JP6250961B2 - Method of preventing collapse of concrete utility poles during earthquake and its construction method - Google Patents

Method of preventing collapse of concrete utility poles during earthquake and its construction method Download PDF

Info

Publication number
JP6250961B2
JP6250961B2 JP2013134435A JP2013134435A JP6250961B2 JP 6250961 B2 JP6250961 B2 JP 6250961B2 JP 2013134435 A JP2013134435 A JP 2013134435A JP 2013134435 A JP2013134435 A JP 2013134435A JP 6250961 B2 JP6250961 B2 JP 6250961B2
Authority
JP
Japan
Prior art keywords
concrete
pole
core material
electric pole
concrete electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013134435A
Other languages
Japanese (ja)
Other versions
JP2015010340A (en
Inventor
剛隆 室野
剛隆 室野
公俊 坂井
公俊 坂井
隆義 西村
隆義 西村
譲嗣 江尻
譲嗣 江尻
隆 松島
松島  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Railway Technical Research Institute
Original Assignee
Obayashi Corp
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Railway Technical Research Institute filed Critical Obayashi Corp
Priority to JP2013134435A priority Critical patent/JP6250961B2/en
Publication of JP2015010340A publication Critical patent/JP2015010340A/en
Application granted granted Critical
Publication of JP6250961B2 publication Critical patent/JP6250961B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、コンクリート製電柱の地震時倒壊防止工法及びその施工方法に関するものである。   The present invention relates to a method for preventing collapse of a concrete utility pole during an earthquake and a method for its construction.

従来は、コンクリート製電柱(例えば、PC製の電車線柱)の耐震対策としては、コンクリート製電柱の外側から鋼板を巻くなど、限られた工法しか存在しなかった。これらの工法は、主に地震時の損傷低減に主眼をおいたものである。   Conventionally, as a seismic measure for concrete electric poles (for example, PC electric train poles), there has been only a limited construction method such as winding a steel plate from the outside of a concrete electric pole. These methods mainly focus on reducing damage during an earthquake.

特開2010−193557号公報JP 2010-193557 A 特開2011−226172号公報JP 2011-226172 A

従来のコンクリート製電柱の耐震対策工法は、主に電柱の変形性能を大きくすることで、損傷を低減するためのものであった。しかしながら、想定しているよりも大きな地震が発生した場合には、その変形性能を上回る変形が発生し、電柱が折損してしまう。   Conventional seismic countermeasures for concrete utility poles have been mainly intended to reduce damage by increasing the deformation performance of utility poles. However, when an earthquake greater than expected occurs, deformation exceeding the deformation performance occurs, and the utility pole breaks.

また、高架橋上の電柱では、高架橋の周期と電柱の周期の関係が電柱の応答に大きな影響を与える。しかしながら、高架橋の周期算定には、誤差が含まれており、事前の電柱の応答の予測と異なる挙動をすることがある。   Moreover, in the utility pole on the viaduct, the relationship between the period of the viaduct and the period of the utility pole has a great influence on the response of the utility pole. However, the calculation of the viaduct period includes errors and may behave differently from the prediction of the utility pole response in advance.

さらに、電柱の上端を開口させ、電柱の中空部と連通する開口部を形成する開口部形成工程と、電柱と略同じ長さに形成され、電柱の中空部に挿入可能な補強棒を中空部に挿入する補強棒挿入工程と、中空部に硬化材料を投入する硬化材料投入工程と、電柱の下部で補強棒を固定する下部固定工程と、電柱の上部で補強棒を固定する上部固定工程と、開口部を封鎖する開口部封鎖工程とを有するものが既に公開されている。 Furthermore, the upper end of the electric pole is opened, and an opening forming step for forming an opening communicating with the hollow portion of the electric pole, and a reinforcing rod that is formed in substantially the same length as the electric pole and can be inserted into the hollow portion of the electric pole upper fixing step of fixing the reinforcing rod insertion step of inserting, a curing material supply step of introducing the curable material into the hollow portion, and a lower fixing step of fixing the reinforcing bars at the bottom of the utility pole, the upper reinforcing bars conductive pillar to And what has the opening part sealing process which seals an opening part has already been disclosed.

かかる電柱の補強方法では、電柱と略同じ長さの補強棒が必要であり、その補強棒に水平力を分担させて、剛性や耐力を向上させるように構成されている。そして、その補強棒の下部には硬化材料が投入されるだけであり、その固定も十全であるとは言えないものであった。   Such a method of reinforcing a power pole requires a reinforcing bar having substantially the same length as that of the power pole, and is configured so that a horizontal force is shared by the reinforcing bar to improve rigidity and proof strength. And only the hardening material was thrown into the lower part of the reinforcement rod, and the fixing was not perfect.

平成24年に鉄道構造物の耐震設計標準が改訂され、設計で想定している以上の地震が発生した場合にも、可能な限り甚大な被害に陥らないための性能として危機耐性が規定されている。   In 2012, the seismic design standards for railway structures were revised, and even when an earthquake that exceeds the expected level of the design occurs, crisis resistance is defined as the performance that will not cause as much damage as possible. Yes.

このような状況に鑑み、本発明では、芯材を電柱の中に挿入することにより、電柱の変形性能は変化させず、万が一の事態が発生した場合にのみ、電柱が折損することを防ぎ、車両衝突等の重大な事象の発生を防止する In view of this situation, in the present invention, by inserting the core material into the utility pole, Ductility of conductive pillar does not change, only when the emergency situation occurs, prevents the utility pole is broken Prevent the occurrence of serious events such as vehicle collisions .

上記したように、本発明は、コンクリート製電柱の地震時に倒壊を防止するための芯材を電柱内に挿入することにより、コンクリート製電柱の地震時倒壊防止工法及びその施工方法を提供することを目的とする。   As described above, the present invention provides a method for preventing collapse of a concrete power pole during an earthquake and a construction method thereof by inserting a core material for preventing the collapse of the concrete power pole during an earthquake into the power pole. Objective.

本発明は、上記目的を達成するために、
〔1〕コンクリート製電柱の地震時倒壊防止工法において、コンクリート製電柱内に芯材を挿入し、前記芯材を前記コンクリート製電柱の底部のみに挿入し、前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみにしたことを特徴とする。
In order to achieve the above object, the present invention provides
[1] In the seismic collapse preventing method of concrete electric pole, insert the core into the concrete electric pole, the core material is inserted only in the bottom of the concrete electric pole, fixed of the core material and the concrete electric pole is The concrete electric poles are only built in.

〕コンクリート製電柱の地震時倒壊防止施工方法において、(a)コンクリート製電柱の天端キャップを取り外し、(b)前記コンクリート製電柱内に芯材を挿入して前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみに前記芯材の建て込みを行い、(c)前記コンクリート製電柱内へのモルタルの注入により、前記芯材の根固め充填を行い、(d)前記コンクリート製電柱の天端キャップを取り付けることを特徴とする。 [ 2 ] In the method for preventing collapse of a concrete power pole during an earthquake, (a) removing the top cap of the concrete power pole, (b) inserting the core material into the concrete power pole and inserting the core material and the concrete power pole fixed performs like an anchor of the core material only Kenkomi portion of the concrete electric pole, by injecting mortar into (c) the concrete electric pole inside, performs root compaction filling of the core material, (d ) A top end cap of the concrete electric pole is attached.

本発明によれば、次のような効果を奏することができる。   According to the present invention, the following effects can be achieved.

(1)剛性の大きな芯材をコンクリート製電柱の底部に挿入することで、コンクリート製電柱の倒壊を防止することができる。   (1) By inserting a rigid core material into the bottom of a concrete power pole, the concrete power pole can be prevented from collapsing.

(2)芯材としては、コンクリート製電柱の転倒を防止するだけの剛性、耐力を有する必要がある、
また、芯材は、電柱折損時に倒壊を防止する必要があるため、十分に固定されている必要がある。そこで、芯材を電柱内部に挿入した後、建込部にモルタル充填を行うなどの施工を実施することで、十分な固定度を確保する。
(2) As a core material, it is necessary to have rigidity and proof strength enough to prevent the concrete power pole from overturning,
Moreover, since it is necessary to prevent a core material from collapsing at the time of a utility pole breakage, it is necessary to be fully fixed. Then, after inserting a core material into an inside of a utility pole, sufficient fixing degree is ensured by implementing construction, such as filling a mortar in a built-in part.

さらに、施工法としては、電柱に可能な限りダメージを与えないことに配慮するため、電柱上部のキャップを取り外し、電柱上端から芯材を挿入することが可能である。   Furthermore, as a construction method, it is possible to remove the cap on the upper part of the electric pole and insert the core material from the upper end of the electric pole in order not to damage the electric pole as much as possible.

また、高架橋の上に建植された電柱に施工を行う場合には、側道から施工を行う場合、高架上から施工を行う場合が考えられる。   In addition, when construction is performed on a power pole built on a viaduct, construction may be performed from a side road or construction from an elevated bridge.

本発明の実施例を示す芯材挿入によるコンクリート製電柱の地震時倒壊防止工法の模式図である。Is a schematic view of seismic collapse preventing method of concrete electric pole by insertion of the core material of an embodiment of the present invention. 本発明の実施例を示す高架橋上のコンクリート製電柱の芯材の固定方法を示す模式図である。It is a schematic diagram which shows the fixing method of the core material of the concrete electric pole on the viaduct which shows the Example of this invention. 本発明の実施例を示す高所作業車により側道から芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図である。It is a schematic view of a construction method for an embodiment from the side road by aerial platforms showing the concrete electric pole by insertion of the core material of the seismic collapse prevention of the present invention. 本発明の実施例を示す高架上から高所作業車により行う芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図である。Is a schematic view of a construction method for seismic collapse preventing concrete electric pole from the elevated showing an embodiment according to the insertion of the core material out by aerial of the present invention.

本発明のコンクリート製電柱の地震時倒壊防止工法は、コンクリート製電柱内に芯材を挿入し、前記芯材を前記コンクリート製電柱の底部のみに挿入し、前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみにしたSeismic collapse preventing method of concrete made electric pole of the present invention, by inserting the core into the concrete electric pole, the core material is inserted only in the bottom of the concrete electric pole, fixed of the core material and the concrete electric pole Was made only in the building part of the concrete electric pole .

また、コンクリート製電柱の地震時倒壊防止施工方法において、(a)コンクリート製電柱の天端キャップを取り外し、(b)前記コンクリート製電柱内に芯材を挿入して前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみに前記芯材の建て込みを行い、(c)前記コンクリート製電柱内へのモルタルの注入により、前記芯材の根固め充填を行い、(d)前記コンクリート製電柱の天端キャップを取り付ける Further, in the construction method for preventing collapse of a concrete power pole during an earthquake, (a) the top cap of the concrete power pole is removed, (b) a core material is inserted into the concrete power pole, and the core material and the concrete power pole are For fixing, the core material is erected only in the erected portion of the concrete electric pole, (c) the core material is solidified by pouring mortar into the concrete electric pole, and (d) Install the top cap of the concrete utility pole .

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

図1は本発明の実施例を示す芯材挿入によるコンクリート製電柱の地震時倒壊防止工法の模式図であり、図1(a)はコンクリート製電柱を示す図、図1(b)はコンクリート製電柱の建込部に芯材を挿入した状態を示す図、図1(c)はコンクリート製電柱の建込部にモルタルを注入して芯材とコンクリート製電柱とを一体化した状態を示す図である。 Figure 1 is a schematic view of seismic collapse preventing method of concrete electric pole by insertion of the core material of an embodiment of the present invention, FIG. 1 (a) shows a concrete electric pole, FIG. 1 (b) Concrete The figure which shows the state which inserted the core material in the construction part of the electrical pole, FIG.1 (c) shows the state which inject | poured mortar into the construction part of the concrete electrical pole, and integrated the core material and the concrete electrical pole. FIG.

この図において、1はコンクリート製電柱、2はそのコンクリート製電柱1の空洞部、3は建込部、4はその空洞部2の下部から3m程度へ挿入される芯材である。5は芯材4を挿入後、建込部3に注入されるモルタルである。 In this figure, 1 is concrete electric pole, 2 cavities of the concrete electric pole 1, 3 Kenkomi portion, 4 is a core member which is inserted from the bottom of the cavity 2 to about 3m. Reference numeral 5 denotes a mortar that is injected into the built-in portion 3 after inserting the core material 4.

このように、コンクリート製電柱1は空洞2となっているので、その空洞2の建込部3に芯材4を挿入した後、モルタル5を注入し、芯材4を空洞2の建込部3に保持する。   Thus, since the concrete electric pole 1 becomes the cavity 2, after inserting the core material 4 into the built-in part 3 of the cavity 2, the mortar 5 is injected, and the core material 4 is inserted into the built-in part of the cavity 2. Hold at 3.

図2は本発明の実施例を示す高架橋上のコンクリート製電柱の芯材の固定方法を示す模式図であり、高架橋11に埋め込まれたコンクリート製電柱12の建込部13に芯材14を挿入し、その建込部13のみにモルタル15により芯材14を固定する Figure 2 is Ri schematic diagram showing a method of fixing the core material of the concrete electric pole on a high crosslinking illustrating an embodiment of the present invention, the core 14 to Kenkomi portion 13 of the concrete electric pole 12 embedded in the viaduct 11 The core material 14 is fixed to the erected portion 13 only by the mortar 15 .

図3は本発明の実施例を示す高所作業車により側道から芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図であり、図3(a)は高所作業車によるコンクリート製電柱の天端キャップの撤去を示す図、図3(b)はコンクリート製電柱への芯材の建て込みを示す図、図3(c)はコンクリート製電柱へのモルタルによる根固め充填を示す図、図3(d)はコンクリート製電柱の天端キャップの復旧を示す図である。 Figure 3 is a schematic view of a construction method for an embodiment from the side road by aerial platforms showing the concrete electric pole by insertion of the core material of the seismic collapse prevention of the present invention, FIG. 3 (a) altitude Fig. 3 (b) is a diagram showing the removal of the top end cap of a concrete utility pole by a work vehicle, Fig. 3 (b) is a diagram showing the construction of the core material on the concrete utility pole, and Fig. 3 (c) is the root of the concrete utility pole by mortar. FIG. 3 (d) is a diagram showing the restoration of the top end cap of the concrete electric pole.

まず、図3(a)に示すように、高所作業車(トラック型h=20m)21により、建込部22に建て込まれるコンクリート製電柱23の天端キャップ24の取り外しを行う。   First, as shown in FIG. 3A, the top end cap 24 of the concrete electric pole 23 built in the built-in portion 22 is removed by the aerial work vehicle (truck type h = 20 m) 21.

次に、図3(b)に示すように、建て込まれたコンクリート製電柱23の建込部22内に、ラフタークレーン(10t吊)25により、芯材26を建て込む。   Next, as shown in FIG.3 (b), the core material 26 is built in the built-in part 22 of the built-in concrete electric pole 23 with the rough terrain crane (10t suspension) 25. As shown in FIG.

次に、図3(c)に示すように、モルタルバケット27からモルタル28をコンクリート製電柱23内に注入し、芯材26の根固めを行う。   Next, as shown in FIG.3 (c), the mortar 28 is inject | poured in the concrete electric pole 23 from the mortar bucket 27, and the core material 26 is solidified.

最後に、図3(d)に示すように、コンクリート製電柱23の天端キャップ24の取付けを行う。   Finally, as shown in FIG. 3D, the top cap 24 of the concrete power pole 23 is attached.

このように、高所作業車により側道からコンクリート製電柱の地震時倒壊防止工法を施す。   In this way, the concrete electric pole is prevented from collapsing at the time of an earthquake from a side road by an aerial work vehicle.

図4は本発明の実施例を示す高架上から高所作業車により行う芯材挿入によるコンクリート製電柱の地震時倒壊防止のための施工方法の模式図であり、図4(a)は高所作業車によるコンクリート製電柱の天端キャップの取り外しを行う図、図4(b)は軌陸クレーンによるコンクリート製電柱への芯材の建て込みを示す図、図4(c)はコンクリート製電柱へのモルタルによる根固め充填を示す図、図4(d)はコンクリート製電柱の天端キャップの取り付けを示す図である。 Figure 4 is a schematic view of a construction method for the on elevated illustrating an example of a concrete electric pole by insertion of the core carried out by aerial Seismic collapse prevention of the present invention, FIG. 4 (a) High Fig. 4 (b) is a diagram showing the construction of the core material on the concrete utility pole by the track crane, and Fig. 4 (c) is the concrete utility pole. Fig. 4 (d) is a diagram showing attachment of a top end cap of a concrete electric pole.

まず、図4(a)に示すように、高所作業車(トラック型h=20m)31により、建込部32に建て込まれるコンクリート製電柱33の天端キャップ34の取り外しを行う。   First, as shown in FIG. 4A, the top end cap 34 of the concrete electric pole 33 built in the built-in portion 32 is removed by an aerial work vehicle (truck type h = 20 m) 31.

次に、図4(b)に示すように、建て込まれたコンクリート製電柱33の建込部32内に軌陸クレーン35により、芯材36を建て込む。   Next, as shown in FIG. 4 (b), the core material 36 is built by the track crane 35 into the built-in portion 32 of the built concrete electric pole 33.

次に、図4(c)に示すように、モルタルバケット37からモルタル38をコンクリート製電柱33内に注入し、芯材26の根固めを行う。   Next, as shown in FIG.4 (c), the mortar 38 is inject | poured in the concrete electric pole 33 from the mortar bucket 37, and the core material 26 is solidified.

最後に、図4(d)に示すように、コンクリート製電柱33の天端キャップ34の取り付けを行う。   Finally, as shown in FIG.4 (d), the top end cap 34 of the concrete electric pole 33 is attached.

このように、高架上から高所作業車により、コンクリート製電柱の地震時倒壊防止のための施工方法を施す。   In this way, a construction method for preventing collapse of a concrete electric pole during an earthquake is applied from an elevated work vehicle to an elevated work vehicle.

本発明によれば、簡単な構造、倒壊防止工法、その施工方法によって、コンクリート製電柱の耐震補強を実施することができる。   ADVANTAGE OF THE INVENTION According to this invention, the seismic reinforcement of a concrete electric pole can be implemented with a simple structure, a collapse prevention construction method, and its construction method.

想定外の地震が作用して電柱が折損した場合にも、列車走行空間を支障することがないように、コンクリート製電柱内部に芯材を埋め込む工法である。 It is a method of embedding a core material inside a concrete power pole so that the train traveling space will not be disturbed even when an unexpected earthquake acts and the power pole breaks .

高架上のコンクリート製電柱では、高架橋の周期と電柱の周期の関係が、電柱の応答に支配的な影響を及ぼすものの、実際には、高架橋の周期算定結果には多かれ少なかれ誤差があり、その見積もりが実際と異なることも予想されるが、本発明によれば、そのような場合にも十分に対応可能であるといった利点がある。   In concrete utility poles on the viaduct, although the relationship between the frequency of the viaduct and the frequency of the utility pole has a dominant influence on the response of the utility pole, there are actually more or less errors in the calculation results of the frequency of the viaduct. However, according to the present invention, there is an advantage that it is possible to sufficiently cope with such a case.

なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づき種々の変形が可能であり、これらを本発明の範囲から排除するものではない。   In addition, this invention is not limited to the said Example, Based on the meaning of this invention, a various deformation | transformation is possible and these are not excluded from the scope of the present invention.

本発明の芯材挿入によるコンクリート製電柱の地震時倒壊防止工法及びその施工方法は、コンクリート製電柱の地震時に倒壊を防止するための芯材の挿入により、コンクリート製電柱の地震時倒壊防止工法及びその施工方法として利用可能である。   The method of preventing collapse of a concrete electric pole by earthquake by inserting the core material of the present invention and the construction method thereof are the method of preventing collapse of a concrete electric pole at the time of earthquake by inserting a core material to prevent collapse of the concrete power pole at the time of earthquake, and It can be used as the construction method.

1,12,23,33 コンクリート製電柱
2 コンクリート製電柱の空洞部
3,13,22,32 建込部
4,14,26,36 芯材(H鋼,丸棒)
5,15,16,28,38 モルタル
11 高架橋
21,31 高所作業車
24,34 天端キャップ
25 ラフタークレーン
27,37 モルタルバケット
35 軌陸クレーン
1,12,23,33 Concrete electric pole 2 Cavity part of concrete electric pole 3,13,22,32 Built-in part 4,14,26,36 Core material (H steel, round bar)
5, 15, 16, 28, 38 Mortar 11 Viaduct 21, 31 Aerial platforms 24, 34 Top cap 25 Rough terrain crane 27, 37 Mortar bucket 35 Rail crane

Claims (2)

コンクリート製電柱内に芯材を挿入し、前記芯材を前記コンクリート製電柱の底部のみに挿入し、前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみにしたことを特徴とするコンクリート製電柱の地震時倒壊防止工法。 Insert the core into the concrete electric pole, the core material is inserted only in the bottom of the concrete electric pole, fixed of the core material and the concrete electric pole is that it has only to Kenkomi portion of the concrete electric pole A method for preventing collapse of concrete utility poles during earthquakes. コンクリート製電柱の地震時倒壊防止施工方法において、
(a)コンクリート製電柱の天端キャップを取り外し、
(b)前記コンクリート製電柱内に芯材を挿入して前記芯材とコンクリート製電柱の固定は、前記コンクリート製電柱の建込部のみに前記芯材の建て込みを行い、
(c)前記コンクリート製電柱内へのモルタルの注入により、前記芯材の根固め充填を行い、
(d)前記コンクリート製電柱の天端キャップを取り付けることを特徴とするコンクリート製電柱の地震時倒壊防止施工方法。
In the method of preventing collapse of concrete power poles during earthquakes,
(A) Remove the top cap of the concrete utility pole,
(B) The core material is inserted into the concrete power pole and the core material and the concrete power pole are fixed, and the core material is built only in a built-in portion of the concrete power pole .
(C) By filling mortar into the concrete electric pole, the core material is solidified and filled;
(D) A method for preventing collapse of a concrete utility pole during an earthquake, comprising attaching a top end cap of the concrete utility pole.
JP2013134435A 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method Expired - Fee Related JP6250961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013134435A JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013134435A JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Publications (2)

Publication Number Publication Date
JP2015010340A JP2015010340A (en) 2015-01-19
JP6250961B2 true JP6250961B2 (en) 2017-12-20

Family

ID=52303749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013134435A Expired - Fee Related JP6250961B2 (en) 2013-06-27 2013-06-27 Method of preventing collapse of concrete utility poles during earthquake and its construction method

Country Status (1)

Country Link
JP (1) JP6250961B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07238638A (en) * 1994-02-25 1995-09-12 Ee & Ii:Kk Structure of support consisting of aluminum mold
JP3026545B2 (en) * 1995-08-18 2000-03-27 株式会社ピー・エス Bridge girder erection method and device
JP2010193557A (en) * 2009-02-16 2010-09-02 Chugoku Electric Power Co Inc:The Method for reinforcing utility pole
JP5684557B2 (en) * 2010-12-16 2015-03-11 日本コンクリート工業株式会社 Method for reinforcing concrete columns

Also Published As

Publication number Publication date
JP2015010340A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
CN201546370U (en) Novel shock proof reinforcing conformation post
CN104563142B (en) Large-scale toppling unstable rock body associating safeguard structure and administering method
CN104727223A (en) Annular platform for bridge pier stud construction and construction method
CN108661169A (en) A kind of assembled marginal frame beam component and design method
CN104711933A (en) Reinforced concrete arch bridge construction method combined with cast-in-place cantilever method and stiff skeleton method
JP5171391B2 (en) Concrete girder support replacement method
JP5584520B2 (en) Reinforcement method of abutment and back embankment
CN206220489U (en) Concrete post formwork for placing tightening device
JP6250961B2 (en) Method of preventing collapse of concrete utility poles during earthquake and its construction method
KR100740280B1 (en) A light pole composed of the strengthened structure and it's manufacturing method
CN102383618A (en) Device and method for permanently strengthening old building
KR100540928B1 (en) method for manufacturing anchor bolt carrying out and an anchor bolt
CN208762857U (en) A kind of science of bridge building steel reinforced concrete vibration damping pier stud
CN212507061U (en) Structure column of early and late construction structure
JP2013092010A (en) Repair method for reinforced soil wall
JP4560557B2 (en) Seismic reinforcement method for bridges
CN107433679B (en) A kind of thin-wall steel tube constraint steel concrete separated column and preparation method thereof
JP6345328B1 (en) Original position building method and original position structure
JP3973589B2 (en) Telephone pole repair method
JP5285440B2 (en) Construction method of structure
CN111456323A (en) Structure column of early and later construction structure, basement structure column and construction method of basement structure column
JP2008014065A (en) Aseismatic reinforcing structure of existing building, and its construction method
CN214090324U (en) Node that precast concrete beam column connects
CN207278084U (en) The window frame node of high tightness
JP5457942B2 (en) Reinforcement method of abutment and back embankment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171124

R150 Certificate of patent or registration of utility model

Ref document number: 6250961

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees