JP2015010930A - Resolver excitation device - Google Patents

Resolver excitation device Download PDF

Info

Publication number
JP2015010930A
JP2015010930A JP2013136296A JP2013136296A JP2015010930A JP 2015010930 A JP2015010930 A JP 2015010930A JP 2013136296 A JP2013136296 A JP 2013136296A JP 2013136296 A JP2013136296 A JP 2013136296A JP 2015010930 A JP2015010930 A JP 2015010930A
Authority
JP
Japan
Prior art keywords
resolver excitation
voltage
excitation signal
signal
resolver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013136296A
Other languages
Japanese (ja)
Other versions
JP6174393B2 (en
Inventor
宏司 鈴木
Koji Suzuki
宏司 鈴木
和隆 瀬野尾
Kazutaka Senoo
和隆 瀬野尾
修吾 植野
Shugo Ueno
修吾 植野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2013136296A priority Critical patent/JP6174393B2/en
Publication of JP2015010930A publication Critical patent/JP2015010930A/en
Application granted granted Critical
Publication of JP6174393B2 publication Critical patent/JP6174393B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To inexpensively provide a resolver excitation device by suppressing the number of components.SOLUTION: The resolver excitation device creates a reversed-phase resolver excitation signal and a normal-phase resolver excitation signal to be supplied to an exciting coil of a resolver. The resolver excitation device includes: a sine-wave signal creation circuit for creating a sine-wave signal of a predetermined frequency; and a resolver excitation signal creation unit 22 including a first inverting amplifier circuit for creating a reversed-phase resolver excitation signal by inverting and amplifying the sine-wave signal, and a second inverting amplifier circuit for creating a normal-phase resolver excitation signal by inverting and amplifying the reversed-phase resolver excitation signal.

Description

本発明は、レゾルバ励磁装置に関する。   The present invention relates to a resolver excitation device.

従来、IPM(Interior Permanent Magnet:磁石埋込型)モータなどの動力モータでは、回転子の回転角を検出する回転角センサとして、レゾルバが用いられる。レゾルバは、基本的にはコイルと鉄心によって簡易に構成されているため高い耐環境性能を有し、温度変化、塵や埃等に影響されることなく正常に動作する。レゾルバの励磁コイルには、正弦波信号が印加される。レゾルバの2つの出力コイルからは、回転子の回転角に応じて、励磁信号が正弦波状に振幅変調された2相の出力信号が出力される。そして、各相の出力信号を所定周期毎に検出し、回転角が算出される。   Conventionally, in a power motor such as an IPM (Internal Permanent Magnet) motor, a resolver is used as a rotation angle sensor that detects a rotation angle of a rotor. Since the resolver is basically composed simply of a coil and an iron core, it has a high environmental resistance and operates normally without being affected by temperature changes, dust or dirt. A sine wave signal is applied to the exciting coil of the resolver. The two output coils of the resolver output a two-phase output signal in which the excitation signal is amplitude-modulated in a sine wave shape according to the rotation angle of the rotor. And the output signal of each phase is detected for every predetermined period, and a rotation angle is calculated.

下記特許文献1には、レゾルバの励磁コイルの一端にオフセット電圧(直流バイアス)を含む励磁信号(正弦波信号)を供給し、励磁コイルの他端にも同一のオフセット電圧を含む反転励磁信号を供給する回転角度検出装置が開示されている。この回転角度検出装置は、上記励磁コイルの地絡を検出した場合に、励磁信号及び反転励磁信号にオフセット電圧を加えることを禁止することにより、オフセット電圧を含まない励磁信号を励磁コイルに供給し、これによってオフセット電圧に起因する素子の破壊や励磁コイルの断線を防止する。   In Patent Document 1 below, an excitation signal (sine wave signal) including an offset voltage (DC bias) is supplied to one end of an excitation coil of a resolver, and an inverted excitation signal including the same offset voltage is also applied to the other end of the excitation coil. A rotation angle detection device to be supplied is disclosed. This rotation angle detection device supplies an excitation signal that does not include an offset voltage to the excitation coil by prohibiting applying an offset voltage to the excitation signal and the inverted excitation signal when a ground fault of the excitation coil is detected. This prevents destruction of the element and disconnection of the exciting coil due to the offset voltage.

特許第5067880号公報Japanese Patent No. 5067880

ところで、特許文献1の回転角度検出装置は、正弦波信号に基づいてレゾルバ励磁信号を生成すると共に、この正弦波信号の逆相信号に基づいて反転レゾルバ励磁信号を生成する。このため、逆相信号を生成するためのインバータ回路が必要になるため、部品点数が多くなり、生産コストが上がってしまう問題があった。   By the way, the rotation angle detection device of Patent Document 1 generates a resolver excitation signal based on a sine wave signal, and generates an inverted resolver excitation signal based on a reverse phase signal of the sine wave signal. For this reason, since an inverter circuit for generating a reverse phase signal is required, there is a problem that the number of parts increases and the production cost increases.

本発明は、上述した事情に鑑みてなされたものであり、部品点数を抑制して安価に構成できるレゾルバ励磁装置を提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to provide a resolver excitation device that can be configured at low cost by suppressing the number of components.

上記目的を達成するために、本発明では、第1の解決手段として、レゾルバの励磁コイルに供給するための逆相レゾルバ励磁信号及び正相レゾルバ励磁信号を生成するレゾルバ励磁装置であって、所定周波数の正弦波信号を生成する正弦波信号生成回路と、正弦波信号を反転増幅して逆相レゾルバ励磁信号を生成する第1の反転増幅回路と逆相レゾルバ励磁信号を反転増幅して正相レゾルバ励磁信号を生成する第2の反転増幅回路とを備えるレゾルバ励磁信号生成部と、を具備する、という手段を採用する。   In order to achieve the above object, according to the present invention, as a first solution, a resolver excitation device that generates a reverse-phase resolver excitation signal and a positive-phase resolver excitation signal to be supplied to an excitation coil of a resolver, A sine wave signal generating circuit that generates a sine wave signal of a frequency, a first inverting amplifier circuit that generates a negative phase resolver excitation signal by inverting and amplifying the sine wave signal, and a positive phase by inverting and amplifying the negative phase resolver excitation signal A resolver excitation signal generation unit including a second inverting amplifier circuit that generates a resolver excitation signal is used.

本発明では、第2の解決手段として、上記第1の解決手段において、第1の直流電圧を出力する直流電圧生成回路をさらに備え、前記第1の反転増幅回路は、前記正弦波信号及び前記第1の直流電圧を入力として、前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号を出力し、前記第2の反転増幅回路は、前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号及び前記第1の直流電圧を入力とし、前記第1の直流電圧を直流バイアスとする前記正相レゾルバ励磁信号を出力する、という手段を採用する。 According to the present invention, as the second solution means, in the first solution means, a DC voltage generation circuit that outputs a first DC voltage is further provided, wherein the first inverting amplifier circuit includes the sine wave signal and the The first DC voltage is input, the negative phase resolver excitation signal is output with the first DC voltage as a DC bias, and the second inverting amplifier circuit uses the first DC voltage as a DC bias. The reverse phase resolver excitation signal and the first DC voltage are input, and the positive phase resolver excitation signal is output using the first DC voltage as a DC bias.

本発明では、第3の解決手段として、上記第1または第2の解決手段において、前記正弦波信号が第2の直流電圧を含む場合には、前記第1の反転増幅回路は、前記第2の直流電圧をも入力として前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号を出力する、という手段を採用する。   In the present invention, as the third solving means, in the first or second solving means, when the sine wave signal includes a second DC voltage, the first inverting amplifier circuit is configured to provide the second inverting amplifier circuit. The reverse phase resolver excitation signal having the first DC voltage as a DC bias and the first DC voltage as an input is output.

本発明によれば、レゾルバ励磁信号生成部が正弦波信号を反転増幅して逆相レゾルバ励磁信号を生成する第1の反転増幅回路と、逆相レゾルバ励磁信号を反転増幅して正相レゾルバ励磁信号を生成する第2の反転増幅回路とを備えるので、従来技術のようなインバータ回路が不要であり、よって部品点数を抑制して安価に構成することができる。  According to the present invention, the resolver excitation signal generation unit inverts and amplifies the sine wave signal to generate a reverse-phase resolver excitation signal, and the reverse-phase resolver excitation signal is inverted and amplified to perform positive-phase resolver excitation. Since the second inverting amplifier circuit for generating a signal is provided, an inverter circuit as in the prior art is unnecessary, and the number of components can be suppressed and the configuration can be reduced.

本発明の一実施形態に係る回転角検出装置1の構成を示すブロック図である。It is a block diagram which shows the structure of the rotation angle detection apparatus 1 which concerns on one Embodiment of this invention. 本発明の一実施形態におけるレゾルバ励磁信号生成部22の構成を示す回路図である。It is a circuit diagram which shows the structure of the resolver excitation signal generation part 22 in one Embodiment of this invention. 本発明の一実施形態において、(a)逆相レゾルバ励磁信号、(b)正相レゾルバ励磁信号、及び(c)励磁コイルL1の両端に生じる電圧を示す波形図である。In one Embodiment of this invention, it is a wave form diagram which shows the voltage which arises at (a) a negative phase resolver excitation signal, (b) a normal phase resolver excitation signal, and (c) the both ends of the exciting coil L1. 本発明の一実施形態の変形例におけるレゾルバ励磁信号生成部22Aの構成を示す回路図である。It is a circuit diagram which shows the structure of 22 A of resolver excitation signal generation parts in the modification of one Embodiment of this invention.

以下、図面を参照して、本発明の一実施形態について説明する。
図1は、本発明の一実施形態に係る回転角検出装置1の構成を示すブロック図である。回転角検出装置1は、レゾルバ10と、レゾルバ10にレゾルバ励磁信号を出力すると共にレゾルバ10の出力信号をデジタル信号に変換するレゾルバ励磁装置20と、レゾルバ励磁装置20の出力信号(角度データ)に基づいてモータのベクトル制御を行うMPU(Micro−Processing Unit)30と、を備えている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a rotation angle detection device 1 according to an embodiment of the present invention. The rotation angle detector 1 outputs a resolver 10, a resolver excitation signal 20 that outputs a resolver excitation signal to the resolver 10 and converts an output signal of the resolver 10 into a digital signal, and an output signal (angle data) of the resolver excitation device 20. MPU (Micro-Processing Unit) 30 that performs vector control of the motor on the basis thereof.

レゾルバ10は、回転子であるロータ11と、ロータ11の周囲に配置された励磁コイルL1と、同じくロータ11の周囲に配置された第1出力コイルL2及び第2出力コイルL3と、を備えている。ロータ11の周囲には、円周方向に沿って磁極(図示省略)が形成されたステータ(図示省略)が設けられている。上記励磁コイルL1及び第1、第2出力コイルL2,L3は、ステータの個々の磁極に個別に巻かれている。   The resolver 10 includes a rotor 11 that is a rotor, an excitation coil L1 disposed around the rotor 11, and a first output coil L2 and a second output coil L3 that are also disposed around the rotor 11. Yes. Around the rotor 11, a stator (not shown) in which magnetic poles (not shown) are formed along the circumferential direction is provided. The excitation coil L1 and the first and second output coils L2, L3 are individually wound around individual magnetic poles of the stator.

レゾルバ励磁装置20は、正弦波信号を生成する正弦波信号生成回路21と、レゾルバ励磁信号を生成するレゾルバ励磁信号生成部22と、レゾルバ10の出力信号(アナログ信号)をデジタル信号に変換するレゾルバデジタル変換部23とを備えている。なお、レゾルバ励磁装置20は、図示しないが、正弦波信号生成回路21、レゾルバ励磁信号生成部22及びレゾルバデジタル変換部23に正極の電源電圧を供給する片電源回路(プラス電源回路)をも備えている。   The resolver excitation device 20 includes a sine wave signal generation circuit 21 that generates a sine wave signal, a resolver excitation signal generation unit 22 that generates a resolver excitation signal, and a resolver that converts an output signal (analog signal) of the resolver 10 into a digital signal. And a digital conversion unit 23. Although not shown, the resolver excitation device 20 also includes a single power supply circuit (plus power supply circuit) that supplies a positive power supply voltage to the sine wave signal generation circuit 21, the resolver excitation signal generation unit 22, and the resolver digital conversion unit 23. ing.

正弦波信号生成回路21は、角周波数ωの正弦波信号を生成してレゾルバ励磁信号生成部22に出力する。この角周波数ωは、例えば10kHzである。なお、正弦波信号生成回路21は、正極の電源電圧Vccで動作するものであり、この関係で正弦波信号は、電源電圧Vccの中間電圧Vcc/2(第1の中間電圧)に直流バイアスされた交流信号である。   The sine wave signal generation circuit 21 generates a sine wave signal having an angular frequency ω and outputs it to the resolver excitation signal generation unit 22. This angular frequency ω is, for example, 10 kHz. The sine wave signal generation circuit 21 operates with the positive power supply voltage Vcc. In this relation, the sine wave signal is DC biased to the intermediate voltage Vcc / 2 (first intermediate voltage) of the power supply voltage Vcc. AC signal.

レゾルバ励磁信号生成部22は、正弦波信号生成回路21から入力される正弦波信号に基づいて、正相レゾルバ励磁信号及び当該レゾルバ励磁信号と逆相の(位相が180度反転した)逆相レゾルバ励磁信号を生成する。また、レゾルバ励磁信号生成部22は、正相レゾルバ励磁信号を励磁コイルL1の一端に、また反転レゾルバ励磁信号を励磁コイルL1の他端に出力する。   Based on the sine wave signal input from the sine wave signal generation circuit 21, the resolver excitation signal generation unit 22 is a positive phase resolver excitation signal and a negative phase resolver having a phase opposite to that of the resolver excitation signal (the phase is inverted by 180 degrees). Generate an excitation signal. The resolver excitation signal generator 22 outputs a normal phase resolver excitation signal to one end of the excitation coil L1, and an inverted resolver excitation signal to the other end of the excitation coil L1.

レゾルバデジタル変換部23は、レゾルバ10の出力信号であり、第1出力コイルL2から入力される正弦関数信号(アナログ信号)及び第2出力コイルL3から入力される余弦関数信号(アナログ信号)をデジタル信号(角度データ)に変換する。また、レゾルバデジタル変換部23は、上記角度データをMPU30へ出力する。   The resolver digital conversion unit 23 is an output signal of the resolver 10 and digitally converts a sine function signal (analog signal) input from the first output coil L2 and a cosine function signal (analog signal) input from the second output coil L3. Convert to signal (angle data). In addition, the resolver digital conversion unit 23 outputs the angle data to the MPU 30.

図2は、上記レゾルバ励磁信号生成部22の詳細構成を示す回路図である。レゾルバ励磁信号生成部22は、2つの演算増幅器41,42(オペアンプ)と、上記片電源回路から入力された直流電圧Vbを1/2に分圧する1/2分圧回路43(直流電圧生成回路)と、7つの抵抗R1〜R7と、を備えている。なお、レゾルバ励磁信号生成部22は正極の電源電圧Vbで動作するものである。   FIG. 2 is a circuit diagram showing a detailed configuration of the resolver excitation signal generator 22. The resolver excitation signal generator 22 includes two operational amplifiers 41 and 42 (operational amplifiers) and a ½ voltage dividing circuit 43 (DC voltage generating circuit) that divides the DC voltage Vb input from the single power supply circuit into 1/2. ) And seven resistors R1 to R7. The resolver excitation signal generator 22 operates with the positive power supply voltage Vb.

演算増幅器41の反転入力端子は、抵抗R1を介して、当該演算増幅器41の出力端子に接続されている。さらに、演算増幅器41の反転入力端子は、抵抗R2を介して、正弦波信号生成回路21の出力端子に接続されている。   The inverting input terminal of the operational amplifier 41 is connected to the output terminal of the operational amplifier 41 via the resistor R1. Further, the inverting input terminal of the operational amplifier 41 is connected to the output terminal of the sine wave signal generation circuit 21 via the resistor R2.

演算増幅器41の非反転入力端子は、抵抗R3を介して1/2分圧回路43の出力端子に接続されていると共に、例えば正弦波信号生成回路21から抵抗R4を介して中間電圧Vcc/2が印加される。演算増幅器41の出力端子は、励磁コイルL1の他端に接続されると共に、抵抗R6を介して演算増幅器42の反転入力端子に接続される。   The non-inverting input terminal of the operational amplifier 41 is connected to the output terminal of the 1/2 voltage dividing circuit 43 through the resistor R3, and for example, the intermediate voltage Vcc / 2 from the sine wave signal generation circuit 21 through the resistor R4. Is applied. The output terminal of the operational amplifier 41 is connected to the other end of the exciting coil L1, and is connected to the inverting input terminal of the operational amplifier 42 via the resistor R6.

一方、演算増幅器42の反転入力端子は、抵抗R5を介して、当該演算増幅器42の出力端子に接続されていると共に、抵抗R6を介して演算増幅器41の出力端子に接続されている。演算増幅器42の非反転入力端子は、抵抗R7を介して、1/2分圧回路43の出力端子に接続されている。演算増幅器42の出力端子は、励磁コイルL1の一端に接続される。   On the other hand, the inverting input terminal of the operational amplifier 42 is connected to the output terminal of the operational amplifier 42 via the resistor R5, and is connected to the output terminal of the operational amplifier 41 via the resistor R6. The non-inverting input terminal of the operational amplifier 42 is connected to the output terminal of the 1/2 voltage dividing circuit 43 via the resistor R7. The output terminal of the operational amplifier 42 is connected to one end of the exciting coil L1.

なお、このようなレゾルバ励磁信号生成部22において、一方の演算増幅器41及び抵抗R1〜R4は第1の反転増幅回路を構成し、他方の増幅回路42及び抵抗R5〜R7は第2の反転増幅回路を構成している。1/2分圧回路43は、上記電源電圧Vbを1/2に分圧することにより中間電圧Vb/2(第2の中間電圧)を出力する。   In such resolver excitation signal generator 22, one operational amplifier 41 and resistors R1 to R4 constitute a first inverting amplifier circuit, and the other amplifier circuit 42 and resistors R5 to R7 are a second inverting amplifier. The circuit is configured. The 1/2 voltage dividing circuit 43 outputs the intermediate voltage Vb / 2 (second intermediate voltage) by dividing the power supply voltage Vb by 1/2.

次に、このように構成された回転角検出装置1の作用効果について詳しく説明する。
この回転角検出装置1では、レゾルバ励磁装置20のレゾルバ励磁信号生成部22における逆相レゾルバ励磁信号及び正相レゾルバ励磁信号の生成処理が行われる。そして、この逆相レゾルバ励磁信号及び正相レゾルバ励磁信号がレゾルバ励磁装置20からレゾルバ10に出力されることによって、正弦関数信号及び余弦関数信号がレゾルバ10からレゾルバ励磁装置20に出力される。
Next, the effect of the rotation angle detection device 1 configured as described above will be described in detail.
In the rotation angle detection device 1, the generation processing of the reverse phase resolver excitation signal and the normal phase resolver excitation signal is performed in the resolver excitation signal generation unit 22 of the resolver excitation device 20. Then, the reverse-phase resolver excitation signal and the positive-phase resolver excitation signal are output from the resolver excitation device 20 to the resolver 10, whereby the sine function signal and the cosine function signal are output from the resolver 10 to the resolver excitation device 20.

そして、この正弦関数信号及び余弦関数信号がレゾルバ励磁装置20のレゾルバデジタル変換部23で角度データに変換されてMPU30に出力される。そして、MPU30は、上記角度データに基づいてモータをベクトル制御する。   The sine function signal and cosine function signal are converted into angle data by the resolver digital conversion unit 23 of the resolver excitation device 20 and output to the MPU 30. Then, the MPU 30 performs vector control of the motor based on the angle data.

回転角検出装置1の全体的な動作は以上の通りであるが、レゾルバ励磁信号生成部22における逆相レゾルバ励磁信号及び正相レゾルバ励磁信号の生成処理の詳細をさらに詳しく説明する。図2に示すように、演算増幅器41の反転入力端子には、中間電圧Vcc/2に直流バイアスされた正弦波信号が抵抗R2を介して入力される。一方、演算増幅器41の非反転入力端子には、中間電圧Vcc/2が抵抗R4を介して入力されると共に1/2分圧回路43から出力される直流電圧Vb/2が抵抗R3を介して入力される。   Although the overall operation of the rotation angle detection device 1 is as described above, details of generation processing of the reverse-phase resolver excitation signal and the positive-phase resolver excitation signal in the resolver excitation signal generation unit 22 will be described in more detail. As shown in FIG. 2, a sine wave signal that is DC biased to the intermediate voltage Vcc / 2 is input to the inverting input terminal of the operational amplifier 41 via a resistor R2. On the other hand, the intermediate voltage Vcc / 2 is input to the non-inverting input terminal of the operational amplifier 41 through the resistor R4, and the DC voltage Vb / 2 output from the 1/2 voltage dividing circuit 43 is input through the resistor R3. Entered.

このような入力状態において、正弦波信号の直流バイアスつまり中間電圧Vcc/2はキャンセルされ、新たな直流バイアスとして直流電圧Vb/2を有すると共に正弦波信号の位相が反転した逆相レゾルバ励磁信号が演算増幅器41の出力端子から励磁コイルL1の一端に出力される(図3(a)参照)。   In such an input state, the DC bias of the sine wave signal, that is, the intermediate voltage Vcc / 2 is canceled, and the negative phase resolver excitation signal having the DC voltage Vb / 2 as a new DC bias and the phase of the sine wave signal inverted is obtained. The signal is output from the output terminal of the operational amplifier 41 to one end of the exciting coil L1 (see FIG. 3A).

また、このような逆相レゾルバ励磁信号は、抵抗R6を介して演算増幅器42の反転入力端子に入力される。一方、演算増幅器42の非反転入力端子には、1/2分圧回路43から出力される直流電圧Vb/2が抵抗R7を介して入力される。このような入力状態において、直流バイアスとして直流電圧Vb/2を有すると共に逆相レゾルバ励磁信号の位相が反転した正相レゾルバ励磁信号が演算増幅器42の出力端子から励磁コイルL1の他端に出力される(図3(b)参照)。   Further, such a reverse-phase resolver excitation signal is input to the inverting input terminal of the operational amplifier 42 via the resistor R6. On the other hand, the DC voltage Vb / 2 output from the 1/2 voltage dividing circuit 43 is input to the non-inverting input terminal of the operational amplifier 42 via the resistor R7. In such an input state, a positive phase resolver excitation signal having a DC voltage Vb / 2 as a DC bias and having the phase of the reverse phase resolver excitation signal inverted is output from the output terminal of the operational amplifier 42 to the other end of the excitation coil L1. (See FIG. 3B).

この結果として、励磁コイルL1の両端には、図3(c)に示すように、正相レゾルバ励磁信号及び逆相レゾルバ励磁信号の差動電圧、つまり、正相レゾルバ励磁信号及び逆相レゾルバ励磁信号の各振幅の2倍の振幅を有する正弦波電圧が印加される。この結果、第1、第2出力コイルL2,L3から出力される正弦関数信号及び余弦関数信号は、振幅が大きなものとなり、よってノイズの影響が少なくなるのでロータ11の回転角度の検出精度が向上する。   As a result, as shown in FIG. 3C, differential voltages of the positive phase resolver excitation signal and the negative phase resolver excitation signal, that is, the positive phase resolver excitation signal and the negative phase resolver excitation are provided at both ends of the excitation coil L1. A sinusoidal voltage having an amplitude twice the amplitude of each signal is applied. As a result, the sine function signal and the cosine function signal output from the first and second output coils L2 and L3 have large amplitudes, and hence the influence of noise is reduced, so that the detection accuracy of the rotation angle of the rotor 11 is improved. To do.

このような回転角検出装置1によれば、レゾルバ励磁信号生成部22において、第1の反転増幅回路で逆相レゾルバ励磁信号を生成し、また第1の反転増幅回路に直列接続されることにより逆相レゾルバ励磁信号を入力信号とする第2の反転増幅回路で正相レゾルバ励磁信号を生成するので、従来技術のようなインバータ回路が不要であり、よって部品点数を少なくして生産コストを抑制でき、かつ簡易に構成することができる。   According to such a rotation angle detection device 1, the resolver excitation signal generation unit 22 generates a reverse-phase resolver excitation signal with the first inverting amplifier circuit, and is connected in series to the first inverting amplifier circuit. Since the positive phase resolver excitation signal is generated by the second inverting amplifier circuit using the negative phase resolver excitation signal as an input signal, an inverter circuit as in the prior art is unnecessary, and thus the number of parts is reduced and the production cost is suppressed. Can be configured easily.

また、レゾルバ励磁信号生成部22は、正弦波信号生成回路21から入力された正弦波信号の直流バイアス(中間電圧Vcc/2)をキャンセルし、自らの電源電圧Vbの中間電圧Vb/2を直流バイアスとする正相レゾルバ励磁信号及び逆相レゾルバ励磁信号を生成するので、自らの電源電圧Vbに対して最も大きな振幅の正相レゾルバ励磁信号及び逆相レゾルバ励磁信号を生成することができる。   The resolver excitation signal generation unit 22 cancels the DC bias (intermediate voltage Vcc / 2) of the sine wave signal input from the sine wave signal generation circuit 21, and converts the intermediate voltage Vb / 2 of its own power supply voltage Vb to DC. Since the positive-phase resolver excitation signal and the negative-phase resolver excitation signal to be biased are generated, the positive-phase resolver excitation signal and the negative-phase resolver excitation signal having the largest amplitude with respect to the power supply voltage Vb can be generated.

なお、本発明は上記実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)例えば、図2に示したレゾルバ励磁信号生成部22に代えて、図4に示すレゾルバ励磁信号生成部22Aを採用してもよい。すなわち、正弦波信号生成回路21が生成する正弦波信号の直流バイアスは、正弦波信号生成回路21の電源電圧Vccの中間電圧Vcc/2以外の場合が考えられる。正弦波信号が任意の直流電圧V1(好ましくは中間電圧Vcc/2近傍の電圧)の場合には、正弦波信号生成回路21から別途取り込む直流電圧(第2の直流電圧)も上記直流電圧V1と同一となる。
In addition, this invention is not limited to the said embodiment, For example, the following modifications can be considered.
(1) For example, instead of the resolver excitation signal generator 22 shown in FIG. 2, a resolver excitation signal generator 22A shown in FIG. 4 may be adopted. That is, the DC bias of the sine wave signal generated by the sine wave signal generation circuit 21 may be other than the intermediate voltage Vcc / 2 of the power supply voltage Vcc of the sine wave signal generation circuit 21. When the sine wave signal is an arbitrary DC voltage V1 (preferably a voltage in the vicinity of the intermediate voltage Vcc / 2), the DC voltage (second DC voltage) separately taken from the sine wave signal generation circuit 21 is also the DC voltage V1. It will be the same.

(2)また、レゾルバ励磁信号生成部22では、1/2分圧回路43を直流電圧生成回路として備えることにより第1、第2の反転増幅回路から励磁コイルL1に出力される逆相レゾルバ励磁信号及び正相レゾルバ励磁信号の直流バイアスを電源電圧Vbの中間電圧Vb/2に設定したが、1/2分圧回路43に代えて、電源電圧Vbを分圧比β(0<β<1)で分圧するβ分圧回路43Aを直流電圧生成回路として備えることにより、β分圧回路43Aが出力する直流電圧(第1の直流電圧)を逆相レゾルバ励磁信号及び正相レゾルバ励磁信号の直流バイアスとしてもよい。また、この場合であっても、分圧比βは1/2近傍の値、つまり直流バイアスは中間電圧Vb/2近傍の電圧が好ましい。 (2) Further, the resolver excitation signal generator 22 includes the 1/2 voltage dividing circuit 43 as a DC voltage generating circuit, whereby the reverse phase resolver excitation output from the first and second inverting amplifier circuits to the excitation coil L1. The DC bias of the signal and the positive phase resolver excitation signal is set to the intermediate voltage Vb / 2 of the power supply voltage Vb, but instead of the 1/2 voltage dividing circuit 43, the power supply voltage Vb is divided into the voltage dividing ratio β (0 <β <1). Is provided as a DC voltage generating circuit, so that the DC voltage (first DC voltage) output by the β voltage dividing circuit 43A is a DC bias of the negative phase resolver excitation signal and the positive phase resolver excitation signal. It is good. Even in this case, the voltage dividing ratio β is preferably a value in the vicinity of ½, that is, the DC bias is preferably a voltage in the vicinity of the intermediate voltage Vb / 2.

(3)例えば、レゾルバデジタル変換部23はレゾルバ励磁装置20の必須構成要素ではなく、レゾルバデジタル変換部23の機能を例えばMPU30内に組み込んでもよい。 (3) For example, the resolver digital conversion unit 23 is not an essential component of the resolver excitation device 20, and the function of the resolver digital conversion unit 23 may be incorporated in the MPU 30, for example.

1 回転角検出装置
10 レゾルバ
11 ロータ
20 レゾルバ励磁装置
21 正弦波信号生成回路
22 レゾルバ励磁信号生成部
41,42 演算増幅器
43 1/2分圧回路(直流電圧生成回路)
R1〜R7 抵抗
L1 励磁コイル
DESCRIPTION OF SYMBOLS 1 Rotation angle detection apparatus 10 Resolver 11 Rotor 20 Resolver excitation apparatus 21 Sine wave signal generation circuit 22 Resolver excitation signal generation part 41, 42 Operational amplifier 43 1/2 voltage dividing circuit (DC voltage generation circuit)
R1 to R7 Resistance L1 Excitation coil

Claims (3)

レゾルバの励磁コイルに供給するための逆相レゾルバ励磁信号及び正相レゾルバ励磁信号を生成するレゾルバ励磁装置であって、
所定周波数の正弦波信号を生成する正弦波信号生成回路と、
前記正弦波信号を反転増幅して前記逆相レゾルバ励磁信号を生成する第1の反転増幅回路と、前記逆相レゾルバ励磁信号を反転増幅して前記正相レゾルバ励磁信号を生成する第2の反転増幅回路と、を備えるレゾルバ励磁信号生成部と
を具備することを特徴とするレゾルバ励磁装置。
A resolver excitation device that generates a reverse-phase resolver excitation signal and a positive-phase resolver excitation signal to be supplied to an excitation coil of a resolver,
A sine wave signal generation circuit for generating a sine wave signal of a predetermined frequency;
A first inversion amplifier circuit that inverts and amplifies the sine wave signal to generate the negative phase resolver excitation signal, and a second inversion that inverts and amplifies the negative phase resolver excitation signal to generate the positive phase resolver excitation signal. And a resolver excitation signal generation unit comprising an amplifier circuit.
第1の直流電圧を出力する直流電圧生成回路をさらに備え、
前記第1の反転増幅回路は、前記正弦波信号及び前記第1の直流電圧を入力として、前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号を出力し、
前記第2の反転増幅回路は、前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号及び前記第1の直流電圧を入力とし、前記第1の直流電圧を直流バイアスとする前記正相レゾルバ励磁信号を出力することを特徴とする請求項1に記載のレゾルバ励磁装置。
A DC voltage generation circuit for outputting the first DC voltage;
The first inverting amplifier circuit receives the sine wave signal and the first DC voltage as inputs, and outputs the reverse-phase resolver excitation signal having the first DC voltage as a DC bias,
The second inverting amplifier circuit receives the negative phase resolver excitation signal having the first DC voltage as a DC bias and the first DC voltage as inputs, and the positive DC voltage using the first DC voltage as a DC bias. The resolver excitation device according to claim 1, wherein a phase resolver excitation signal is output.
前記正弦波信号が第2の直流電圧を含む場合には、前記第1の反転増幅回路は、前記第2の直流電圧をも入力として前記第1の直流電圧を直流バイアスとする前記逆相レゾルバ励磁信号を出力することを特徴とする請求項1または2に記載のレゾルバ励磁装置。   When the sine wave signal includes a second DC voltage, the first inverting amplifier circuit receives the second DC voltage as an input and uses the first DC voltage as a DC bias. The resolver excitation device according to claim 1, wherein an excitation signal is output.
JP2013136296A 2013-06-28 2013-06-28 Resolver excitation device Active JP6174393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013136296A JP6174393B2 (en) 2013-06-28 2013-06-28 Resolver excitation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013136296A JP6174393B2 (en) 2013-06-28 2013-06-28 Resolver excitation device

Publications (2)

Publication Number Publication Date
JP2015010930A true JP2015010930A (en) 2015-01-19
JP6174393B2 JP6174393B2 (en) 2017-08-02

Family

ID=52304215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013136296A Active JP6174393B2 (en) 2013-06-28 2013-06-28 Resolver excitation device

Country Status (1)

Country Link
JP (1) JP6174393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362338A1 (en) * 2014-06-12 2015-12-17 Lear Corporation Excitation Signal Generator for Resolver

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133001A (en) * 1986-11-25 1988-06-04 Sankyo Boeki Kk Signal processing method and apparatus for inductance type displacement detector
JP5067880B2 (en) * 2008-07-03 2012-11-07 オムロンオートモーティブエレクトロニクス株式会社 Rotation angle detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63133001A (en) * 1986-11-25 1988-06-04 Sankyo Boeki Kk Signal processing method and apparatus for inductance type displacement detector
JP5067880B2 (en) * 2008-07-03 2012-11-07 オムロンオートモーティブエレクトロニクス株式会社 Rotation angle detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150362338A1 (en) * 2014-06-12 2015-12-17 Lear Corporation Excitation Signal Generator for Resolver
US9778071B2 (en) * 2014-06-12 2017-10-03 Lear Corporation Excitation signal generator for resolver

Also Published As

Publication number Publication date
JP6174393B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6205774B2 (en) Detection circuit, semiconductor integrated circuit device, magnetic field rotation angle detection device, and electronic device
CN110418942B (en) Rotary sensor
US20150276373A1 (en) Resolver excitation circuit
US9778071B2 (en) Excitation signal generator for resolver
JP5762567B2 (en) Rotation angle detector
JP6174392B2 (en) Resolver excitation device
JP5994407B2 (en) Rotation angle detector
JP6499821B2 (en) Current sensor
JP6174393B2 (en) Resolver excitation device
JP2011099828A (en) Signal processing circuit
JP2009072022A (en) Device for measuring current
JP6685719B2 (en) Rotation angle sensor mounting angle measuring device and rotation angle sensor mounting angle measuring method
JP2015038465A (en) Rotary sensor
JP2012230021A (en) Rotation angle measuring device
JP5449417B2 (en) Signal processing apparatus and rotation angle detection apparatus
US9850945B2 (en) Position detection device of AMB
US11349374B2 (en) Motor
JP5349637B2 (en) Rotation angle detector
JP6223674B2 (en) Magnetic detector
WO2015104776A1 (en) Current detection device
JP2010014509A (en) Rotation angle detection apparatus
US7057399B2 (en) Resolver circuit including BTL amplifier
JP2016065731A (en) Sensor apparatus
JP5507744B2 (en) Hall electromotive force detection device and rotation angle detection device
JP2006258751A (en) Resolver excitation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174393

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250