JP2015015081A - Heating device for corrosive liquid - Google Patents

Heating device for corrosive liquid Download PDF

Info

Publication number
JP2015015081A
JP2015015081A JP2013139548A JP2013139548A JP2015015081A JP 2015015081 A JP2015015081 A JP 2015015081A JP 2013139548 A JP2013139548 A JP 2013139548A JP 2013139548 A JP2013139548 A JP 2013139548A JP 2015015081 A JP2015015081 A JP 2015015081A
Authority
JP
Japan
Prior art keywords
heat insulating
heating
heater unit
insulating member
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013139548A
Other languages
Japanese (ja)
Other versions
JP6102577B2 (en
Inventor
成伸 先田
Shigenobu Sakita
成伸 先田
秀典 中西
Shusuke Nakanishi
秀典 中西
晃 三雲
Akira Mikumo
晃 三雲
仲田 博彦
Hirohiko Nakada
博彦 仲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013139548A priority Critical patent/JP6102577B2/en
Publication of JP2015015081A publication Critical patent/JP2015015081A/en
Application granted granted Critical
Publication of JP6102577B2 publication Critical patent/JP6102577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating device which is compact, capable of raising the temperature of a liquid in a short time and further capable of heating a corrosive liquid continuously supplied at a fixed flow rate to a fixed temperature.SOLUTION: The heating device configured to heat a corrosive liquid comprises a heater unit 1 and a heat insulation member 2 surrounding the heater unit 1 and including an inlet 21 and an outlet 22 for the liquid. The heater unit 1 includes: ceramic plates 12 and 13 formed from a compound material containing C or SiC and a heating element 11 for heating air-tightly provided inside. A channel 23 is provided which communicates to the inlet 21 and the outlet 22 and at least once spirally turns around the heater unit 1.

Description

本発明は、腐食性液体を加熱する加熱装置に関する。   The present invention relates to a heating device for heating a corrosive liquid.

腐食性液体を所定の温度まで加熱してから利用する操作が様々な化学プロセスで行われている。たとえば、水酸化ナトリウム水溶液や水酸化カリウム水溶液などのアルカリ性の腐食性液体や、硫酸、塩酸、リン酸などの酸性の腐食性液体を加熱してから反応物に添加することにより反応速度を速くすることが行われている。また、金属めっきの前処理工程やエッチング処理工程では、使用する薬液をあらかじめ加熱することにより処理速度を速くすることが行われている。   An operation in which a corrosive liquid is heated to a predetermined temperature and then used is performed in various chemical processes. For example, an alkaline corrosive liquid such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution, or an acidic corrosive liquid such as sulfuric acid, hydrochloric acid, or phosphoric acid is heated and then added to the reactant to increase the reaction rate. Things have been done. Moreover, in the pretreatment process and the etching process of metal plating, the treatment speed is increased by heating the chemicals to be used in advance.

このような腐食性液体の加熱装置としては、たとえば特許文献1に示すように、フッ素樹脂チューブや石英などの耐食性部材からなる配管の外側にヒータを巻きつけて、配管内を流れる液体を温める装置が用いられている。あるいは、特許文献2に示すように、耐食性に優れた液体容器の周りに加熱ヒータを配して容器全体を温めることで容器内の液体を加熱したり、特許文献3に示すように、液体容器の内側にヒータを入れて容器内の液体を加熱したりする装置が用いられている。   As a heating device for such a corrosive liquid, for example, as shown in Patent Document 1, a heater is wound around a pipe made of a corrosion-resistant member such as a fluororesin tube or quartz to warm the liquid flowing in the pipe. Is used. Alternatively, as shown in Patent Document 2, a heater is arranged around a liquid container having excellent corrosion resistance to heat the entire container, thereby heating the liquid in the container, or as shown in Patent Document 3, a liquid container A device is used in which a heater is placed inside the container to heat the liquid in the container.

特許第3911723号公報Japanese Patent No. 3911723 特開平06−098828号公報Japanese Patent Laid-Open No. 06-098828 特開2005−005075号公報JP 2005-005075 A

しかしながら、特許文献1の技術は、配管材料にフッ素樹脂などの熱伝導率の低い材料を使用しているため、これを補うために加熱部に接している配管の外径を大きくしたり配管の長さを長くしたりすることが必要になり、配管内に流す流量に比べて加熱装置のサイズが大きくなりすぎることが問題になることがあった。また、特許文献2や3の技術では、所定の容量を有する容器に被加熱液体を受け入れてバッチ方式で加熱するものであるため、一度に加熱できる量に制限がある上、一定の温度を有する高温の液体を連続的に製造する場合には適していなかった。また、容器内の液体の温度を均一に保つのも困難であった。   However, since the technique of Patent Document 1 uses a material having low thermal conductivity such as fluororesin as a piping material, the outer diameter of the piping in contact with the heating unit is increased or the piping is made to compensate for this. It is necessary to increase the length, and there is a problem that the size of the heating device becomes too large compared to the flow rate flowing in the pipe. Further, in the techniques of Patent Documents 2 and 3, since the liquid to be heated is received in a container having a predetermined capacity and heated in a batch system, the amount that can be heated at one time is limited and has a certain temperature. It was not suitable for continuous production of hot liquids. It is also difficult to keep the temperature of the liquid in the container uniform.

本発明はかかる従来の問題に鑑みてなされたものであり、従来の加熱装置に比べてコンパクトであって短時間で液体を昇温することができる上、一定の流量で連続的に供給される腐食性液体を一定の温度に加熱できる加熱装置を提供する事を目的としている。   The present invention has been made in view of such a conventional problem, and is more compact than a conventional heating device, can raise the temperature of a liquid in a short time, and is continuously supplied at a constant flow rate. It aims at providing the heating apparatus which can heat a corrosive liquid to fixed temperature.

上記目的を達成するため、本発明が提供する加熱装置は、腐食性の液体を加熱する加熱装置であって、ヒータユニットと前記ヒータユニットを囲み且つ前記液体の入口と出口とを備えた断熱部材とを有し、前記ヒータユニットはSiCまたはSiCを含む複合材料からなるセラミック体とその内部に気密に設けられた加熱用発熱体とを有し、前記入口及び前記出口に連通し且つ前記ヒータユニットの周りを少なくとも1回螺旋状に旋回した流路が設けられていることを特徴としている。   In order to achieve the above object, a heating device provided by the present invention is a heating device that heats a corrosive liquid, and includes a heater unit, a heat insulating member that surrounds the heater unit and includes an inlet and an outlet for the liquid. The heater unit includes a ceramic body made of SiC or a composite material containing SiC, and a heating heating element provided in an airtight manner therein, and communicates with the inlet and the outlet, and the heater unit It is characterized in that a flow path that spirally spirals around is provided.

本発明によれば、コンパクトであって短時間で液体を昇温することができる上、一定の流量で連続的に供給される腐食性液体を一定の温度に加熱することが可能になる。   According to the present invention, the liquid can be heated in a short time in a compact manner, and the corrosive liquid continuously supplied at a constant flow rate can be heated to a constant temperature.

本発明の実施形態の加熱装置の模式的な斜視図である。It is a typical perspective view of the heating apparatus of embodiment of this invention. 本発明の加熱装置に含まれるヒータユニットの一具体例の縦断面図である。It is a longitudinal cross-sectional view of one specific example of the heater unit included in the heating apparatus of the present invention. 本発明の加熱装置の一具体例の正面図である。It is a front view of one specific example of the heating device of the present invention. 図3の加熱装置の縦断面図である。It is a longitudinal cross-sectional view of the heating apparatus of FIG. 図3の加熱装置をV−Vで切断した時の矢視図である。It is an arrow line view when the heating apparatus of FIG. 3 is cut | disconnected by VV. 図3の加熱装置をVI−VIで切断した時の矢視図である。It is an arrow line view when the heating apparatus of FIG. 3 is cut | disconnected by VI-VI. 本発明の加熱装置内に設けられた流路の具体例を示す断面図である。It is sectional drawing which shows the specific example of the flow path provided in the heating apparatus of this invention. 本発明の加熱装置の他の具体例の縦断面図である。It is a longitudinal cross-sectional view of the other specific example of the heating apparatus of this invention.

最初に本発明の実施形態を列記して説明する。本発明の加熱装置は、腐食性の液体を加熱する加熱装置であって、ヒータユニットと前記ヒータユニットを囲み且つ前記液体の入口と出口とを備えた断熱部材とを有し、前記ヒータユニットはSiCまたはSiCを含む複合材料からなるセラミック体とその内部に気密に設けられた加熱用発熱体とを有し、前記入口及び前記出口に連通し且つ前記ヒータユニットの周りを少なくとも1回螺旋状に旋回した流路が設けられている。かかる構成により、加熱装置自体をコンパクトにして短時間で液体の温度を上げることができる上、一定の流量で連続的に供給される腐食性液体を一定の温度に加熱することが可能になる。   First, embodiments of the present invention will be listed and described. The heating device of the present invention is a heating device that heats a corrosive liquid, and includes a heater unit and a heat insulating member that surrounds the heater unit and includes an inlet and an outlet for the liquid. A ceramic body made of SiC or a composite material containing SiC, and a heating heating element provided in an airtight manner therein, communicated with the inlet and the outlet and spirally around the heater unit at least once. A swirling flow path is provided. With this configuration, the heating device itself can be made compact and the temperature of the liquid can be raised in a short time, and the corrosive liquid continuously supplied at a constant flow rate can be heated to a constant temperature.

上記本発明の加熱装置においては、断熱部材においてセラミックプレートに接触する側に前記流路の溝が形成されているのが好ましい。これにより、簡易に且つ低コストで流路を形成することができる。また、断熱部材の周りに補助断熱部材を設け、これら断熱部材と補助断熱部材との間に空隙を設けてもよい。これにより、より高い断熱性能を得ることが可能になる。   In the heating device of the present invention, it is preferable that the channel groove is formed on the side of the heat insulating member that contacts the ceramic plate. Thereby, a flow path can be formed easily and at low cost. Moreover, an auxiliary heat insulating member may be provided around the heat insulating member, and a gap may be provided between the heat insulating member and the auxiliary heat insulating member. Thereby, it becomes possible to obtain higher heat insulation performance.

次に、図1を参照しながら本発明の腐食性液体の加熱装置の一具体例について説明する。この図1に示す加熱装置は、一定の流量で連続的に供給される腐食性液体を装置内部に受け入れて加熱する加熱装置であり、腐食性液体に接液した状態で加熱するヒータユニット1と、ヒータユニット1の周りを全面に亘って取り囲む断熱部材2とからなる。ヒータユニット1は、図2に示すように加熱用発熱体11と、これを両側から挟み込む2枚の板状に形成されたセラミックプレート12、13とからなり、加熱用発熱体11は可撓性の気密部材14で気密シールされている。   Next, a specific example of the heating apparatus for corrosive liquid according to the present invention will be described with reference to FIG. The heating apparatus shown in FIG. 1 is a heating apparatus that receives and heats corrosive liquid continuously supplied at a constant flow rate into the apparatus, and heats the heater unit 1 that is heated in contact with the corrosive liquid. The heat insulating member 2 surrounds the entire surface of the heater unit 1. As shown in FIG. 2, the heater unit 1 includes a heating element 11 and ceramic plates 12 and 13 formed in two plates sandwiching the heating element 11, and the heating element 11 is flexible. The airtight member 14 is hermetically sealed.

上記した加熱装置を構成する各要素について、より具体的に説明すると、ヒータユニット1に含まれる加熱用発熱体11は、その形状や構造について特に限定はないが、金属のシースヒータを使用するか、あるいは電気絶縁体シートで被覆された金属抵抗発熱体を使用するのが好ましい。これらは簡便で取り扱いが容易であるからである。金属のシースヒータの場合は、ステンレスなどの金属シースの中に、ニクロム線等の発熱体を挿入し、その隙間に酸化マグネシウムなどの熱伝導性のよい無機絶縁物の高純度粉末を圧密に充填するのが好ましい。   The elements constituting the heating device will be described more specifically. The heating element 11 included in the heater unit 1 is not particularly limited in shape or structure, but a metal sheath heater is used. Alternatively, it is preferable to use a metal resistance heating element covered with an electrical insulator sheet. This is because these are simple and easy to handle. In the case of a metal sheath heater, a heating element such as nichrome wire is inserted into a metal sheath such as stainless steel, and a high-purity powder of an inorganic insulator having good thermal conductivity such as magnesium oxide is compactly filled in the gap. Is preferred.

一方、電気絶縁体シートで被覆された金属抵抗発熱体の場合は、金属抵抗発熱体の材質として、ニッケル、ステンレス、銀、タングステン、モリブデン、クロム、またはこれら金属の少なくともいずれかの合金を使用するのが好ましい。これらの中では、ステンレスやニクロムが好ましい。ステンレスやニクロムは、例えば金属箔にエッチングなどの加工を施すことで比較的精度良く抵抗体の回路パターンを形成することができるからである。また、安価な点や、耐酸化性を有するので使用温度が高温であっても長期間の使用に耐え得る点においてもステンレスやニクロムが好ましい。   On the other hand, in the case of a metal resistance heating element coated with an electrical insulator sheet, nickel, stainless steel, silver, tungsten, molybdenum, chromium, or an alloy of at least one of these metals is used as the material of the metal resistance heating element. Is preferred. Of these, stainless steel and nichrome are preferred. This is because, for example, stainless steel or nichrome can form a resistor circuit pattern with relatively high accuracy by performing processing such as etching on a metal foil. In addition, stainless steel and nichrome are preferable in that they are inexpensive and have oxidation resistance, so that they can withstand long-term use even at high operating temperatures.

上記した金属抵抗発熱体を被覆する電気絶縁体シートの材質は、電気絶縁性に加えて耐熱性を有するものが好ましく、このような材質には例えばマイカ、ポリイミド、シリコーン樹脂、エポキシ樹脂、フェノール樹脂などを挙げることができる。これらの内、樹脂を用いる場合は、上記した金属箔からなる金属抵抗発熱体で発生した熱をよりスムースにセラミックプレートに伝え得るようにするため、樹脂中にフィラーを分散させてもよい。樹脂中にフィラーを分散させることによって、シリコーン樹脂等の熱伝導性を高めることができるからである。フィラーの材質としては、樹脂との反応性が無ければ特に制約はなく、たとえば窒化硼素、窒化アルミニウム、アルミナ、シリカなどの物質を使用することができる。   The material of the electrical insulator sheet that covers the above-described metal resistance heating element is preferably one having heat resistance in addition to electrical insulation, such as mica, polyimide, silicone resin, epoxy resin, phenol resin. And so on. Among these, when a resin is used, a filler may be dispersed in the resin so that heat generated by the metal resistance heating element made of the metal foil can be transferred to the ceramic plate more smoothly. This is because the thermal conductivity of the silicone resin or the like can be increased by dispersing the filler in the resin. The filler material is not particularly limited as long as there is no reactivity with the resin. For example, a material such as boron nitride, aluminum nitride, alumina, or silica can be used.

加熱用発熱体11を挟み込むセラミックプレート12、13は、腐食性液体に対する耐食性をもたせるため、SiCまたはSiCを含むSiSiCなどの複合材料で形成されており、その形状には特に制約はないが、製作コストや製作のし易さの観点から図2に示すような2枚の略同形状の平板で構成するのが望ましい。これら2枚の平板のうちの1枚もしくは両方において、互いに対向する側の面に上記した加熱用発熱体11を収納できる大きさの凹部15が設けられている。   The ceramic plates 12 and 13 sandwiching the heating element 11 are made of SiC or a composite material such as SiSiC containing SiC in order to provide corrosion resistance against corrosive liquids, and the shape is not particularly limited. From the viewpoint of cost and ease of manufacture, it is desirable that the plate is composed of two substantially identically shaped flat plates as shown in FIG. In one or both of these two flat plates, a recess 15 having a size capable of accommodating the heating element 11 for heating described above is provided on the surfaces facing each other.

これら2枚の平板のうちの1枚もしくは両方には、更に凹部15の全周を取り囲むように環状の溝16が設けられており、ここに溝16の深さよりも線太もしくは肉厚のOリングやガスケットなどの可撓性の気密部材14が嵌装される。これら装着された加熱用発熱体11および気密部材14を挟み込むようにして2枚のセラミックプレート12、13を重ね合わせ、図示しないネジ等の締結部材でこれら2枚のセラミックプレート12、13を結合することでヒータユニット1が得られる。   One or both of these two flat plates are further provided with an annular groove 16 so as to surround the entire circumference of the recess 15, where O is thicker or thicker than the depth of the groove 16. A flexible airtight member 14 such as a ring or gasket is fitted. The two ceramic plates 12 and 13 are overlapped so as to sandwich the heating heating element 11 and the airtight member 14 mounted, and these two ceramic plates 12 and 13 are coupled with a fastening member such as a screw (not shown). Thus, the heater unit 1 is obtained.

この締結部材での結合により、加熱用発熱体11の回りを取り囲んでいる可撓性の気密部材14が両セラミックプレート12、13によって圧縮されるので、加熱用発熱体11は外部の腐食性環境に対して気密シールされる。気密部材14は腐食性液体に接液するので、その材質は耐食性のある例えばバイトン(登録商標)、カルレッツ(登録商標)のほか、PTFE、PFAなどのフッ素樹脂を使用することになる。   Since the flexible airtight member 14 surrounding the heating element 11 is compressed by the ceramic plates 12 and 13 due to the coupling by the fastening member, the heating element 11 is externally corrosive environment. Is hermetically sealed. Since the airtight member 14 is in contact with the corrosive liquid, the material used is, for example, Viton (registered trademark), Kalrez (registered trademark), or other fluorine resin such as PTFE or PFA.

図3〜6に示すように、上記したヒータユニット1の全面を取り囲むように断熱部材2が設けられている。この断熱部材2の形状には特に限定はないが、ヒータユニット1を一回り大きくしたような相似形状であるのが好ましい。これにより全体としてコンパクトな加熱装置を実現することができる。この断熱部材2の両端部に液体が供給される液体流入口21と、加熱された液体が排出される液体流出口22とがそれぞれ設けられている。   As shown in FIGS. 3 to 6, the heat insulating member 2 is provided so as to surround the entire surface of the heater unit 1 described above. The shape of the heat insulating member 2 is not particularly limited, but is preferably a similar shape as if the heater unit 1 is made one size larger. Thereby, a compact heating device can be realized as a whole. A liquid inlet 21 through which liquid is supplied to both ends of the heat insulating member 2 and a liquid outlet 22 through which heated liquid is discharged are provided.

これら入口21および出口22に連通する液体の流路23が、ヒータユニット1と断熱部材2との間に形成されている。具体的には、腐食性液体に接液した状態で加熱できるように、流路23はヒータユニット1の表面とこれに対向する断熱部材2の表面とで内壁が画定されている。この流路23は、ヒータユニット1の表面の周りを螺旋状に少なくとも1回旋回している。これにより、ヒータユニット1の熱を流体に効率よく伝熱することが可能になる。なお、図1にはヒータユニット1の周りを流体がヒータユニット1の長手方向に向かって螺旋状に1回旋回している状態が矢印で模式的に示されており、図4〜6にはヒータユニット1の周りをその長手方向に向かって螺旋状に4回旋回するように形成された流路が示されている。   A liquid flow path 23 communicating with the inlet 21 and the outlet 22 is formed between the heater unit 1 and the heat insulating member 2. Specifically, the inner wall of the flow path 23 is defined by the surface of the heater unit 1 and the surface of the heat insulating member 2 facing the heater unit 1 so that the channel 23 can be heated while in contact with the corrosive liquid. The flow path 23 spirals around the surface of the heater unit 1 at least once. Thereby, the heat of the heater unit 1 can be efficiently transferred to the fluid. FIG. 1 schematically shows a state in which the fluid is spirally swirled around the heater unit 1 in the longitudinal direction of the heater unit 1 with arrows, and FIGS. A flow path formed so as to swirl around the unit 1 four times spirally in the longitudinal direction is shown.

ヒータユニット1と断熱部材2との間の流路23は、図7(a)に示すようにヒータユニット1の表面に溝を設けることで形成してもよいし、図7(b)に示すように断熱部材2の内面に溝を設けることで形成してもよい。あるいは、図7(c)に示すように両方に溝を設けることで形成してもよい。セラミックに比べて樹脂の方が加工性が良くコストもかなり抑えられるので、樹脂製の断熱部材2を使用する場合は、図7(b)に示すように断熱部材2においてセラミックプレート1に接触する内面側にのみ溝を設けるのが好適である。   The flow path 23 between the heater unit 1 and the heat insulating member 2 may be formed by providing a groove on the surface of the heater unit 1 as shown in FIG. 7 (a), or as shown in FIG. 7 (b). In this way, it may be formed by providing a groove on the inner surface of the heat insulating member 2. Or you may form by providing a groove | channel in both as shown in FIG.7 (c). Since resin has better processability and costs are considerably reduced compared to ceramics, when using a heat insulating member 2 made of resin, it contacts the ceramic plate 1 in the heat insulating member 2 as shown in FIG. It is preferable to provide a groove only on the inner surface side.

上記した流体の入口21および出口22を備えた断熱部材2の材質としては、耐食性のあるものであれば特に制約はないが、SiSiC、SiC、Si、石英等のセラミック、あるいはPTFE、PFA等のフッ素樹脂が好ましい。これらの中ではフッ素樹脂は加工性が良くて溶接もしやすく、且つほとんどの薬液に対して耐食性があるのでより好ましい。断熱部材2は気密を確保するため全て同じ材料で一体成型もしくは互いに溶接されているのが好ましく、この点においてもフッ素樹脂が好ましい。溶接が困難なセラミックの場合は、Oリング等の気密部材で気密シールして液体が外に漏れないように接続すると良い。この場合の気密部材の材質としては、耐食性のあるものなら特に制約はなく、バイトン(登録商標)、カルレッツ(登録商標)のほか、PTFE、PFAなどのフッ素樹脂を用いることができる。 The material of the heat insulating member 2 provided with the fluid inlet 21 and the outlet 22 is not particularly limited as long as it has corrosion resistance. However, SiSiC, SiC, Si 3 N 4 , ceramics such as quartz, PTFE, A fluororesin such as PFA is preferred. Of these, fluororesins are more preferred because they have good processability, are easy to weld, and are corrosion resistant to most chemicals. The heat insulating members 2 are preferably integrally molded or welded together with the same material in order to ensure hermeticity, and also in this respect, a fluororesin is preferable. In the case of ceramics that are difficult to weld, it is preferable that the connection is made so that liquid does not leak outside by airtight sealing with an airtight member such as an O-ring. In this case, the material of the hermetic member is not particularly limited as long as it has corrosion resistance. In addition to Viton (registered trademark) and Kalrez (registered trademark), fluorine resins such as PTFE and PFA can be used.

断熱部材2の厚みとしては、良好な断熱性の観点から2mm以上が好ましく、5mm以上がより好ましく、10mm以上が最も好ましい。このように断熱部材の厚みを厚くすることで加熱装置の外表面温度を低く抑えることができ、エネルギーの節約になる上、加熱装置が周辺環境に及ぼす影響を最小限に抑えることができる。ただし、あまり厚くしすぎると装置自体が嵩張ったり重くなりすぎて取り扱いが困難になる場合がある。   As thickness of the heat insulation member 2, 2 mm or more is preferable from a viewpoint of favorable heat insulation, 5 mm or more is more preferable, and 10 mm or more is the most preferable. By increasing the thickness of the heat insulating member in this manner, the outer surface temperature of the heating device can be kept low, energy can be saved, and the influence of the heating device on the surrounding environment can be minimized. However, if it is too thick, the device itself may be too bulky or heavy, and handling may be difficult.

このような制約によって断熱部材2の厚みを厚くできない場合は、図8に示すように、断熱部材2のまわりに補助断熱部材3を設けると共に、断熱部材2と補助断熱部材3との間に空隙31を設ければよい。断熱部材2と補助断熱部材3との間には円柱状の支持部材32を適切な場所に設けることにより、補助断熱部材3を支持することができる。これら断熱部材2および補助断熱部材3の最適な厚み配分や空隙の間隔には特に制約はないが、断熱部材2の厚みを2〜5mm程度、空隙31の間隔を3〜15mm程度、補助断熱部材3の厚みを2〜5mm程度にすれば装置全体をコンパクトにし、且つ軽量化することができるため好適である。   When the thickness of the heat insulating member 2 cannot be increased due to such a restriction, an auxiliary heat insulating member 3 is provided around the heat insulating member 2 and a gap is formed between the heat insulating member 2 and the auxiliary heat insulating member 3 as shown in FIG. 31 may be provided. The auxiliary heat insulating member 3 can be supported by providing a columnar support member 32 between the heat insulating member 2 and the auxiliary heat insulating member 3 at an appropriate location. There are no particular restrictions on the optimal thickness distribution and spacing of the heat insulating member 2 and auxiliary heat insulating member 3, but the thickness of the heat insulating member 2 is about 2 to 5 mm and the space 31 is about 3 to 15 mm. If the thickness of 3 is about 2 to 5 mm, the entire apparatus can be made compact and lightweight, which is preferable.

以上、本発明のヒータについて具体例を挙げて説明したが、本発明は係る具体例に限定されるものではなく、本発明の主旨から逸脱しない範囲の種々の態様で実施可能である。すなわち、本発明の技術的範囲は、特許請求の範囲およびその均等物に及ぶものである。   As mentioned above, although the specific example was given and demonstrated about the heater of this invention, this invention is not limited to the specific example which concerns, It can implement in the various aspects of the range which does not deviate from the main point of this invention. That is, the technical scope of the present invention extends to the claims and their equivalents.

[実施例1]
図3〜6に示すような加熱装置を作製して流体を加熱する実験を行った。具体的には、縦150mm×横50mm×厚み10mmの矩形平板状のSi10SiC90製のセラミックプレートを2枚準備した。これら2枚のセラミックプレートのうちの一方の片面略中央部に、後述する加熱用発熱体の収納用の縦100mm×横30mm×深さ1.05mmの凹部を設け、更にその凹部の周りを取り囲むように、後述する気密部材の嵌装用の幅2.4mm×深さ1.8mmの溝を形成した。この溝は、内側の寸法を縦105mm×横35mmにした。2枚のセラミックプレートのうちの他方には、加熱用発熱体の給電用ケーブルを通すための貫通孔を設けた。
[Example 1]
An experiment for heating a fluid by manufacturing a heating apparatus as shown in FIGS. Specifically, two ceramic plates made of Si 10 SiC 90 having a rectangular plate shape of 150 mm long × 50 mm wide × 10 mm thick were prepared. A concave portion having a length of 100 mm, a width of 30 mm, and a depth of 1.05 mm for storing a heating element to be described later is provided at a substantially central portion on one side of one of these two ceramic plates, and further encloses the periphery of the recess. As described above, a groove having a width of 2.4 mm and a depth of 1.8 mm for fitting an airtight member to be described later was formed. The inner dimensions of this groove were 105 mm long x 35 mm wide. The other of the two ceramic plates was provided with a through hole for passing a power supply cable for the heating element.

電気絶縁体シートには、縦100mm×横30mm×厚み0.5mmのシリコーン樹脂(熱伝導率5W/mm/K)を2枚使用した。このシリコーン樹脂には、窒化硼素フィラーを分散させたものを用いた。金属抵抗発熱体には、エッチング加工により回路パターンが形成された、縦95mm×横25mm×厚み0.05mmのステンレス箔を用意し、その電極には2本の給電用ケーブルをスポット溶接で取り付けた。このようにして、電気絶縁体シートで被覆された金属抵抗発熱体からなる加熱用発熱体11を作製した。   Two sheets of silicone resin (thermal conductivity 5 W / mm / K) having a length of 100 mm × width of 30 mm × thickness of 0.5 mm were used for the electrical insulator sheet. The silicone resin used was a boron nitride filler dispersed therein. For the metal resistance heating element, a stainless steel foil of 95 mm in length, 25 mm in width and 0.05 mm in thickness, on which a circuit pattern was formed by etching, was prepared, and two power feeding cables were attached to the electrodes by spot welding. . In this way, a heating heating element 11 made of a metal resistance heating element covered with an electrical insulator sheet was produced.

気密部材14として、内寸縦105mm×横35mm×太さ2mmのバイトン製のOリングを用意した。この気密部材14と上記した加熱用発熱体11とをセラミックプレートに形成した凹部および溝にそれぞれ嵌装し、これら気密部材14と加熱用発熱体11とを挟み込むようにして2枚のセラミックプレートを重ね合わせた。その際、2本の給電用ケーブルは一方のセラミックプレートに設けた貫通孔に気密状態で挿通させてヒータユニット1から外に取り出した。そして、これら2枚のセラミックプレートを、PTFEコートした4個のステンレスボルト(M4長さ25)とテフロンコートした4個のステンレスナットとで結合した。これらボルトナットによる結合の位置および結合方法は通常の方法で行ったのでその説明は省略する。このようにして、ヒータユニット1を作製した。   As the airtight member 14, an O-ring made of Viton having an inner size of 105 mm × width 35 mm × thickness 2 mm was prepared. The hermetic member 14 and the heating element 11 for heating described above are fitted in the recesses and grooves formed in the ceramic plate, respectively, and the two ceramic plates are sandwiched between the hermetic member 14 and the heating element 11 for heating. Superimposed. At that time, the two power supply cables were taken out from the heater unit 1 through an airtight state through a through hole provided in one ceramic plate. These two ceramic plates were joined with four stainless steel bolts (M4 length 25) coated with PTFE and four stainless steel nuts coated with Teflon. Since the position and method of connection by these bolts and nuts were performed in a normal manner, the description thereof will be omitted. Thus, the heater unit 1 was produced.

次に、断熱部材2として、縦165mm×横60mm×高さ30mmのPTFE製の直方体部材を1個準備した。この直方体部材の長手方向の一端部から、横幅50mm×高さ20mm×奥行き161mmの空洞部を加工し、更にこの空洞部の蓋となる、PTFE製の横50mm×縦20mm×厚み4mmの矩形平板を作製した。そして、この空洞部の内壁に、図4〜6に示すような、長手方向に向かって螺旋状に4回旋回する1本の流路23を形成した。この螺旋状の流路23は、幅25mm×深さ1mmの1本の溝が、上記空洞部に蓋をした時に形成される空間の長手方向の一端から他端に至るように形成した。これにより、該空間の長手方向の中央部にヒータユニット1の長手方向の中央部が一致するようにヒータユニット1を設置したとき、断熱部材2の長手方向の両端部にそれぞれ形成される入口側空間24および出口側空間25に流路23を連通させることができる。   Next, as the heat insulating member 2, one rectangular parallelepiped member made of PTFE having a length of 165 mm, a width of 60 mm, and a height of 30 mm was prepared. A rectangular flat plate made of PTFE having a width of 50 mm, a height of 20 mm, and a thickness of 4 mm is formed by processing a hollow portion having a width of 50 mm, a height of 20 mm, and a depth of 161 mm from one end portion in the longitudinal direction of the rectangular parallelepiped member. Was made. Then, on the inner wall of this hollow portion, a single flow path 23 that spirally turns four times in the longitudinal direction as shown in FIGS. 4 to 6 was formed. The spiral flow path 23 was formed so that one groove having a width of 25 mm and a depth of 1 mm extended from one end to the other end in the longitudinal direction of the space formed when the cavity was covered. Thereby, when the heater unit 1 is installed so that the central portion in the longitudinal direction of the space coincides with the central portion in the longitudinal direction of the space, the inlet side formed respectively at both ends in the longitudinal direction of the heat insulating member 2 The flow path 23 can be communicated with the space 24 and the outlet side space 25.

上記空洞部の突き当たりに該当する壁面の中央部に内径6mmの貫通孔を穿孔し、該空洞部の蓋となる矩形平板の中央部にも内径6mmの貫通孔を穿孔した。そしてこれら貫通孔の各々に、外径8mm×内径6mm×長さ20mmのPTFEチューブを溶接で接合し、液体流入口21と液体流出口22とを形成した。そして、該空洞部に前述のヒータユニット1を挿入し、前述したように中央部同士が一致する位置で固定し、更に溶接により空洞部の入口を上記したPTFEチューブが溶接された蓋で閉塞した。このようにして、液体流入口21、入口側空間24、流路23、出口側空間25、および液体流出口22がこの順に連通してなる1本の流路を備えた加熱装置を完成させた。   A through-hole with an inner diameter of 6 mm was drilled in the central part of the wall surface corresponding to the end of the cavity, and a through-hole with an inner diameter of 6 mm was drilled in the central part of a rectangular flat plate serving as a lid for the cavity. Then, a PTFE tube having an outer diameter of 8 mm, an inner diameter of 6 mm, and a length of 20 mm was joined to each of these through holes by welding to form a liquid inlet 21 and a liquid outlet 22. Then, the heater unit 1 described above is inserted into the cavity, and is fixed at a position where the central portions coincide with each other as described above, and the inlet of the cavity is closed by a lid welded with the PTFE tube described above by welding. . Thus, the heating apparatus provided with one flow path in which the liquid inlet 21, the inlet side space 24, the flow path 23, the outlet side space 25, and the liquid outlet 22 are communicated in this order was completed. .

この加熱装置の性能確認のため、水を1L/minで連続的に供給した場合の加熱テストを実施した。具体的には、装置全体の温度が25℃の状態にある液体用加熱装置の液体流入口21に、25℃の水を流量1L/minで連続的に供給し、この水の供給開始と同時に金属抵抗発熱体に2kWの発熱量になるように給電した。そして、給電を始めてから5秒、10秒、20秒、60秒、10分、60分、12時間、24時間後の流体流出口22での水の温度、および加熱装置の表面温度を測定した。その結果を下記表1に示す。   In order to confirm the performance of this heating device, a heating test was conducted when water was continuously supplied at 1 L / min. Specifically, 25 ° C. water is continuously supplied at a flow rate of 1 L / min to the liquid inlet 21 of the liquid heating device in which the temperature of the entire apparatus is 25 ° C. Power was supplied to the metal resistance heating element so that the heat generation amount was 2 kW. Then, the temperature of the water at the fluid outlet 22 and the surface temperature of the heating device after 5 seconds, 10 seconds, 20 seconds, 60 seconds, 10 minutes, 60 minutes, 12 hours and 24 hours from the start of power feeding were measured. . The results are shown in Table 1 below.

Figure 2015015081
Figure 2015015081

上記表1から分かるように、給電を始めてから10秒という極めて短時間で流体流出口22の温度が55℃に達し、その後24時間以上その温度を維持していた。また、加熱装置の表面温度は60分まではほとんど上がらず、12時間以上経過してから36.3℃前後で安定した。   As can be seen from Table 1 above, the temperature of the fluid outlet 22 reached 55 ° C. in a very short time of 10 seconds after the start of power supply, and then maintained that temperature for 24 hours or more. Further, the surface temperature of the heating apparatus hardly increased until 60 minutes, and stabilized at around 36.3 ° C. after 12 hours or more.

次に、上記の金属抵抗発熱体への給電を停止して装置全体の温度が25℃になるまで放冷した後、金属抵抗発熱体に2kWに代えて4kWの発熱量になるように電流を流した以外は上記と同様にして水を加熱する実験を行った。その結果を下記表2に示す。   Next, after the power supply to the metal resistance heating element is stopped and the apparatus is allowed to cool to 25 ° C., a current is applied to the metal resistance heating element so that the heating value is 4 kW instead of 2 kW. An experiment was conducted in which water was heated in the same manner as described above except that the sample was poured. The results are shown in Table 2 below.

Figure 2015015081
Figure 2015015081

上記表2から分かるように、電流を流し始めてから20秒という比較的短時間で流体流出口22の温度が85℃に達し、その後24時間以上その温度を維持していた。また、加熱装置の表面温度は60分まではあまり上がらず、12時間以上経過してから67.4℃前後で安定した。   As can be seen from Table 2 above, the temperature of the fluid outlet 22 reached 85 ° C. in a relatively short time of 20 seconds after the current started to flow, and then maintained that temperature for more than 24 hours. Further, the surface temperature of the heating device did not rise so much until 60 minutes, and stabilized at around 67.4 ° C. after 12 hours or more had elapsed.

次に、給電を始めてから24時間経過した後、加熱装置への水の供給を止めると共に金属抵抗発熱体への給電を停止し、この状態で60分間放置した。60分経過後、再び加熱装置に25℃の水を流量1L/minで連続的に供給し、同時に金属抵抗発熱体に4kWの電力を給電した。その結果を下記表3に示す。   Next, 24 hours after the start of power supply, the supply of water to the heating device was stopped and the power supply to the metal resistance heating element was stopped, and this state was left for 60 minutes. After 60 minutes, 25 ° C. water was continuously supplied to the heating device again at a flow rate of 1 L / min, and at the same time, 4 kW of power was supplied to the metal resistance heating element. The results are shown in Table 3 below.

Figure 2015015081
Figure 2015015081

上記表3から分かるように、給電を始めてからわずか2秒という短時間で85℃に安定し、表面温度も約67.4℃で安定した。上記表2と表3の結果を比較して分かるように、表2の場合において温度が安定するまでに20秒かかったのは、ヒータユニット単体が熱容量を持っているため、安定する温度に達するまでに時間がかかり、表3の場合は、すでにヒータユニット単体は安定する温度に近かったため、わずか2秒で出口温度が安定したと考えられる。このように、本発明の液体用加熱装置は非常に短時間で目的の温度に加熱することができる。   As can be seen from Table 3 above, the temperature was stabilized at 85 ° C. in a short time of only 2 seconds after the start of power supply, and the surface temperature was stabilized at about 67.4 ° C. As can be seen by comparing the results of Table 2 and Table 3, it took 20 seconds for the temperature to stabilize in the case of Table 2 because the heater unit alone has a heat capacity, so that it reaches a stable temperature. In Table 3, it is considered that the outlet temperature was stabilized in only 2 seconds because the heater unit alone was already close to a stable temperature. Thus, the liquid heating apparatus of the present invention can be heated to a target temperature in a very short time.

[実施例2]
図8に示すような補助断熱部材を備えた加熱装置を作製して流体を加熱する実験を行った。ヒータユニット1および加熱部材2には実施例1と同じものを使用した。加熱部材2の周りに設ける補助断熱部材3としては、内寸縦185mm×横80mm×高さ50mm×厚み2mmのPTFE製の中空の直方体形状の箱状体を用意し、更にPTFE製の直径5mm×長さ10mmの円筒状の支持部材32を24個用意した。これら支持部材32を実施例1で用いた加熱装置の断熱部材2の外壁6面に略均等に4個ずつ配置し、断熱部材2と補助断熱部材3との間に10mm離間する空隙を形成した。このようにして、補助断熱部材3を備えた加熱装置を完成させた。
[Example 2]
An experiment was conducted in which a heating apparatus having an auxiliary heat insulating member as shown in FIG. The same heater unit 1 and heating member 2 as in Example 1 were used. As the auxiliary heat insulating member 3 provided around the heating member 2, a hollow rectangular parallelepiped box-shaped body made of PTFE having an inner dimension of 185 mm × width 80 mm × height 50 mm × thickness 2 mm is prepared, and further, a PTFE diameter 5 mm X 24 cylindrical support members 32 having a length of 10 mm were prepared. Four of these support members 32 are arranged approximately evenly on the outer wall 6 surface of the heat insulating member 2 of the heating device used in Example 1 to form a gap 10 mm apart between the heat insulating member 2 and the auxiliary heat insulating member 3. . Thus, the heating apparatus provided with the auxiliary heat insulating member 3 was completed.

この加熱装置の性能確認のため、水を1L/minで連続的に供給した場合の加熱テストを実施した。具体的には、全体の温度が25℃の状態にある液体用加熱装置の液体流入口21に、25℃の水を流量1L/minで連続的に供給し、同時に金属抵抗発熱体に4kWの発熱量になるように給電した。そして、給電を始めてから5秒、10秒、20秒、60秒、10分、60分、12時間、24時間後の流体流出口22での水の温度、および補助断熱部材3の表面温度を測定した。その結果を下記表4に示す。   In order to confirm the performance of this heating device, a heating test was conducted when water was continuously supplied at 1 L / min. Specifically, 25 ° C. water is continuously supplied at a flow rate of 1 L / min to the liquid inlet 21 of the liquid heating device whose overall temperature is 25 ° C., and at the same time, 4 kW is supplied to the metal resistance heating element. Power was supplied so that the amount of heat generated was reached. Then, the water temperature at the fluid outlet 22 and the surface temperature of the auxiliary heat insulating member 3 after 5 seconds, 10 seconds, 20 seconds, 60 seconds, 10 minutes, 60 minutes, 12 hours and 24 hours from the start of power supply It was measured. The results are shown in Table 4 below.

Figure 2015015081
Figure 2015015081

上記表4から分かるように、給電を始めてから20秒という比較的短時間で85℃に達し、その後24時間以上その温度を維持していた。また、補助断熱部材3の表面温度は60分までは上がらず、12時間以上経過してから26.1℃で安定した。上記表4と実施例1の表2を比べて分かるように、補助断熱部材を使用することで、表面温度の上昇を大幅に抑えることができた。これは、断熱部材と補助断熱部材との間の空隙が空気断熱層として断熱に寄与したためであると考えられる。   As can be seen from Table 4 above, the temperature reached 85 ° C. in a relatively short time of 20 seconds from the start of power supply, and then maintained that temperature for 24 hours or more. Further, the surface temperature of the auxiliary heat insulating member 3 did not rise until 60 minutes and stabilized at 26.1 ° C. after 12 hours or more had elapsed. As can be seen by comparing Table 4 and Table 2 of Example 1, the use of the auxiliary heat insulating member could significantly suppress the increase in surface temperature. This is considered to be because the gap between the heat insulating member and the auxiliary heat insulating member contributed to heat insulation as an air heat insulating layer.

1 ヒータユニット
2 断熱部材
3 補助断熱部材
11 加熱用発熱体
12、13 セラミックプレート
14 気密部材
15 凹部
16 溝
21 液体流入口
22 液体流出口
23 流路
24 入口側空間
25 出口側空間
31 空隙
32 支持部材
DESCRIPTION OF SYMBOLS 1 Heater unit 2 Heat insulation member 3 Auxiliary heat insulation member 11 Heating element 12 for heating, 13 Ceramic plate 14 Airtight member 15 Recess 16 Groove 21 Liquid inflow port 22 Liquid outflow port 23 Flow path 24 Inlet side space 25 Outlet side space 31 Void 32 Support Element

Claims (3)

腐食性の液体を加熱する加熱装置であって、ヒータユニットと前記ヒータユニットを囲み且つ前記液体の入口と出口とを備えた断熱部材とを有し、前記ヒータユニットはSiCまたはSiCを含む複合材料からなるセラミック体とその内部に気密に設けられた加熱用発熱体とを有し、前記入口及び前記出口に連通し且つ前記ヒータユニットの周りを少なくとも1回螺旋状に旋回した流路が設けられている加熱装置。   A heating device for heating a corrosive liquid, comprising a heater unit and a heat insulating member surrounding the heater unit and having an inlet and an outlet for the liquid, and the heater unit is SiC or a composite material containing SiC And a heating passage that is hermetically provided inside the ceramic body, and is provided with a flow path that communicates with the inlet and the outlet and that spirals around the heater unit at least once. Heating device. 前記断熱部材においてセラミック体に接触する側に前記流路の溝が形成されている、請求項1に記載の加熱装置。   The heating device according to claim 1, wherein a groove of the flow path is formed on a side of the heat insulating member that contacts the ceramic body. 前記断熱部材の周りに補助断熱部材が設けられており、これら断熱部材と補助断熱部材との間に空隙が設けられている、請求項1又は請求項2に記載の加熱装置。   The heating apparatus according to claim 1 or 2, wherein an auxiliary heat insulating member is provided around the heat insulating member, and a gap is provided between the heat insulating member and the auxiliary heat insulating member.
JP2013139548A 2013-07-03 2013-07-03 Corrosive liquid heating device Expired - Fee Related JP6102577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013139548A JP6102577B2 (en) 2013-07-03 2013-07-03 Corrosive liquid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013139548A JP6102577B2 (en) 2013-07-03 2013-07-03 Corrosive liquid heating device

Publications (2)

Publication Number Publication Date
JP2015015081A true JP2015015081A (en) 2015-01-22
JP6102577B2 JP6102577B2 (en) 2017-03-29

Family

ID=52436705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013139548A Expired - Fee Related JP6102577B2 (en) 2013-07-03 2013-07-03 Corrosive liquid heating device

Country Status (1)

Country Link
JP (1) JP6102577B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873975B1 (en) * 2016-09-27 2018-07-03 부산대학교 산학협력단 Partial heating system of hot stamping blank by sub furnace in main furnace
CN111532610A (en) * 2020-05-06 2020-08-14 成都桐林铸造实业有限公司 Corrosive liquid adds device with heating function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198690A (en) * 1983-04-25 1984-11-10 いすゞ自動車株式会社 Ceramic heater and method of producing same
JPH04236093A (en) * 1991-01-14 1992-08-25 Sakaguchi Dennetsu Kk Heating furnace
JPH0554954U (en) * 1991-12-19 1993-07-23 東海カーボン株式会社 Liquid heater
JP2002098412A (en) * 2000-09-26 2002-04-05 Noritz Corp Heating hot water storing device
US20040184794A1 (en) * 2002-12-11 2004-09-23 Thomas Johnson Method device for heating fluids
JP2006038270A (en) * 2004-07-23 2006-02-09 Matsushita Electric Ind Co Ltd Fluid heating device and various washing devices using same
JP2006223402A (en) * 2005-02-15 2006-08-31 Thermos Kk Dry noodle cooker and separator mounted in the inside
JP2008267784A (en) * 2007-03-22 2008-11-06 Bridgestone Corp In-line heater
WO2009147871A1 (en) * 2008-06-02 2009-12-10 東京エレクトロン株式会社 Fluid heater, manufacturing method thereof, substrate processing device equipped with a fluid heater, and substrate processing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59198690A (en) * 1983-04-25 1984-11-10 いすゞ自動車株式会社 Ceramic heater and method of producing same
JPH04236093A (en) * 1991-01-14 1992-08-25 Sakaguchi Dennetsu Kk Heating furnace
JPH0554954U (en) * 1991-12-19 1993-07-23 東海カーボン株式会社 Liquid heater
JP2002098412A (en) * 2000-09-26 2002-04-05 Noritz Corp Heating hot water storing device
US20040184794A1 (en) * 2002-12-11 2004-09-23 Thomas Johnson Method device for heating fluids
JP2006038270A (en) * 2004-07-23 2006-02-09 Matsushita Electric Ind Co Ltd Fluid heating device and various washing devices using same
JP2006223402A (en) * 2005-02-15 2006-08-31 Thermos Kk Dry noodle cooker and separator mounted in the inside
JP2008267784A (en) * 2007-03-22 2008-11-06 Bridgestone Corp In-line heater
WO2009147871A1 (en) * 2008-06-02 2009-12-10 東京エレクトロン株式会社 Fluid heater, manufacturing method thereof, substrate processing device equipped with a fluid heater, and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873975B1 (en) * 2016-09-27 2018-07-03 부산대학교 산학협력단 Partial heating system of hot stamping blank by sub furnace in main furnace
CN111532610A (en) * 2020-05-06 2020-08-14 成都桐林铸造实业有限公司 Corrosive liquid adds device with heating function

Also Published As

Publication number Publication date
JP6102577B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
US20110297666A1 (en) Heating Apparatus and Method for Producing the Heating Apparatus
KR102661729B1 (en) Heating modules and smoke generating devices
TW200812422A (en) Heating element for a hot air device
EP3361493A1 (en) Lamp for rapid thermal processing chamber
JP2006300506A (en) Vacuum heat-insulation heater assembly
JP6102577B2 (en) Corrosive liquid heating device
US20160115025A1 (en) Method and Apparatus for a Directly Electrically Heated Flow-Through Chemical Reactor
JP3940149B2 (en) Fluid heating device
US12055321B2 (en) Film type liquid heater and uniform heating method thereof
JP2015152218A (en) fluid heating device
WO2002090836A1 (en) Electric water heater, liquid heater, steam generator
JP2008202844A (en) Fluid heating device
KR102213056B1 (en) High temperature tubular heater
CN102252417B (en) Heater for corrosive liquid
KR20230077743A (en) Aerosol generating device with adiabatic heater
JP2008020097A (en) Fluid heating device and fluid treatment device using the same
WO2012105414A1 (en) Gas superheater and superheater connecting body
JP2009283247A (en) Exothermic body unit, and heating device
CN221763519U (en) Heating system
KR102599035B1 (en) Explosion-proof block heater
CN216590236U (en) Heating structure of faucet
CN219199516U (en) Electric auxiliary heating device and gas water heater with same
JP2015153589A (en) Heating apparatus having pressure relief function
WO2022244623A1 (en) Liquid heating device
CN114666928A (en) MCH metal ceramic heating pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees