JP2015010340A - Construction method and execution method for preventing collapse of concrete utility pole during earthquake - Google Patents

Construction method and execution method for preventing collapse of concrete utility pole during earthquake Download PDF

Info

Publication number
JP2015010340A
JP2015010340A JP2013134435A JP2013134435A JP2015010340A JP 2015010340 A JP2015010340 A JP 2015010340A JP 2013134435 A JP2013134435 A JP 2013134435A JP 2013134435 A JP2013134435 A JP 2013134435A JP 2015010340 A JP2015010340 A JP 2015010340A
Authority
JP
Japan
Prior art keywords
concrete
pole
core material
electric pole
preventing collapse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013134435A
Other languages
Japanese (ja)
Other versions
JP6250961B2 (en
Inventor
剛隆 室野
Tsuyotaka Murono
剛隆 室野
公俊 坂井
Kimitoshi Sakai
公俊 坂井
隆義 西村
Takayoshi Nishimura
隆義 西村
譲嗣 江尻
Joji Ejiri
譲嗣 江尻
隆 松島
Takashi Matsushima
松島  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JR SOKE ENGINEERING CO Ltd
Obayashi Corp
Railway Technical Research Institute
Original Assignee
JR SOKE ENGINEERING CO Ltd
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JR SOKE ENGINEERING CO Ltd, Obayashi Corp, Railway Technical Research Institute filed Critical JR SOKE ENGINEERING CO Ltd
Priority to JP2013134435A priority Critical patent/JP6250961B2/en
Publication of JP2015010340A publication Critical patent/JP2015010340A/en
Application granted granted Critical
Publication of JP6250961B2 publication Critical patent/JP6250961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a construction method and an execution method for preventing a collapse of a concrete utility pole during an earthquake, by inserting a core material for preventing the collapse of the concrete utility pole during the earthquake.SOLUTION: A construction method for preventing a collapse of a concrete utility pole during an earthquake is used to prevent the collapse of the concrete utility pole during the earthquake. A breakage of the concrete utility pole 1 is prevented by inserting a core material 4 into the concrete utility pole 1 and arranging the core material 4 in an erection part 3 for the concrete utility pole 1.

Description

本発明は、コンクリート製電柱の地震時倒壊防止工法及びその施工方法に関するものである。   The present invention relates to a method for preventing collapse of a concrete utility pole during an earthquake and a method for its construction.

従来は、コンクリート製電柱(例えば、PC製の電車線柱)の耐震対策としては、コンクリート製電柱の外側から鋼板を巻くなど、限られた工法しか存在しなかった。これらの工法は、主に地震時の損傷低減に主眼をおいたものである。   Conventionally, as a seismic measure for concrete electric poles (for example, PC electric train poles), there has been only a limited construction method such as winding a steel plate from the outside of a concrete electric pole. These methods mainly focus on reducing damage during an earthquake.

特開2010−193557号公報JP 2010-193557 A 特開2011−226172号公報JP 2011-226172 A

従来のコンクリート製電柱の耐震対策工法は、主に電柱の変形性能を大きくすることで、損傷を低減するためのものであった。しかしながら、想定しているよりも大きな地震が発生した場合には、その変形性能を上回る変形が発生し、電柱が折損してしまう。
また、高架橋上の電柱では、高架橋の周期と電柱の周期の関係が電柱の応答に大きな影響を与える。しかしながら、高架橋の周期算定には、誤差が含まれており、事前の電柱の応答の予測と異なる挙動をすることがある。
Conventional seismic countermeasures for concrete utility poles have been mainly intended to reduce damage by increasing the deformation performance of utility poles. However, when an earthquake greater than expected occurs, deformation exceeding the deformation performance occurs, and the utility pole breaks.
Moreover, in the utility pole on the viaduct, the relationship between the period of the viaduct and the period of the utility pole has a great influence on the response of the utility pole. However, the calculation of the viaduct period includes errors and may behave differently from the prediction of the utility pole response in advance.

さらに、電柱の上端を開口させ、電柱の中空部と連通する開口部を形成する開口部形成工程と、電柱と略同じ長さに形成され、電柱の中空部に挿入可能な補強棒を中空部に挿入する補強棒挿入工程と、中空部に硬化材料を投入する硬化材料投入工程と、電柱の下部で補強棒を固定する下部固定工程と、電柱1の上部で補強棒を固定する上部固定工程と、開口部を封鎖する開口部封鎖工程とを有するものが既に公開されている。   Furthermore, the upper end of the electric pole is opened, and an opening forming step for forming an opening communicating with the hollow portion of the electric pole, and a reinforcing rod that is formed in substantially the same length as the electric pole and can be inserted into the hollow portion of the electric pole Reinforcing rod insertion step for inserting into the hollow portion, a hardening material charging step for charging the hollow portion with a hardening material, a lower fixing step for fixing the reinforcing rod at the lower portion of the utility pole, and an upper fixing step for fixing the reinforcing rod at the upper portion of the utility pole 1 And what has the opening part sealing process which seals an opening part has already been disclosed.

かかる電柱の補強方法では、電柱と略同じ長さの補強棒が必要であり、その補強棒に水平力を分担させて、剛性や耐力を向上させるように構成されている。そして、その補強棒の下部には硬化材料が投入されるだけであり、その固定も十全であるとは言えないものであった。
平成24年に鉄道構造物の耐震設計標準が改訂され、設計で想定している以上の地震が発生した場合にも、可能な限り甚大な被害に陥らないための性能として危機耐性が規定されている。
Such a method of reinforcing a power pole requires a reinforcing bar having substantially the same length as that of the power pole, and is configured so that a horizontal force is shared by the reinforcing bar to improve rigidity and proof strength. And only the hardening material was thrown into the lower part of the reinforcement rod, and the fixing was not perfect.
In 2012, the seismic design standards for railway structures were revised, and even when an earthquake that exceeds the expected level of the design occurs, crisis resistance is defined as the performance that will not cause as much damage as possible. Yes.

このような状況に鑑み、本発明では、H鋼のような芯材を電柱の中に挿入することにより、(1)電柱の変形性能は変化させず、万が一の事態が発生した場合にのみ、電柱が折損することを防ぎ、車両衝突等の重大な事象の発生を防止する。さらに、挿入したH鋼と電柱とをモルタル等で一体化させた場合には、(2)電柱の周期を短くすることで、コンクリート製電柱とその土木構造物との共振を避けることも期待できる。   In view of such a situation, in the present invention, by inserting a core material such as H steel into the utility pole, (1) the deformation performance of the utility pole is not changed, and only in the event of an emergency, Prevents utility poles from breaking and prevents serious events such as vehicle collisions. Furthermore, when the inserted H steel and the utility pole are integrated with mortar, etc., (2) it can be expected to avoid resonance between the concrete utility pole and its civil engineering structure by shortening the period of the utility pole. .

上記したように、本発明は、コンクリート製電柱の地震時に倒壊を防止するための芯材を電柱内に挿入することにより、コンクリート製電柱の地震時倒壊防止工法及びその施工方法を提供することを目的とする。   As described above, the present invention provides a method for preventing collapse of a concrete power pole during an earthquake and a construction method thereof by inserting a core material for preventing the collapse of the concrete power pole during an earthquake into the power pole. Objective.

本発明は、上記目的を達成するために、
〔1〕コンクリート製電柱の地震時倒壊防止工法において、コンクリート製電柱内に芯材を挿入し、前記コンクリート製電柱の建込部に芯材を配置し、前記コンクリート製電柱の折損を防止することを特徴とする。
〔2〕上記〔1〕記載のコンクリート製電柱の地震時倒壊防止工法において、前記コンクリート製電柱の建込部にモルタル充填を行い、前記芯材の前記コンクリート製電柱への固定度を確保するとともに、前記コンクリート製電柱の周期を短くし、土木構造物との共振を避けることで変形を抑えることを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the method of preventing collapse of concrete power poles during an earthquake, a core material is inserted into the concrete power pole, and the core material is disposed in the built-in portion of the concrete power pole to prevent breakage of the concrete power pole. It is characterized by.
[2] In the method for preventing collapse of a concrete utility pole as described in [1] above, mortar filling is performed on a building portion of the concrete utility pole, and the fixing degree of the core material to the concrete utility pole is secured. The deformation of the concrete electric pole is suppressed by shortening the period and avoiding resonance with the civil engineering structure.

〔3〕上記〔1〕又は〔2〕記載のコンクリート製電柱の地震時倒壊防止工法において、前記芯材が鋼材であることを特徴とする。
〔4〕上記〔3〕記載のコンクリート製電柱の地震時倒壊防止工法において、前記鋼材がH鋼又は丸鋼であることを特徴とする。
〔5〕コンクリート製電柱の地震時倒壊防止施工方法において、コンクリート製電柱の天端キャップを取り外し、前記コンクリート製電柱内に芯材を挿入してこの芯材の建て込みを行い、前記コンクリート製電柱内へのモルタルの注入により、前記芯材の根固め充填を行い、前記コンクリート製電柱の天端キャップを取り付けることを特徴とする。
[3] The concrete collapse prevention method for a concrete electric pole according to [1] or [2] above, wherein the core material is a steel material.
[4] In the concrete collapse prevention method for concrete utility poles according to [3] above, the steel material is H steel or round steel.
[5] In the method for preventing collapse of a concrete power pole during an earthquake, the top end cap of the concrete power pole is removed, a core material is inserted into the concrete power pole, and the core material is built. The core material is solidified and filled by injecting mortar into the inside, and the top end cap of the concrete electric pole is attached.

〔6〕上記〔5〕記載のコンクリート製電柱の地震時倒壊防止施工方法において、前記芯材が鋼材であることを特徴とする。
〔7〕上記〔5〕記載のコンクリート製電柱の地震時倒壊防止施工方法において、前記鋼材がH鋼又は丸鋼であることを特徴とする。
〔8〕上記〔5〕から〔7〕記載の何れか一項記載のコンクリート製電柱の地震時倒壊防止施工方法において、高架橋の上に建て込まれるコンクリート製電柱の施工を行う場合には、側道又は高架上から施工を行うことを特徴とする。
[6] In the concrete collapse prevention construction method for a concrete electric pole according to [5] above, the core material is a steel material.
[7] In the method for preventing collapse of a concrete utility pole according to [5] above, the steel material is H steel or round steel.
[8] In the method for preventing collapse of concrete electric poles according to any one of [5] to [7] above, the concrete electric poles to be built on the viaduct should be It is characterized by construction from the road or overpass.

本発明によれば、次のような効果を奏することができる。
(1)剛性の大きな芯材をコンクリート製電柱の底部に挿入することで、コンクリート製電柱の倒壊を防止することができる。
(2)芯材としては、コンクリート製電柱の転倒を防止するだけの剛性、耐力を有する必要がある、例えば、H鋼や丸鋼のような鋼材が適用可能である。
According to the present invention, the following effects can be achieved.
(1) By inserting a rigid core material into the bottom of a concrete power pole, the concrete power pole can be prevented from collapsing.
(2) As the core material, for example, steel materials such as H steel and round steel, which are required to have rigidity and proof strength sufficient to prevent the concrete electric pole from falling, can be applied.

また、芯材は、電柱折損時に倒壊を防止する必要があるため、十分に固定されている必要がある。そこで、芯材を電柱内部に挿入した後、建込部にモルタル充填を行うなどの施工を実施することで、十分な固定度を確保する。
さらに、施工法としては、電柱に可能な限りダメージを与えないことに配慮するため、電柱上部のキャップを取り外し、電柱上端から芯材を挿入することが可能である。
Moreover, since it is necessary to prevent a core material from collapsing at the time of a utility pole breakage, it is necessary to be fully fixed. Then, after inserting a core material into an inside of a utility pole, sufficient fixing degree is ensured by implementing construction, such as filling a mortar in a built-in part.
Furthermore, as a construction method, it is possible to remove the cap on the upper part of the electric pole and insert the core material from the upper end of the electric pole in order not to damage the electric pole as much as possible.

また、高架橋の上に建植された電柱に施工を行う場合には、側道から施工を行う場合、高架上から施工を行う場合が考えられる。   In addition, when construction is performed on a utility pole built on a viaduct, construction may be performed from a side road or construction from an elevated bridge.

本発明の実施例を示す芯材挿入によるコンクリート製電柱の地震時倒壊防止工法の模式図である。It is a schematic diagram of the collapse prevention method at the time of earthquake of the concrete electric pole by core material insertion which shows the Example of this invention. 本発明の実施例を示す高架橋上のコンクリート製電柱の芯材の固定方法を示す模式図である。It is a schematic diagram which shows the fixing method of the core material of the concrete electric pole on the viaduct which shows the Example of this invention. 本発明の実施例を示す高所作業車により側道から芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図である。It is a schematic diagram of the construction method for collapse prevention at the time of the earthquake of the concrete electric pole by core material insertion from a side road by the aerial work vehicle which shows the Example of this invention. 本発明の実施例を示す高架上から高所作業車により行う芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図である。It is a schematic diagram of the construction method for collapse prevention at the time of the earthquake of the concrete electric pole by the core material insertion performed by an aerial work vehicle from the elevated position which shows the Example of this invention.

本発明の芯材挿入によるコンクリート製電柱の地震時倒壊防止工法は、コンクリート製電柱内に芯材を挿入し、前記コンクリート製電柱の建込部に芯材を配置し、前記コンクリート製電柱の折損を防止する。   The method for preventing collapse of a concrete electric pole by earthquake according to the present invention inserts a core material into a concrete electric pole, arranges the core material in a built-in portion of the concrete electric pole, and breaks the concrete electric pole To prevent.

以下、本発明の実施の形態について詳細に説明する。
図1は本発明の実施例を示す芯材挿入によるコンクリート製電柱の地震時倒壊防止工法の模式図であり、図1(a)はコンクリート製電柱を示す図、図1(b)はコンクリート製電柱の建込部に芯材を挿入した状態を示す図、図1(c)はコンクリート製電柱の建込部にモルタルを注入して芯材とコンクリート製電柱とを一体化した状態を示す図である。
Hereinafter, embodiments of the present invention will be described in detail.
FIG. 1 is a schematic diagram of a method for preventing collapse of a concrete power pole by inserting a core material according to an embodiment of the present invention. FIG. 1 (a) is a diagram showing a concrete power pole, and FIG. The figure which shows the state which inserted the core material in the construction part of the utility pole, FIG.1 (c) is the figure which shows the state which inject | poured mortar into the construction part of the concrete utility pole, and integrated the core material and the concrete utility pole. It is.

この図において、1はコンクリート製電柱、2はそのコンクリート製電柱1の空洞部、3は建込部、4はその空洞部2の下部から3m程度へ挿入される芯材であり、この芯材としては鋼材としてのH鋼(丸鋼)を用いる。5は芯材4としてのH鋼を挿入後、注入されるモルタルである。
このように、コンクリート製電柱1は空洞2となっているので、その空洞2の建込部3に芯材4(H鋼又は丸鋼)を挿入した後、モルタル5を注入し、芯材4を空洞2の建込部3に保持する。
In this figure, 1 is a concrete electric pole, 2 is a hollow portion of the concrete electric pole 1, 3 is a built-in portion, and 4 is a core material inserted about 3 m from the lower portion of the hollow portion 2. As the steel material, H steel (round steel) is used. Reference numeral 5 denotes a mortar to be injected after inserting the H steel as the core material 4.
Thus, since the concrete utility pole 1 becomes the cavity 2, after inserting the core material 4 (H steel or round steel) into the built-in part 3 of the cavity 2, the mortar 5 is injected, and the core material 4 Is held in the erected portion 3 of the cavity 2.

図2は本発明の実施例を示す高架橋上のコンクリート製電柱の芯材の固定方法を示す模式図であり、図2(a)はコンクリート製電柱の埋込部のみを固定する場合(基本的には電柱と芯材とは一体化させない場合)、図2(b)は電柱と芯材とをモルタルとで一体化する場合を示している。
コンクリート製電柱の埋込部のみを固定する場合は、図2(a)に示すように、高架橋11に埋め込まれたコンクリート製電柱12の建込部13に芯材14を挿入し、その建込部13のみにモルタル15により芯材14を固定する。 また、電柱と芯材とをモルタルとで一体化させる場合は、図2(b)に示すように、芯材14の挿入後、モルタル16により、コンクリート製電柱12と芯材14との一体化を行う。
FIG. 2 is a schematic diagram showing a method of fixing a core member of a concrete electric pole on a viaduct according to an embodiment of the present invention. FIG. 2A shows a case where only an embedded portion of a concrete electric pole is fixed (basic Fig. 2 (b) shows a case where the power pole and the core material are integrated with mortar.
When fixing only the embedding portion of the concrete electric pole, as shown in FIG. 2A, the core material 14 is inserted into the erection portion 13 of the concrete electric pole 12 embedded in the viaduct 11, and the erection is performed. The core material 14 is fixed only to the portion 13 with the mortar 15. Moreover, when integrating a utility pole and a core material with a mortar, as shown in FIG.2 (b), after insertion of the core material 14, the concrete electric pole 12 and the core material 14 are integrated with the mortar 16. FIG. I do.

図3は本発明の実施例を示す高所作業車により側道から芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図であり、図3(a)は高所作業車によるコンクリート製電柱の天端キャップの撤去を示す図、図3(b)はコンクリート製電柱への芯材の建て込みを示す図、図3(c)はコンクリート製電柱へのモルタルによる根固め充填を示す図、図3(d)はコンクリート製電柱の天端キャップの復旧を示す図である。   FIG. 3 is a schematic diagram of a construction method for preventing collapse of a concrete electric pole by inserting a core material from a side road by an aerial work vehicle showing an embodiment of the present invention, and FIG. Fig. 3 (b) shows the removal of the top cap of a concrete utility pole by car, Fig. 3 (b) shows the construction of the core material on the concrete utility pole, and Fig. 3 (c) shows the mortar consolidation of the concrete utility pole. FIG. 3 (d) is a diagram showing the restoration of the top end cap of the concrete utility pole.

まず、図3(a)に示すように、高所作業車(トラック型h=20m)21により、建込部22に建て込まれるコンクリート製電柱23の天端キャップ24の取り外しを行う。
次に、図3(b)に示すように、建て込まれたコンクリート製電柱23の建込部22内に、ラフタークレーン(10t吊)25により、芯材(H鋼)26を建て込む。
次に、図3(c)に示すように、モルタルバケット27からモルタル28をコンクリート製電柱23内に注入し、芯材(H鋼)26の根固めを行う。
First, as shown in FIG. 3A, the top end cap 24 of the concrete electric pole 23 built in the built-in portion 22 is removed by the aerial work vehicle (truck type h = 20 m) 21.
Next, as shown in FIG.3 (b), the core material (H steel) 26 is built in the built-in part 22 of the built-in concrete electric pole 23 by the rough terrain crane (10t hanging) 25. As shown in FIG.
Next, as shown in FIG.3 (c), the mortar 28 from the mortar bucket 27 is inject | poured in the concrete electric pole 23, and the core material (H steel) 26 is solidified.

最後に、図3(d)に示すように、コンクリート製電柱23の天端キャップ24の取付けを行う。
このように、高所作業車により側道からコンクリート製電柱の地震時倒壊防止工法を施す。
図4は本発明の実施例を示す高架上から高所作業車により行う芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図であり、図4(a)は高所作業車によるコンクリート製電柱の天端キャップの取り外しを行う図、図4(b)は軌陸クレーンによるコンクリート製電柱への芯材の建て込みを示す図、図4(c)はコンクリート製電柱へのモルタルによる根固め充填を示す図、図4(d)はコンクリート製電柱の天端キャップの取り付けを示す図である。
Finally, as shown in FIG. 3D, the top cap 24 of the concrete power pole 23 is attached.
In this way, the concrete electric pole is prevented from collapsing at the time of an earthquake from a side road by an aerial work vehicle.
FIG. 4 is a schematic diagram of a construction method for preventing collapse of a concrete utility pole during an earthquake by inserting a core material performed by an aerial work vehicle from an elevated position showing an embodiment of the present invention, and FIG. Fig. 4 (b) is a diagram showing the concrete power pole being removed from the top of the concrete power pole by a work vehicle. Fig. 4 (b) is a diagram showing the construction of the core material on the concrete power pole by the track crane. Fig. 4 (d) is a diagram showing the installation of the top end cap of a concrete utility pole.

まず、図4(a)に示すように、高所作業車(トラック型h=20m)31により、建込部32に建て込まれるコンクリート製電柱33の天端キャップ34の取り外しを行う。
次に、図4(b)に示すように、建て込まれたコンクリート製電柱33の建込部32内に軌陸クレーン35により、芯材(H鋼)36を建て込む。
次に、図4(c)に示すように、モルタルバケット37からモルタル38をコンクリート製電柱33内に注入し、芯材(H鋼)36の根固めを行う。
First, as shown in FIG. 4A, the top end cap 34 of the concrete electric pole 33 built in the built-in portion 32 is removed by an aerial work vehicle (truck type h = 20 m) 31.
Next, as shown in FIG. 4 (b), a core material (H steel) 36 is built in the built-in portion 32 of the built-in concrete electric pole 33 by the track crane 35.
Next, as shown in FIG.4 (c), the mortar 38 is inject | poured in the concrete electric pole 33 from the mortar bucket 37, and the core material (H steel) 36 is solidified.

最後に、図4(d)に示すように、コンクリート製電柱33の天端キャップ34の取り付けを行う。
このように、高架上から高所作業車により、コンクリート製電柱の地震時倒壊防止のための施工方法を施す。
本発明によれば、簡単な構造、倒壊防止工法、その施工方法によって、コンクリート製電柱の耐震補強を実施することができる。
Finally, as shown in FIG.4 (d), the top end cap 34 of the concrete electric pole 33 is attached.
In this way, a construction method for preventing collapse of a concrete electric pole during an earthquake is applied from an elevated work vehicle to an elevated work vehicle.
ADVANTAGE OF THE INVENTION According to this invention, the seismic reinforcement of a concrete electric pole can be implemented with a simple structure, a collapse prevention construction method, and its construction method.

想定外の地震が作用して電柱が折損した場合にも、列車走行空間を支障することがないように、コンクリート製電柱内部に芯材を埋め込む工法、また、電柱と芯材を結合させた場合には、電柱の耐力を増大させるとともに、電柱の剛性を高めて、高架橋との共振を小さくする作用も期待できる。
高架上のコンクリート製電柱では、高架橋の周期と電柱の周期の関係が、電柱の応答に支配的な影響を及ぼすものの、実際には、高架橋の周期算定結果には多かれ少なかれ誤差があり、その見積もりが実際と異なることも予想されるが、本発明によれば、そのような場合にも十分に対応可能であるといった利点がある。
A method of embedding a core material inside a concrete power pole so that the train running space will not be disturbed even if an electric pole breaks due to an unexpected earthquake, or when the power pole and core material are combined In addition to increasing the proof stress of the utility pole, it is also expected to increase the rigidity of the utility pole and reduce the resonance with the viaduct.
In concrete utility poles on the viaduct, although the relationship between the frequency of the viaduct and the frequency of the utility pole has a dominant influence on the response of the utility pole, there are actually more or less errors in the calculation results of the frequency of the viaduct. However, according to the present invention, there is an advantage that it is possible to sufficiently cope with such a case.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の芯材挿入によるコンクリート製電柱の地震時倒壊防止工法及びその施工方法は、コンクリート製電柱の地震時に倒壊を防止するための芯材挿入により、コンクリート製電柱の地震時倒壊防止工法及びその施工方法として利用可能である。   The method for preventing collapse of a concrete power pole by an insertion of a core material according to the present invention and the construction method thereof include a core material for preventing collapse of a concrete power pole during an earthquake, and a method for preventing the collapse of a concrete power pole during an earthquake and its It can be used as a construction method.

1,12,23,33 コンクリート製電柱
2 コンクリート製電柱の空洞部
3,13,22,32 建込部
4,14,26,36 芯材(H鋼,丸鋼)
5,15,16,28,38 モルタル
11 高架橋
21,31 高所作業車
24,34 天端キャップ
25 ラフタークレーン
27,37 モルタルバケット
35 軌陸クレーン
1,12,23,33 Concrete utility pole 2 Cavity part of concrete utility pole 3,13,22,32 Built-in part 4,14,26,36 Core material (H steel, round steel)
5, 15, 16, 28, 38 Mortar 11 Viaduct 21, 31 Aerial platforms 24, 34 Top cap 25 Rough terrain crane 27, 37 Mortar bucket 35 Rail crane

Claims (8)

コンクリート製電柱内に芯材を挿入し、前記コンクリート製電柱の建込部に芯材を配置し、前記コンクリート製電柱の折損を防止することを特徴とするコンクリート製電柱の地震時倒壊防止工法。   A method for preventing collapse of a concrete electric pole during an earthquake, wherein a core material is inserted into a concrete electric pole, and the core is arranged in a built-in portion of the concrete electric pole to prevent breakage of the concrete electric pole. 請求項1記載のコンクリート製電柱の地震時倒壊防止工法において、前記コンクリート製電柱の建込部にモルタル充填を行い、前記芯材の前記コンクリート製電柱への固定度を確保するとともに、前記コンクリート製電柱の周期を短くし、土木構造物との共振を避けることで変形を抑えることを特徴とするコンクリート製電柱の地震時倒壊防止工法。   2. The method of preventing collapse of a concrete utility pole according to claim 1, wherein mortar filling is performed on a built-in portion of the concrete utility pole to ensure the degree of fixing of the core material to the concrete utility pole, and A method for preventing collapse of concrete utility poles during earthquakes, characterized by shortening the period of utility poles and suppressing deformation by avoiding resonance with civil engineering structures. 請求項1又は2記載のコンクリート製電柱の地震時倒壊防止工法において、前記芯材が鋼材であることを特徴とするコンクリート製電柱の地震時倒壊防止工法。   3. The method for preventing collapse of a concrete electric pole during earthquake according to claim 1 or 2, wherein the core material is a steel material. 請求項3記載のコンクリート製電柱の地震時倒壊防止工法において、前記鋼材がH鋼又は丸鋼であることを特徴とするコンクリート製電柱の地震時倒壊防止工法。   4. The method for preventing collapse of a concrete electric pole according to claim 3, wherein the steel material is H steel or round steel. コンクリート製電柱の地震時倒壊防止施工方法において、
(a)コンクリート製電柱の天端キャップを取り外し、
(b)前記コンクリート製電柱内に芯材を挿入して該芯材の建て込みを行い、
(c)前記コンクリート製電柱内へのモルタルの注入により、前記芯材の根固め充填を行い、
(d)前記コンクリート製電柱の天端キャップを取り付けることを特徴とするコンクリート製電柱の地震時倒壊防止施工方法。
In the method of preventing collapse of concrete power poles during earthquakes,
(A) Remove the top cap of the concrete utility pole,
(B) Inserting a core material into the concrete electric pole to build the core material,
(C) By filling mortar into the concrete electric pole, the core material is solidified and filled;
(D) A method for preventing collapse of a concrete utility pole during an earthquake, comprising attaching a top end cap of the concrete utility pole.
請求項5記載のコンクリート製電柱の地震時倒壊防止施工方法において、前記芯材が鋼材であることを特徴とするコンクリート製電柱の地震時倒壊防止施工方法。   6. The method for preventing collapse of a concrete electric pole according to claim 5, wherein the core material is a steel material. 請求項5記載のコンクリート製電柱の地震時倒壊防止施工方法において、前記鋼材がH鋼又は丸鋼であることを特徴とするコンクリート製電柱の地震時倒壊防止施工方法。   6. The method for preventing collapse of concrete electric poles during earthquakes according to claim 5, wherein the steel material is H steel or round steel. 請求項5から7記載の何れか一項記載のコンクリート製電柱の地震時倒壊防止施工方法において、高架橋の上に建て込まれるコンクリート製電柱の施工行う場合には、側道又は高架上から施工を行うことを特徴とするコンクリート製電柱の地震時倒壊防止施工方法。 The concrete electric pole collapse prevention construction method according to any one of claims 5 to 7, wherein when the concrete electric pole to be built on the viaduct is to be constructed , the construction is performed from the side road or on the overpass. A construction method for preventing collapse of a concrete utility pole during an earthquake.
JP2013134435A 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method Expired - Fee Related JP6250961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134435A JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134435A JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Publications (2)

Publication Number Publication Date
JP2015010340A true JP2015010340A (en) 2015-01-19
JP6250961B2 JP6250961B2 (en) 2017-12-20

Family

ID=52303749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134435A Expired - Fee Related JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Country Status (1)

Country Link
JP (1) JP6250961B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238638A (en) * 1994-02-25 1995-09-12 Ee & Ii:Kk Structure of support consisting of aluminum mold
JPH0959930A (en) * 1995-08-18 1997-03-04 P S Co Ltd Bridge girder construction method and device thereof
JP2010193557A (en) * 2009-02-16 2010-09-02 Chugoku Electric Power Co Inc:The Method for reinforcing utility pole
JP2012127134A (en) * 2010-12-16 2012-07-05 Nippon Concrete Ind Co Ltd Reinforcement material and reinforcement method of concrete column body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238638A (en) * 1994-02-25 1995-09-12 Ee & Ii:Kk Structure of support consisting of aluminum mold
JPH0959930A (en) * 1995-08-18 1997-03-04 P S Co Ltd Bridge girder construction method and device thereof
JP2010193557A (en) * 2009-02-16 2010-09-02 Chugoku Electric Power Co Inc:The Method for reinforcing utility pole
JP2012127134A (en) * 2010-12-16 2012-07-05 Nippon Concrete Ind Co Ltd Reinforcement material and reinforcement method of concrete column body

Also Published As

Publication number Publication date
JP6250961B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
CN201546370U (en) Novel shock proof reinforcing conformation post
CN203514336U (en) Embedded foundation of composite wallboard
KR20150051434A (en) RC Solid Section Column by Triangular Reinforcing Bar Details and Construction Method Thereof
CN103556749A (en) Hanging flexible connection of precast concrete infill wall
CN105332521A (en) Seismic hardening additional damping and reinforcing frame connected with joint region
CN108661169B (en) Assembly type side frame beam component and design method
KR20130018343A (en) Seismic retrofit method of src enlarged section using connection joint with anchor plate and steel bar tie
KR101174675B1 (en) Combination structure of precast concrete beam and precast concrete column
JP5584520B2 (en) Reinforcement method of abutment and back embankment
JP5805182B2 (en) Synthetic pile manufacturing method
CN202706023U (en) Anchor body sealing structure for connecting frame beam and anchor rod
JP6250961B2 (en) Method of preventing collapse of concrete utility poles during earthquake and its construction method
JP5816514B2 (en) Outframe reinforcement method and its reinforcement structure
CN208762857U (en) A kind of science of bridge building steel reinforced concrete vibration damping pier stud
JPH10152998A (en) Earthquake-resistant reinforcing structure of existing building
JP6230272B2 (en) Seismic wall and method of forming the same
CN103821161B (en) Prestressed concrete pipe pile stiffness fills out cored structure
CN203411992U (en) Reserved hole template of deep hole in mass concrete
JP2017014713A (en) Existing concrete structure reinforcement structure
JP2002256571A (en) Reconstructing method for building, using method for existing pile and building
JP6474653B2 (en) Connection structure for new and existing underground structures
JP4560557B2 (en) Seismic reinforcement method for bridges
CN107433679B (en) A kind of thin-wall steel tube constraint steel concrete separated column and preparation method thereof
KR101440392B1 (en) Bridge structure and construction method thereof
KR101519112B1 (en) Reinforcement column and a tunnel for subway utilizing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6250961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees