 91, so that the plating solution 11 does not flow into the bottomed hole 93. That is, in the section X, it is considered that the plating solution 11 does not flow as described with reference to FIG.

一方,本形態では,噴射ノズル30のやや下流側の位置にめっきの析出速度のピークが現れている。これは,本形態の噴射ノズル30が,基板90の搬送方向の下流側に向けてめっき液11を噴射していることによるものである。そして,噴射ノズル30の間の区間について,主面91および有底穴93の底面のいずれにおいても,従来の噴射ノズル130よりもめっきの析出速度が速いことがわかる。   On the other hand, in this embodiment, a peak of the deposition rate of plating appears at a position slightly downstream of the injection nozzle 30. This is because the spray nozzle 30 of the present embodiment sprays the plating solution 11 toward the downstream side in the transport direction of the substrate 90. It can be seen that the deposition rate of the plating is faster than that of the conventional injection nozzle 130 in both the main surface 91 and the bottom surface of the bottomed hole 93 in the section between the injection nozzles 30.

前述したように,本形態の噴射ノズル30により発生する基板90の主面91に沿っためっき液11の流れB,Cは速い。このため,噴射ノズル30から遠い位置でも,基板90の主面91上においてめっき液11が流れていると考えられる。さらには,噴射ノズル30から遠い位置でも,図4に示すような有底穴93の内部へのめっき液11の流れ込み,および有底穴93の内部でのめっき液11の流動が生じているからであると考えられる。よって,図6より,本形態の噴射ノズル30により,基板90の主面91および有底穴93の内壁面や底面に,均一で十分な厚さのめっき層が短時間で形成されることがわかる。   As described above, the flows B and C of the plating solution 11 along the main surface 91 of the substrate 90 generated by the spray nozzle 30 of this embodiment are fast. For this reason, it is considered that the plating solution 11 flows on the main surface 91 of the substrate 90 even at a position far from the injection nozzle 30. Furthermore, the plating solution 11 flows into the bottomed hole 93 as shown in FIG. 4 and the plating solution 11 flows inside the bottomed hole 93 as shown in FIG. It is thought that. Therefore, from FIG. 6, the spray nozzle 30 of this embodiment can form a uniform and sufficient thickness plating layer on the main surface 91 of the substrate 90 and the inner wall surface and bottom surface of the bottomed hole 93 in a short time. Recognize.

なお,上記では,基板90の有底穴93について説明しているが,貫通孔94についても同様である。すなわち,基板90の貫通孔94の内壁面についても,本形態の噴射ノズル30により,従来の噴射ノズル130よりも短時間で,均一で十分な厚さのめっき層を形成することができる。本形態の噴射ノズル30によって基板90の主面91に沿った流速の速いめっき液11の流れを発生させることにより,めっき液11を貫通孔94の内部に良好に流動させることができるからである。また上記では,表面処理装置1における基板90の上側の主面91について説明しているが,下側の主面92についても同様である。すなわち,図1における基板90の下側の噴射ノズル30についても,めっき液11を,主面92に対して斜めに噴射する。また,基板90の下側の噴射ノズル30についても,基板90の搬送方向について下流側の向きにめっき液11を噴射する。よって,基板90に下側についても,その主面92に沿った速い流れを発生させることができる。よって,主面92,および主面92に開口する有底穴93や貫通孔94の内壁面などに,均一で十分な厚さのめっき層を,短時間で形成することができる。また,噴射ノズル30は,基板90の主面91に対して平行にめっき液11を噴射するものであってもよい。つまり,図2に示す噴射ノズル30より噴射されるめっき液11の噴射方向Aと,基板90の主面91との噴射角度θは,0°であってもよい。めっき液11を基板90の主面91に
平行に噴射することによっても,基板90の主面91に沿った流速の速い流れを発生させることができるからである。
In the above description, the bottomed hole 93 of the substrate 90 is described, but the same applies to the through hole 94. That is, a uniform and sufficiently thick plating layer can be formed on the inner wall surface of the through-hole 94 of the substrate 90 by the spray nozzle 30 of this embodiment in a shorter time than the conventional spray nozzle 130. This is because the plating solution 11 can flow well into the through hole 94 by generating a flow of the plating solution 11 having a high flow velocity along the main surface 91 of the substrate 90 by the spray nozzle 30 of this embodiment. . In the above description, the upper main surface 91 of the substrate 90 in the surface treatment apparatus 1 has been described, but the same applies to the lower main surface 92. That is, the plating solution 11 is sprayed obliquely with respect to the main surface 92 also on the spray nozzle 30 below the substrate 90 in FIG. In addition, the plating solution 11 is also ejected from the lower spray nozzle 30 of the substrate 90 in the downstream direction in the transport direction of the substrate 90. Therefore, a fast flow along the main surface 92 can be generated also on the lower side of the substrate 90. Therefore, a uniform and sufficient thickness of the plating layer can be formed in a short time on the main surface 92 and the bottomed hole 93 opening in the main surface 92 and the inner wall surface of the through hole 94. Further, the spray nozzle 30 may spray the plating solution 11 in parallel with the main surface 91 of the substrate 90. That is, the injection angle θ between the injection direction A of the plating solution 11 injected from the injection nozzle 30 shown in FIG. 2 and the main surface 91 of the substrate 90 may be 0 °. This is because a flow having a high flow velocity along the main surface 91 of the substrate 90 can also be generated by spraying the plating solution 11 in parallel to the main surface 91 of the substrate 90.

さらに,本発明者らは,本形態に係る噴射ノズルにおける噴射角度θなどの条件をそれぞれ異なる条件とした複数の実施例について,基板に形成されるめっき層の厚さの確認を行った。各実施例の条件を,以下の表1に示している。また,表1に示す比較例は,図5において説明した基板の主面に対して垂直にめっき液を噴射する噴射ノズルによるものである。また,各実施例および比較例について,配置する噴射ノズルの数およびその搬送経路上における間隔,噴射ノズルから噴射されるめっき液の流速や流量,処理槽内における基板の搬送速度などの条件は同じとした。なお,実施例では,搬送ローラーとして,基板の主面を,その幅方向の端部付近にて挟み込んで搬送するものを用いた。一方,比較例では,基板の主面を,その幅方向について一様に挟み込んで搬送する搬送ローラーを用いた。   Furthermore, the present inventors have confirmed the thickness of the plating layer formed on the substrate in a plurality of examples in which the conditions such as the injection angle θ in the injection nozzle according to this embodiment are different from each other. The conditions for each example are shown in Table 1 below. Further, the comparative example shown in Table 1 is based on an injection nozzle that injects a plating solution perpendicular to the main surface of the substrate described in FIG. In addition, for each of the examples and comparative examples, the conditions such as the number of spray nozzles to be arranged, the interval on the transport path, the flow rate and flow rate of the plating solution sprayed from the spray nozzle, and the transport speed of the substrate in the processing tank are the same It was. In the embodiment, as the transport roller, the main surface of the substrate is sandwiched and transported near the end in the width direction. On the other hand, in the comparative example, a transport roller that transports the main surface of the substrate while sandwiching it uniformly in the width direction is used.

Figure 2015017315
Figure 2015017315

表1には,噴射ノズルに係る条件として,めっき液の噴射方向と基板の主面との噴射角度θ,および,噴射ノズルと基板の主面との距離を示している。また,表1中に示すめっき層の厚さは,基板の主面,有底穴の底面のいずれについても,比較例において形成されためっき層の厚さに対する比率により表している。   Table 1 shows the injection angle θ between the spraying direction of the plating solution and the main surface of the substrate, and the distance between the injection nozzle and the main surface of the substrate as conditions relating to the injection nozzle. Moreover, the thickness of the plating layer shown in Table 1 is expressed by the ratio to the thickness of the plating layer formed in the comparative example for both the main surface of the substrate and the bottom surface of the bottomed hole.

