JPS63133001A - Signal processing method and apparatus for inductance type displacement detector - Google Patents

Signal processing method and apparatus for inductance type displacement detector

Info

Publication number
JPS63133001A
JPS63133001A JP27996886A JP27996886A JPS63133001A JP S63133001 A JPS63133001 A JP S63133001A JP 27996886 A JP27996886 A JP 27996886A JP 27996886 A JP27996886 A JP 27996886A JP S63133001 A JPS63133001 A JP S63133001A
Authority
JP
Japan
Prior art keywords
signal
voltage
output
displacement detector
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27996886A
Other languages
Japanese (ja)
Inventor
Kozo Kyoizumi
宏三 京和泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANKYO BOEKI KK
Original Assignee
SANKYO BOEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANKYO BOEKI KK filed Critical SANKYO BOEKI KK
Priority to JP27996886A priority Critical patent/JPS63133001A/en
Publication of JPS63133001A publication Critical patent/JPS63133001A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To obtain a DC signal without ripple, by sampling and holding an output signal near the peak thereof to be converted into a DC signal. CONSTITUTION:An output AC signal C related to the movement of a core 13 and a pulse signal F are applied to a sample holding circuit 60, which samples the signal C when the signal F is ON and otherwise holds it. In other words, as the signal C varies synchronizing with a signal A as input signal, the signal F is turned ON in the vicinity of the peak of the signal C. This allows the detection of the level of voltage only in the vicinity of the peak of the signal C thereby converting the signal C into a DC signal G with no ripple. Thus, the position of the core 13 is detected from the voltage of the signal G.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はインダクタンス式変位検出器の信号処理方法及
びその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a signal processing method and apparatus for an inductance displacement detector.

従来技術とその問題点 従来より安価で信頼性の高い変位検出器としてインダク
タンス式変位検出器、特に差動トランスが広く知られて
いる。これは、コアの機械的変位に伴って変化するコイ
ルのインダクタンス変化を利用し、該機械的変位を電気
的信号に変換するものである。
Prior art and its problems Inductance displacement detectors, particularly differential transformers, are widely known as displacement detectors that are cheaper and more reliable than conventional ones. This utilizes the change in inductance of the coil that changes with the mechanical displacement of the core, and converts the mechanical displacement into an electrical signal.

ここで、従来公知のインダクタンス式変位検出器の原理
を第3図〜第5図について説明する。
Here, the principle of a conventionally known inductance type displacement detector will be explained with reference to FIGS. 3 to 5.

第3図は差動トランスの原理を示し、差動トランスは一
次コイルlおよび二次コイル3.4と、コイル1,3.
4内に移動自在に挿入された強磁性体からなるコア2で
構成されている。−次コイル1にEpなる一定交流電圧
を与えると、これにより生じた磁束が二次コイル3.4
に作用し、それぞれEsl、  Es2なる交流電圧が
誘起される。コア2が中央位置にある場合、二次コイル
3,4には同じ振幅の交流電圧が誘起され、図面に示す
ように二次コイル3,4を差動型に接続すると、出力電
圧Esは零ボルトとなる。
FIG. 3 shows the principle of a differential transformer, which consists of a primary coil 1, a secondary coil 3.4, and coils 1, 3.
The core 2 is made of a ferromagnetic material and is movably inserted into the core 4. - When a constant AC voltage Ep is applied to the secondary coil 1, the magnetic flux generated thereby is
AC voltages Esl and Es2 are induced, respectively. When the core 2 is in the center position, AC voltages of the same amplitude are induced in the secondary coils 3 and 4, and when the secondary coils 3 and 4 are connected differentially as shown in the drawing, the output voltage Es becomes zero. Becomes a bolt.

この様子を図示したのが第5図であり、上述のようにコ
ア2が中央位置にあればEs=O、コア2が中央位置よ
り移動すると、その移動量に比例して出力交流電圧Es
の振幅が変化する。コア2が中央位置より上記とは逆方
向に移動した場合には、位相が180度異l7た交流電
圧Esの振幅が移動量に比例して変化する。このように
して、コア2の機械的変位が電気信号に変換される。
This state is illustrated in FIG. 5. As mentioned above, if the core 2 is in the center position, Es=O, and if the core 2 moves from the center position, the output AC voltage Es will be proportional to the amount of movement.
The amplitude of changes. When the core 2 moves from the center position in the opposite direction to the above, the amplitude of the alternating current voltage Es whose phase differs by 180 degrees changes in proportion to the amount of movement. In this way, the mechanical displacement of the core 2 is converted into an electrical signal.

第4図はインダクタンス式変位検出器の他の例を示し、
コイル5に一定交流電圧Epを与え、コイル5の中央部
6と交流電圧Epの中心電圧の間の電圧Esを測定する
。図示の場合、Epが零ボルトを中心に振れる交流電圧
とすると、Esは零ボルトとコイル5の中央部6間の電
圧である。
Figure 4 shows another example of an inductance displacement detector,
A constant AC voltage Ep is applied to the coil 5, and the voltage Es between the central portion 6 of the coil 5 and the center voltage of the AC voltage Ep is measured. In the illustrated case, if Ep is an alternating current voltage that swings around zero volts, Es is the voltage between zero volts and the center portion 6 of the coil 5.

第4図においても、コア7が移動すれば、第3図の例と
同様に第5図のような結果が得られる。
In FIG. 4 as well, if the core 7 moves, the result as shown in FIG. 5 can be obtained as in the example of FIG. 3.

すなわち、コア7が中央位置にあればコイル5の上半分
と下半分のインダクタンスが等しく、Es−〇となる。
That is, if the core 7 is in the center position, the inductance of the upper half and the lower half of the coil 5 are equal, resulting in Es-0.

コア7が中央位置より移動すると、コイル5の上半分、
下半分のインダクタンスに差を生じ、Esが第5図のよ
うに変化する。
When the core 7 moves from the center position, the upper half of the coil 5,
A difference occurs in the inductance of the lower half, and Es changes as shown in FIG.

さて、上記のようにしてコアの機械的変位を電気信号、
特に交流信号の変化として測定できるが、交流信号の変
化で見ることは実用的でなく、従来では得られた交流信
号を検波、整流することによって直流信号に変換してい
る。この場合、周知のように整流するだけではリップル
の大きな直流信号しか得られないので、平滑回路でリッ
プルを除去する必要がある。
Now, as described above, the mechanical displacement of the core is expressed as an electrical signal,
In particular, it can be measured as a change in an alternating current signal, but it is not practical to see it as a change in an alternating current signal, and conventionally the obtained alternating current signal is converted to a direct current signal by detection and rectification. In this case, as is well known, rectification alone can only obtain a DC signal with large ripples, so it is necessary to remove ripples with a smoothing circuit.

一般に実用に耐えうるリップルにするための平滑回路を
設けると、変位検出器の応答周波数は一次コイルに与え
た交流電圧Epの周波数の約171Oに低下し、応答性
の劣化を招く。このため、応答性を上げるのに、−次コ
イルに与える交流電圧Epを高める方法が採られている
。ところが、この方法では取り扱う周波数が高くなるこ
とにより、消費電流が大きくなるとともに、高速に対応
し得る電気部品を使用する必要があり、価格上昇につな
がる。また、変位検出器と信号処理回路間を結ぶケーブ
ル内を高周波数の交流電圧が伝わる時、ケーブルの浮遊
容量によって交流電圧が減衰したり電圧波形に歪が発生
し、ケーブルの長さに限界を生じるという欠点がある。
Generally, when a smoothing circuit is provided to make the ripple suitable for practical use, the response frequency of the displacement detector decreases to about 171 O, which is the frequency of the AC voltage Ep applied to the primary coil, resulting in a deterioration of the response. For this reason, in order to improve responsiveness, a method is adopted in which the AC voltage Ep applied to the secondary coil is increased. However, this method handles higher frequencies, which increases current consumption and requires the use of electrical components that can handle high speeds, leading to an increase in price. Additionally, when high-frequency AC voltage is transmitted through the cable that connects the displacement detector and the signal processing circuit, the AC voltage is attenuated and the voltage waveform is distorted due to the stray capacitance of the cable, which limits the length of the cable. There is a disadvantage that it occurs.

発明の目的 本発明はかかる従来の問題点に鑑みてなされたもので、
その目的は、出力交流信号を整流、平滑化せずにリップ
ルの無い直流信号に変換し得る高応答性のインダクタン
ス式変位検出器の信号処理方法およびその装置を提供す
ることにある。
Purpose of the Invention The present invention has been made in view of such conventional problems.
The object is to provide a signal processing method and apparatus for a highly responsive inductance displacement detector that can convert an output AC signal into a ripple-free DC signal without rectifying or smoothing it.

発明の構成 上記目的を達成するために、第1の発明である信号処理
方法は、コアの機械的変位に伴って変化するコイルのイ
ンダクタンス変化を利用し、該機械的変位を電気的信号
に変換するインダクタンス式変位検出器において、一定
交流信号Aをコイルに入力し、出力交流信号Cを得るス
テップと、入力交流信号Aのピーク近辺でONとなるパ
ルス信号Fを得るステップと、上記出力交流信号Cをパ
ルス信号FがONとなった時にサンプルし、他の時間を
ホールドして、出力交流信号Cのピーク近辺の信号高さ
を存する直流信号Gに変換するステップとを有するもの
である また、第2の発明である信号処理装置は、コアの機械的
変位に伴って変化するコイルのインダクタンス変化を利
用し、該機械的変位を電気的信号に変換するインダクタ
ンス式変位検出器において、変位検出器のコイルに入力
される一定交流信号Aと該交流信号へより90度だけ位
相が遅れた同一周期の交流信号Bを発生する発振回路と
、上記交流信号Bから交流信号Aのピーク近辺でONと
なるパルス信号Fを得るパルス化回路と、変位検出器の
出力交流信号Cをパルス信号FがONとなった時にサン
プルし、他の時間はホールドして、出力交流信号Cのピ
ーク近辺の信号高さを有する直流信号Gに変換するサン
プルホールド回路とを有するものである。
Structure of the Invention In order to achieve the above object, the first invention, a signal processing method, converts the mechanical displacement into an electrical signal by utilizing the change in inductance of the coil that changes with the mechanical displacement of the core. In the inductance displacement detector, the steps include inputting a constant alternating current signal A to a coil to obtain an output alternating current signal C, obtaining a pulse signal F that turns on near the peak of the input alternating current signal A, and the above output alternating current signal. The method further includes the step of sampling C when the pulse signal F turns ON, holding it for another time, and converting it into a DC signal G having a signal height near the peak of the output AC signal C. A signal processing device according to a second invention is an inductance displacement detector that converts the mechanical displacement into an electrical signal by using a change in inductance of a coil that changes with the mechanical displacement of a core. an oscillation circuit that generates a constant alternating current signal A input to the coil and an alternating current signal B of the same period whose phase is delayed by 90 degrees from the alternating current signal; A pulsing circuit obtains a pulse signal F, and samples the output AC signal C of the displacement detector when the pulse signal F turns ON, holds it at other times, and calculates the signal height near the peak of the output AC signal C. It has a sample and hold circuit that converts the DC signal G into a DC signal G having a certain value.

実施例の説明 第1図は本発明にかかるインダクタンス式変位検出器の
信号処理装置の回路図、第2図は第1図の各部の信号波
形図である。
DESCRIPTION OF EMBODIMENTS FIG. 1 is a circuit diagram of a signal processing device for an inductance displacement detector according to the present invention, and FIG. 2 is a signal waveform diagram of each part of FIG. 1.

図において、10はインダクタンス式変位検出器、20
は発振回路、40は増幅回路、50はパルス化回路、6
0はサンプルホールド回路である。この実施例では、変
位検出器10として第4図の例を示したが、第3図の差
動トランスあるいはその他のインダクタンス式変位検出
器を使用してもよい。
In the figure, 10 is an inductance displacement detector, 20
40 is an oscillation circuit, 40 is an amplifier circuit, 50 is a pulse generator circuit, 6
0 is a sample and hold circuit. In this embodiment, the example shown in FIG. 4 is shown as the displacement detector 10, but the differential transformer shown in FIG. 3 or other inductance type displacement detector may also be used.

発振回路20は公知のクワドラチャ発振回路であり、抵
抗21〜27、コンデンサ28,29.30、ダイオー
ド31,32 、増幅器33.34からなり、第1図の
A部に正弦波状の電圧信号、B部に90度だけ位相が遅
れた余弦波状の電圧信号を発生する。これら電圧波形A
、 Bは第2図に示されている。発振周波数は抵抗21
,22.23及びコンデンサ2B、29.30によって
任急に設定できる。
The oscillation circuit 20 is a known quadrature oscillation circuit, and includes resistors 21 to 27, capacitors 28, 29, 30, diodes 31, 32, and amplifiers 33, 34. It generates a cosine wave-like voltage signal whose phase is delayed by 90 degrees. These voltage waveforms A
, B are shown in FIG. The oscillation frequency is resistor 21
, 22.23 and capacitors 2B and 29.30.

正弦波状の電圧Aは増幅回路40で電力上昇され、変位
検出器10のコイル11に入力される。増幅回路40は
抵抗41〜44と2個の位相反転増幅器45.46とで
構成され、コイル11の両端には零ボルトを中心とし、
正負に振動する交流電圧が与えられる。
The power of the sinusoidal voltage A is increased by the amplifier circuit 40 and input to the coil 11 of the displacement detector 10. The amplifier circuit 40 is composed of resistors 41 to 44 and two phase-inverting amplifiers 45 and 46, and the voltage at both ends of the coil 11 is centered at zero volts.
An alternating voltage that oscillates in positive and negative directions is applied.

コイル11の中央部12と零ボルト間の電圧波形はコア
13の移動によって、第2図Cのように得られる。Cの
うち、波形aはコア13が中央位置より大きく移動した
場合、波形すは波形aよりも中央位置にコア13が近づ
いた場合、波形Cはコア13が中央位置を通り過ぎて波
形aとは反対側へ移動した場合である。
A voltage waveform between the center portion 12 of the coil 11 and zero volts is obtained by moving the core 13 as shown in FIG. 2C. Among waveforms C, waveform a is different from waveform a when the core 13 moves more than the center position, waveform C is when the core 13 moves closer to the center position than waveform a, and waveform C is different from waveform a when the core 13 moves past the center position. This is the case when moving to the opposite side.

余弦波状の電圧信号Bは、パルス化回路50のコンパレ
ータ51の正入力に印加され、負入力は接地されている
ので、コンパレータ51の出力はDのような矩形波とな
る。信号りはさらに抵抗52とコンデンサ53により信
号Eのように微分され、この微分信号Eは次のコンパレ
ータ54の正入力に印加される。コンパレータ54の負
入力には一定電圧Vsが与えられているので、コンパレ
ータ54の出力はFのようなパルスとなる。すなわち、
パルス信号Fは電圧信号Bが零ボルトを越えた時にON
、換言すれば電圧信号Aのピーク近辺でONとなること
になる。なお、本発明においてパルス信号FがONとな
るということは、第1の状態から第2の状態へ変化した
ことを意味し、例えばハイレベルとローレベル、「1」
と「0」の変化に置き換えることもできる。
The cosine wave-like voltage signal B is applied to the positive input of the comparator 51 of the pulsing circuit 50, and the negative input is grounded, so the output of the comparator 51 becomes a rectangular wave like D. The signal E is further differentiated into a signal E by a resistor 52 and a capacitor 53, and this differentiated signal E is applied to the positive input of the next comparator 54. Since the constant voltage Vs is applied to the negative input of the comparator 54, the output of the comparator 54 becomes a pulse like F. That is,
Pulse signal F turns ON when voltage signal B exceeds zero volts.
In other words, it turns on near the peak of the voltage signal A. In addition, in the present invention, when the pulse signal F turns ON, it means that the pulse signal F changes from the first state to the second state, for example, a high level and a low level, "1".
It can also be replaced with a change of "0".

コア13の移動に関係する出力交流信号Cと、上述のパ
ルス信号Fは公知のサンプルホールド回路60に加えら
れ、サンプルホールド回路60はC信号をF信号がON
となった時にサンプルし、他の時間はホールドする。つ
まり、C信号は入力信号であるA信号と同期して変化す
るので、F信号はC信号のピーク近辺でONすることに
なり、これによりC信号のピーク近辺の電圧の高さのみ
を検出した全くリフプルの無い直流信号Gに変換するこ
とができる。そして、信号Gの電圧a゛は信号Cの波形
aに、電圧b′は波形すに、電圧C′は波形Cにそれぞ
れ対応し、これら電圧a”b’、c’の高さ及び極性に
よってコア13の位置を検出できる。
The output AC signal C related to the movement of the core 13 and the above-mentioned pulse signal F are applied to a known sample-and-hold circuit 60, and the sample-and-hold circuit 60 converts the C signal and the F signal into
Sample when , and hold at other times. In other words, since the C signal changes in synchronization with the A signal, which is the input signal, the F signal turns ON near the peak of the C signal, and as a result, only the voltage height near the peak of the C signal is detected. It can be converted into a DC signal G with no ripples at all. The voltage a'' of the signal G corresponds to the waveform a of the signal C, the voltage b' corresponds to the waveform A, and the voltage C' corresponds to the waveform C. The position of the core 13 can be detected.

上記のように、従来例にあるような整流回路やリップル
を除去するための平滑回路が不要となるので、従来に比
べて回路構成が遥かに簡単になるとともに、応答性が高
いものとなる。期待できる応答性としては、サンプリン
グ定理より明らかな如く、応答周波数がコイル11に加
えた交流電圧の周波数の172までとなり、従来のよう
に1ノ10以下というような応答性の劣化を招くことが
ない。また、平滑回路が不要となることに伴い、コイル
11に加える交流電圧の周波数を殊更上げる必要が無く
なり、その結果、消費電流の増大、電気部品の価格上昇
、変位検出器と信号処理回路間を結ぶケ−プルによる交
流電圧の減衰、波形の歪、ケーブル長さの限界といった
従来の問題を一挙に解決できる。
As described above, since a rectifier circuit and a smoothing circuit for removing ripples as in the conventional example are not required, the circuit configuration is much simpler than the conventional example, and the responsiveness is high. As for the expected response, as is clear from the sampling theorem, the response frequency will be up to 172 of the frequency of the AC voltage applied to the coil 11, and there will be no deterioration in response such as 1 no 10 or less as in the conventional case. do not have. Additionally, since a smoothing circuit is no longer required, there is no need to particularly increase the frequency of the AC voltage applied to the coil 11, resulting in an increase in current consumption, an increase in the price of electrical components, and a reduction in the frequency between the displacement detector and the signal processing circuit. Conventional problems such as AC voltage attenuation due to connected cables, waveform distortion, and cable length limitations can be solved all at once.

なお、上記実施例では発振回路としてクワドラチャ発振
回路を示したが、ウィーンブリッジ回路のような他の発
振回路を使用してもよい。ただ、クワドラチャ発振回路
の場合には、一定交流信号Aとこの交流信号から90度
だけ位相が遅れた交流信号Bとを同時に発生できるので
、ピーク近辺のパルス信号Fを得るのが容易となり、回
路構成を簡素化できる利点がある。
In the above embodiment, a quadrature oscillation circuit is shown as the oscillation circuit, but other oscillation circuits such as a Wien bridge circuit may be used. However, in the case of a quadrature oscillation circuit, it is possible to simultaneously generate a constant AC signal A and an AC signal B whose phase is delayed by 90 degrees from this AC signal, so it is easy to obtain a pulse signal F near the peak, and the circuit This has the advantage of simplifying the configuration.

発明の効果 以上の説明で明らかなように、本発明方法によれば、変
位検出器の出力信号を整流し平滑化するのではなく、出
力信号のピーク近辺をサンプルホールドすることにより
直流信号に変換するようにしたので、全くリップルがな
く、かつ高応答性が得られるとともに、入力信号を殊更
高周波化する必要がないので、従来のような高周波化に
伴う種々の問題を解決できる。
Effects of the Invention As is clear from the above explanation, according to the method of the present invention, the output signal of the displacement detector is not rectified and smoothed, but is converted into a DC signal by sampling and holding the vicinity of the peak of the output signal. As a result, there is no ripple at all, high responsiveness is obtained, and there is no need to particularly increase the frequency of the input signal, so various problems associated with increasing the frequency as in the prior art can be solved.

また、本発明装置によれば、入力信号とこの入力信号か
ら90度だけ位相の遅れた別の信号を発生する発振回路
と、この別の信号から入力信号のピーク近辺(出力信号
と同じ)でONとなるパルス信号を得るパルス化回路と
、このパルス信号と出力信号とから出力信号のピーク近
辺の信号高さを有する直流信号を得るサンプルホールド
回路とで構成したので、簡単な回路構成で、リップルが
無い直流信号に容易に変換できる。
Further, according to the device of the present invention, an oscillation circuit that generates an input signal and another signal whose phase is delayed by 90 degrees from this input signal, and an oscillation circuit that generates an input signal from this other signal near the peak of the input signal (same as the output signal). It is composed of a pulsing circuit that obtains a pulse signal that turns ON, and a sample-hold circuit that obtains a DC signal with a signal height near the peak of the output signal from this pulse signal and the output signal, so it has a simple circuit configuration. It can be easily converted to a ripple-free DC signal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかるインダクタンス式変位検出器の
信号処理装置の一例の回路図、第2図は第1図の各部の
電圧信号波形図、第3図、第4図は既存のインダクタン
ス式変位検出器の原理図、第5図はその特性図である。 10・・・変位検出器、11・・・コイル、13・・・
コア、20・・・発振回路、40・・・増幅回路、50
・・・パルス化回路、60・・・サンプルホールド回路
。 出 願 人  三京貿易株式会社 代 理 人  弁理士 筒井 秀隆 第2図 第3図 第4図 第5図 し コアの徨1
Fig. 1 is a circuit diagram of an example of a signal processing device for an inductance type displacement detector according to the present invention, Fig. 2 is a voltage signal waveform diagram of each part of Fig. 1, and Figs. The principle diagram of the displacement detector and FIG. 5 are its characteristic diagrams. 10... Displacement detector, 11... Coil, 13...
Core, 20...Oscillation circuit, 40...Amplification circuit, 50
...Pulse circuit, 60...Sample and hold circuit. Applicant Sankyo Boeki Co., Ltd. Agent Patent Attorney Hidetaka Tsutsui Figure 2 Figure 3 Figure 4 Figure 5 Core details 1

Claims (2)

【特許請求の範囲】[Claims] (1)コアの機械的変位に伴って変化するコイルのイン
ダクタンス変化を利用し、該機械的変位を電気的信号に
変換するインダクタンス式変位検出器において、一定交
流信号Aをコイルに入力し、出力交流信号Cを得るステ
ップと、入力交流信号Aのピーク近辺でONとなるパル
ス信号Fを得るステップと、上記出力交流信号Cをパル
ス信号FがONとなった時にサンプルし、他の時間をホ
ールドして、出力交流信号Cのピーク近辺の信号高さを
有する直流信号Gに変換するステップとを有する信号処
理方法。
(1) In an inductance displacement detector that converts the mechanical displacement into an electrical signal by utilizing changes in the inductance of the coil that change with the mechanical displacement of the core, a constant AC signal A is input to the coil and output. A step of obtaining an AC signal C, a step of obtaining a pulse signal F that turns ON near the peak of the input AC signal A, and sampling the output AC signal C when the pulse signal F turns ON and holds the other times. and converting the output AC signal C into a DC signal G having a signal height near the peak.
(2)コアの機械的変位に伴って変化するコイルのイン
ダクタンス変化を利用し、該機械的変位を電気的信号に
変換するインダクタンス式変位検出器において、変位検
出器のコイルに入力される一定交流信号Aと該交流信号
Aより90度だけ位相が遅れた同一周期の交流信号Bを
発生する発振回路と、上記交流信号Bから交流信号Aの
ピーク近辺でONとなるパルス信号Fを得るパルス化回
路と、変位検出器の出力交流信号Cをパルス信号FがO
Nとなった時にサンプルし、他の時間はホールドして、
出力交流信号Cのピーク近辺の信号高さを有する直流信
号Gに変換するサンプルホールド回路とを有する信号処
理装置。
(2) In an inductance displacement detector that converts the mechanical displacement into an electrical signal by utilizing changes in the inductance of the coil that change with the mechanical displacement of the core, a constant alternating current that is input to the coil of the displacement detector An oscillation circuit that generates a signal A and an alternating current signal B having the same period whose phase is delayed by 90 degrees from the alternating current signal A, and pulsing that obtains a pulse signal F that turns on near the peak of the alternating current signal A from the alternating current signal B. The circuit and the output AC signal C of the displacement detector are connected to the pulse signal F.
Sample when it becomes N, hold at other times,
A signal processing device comprising a sample and hold circuit that converts an output AC signal C into a DC signal G having a signal height near the peak.
JP27996886A 1986-11-25 1986-11-25 Signal processing method and apparatus for inductance type displacement detector Pending JPS63133001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27996886A JPS63133001A (en) 1986-11-25 1986-11-25 Signal processing method and apparatus for inductance type displacement detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27996886A JPS63133001A (en) 1986-11-25 1986-11-25 Signal processing method and apparatus for inductance type displacement detector

Publications (1)

Publication Number Publication Date
JPS63133001A true JPS63133001A (en) 1988-06-04

Family

ID=17618443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27996886A Pending JPS63133001A (en) 1986-11-25 1986-11-25 Signal processing method and apparatus for inductance type displacement detector

Country Status (1)

Country Link
JP (1) JPS63133001A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044545A1 (en) * 2006-10-05 2008-04-17 Shinko Electric Co., Ltd. Displacement sensor
JP2015010930A (en) * 2013-06-28 2015-01-19 株式会社ケーヒン Resolver excitation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008044545A1 (en) * 2006-10-05 2008-04-17 Shinko Electric Co., Ltd. Displacement sensor
JP2008089539A (en) * 2006-10-05 2008-04-17 Shinko Denki Kk Displacement sensor
US8542008B2 (en) 2006-10-05 2013-09-24 Shinko Electric Co., Ltd. Displacement sensor
JP2015010930A (en) * 2013-06-28 2015-01-19 株式会社ケーヒン Resolver excitation device

Similar Documents

Publication Publication Date Title
US9588147B2 (en) Electronic integrator for Rogowski coil sensors
JPS5821171A (en) Method of measuring impedance of sensor and circuit device
US20100085782A1 (en) Load current detection in electrical power converters
US4290018A (en) Magnetic field strength measuring apparatus with triangular waveform drive means
JPS63133001A (en) Signal processing method and apparatus for inductance type displacement detector
JP4406567B2 (en) Circuit device for rectifying the output voltage of a sensor fed by an oscillator
JP3049696B2 (en) Switching power supply
US3983475A (en) Frequency selective detecting system for detecting alternating magnetic fields
JPH06347489A (en) Electric current sensor
JPH027031B2 (en)
JPS5965771A (en) Current detecting circuit
US4467662A (en) Signal rectifier, especially for magnetoelastic transducers
JP2572464Y2 (en) Converter using piezoelectric transformer
JP2575983B2 (en) Displacement detector
JP2003232840A (en) Residual magnetic flux measuring device for transformer
JPS626751Y2 (en)
JP5352796B2 (en) Rectification smoothing circuit and displacement detection device using the same
RU2093842C1 (en) Ac-to-dc measuring transducer (design forms)
KR950014747B1 (en) On line transfer property measuring device
JPH0120648Y2 (en)
JP4051724B2 (en) Surface potential detector
JPS5818366Y2 (en) High voltage current detection device
JP3073168B2 (en) Speed detector
JPH11231001A (en) Inductance measuring device for d.c. reactor
JPH078770U (en) Differential coil type rotation detector