そして,表1に示すように,実施例において基板に形成されためっき層の厚さは,主面および有底穴の底面のいずれにおいても,比較例よりも厚いものであった。さらには,実施例では,主面よりも有底穴の底面の方が,比較例と比較してより厚いめっき層が形成されていることがわかる。また,表1に示されるように,噴射角度θが小さいほど,形成されるめっき層が厚く,好ましいことがわかる。特に,実施例の中でも,噴射角度θが45°以下である場合に,有底穴の底面に厚いめっき層が形成されていることがわかる。   As shown in Table 1, the thickness of the plating layer formed on the substrate in the example was thicker than that of the comparative example on both the main surface and the bottom surface of the bottomed hole. Further, in the example, it can be seen that a thicker plating layer is formed on the bottom surface of the bottomed hole than on the main surface as compared with the comparative example. Further, as shown in Table 1, it can be seen that the smaller the spray angle θ, the thicker the plating layer that is formed. In particular, it can be seen that a thick plating layer is formed on the bottom surface of the bottomed hole when the injection angle θ is 45 ° or less in the examples.

よって,本形態に係る噴射ノズルを用いることにより,基板の主面および有底穴の内部に良好にめっき液を流動させることができることがわかる。さらには,主面および有底穴の内部におけるめっき液の流動は,噴射角度θを45°以下にすることによって,より良好なものとなっていることがわかる。これは,噴射ノズルによるめっき液の噴射方向を基板の主面に対してより平行に近い角度とすることにより,基板の主面上におけるめっき液の流速を速くすることができるからであると考えられる。すなわち,基板の主面上における流速の速いめっき液の流れを,広範囲において発生させることができるからであると考えられる。またこれにより,有底穴の内部においても,めっき液をより速い流速で流動させることができるからであると考えられる。   Therefore, it can be seen that by using the spray nozzle according to the present embodiment, the plating solution can be favorably flowed into the main surface of the substrate and the inside of the bottomed hole. Furthermore, it can be seen that the flow of the plating solution inside the main surface and the bottomed hole is improved by making the spray angle θ 45 ° or less. This is considered to be because the flow rate of the plating solution on the main surface of the substrate can be increased by setting the spraying direction of the plating solution by the spray nozzle to an angle that is more parallel to the main surface of the substrate. It is done. That is, it is considered that the flow of the plating solution having a high flow velocity on the main surface of the substrate can be generated in a wide range. This is also considered to be because the plating solution can flow at a higher flow rate even inside the bottomed hole.

従って,本形態に係る噴射ノズルを用いることにより,従来の噴射ノズルと比較して短時間で,基板の表面に必要とする厚さのめっき層が形成された表面処理基板を得ることができる。すなわち,その表面処理基板を用いて製造される配線板における導通を確実なものとして不良の発生率を低減させつつ,生産性を向上させることができる。さらに,めっきの析出速度が速いため,表面処理装置の基板の搬送方向における全長は,従来のものよりも短くてすむ。また,従来では,めっきの析出速度を速めるためには,めっき液の温度や銅イオンの濃度を高くする必要があった。しかし,めっき液の温度や銅イオンの濃度を高くすることにより,めっき液の劣化は加速され,寿命が短くなってしまうという問題があった。これに対し,本形態では,めっき液の噴射によってめっきの析出速度を速めることができるため,めっき液の劣化を加速させることがなく,めっき液の寿命を長くすることができる。   Therefore, by using the spray nozzle according to this embodiment, it is possible to obtain a surface-treated substrate in which a plating layer having a required thickness is formed on the surface of the substrate in a short time compared to the conventional spray nozzle. That is, it is possible to improve the productivity while reducing the defect occurrence rate by ensuring the conduction in the wiring board manufactured using the surface-treated substrate. Further, since the deposition rate of plating is fast, the total length of the surface treatment apparatus in the substrate transport direction can be shorter than the conventional one. Conventionally, it has been necessary to increase the temperature of the plating solution and the concentration of copper ions in order to increase the deposition rate. However, increasing the temperature of the plating solution and the concentration of copper ions accelerates the deterioration of the plating solution and shortens the service life. On the other hand, in this embodiment, since the deposition rate of plating can be increased by spraying the plating solution, deterioration of the plating solution is not accelerated, and the life of the plating solution can be extended.

なお,前述したように,基板90の主面91に沿った流速の速い流れを発生させるためには,噴射角度θは小さいほど好ましい。しかし,噴射角度θが0°に近い噴射ノズルは,基板90と接触しないように設けることが容易ではない。よって,噴射角度θは,小さくても15°以上であることが好ましい。   As described above, in order to generate a flow having a high flow velocity along the main surface 91 of the substrate 90, it is preferable that the injection angle θ is small. However, it is not easy to provide an injection nozzle having an injection angle θ close to 0 ° so as not to contact the substrate 90. Therefore, the injection angle θ is preferably 15 ° or more even if it is small.

以上詳細に説明したように本実施の形態に係る表面処理装置1は,基板90の主面91,92に,めっき液11を噴射するための噴射ノズル30を処理槽10内に有している。そして,噴射ノズル30は,基板90の主面91,92に対して斜めにめっき液11を噴射する。これにより,基板90の主面91,92上に,流速の速いめっき液11の流れを発生させる。また,そのめっき液11の流れにより,基板90に形成された有底穴93の内部などにもめっき液11を良好に流動させることができる。すなわち,基板90における表面処理の対象面上に,めっき液11を良好に流動させることのできる表面処理装置および表面処理基板の製造方法が実現されている。   As described above in detail, the surface treatment apparatus 1 according to the present embodiment has the spray nozzle 30 for spraying the plating solution 11 on the main surfaces 91 and 92 of the substrate 90 in the processing tank 10. . The spray nozzle 30 sprays the plating solution 11 obliquely with respect to the main surfaces 91 and 92 of the substrate 90. Thereby, a flow of the plating solution 11 having a high flow velocity is generated on the main surfaces 91 and 92 of the substrate 90. In addition, the plating solution 11 can be flowed favorably into the inside of the bottomed hole 93 formed in the substrate 90 by the flow of the plating solution 11. That is, a surface treatment apparatus and a surface treatment substrate manufacturing method capable of causing the plating solution 11 to flow satisfactorily on the target surface of the substrate 90 are realized.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,めっき液11は銅めっきを施すものに限らず,例えば,ニッケルめっきなどのその他のめっきを施すめっき液であってもよい。また,表面処理装置1は,めっきに限らず,デスミア処理やソフトエッチングなどその他の化成処理を行うものであってもよい。   Note that this embodiment is merely an example, and does not limit the present invention. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof. For example, the plating solution 11 is not limited to copper plating, and may be a plating solution that performs other plating such as nickel plating. Further, the surface treatment apparatus 1 is not limited to plating, and may perform other chemical conversion treatment such as desmear treatment or soft etching.

また上記の実施形態では,主面91に対して垂直な方向から見たときの噴射方向Aは,基板90の搬送方向と平行であるとして説明したが,基板90の搬送方向に対して斜めであってもよい。また例えば,噴射ノズル30は,基板90の搬送方向の下流側から上流側へ向けてめっき液11を噴射するものであってもよい。また例えば,上記本形態では,噴射ノズル30の噴射口31は,基板90の幅方向に連続して形成されているスリット状のものとして説明したが,1または複数の仕切りにより,基板90の幅方向に区切られているものであってもよい。また例えば,噴射ノズル30の噴射口31は2つに限られず,1つであってもよいし3以上であってもよい。   In the above-described embodiment, the ejection direction A when viewed from the direction perpendicular to the main surface 91 is described as being parallel to the transport direction of the substrate 90, but is oblique with respect to the transport direction of the substrate 90. There may be. Further, for example, the spray nozzle 30 may spray the plating solution 11 from the downstream side in the transport direction of the substrate 90 toward the upstream side. Further, for example, in the present embodiment, the injection port 31 of the injection nozzle 30 has been described as a slit-like one formed continuously in the width direction of the substrate 90. However, the width of the substrate 90 is reduced by one or more partitions. It may be divided in the direction. Further, for example, the number of injection ports 31 of the injection nozzle 30 is not limited to two, and may be one or three or more.

1 表面処理装置
10 処理槽
11 めっき液
30 噴射ノズル
31 噴射口
90 基板
91,92 主面
93 有底穴
DESCRIPTION OF SYMBOLS 1 Surface treatment apparatus 10 Treatment tank 11 Plating solution 30 Injection nozzle 31 Injection port 90 Substrate 91,92 Main surface 93 Bottomed hole

Claims (7)

基板をその板面内方向に搬送しつつその表面に処理液を供給して表面処理を施す表面処理装置において,
内部に基板を通すとともにその基板への表面処理が内部で行われる処理槽と,
前記処理槽の内部に設けられ,基板の表面上へ噴射口より処理液を噴射する噴射部とを有し,
前記噴射部の噴射口における処理液の噴射方向が,基板の板面に対して平行または斜めであることを特徴とする表面処理装置。
In a surface treatment apparatus for carrying out surface treatment by supplying a treatment liquid to the surface of a substrate while conveying the substrate in the in-plane direction,
A treatment tank in which the substrate is passed and the surface treatment is performed on the substrate;
An injection unit that is provided inside the processing tank and that injects a processing liquid from an injection port onto the surface of the substrate;
The surface treatment apparatus according to claim 1, wherein the treatment liquid is ejected in parallel or obliquely to the substrate surface of the substrate at an ejection port of the ejection unit.
請求項1に記載の表面処理装置において,
前記噴射部の噴射口における処理液の噴射方向の基板の板面に対する傾斜角が,15°以上45°以下の範囲内であることを特徴とする表面処理装置。
The surface treatment apparatus according to claim 1,
The surface treatment apparatus according to claim 1, wherein an inclination angle of the treatment liquid in the injection direction of the injection unit with respect to the plate surface of the substrate is in a range of 15 ° to 45 °.
請求項1または請求項2に記載の表面処理装置において,
前記噴射部の噴射口における処理液の噴射方向が,基板の板面に対する垂直な方向から見たときに基板の搬送方向の上流側から下流側へ向かう向きであることを特徴とする表面処理装置。
In the surface treatment apparatus according to claim 1 or 2,
The surface treatment apparatus characterized in that the spray direction of the treatment liquid at the spray port of the spray unit is a direction from the upstream side to the downstream side in the substrate transport direction when viewed from a direction perpendicular to the plate surface of the substrate. .
基板をその板面内方向に搬送しつつその表面に処理液を供給して表面処理を施す表面処理基板の製造方法において,
基板を処理槽の内部に通しつつその基板の表面上への処理液を噴射するとともに,
処理液の噴射口における処理液の噴射方向を,基板の板面に対して平行または斜めとすることを特徴とする表面処理基板の製造方法。
In the method of manufacturing a surface-treated substrate, the substrate is transported in the in-plane direction while a surface treatment is performed by supplying a treatment liquid to the surface.
While spraying the processing liquid onto the surface of the substrate while passing the substrate through the inside of the processing tank,
A method for producing a surface-treated substrate, characterized in that a treatment liquid spray direction at a treatment liquid ejection port is parallel or oblique to a plate surface of the substrate.
請求項4に記載の表面処理基板の製造方法において,
処理液の噴射口における処理液の噴射方向の基板の板面に対する傾斜角を,15°以上45°以下の範囲内とすることを特徴とする表面処理基板の製造方法。
In the manufacturing method of the surface treatment board | substrate of Claim 4,
A method of manufacturing a surface-treated substrate, wherein an inclination angle of a treatment liquid spray direction at a treatment liquid spray port with respect to a plate surface of the substrate is within a range of 15 ° to 45 °.
請求項4または請求項5に記載の表面処理基板の製造方法において,
処理液の噴射口における処理液の噴射方向を,基板の板面に対する垂直な方向から見たときに基板の搬送方向の上流側から下流側へ向かう向きとすることを特徴とする表面処理基板の製造方法。
In the manufacturing method of the surface treatment board | substrate of Claim 4 or Claim 5,
The surface treatment substrate is characterized in that the treatment liquid ejection direction at the treatment liquid ejection port is directed from the upstream side to the downstream side in the substrate transport direction when viewed from a direction perpendicular to the plate surface of the substrate. Production method.
請求項4から請求項6のいずれかに記載の表面処理基板の製造方法において,
有底穴が表面に形成されている基板を表面処理の対象とし,
処理液として,基板の有底穴の内部の表面に表面処理を施すものを用いることを特徴とする表面処理基板の製造方法。
In the manufacturing method of the surface treatment board | substrate in any one of Claims 4-6,
A substrate with a bottomed hole formed on the surface is the target of surface treatment.
What is claimed is: 1. A method for producing a surface-treated substrate, comprising using as a treatment liquid a surface treatment on a surface inside a bottomed hole of a substrate.
JP2013147159A 2013-07-15 2013-07-15 Surface treatment apparatus and manufacturing method of surface-treated substrate Pending JP2015017315A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013147159A JP2015017315A (en) 2013-07-15 2013-07-15 Surface treatment apparatus and manufacturing method of surface-treated substrate
US14/331,319 US20150017328A1 (en) 2013-07-15 2014-07-15 Surface treatment apparatus and method for nufacturing surface-treated substrate
CN201410337273.5A CN104302107A (en) 2013-07-15 2014-07-15 Surface treatment apparatus and method for manufacturing surface-treated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147159A JP2015017315A (en) 2013-07-15 2013-07-15 Surface treatment apparatus and manufacturing method of surface-treated substrate

Publications (1)

Publication Number Publication Date
JP2015017315A true JP2015017315A (en) 2015-01-29

Family

ID=52277293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147159A Pending JP2015017315A (en) 2013-07-15 2013-07-15 Surface treatment apparatus and manufacturing method of surface-treated substrate

Country Status (3)

Country Link
US (1) US20150017328A1 (en)
JP (1) JP2015017315A (en)
CN (1) CN104302107A (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3315611B2 (en) * 1996-12-02 2002-08-19 三菱電機株式会社 Two-fluid jet nozzle for cleaning, cleaning device, and semiconductor device
TW579664B (en) * 2000-01-11 2004-03-11 Matsushita Electric Ind Co Ltd Apparatus and method for manufacturing printed circuit board
JP3518676B2 (en) * 2000-05-11 2004-04-12 東京化工機株式会社 Surface treatment equipment for printed wiring board materials
JP3908242B2 (en) * 2004-07-12 2007-04-25 東京化工機株式会社 Substrate material transfer mechanism
JP4644303B2 (en) * 2009-05-14 2011-03-02 米沢ダイヤエレクトロニクス株式会社 Substrate material surface treatment equipment
FR2960167B1 (en) * 2010-05-21 2013-02-08 Centre Nat Rech Scient METHOD FOR OBTAINING THIN LAYERS

Also Published As

Publication number Publication date
CN104302107A (en) 2015-01-21
US20150017328A1 (en) 2015-01-15

Similar Documents

Publication Publication Date Title
KR100713235B1 (en) Apparatus for treating surface of thin plate
JP5673582B2 (en) Pretreatment method for electroplating and method for producing copper clad laminated resin film by electroplating method including the pretreatment method
TWI513859B (en) Electroplating apparatus for manufacturing flexible printed circuit board
TWI793350B (en) copper clad laminate
KR20160057956A (en) Etching device
JP2015017315A (en) Surface treatment apparatus and manufacturing method of surface-treated substrate
JP5166367B2 (en) Substrate material surface treatment equipment
JP5668472B2 (en) Wiring board manufacturing method
TWI598309B (en) Treating module of an apparatus for horizontal wetchemical treatment of large-scale substrates
JP4652793B2 (en) Method and apparatus for processing flat materials in continuous equipment
JP2015017316A (en) Surface treatment apparatus and print circuit board
TWI615510B (en) Suction plating apparatus
JP2017160515A (en) Etching method and etching device
JP3220470U (en) Resin film wet processing equipment
US20130011568A1 (en) Apparatus and method for spraying a surface of a substrate
KR102575905B1 (en) plating apparatus
TW201607392A (en) Surface treatment device of substrate material
JP2011153335A (en) Plating method and electroplating apparatus
WO2017103333A1 (en) A coating precursor nozzle and a nozzle head
JP2014220412A (en) Etching device of printed wiring board
JP2017133078A (en) Etching device
JP2023163655A (en) Atmospheric pressure plasma processing device, electroplating device, and method for manufacturing metal-clad laminated plate
TW201515974A (en) Method and apparatus for a wet-chemical or electrochemical treatment
JP2014175326A (en) Method of manufacturing printed wiring board and chemical processing apparatus
KR101153537B1 (en) A plating device for printed circuit board a plating device for printed circuit board