JP2015010032A - Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter - Google Patents

Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter Download PDF

Info

Publication number
JP2015010032A
JP2015010032A JP2013147007A JP2013147007A JP2015010032A JP 2015010032 A JP2015010032 A JP 2015010032A JP 2013147007 A JP2013147007 A JP 2013147007A JP 2013147007 A JP2013147007 A JP 2013147007A JP 2015010032 A JP2015010032 A JP 2015010032A
Authority
JP
Japan
Prior art keywords
acid
titanium
recovery
separation
complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147007A
Other languages
Japanese (ja)
Inventor
松浪 豊和
Toyokazu Matsunami
豊和 松浪
大西 彬聰
Akitoshi Oonishi
彬聰 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquatech Ltd
Original Assignee
Aquatech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquatech Ltd filed Critical Aquatech Ltd
Priority to JP2013147007A priority Critical patent/JP2015010032A/en
Publication of JP2015010032A publication Critical patent/JP2015010032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for improving separability of a metal salt and an acid, and increasing a rate of recovery thereof while realizing stable control in view of the problem that, while conventional separation and recovery of a metal salt and an acid employed a chromatographic separation method by means of an acid retardation method with a prerequisite that, in this method, a fluoride of titanium is eluted first followed by elution of an acid, an application of the acid retardation method has been difficult when a titanium plate is etched with fluoronitric acid because, in this case, not a salt of TiFbut a complex of [TiF]is formed, which is adsorbed by a conventional ion exchange resin.SOLUTION: Provided is a method for recovering an acid and titanium, comprising: recovering an acid by adsorbing a titanium fluoro complex in fluoronitric acid by a strong anion exchange resin; and subsequently flowing water as an eluent whereby, with decrease in acid concentration, the titanium fluoro complex is converted to a fluoro-aquo complex which is eluted from the anion exchange resin. Switching of a valve is performed automatically by measuring an acid concentration by an EC meter.

Description

本発明は、チタン含有弗硝酸の酸濃度を電気伝導率計(EC計)で検知し、弗硝酸とチタンを分離回収に関する分野  The present invention relates to the field of separation and recovery of hydrofluoric acid and titanium by detecting the acid concentration of titanium-containing hydrofluoric acid with an electric conductivity meter (EC meter).

金属の弗硝酸エッチング液からの金属塩と遊離酸の分離回収、酸回収方法として拡散透析膜、電気透析、圧力透析、強アニオン交換樹脂によるクロマト的分離のアシッドリターデーション法があり、ランニングコスト面から近年はアシッドリターデーション法が主流となってきている。
現在行われている金属塩と酸回収のアシッドリターデーション法によるクロマト的分離にはRf値(移動率)を測定し、SV(L/r−L 樹脂量に対する通液量比)で通液時間による分離方法が行われている。
Separation and recovery of metal salt and free acid from metal hydrofluoric acid etching solution, acid recovery methods include diffusion dialysis membrane, electrodialysis, pressure dialysis, and acid retardation method of chromatographic separation with strong anion exchange resin. In recent years, the acid retardation method has become the mainstream.
For the chromatographic separation of acid salt recovery of metal salts and acids currently being carried out, the Rf value (transfer rate) is measured, and the flow time is measured by SV (liquid flow ratio to L / r-L resin volume). Separation method is performed.

特願2006−528972Japanese Patent Application No. 2006-528972

従来の金属と酸回収方法であるアシッドリターデーション法によるクロマト的分離はRf値(移動率)を測定し、SV(L/r−L 樹脂に対する通液量比)を用いた通液時間による分離方法が行われていた。
この方法では「チタンのフッ化物が先に溶離されて、次に酸が遅れて溶離されてくる」ということが前提であった。しかし、チタン板を弗硝酸でエッチングした場合TiFという塩ではなく、[TiF2−という錯体を作り、アシッドリターデーション法の適応は困難であった。
Chromatographic separation by the acid retardation method, which is a conventional metal and acid recovery method, measures the Rf value (transfer rate) and separates it by the flow time using SV (liquid flow rate ratio to L / r-L resin). The way was done.
This method is based on the premise that "fluoride of titanium is eluted first, and then acid is eluted later". However, when a titanium plate is etched with hydrofluoric acid, a complex of [TiF 6 ] 2− is formed instead of a salt of TiF 4 , and it is difficult to apply the acid retardation method.

特願2006−528972にあるようにインジウムのクロロ錯体の酸溶液を強アニオン交換樹脂に通した後、出口側に電気伝導率計を設けて、酸濃度を測りながら酸溶液を通液し、その後、展開液(水)を通水する。先に酸が回収され、樹脂内の酸濃度が通水によって低下するとクロロ錯体がクロロアコ錯体となる。
弗硝酸中のチタンも同様にアニオンであるチタンフルオロ錯体として樹脂に吸着され最初は出てこない。主に酸のみが排出してくる。酸を回収した後、水を展開水として流すと酸濃度の低下に伴い、チタンのフルオロ錯体がフルオロアコ錯体となって強アニオン交換樹脂から溶離してくる。 図5にそのメカニズムを示す。EC計で自動的にバルブの切り替えを行い、ECによる酸濃度の測定によって酸の分離とチタンの分離回収を行い、分離能力と回収率を向上させる。
After passing the acid solution of the chloro complex of indium through the strong anion exchange resin as described in Japanese Patent Application No. 2006-528972, an electric conductivity meter is provided on the outlet side, and the acid solution is passed while measuring the acid concentration. Pass the developing solution (water) through. When the acid is first recovered and the acid concentration in the resin is lowered by passing water, the chloro complex becomes a chloroaco complex.
Similarly, titanium in hydrofluoric acid is adsorbed on the resin as a titanium fluoro complex which is an anion and does not come out at first. Only acid is mainly discharged. After the acid is recovered, when water is flowed as developing water, the titanium fluorocomplex becomes a fluoroaquo complex and elutes from the strong anion exchange resin as the acid concentration decreases. FIG. 5 shows the mechanism. The valve is automatically switched by an EC meter, and acid separation and titanium separation / recovery are performed by measuring the acid concentration by EC to improve separation ability and recovery rate.

図1に示す酸回収フローシートより今回開発した電気伝導率計を用いた酸回収及びチタン回収装置では、廃酸はT−1酸タンクよりMV1電動バルブを開とし、P−1(AQ用ポンプ)で配管▲1▼を通り、T−6マイクロフィルターで浮遊物質(SS)を取り除いた後、T−5AQ樹脂塔を通して液の酸濃度を、電気伝導率(EC)を測定しながらECの値が2〜6S/mまで、MV3電動バルブを開として配管▲4▼を通ってT−3金属溶液タンクに送られる。  In the acid recovery and titanium recovery device using the electric conductivity meter developed this time from the acid recovery flow sheet shown in FIG. 1, the waste acid is opened from the T-1 acid tank by opening the MV1 electric valve, and P-1 (AQ pump ) Through pipe (1), remove suspended solids (SS) with a T-6 microfilter, and then measure the acid concentration of the liquid through the T-5AQ resin tower and the EC value while measuring the electrical conductivity (EC). Is sent to the T-3 metal solution tank through the pipe (4) with the MV3 electric valve being opened up to 2-6 S / m.

酸が出始めて電気伝導率(EC)の値が2〜6S/mになるとMV3電動バルブを閉、MV4電動バルブを開として、回収酸は配管▲5▼を通ってT−4回収酸タンクに送られる。次にEC15〜20S/mとなると、MV1電動バルブは閉、MV2電動バルブを開とする。T−2水タンクより展開液である水が配管▲2▼でT−6マイクロフィルターを経由した後、T−5AQ樹脂塔に通り、MV4電動バルブが開となった配管▲5▼でT−4回収酸タンクに送液される。通液された液は回収酸である。  When the acid begins to come out and the electrical conductivity (EC) value is 2 to 6 S / m, the MV3 electric valve is closed and the MV4 electric valve is opened, and the recovered acid passes through the pipe (5) to the T-4 recovered acid tank. Sent. Next, when EC15 to 20 S / m, the MV1 electric valve is closed and the MV2 electric valve is opened. Water from the T-2 water tank, which is the developing solution, passes through the T-6 microfilter in the pipe (2) and then passes through the T-5AQ resin tower, where the MV4 electric valve is opened. 4 Liquid is sent to the recovered acid tank. The liquid passed through is recovered acid.

電気伝導率(EC)が下降しEC10〜15S/mになると、MV2電動バルブを開、MV3電動バルブを開、MV4電動バルブを閉とし、T−2水タンクより展開液である水が配管▲2▼、T−6マイクロフィルター、T−5AQ樹脂塔を経由し、配管▲5▼を通して金属溶液としてT−3金属溶液タンクに送られる。  When the electrical conductivity (EC) drops and reaches EC10-15S / m, the MV2 electric valve is opened, the MV3 electric valve is opened, the MV4 electric valve is closed, and the water as the developing liquid is piped from the T-2 water tank. 2) Via a T-6 microfilter and a T-5AQ resin tower, and sent to a T-3 metal solution tank as a metal solution through a pipe (5).

金属の回収が進行するにつれに電気伝導率(EC)は低下する。電気伝導率(EC)が1〜5S/mになると、MV1電動バルブ開、MV2電動バルブ閉、MV3電動バルブ開、MV4電動バルブ閉とし1サイクルの酸回収プロセスを終了する。再度、同じ工程が行われる。T−1酸タンクより廃酸がT−5AQ樹脂塔に送液され回収プロセスを開始する。このプロセスを電気伝導率計により連続的に制御し金属溶液と酸の分離回収を行う。  As metal recovery proceeds, the electrical conductivity (EC) decreases. When the electrical conductivity (EC) reaches 1 to 5 S / m, the MV1 electric valve is opened, the MV2 electric valve is closed, the MV3 electric valve is opened, and the MV4 electric valve is closed to complete one cycle of the acid recovery process. The same process is performed again. Waste acid is sent from the T-1 acid tank to the T-5AQ resin tower and the recovery process is started. This process is continuously controlled by an electric conductivity meter to separate and recover the metal solution and the acid.

これまで強アニオン交換樹脂を用いたアシッドリターデーション法による金属塩と酸の分離回収が行われてきた。しかし、塩酸や弗酸でクロロ錯体やフルオロ錯体を作るものではこの方法の適応は困難であり、先に酸が回収され、その後酸濃度の低下に伴いクロロアコ錯体やフルオロアコ錯体となった金属が溶離してくる。この原理を用いて、酸濃度の低下をEC計で検知しながら、金属と回収酸の切り替えを行っているために、金属塩と酸の分離能、回収率を向上させ、安定した制御が実現し汎用性が高まった。  Until now, separation and recovery of metal salts and acids have been performed by the acid retardation method using a strong anion exchange resin. However, it is difficult to apply this method to the production of chloro complexes or fluoro complexes with hydrochloric acid or hydrofluoric acid. The acid is first recovered, and then the metal that has become chloro aco complex or fluoro aco complex as the acid concentration decreases is eluted. Come on. Using this principle, the metal and recovered acid are switched while detecting the decrease in acid concentration with an EC meter, so the separation and recovery of the metal salt and acid are improved and stable control is realized. And versatility has increased.

酸回収フローシートAcid recovery flow sheet 電気伝導率(EC)と遊離酸のクロマトグラフElectrical conductivity (EC) and free acid chromatograph チタンと遊離酸のクロマトグラフTitanium and free acid chromatograph 酸の回収率、金属の除去率Acid recovery rate, metal removal rate フルオロチタン錯体とフルオロアコチタン錯体の形態Forms of fluorotitanium complex and fluoroacotitanium complex

チタンの弗硝酸溶液を用いて強アニオン交換樹脂を使用しチタンのフルオロ錯体と酸の回収の処理を行った。処理方法としてはクロマトカラムに強アニオン交換樹脂75mLを充填し、LV(線速度m/Hr)=5で弗硝酸を75mL(SV=1 L/R−L)流した後、展開水として蒸留水150mL(SV=2 L/R−L)を通液した。
通液された液は5mLずつ分画し、その時の電気伝導率を測定し、分画されたサンプルは、弗酸根、硝酸根、遊離酸、チタンの分析を行った。
Using a strong hydrofluoric acid solution of titanium, a strong anion exchange resin was used to recover the titanium fluorocomplex and acid. As a treatment method, a chromatographic column is filled with 75 mL of strong anion exchange resin, 75 mL of hydrofluoric acid (SV = 1 L / R-L) is flown at LV (linear velocity m / Hr) = 5, and then distilled water is used as developing water. 150 mL (SV = 2 L / RL) was passed through.
The flowed liquid was fractionated by 5 mL each, and the electrical conductivity at that time was measured. The fractionated samples were analyzed for hydrofluoric acid radicals, nitrate radicals, free acids, and titanium.

図2は電気伝導率(EC)の変化と遊離酸のクロマトグラフである。図2よりECの変化と遊離酸濃度の変化は同じクロマトグラフを描き、ECで遊離酸濃度が推定されることが判明した。  FIG. 2 is a chromatograph of changes in electrical conductivity (EC) and free acid. FIG. 2 shows that the change in EC and the change in free acid concentration draw the same chromatograph, and the free acid concentration is estimated by EC.

図3はチタン濃度と遊離酸濃度変化である。図3よりチタンも遊離酸もクロマト的に分離されてピークを持つ。そして弗酸のフルオロ錯体となっていることが先に遊離酸が分離されて、チタンが遅れて分離されることにより、チタンと遊離酸は分離された。  FIG. 3 shows changes in titanium concentration and free acid concentration. From FIG. 3, both titanium and free acid are chromatographically separated and have peaks. The fact that the fluoro complex of hydrofluoric acid was formed first separated the free acid and separated titanium with a delay, so that titanium and the free acid were separated.

電気伝導率(EC)の値で金属塩溶液と回収酸を分けた場合の各種金属の除去率、硝酸回収率、弗酸回収率を図4に示す。図4より硝酸の回収率は71.4%、弗酸の回収率は34.0%、遊離酸の回収率は87.0%であった。  FIG. 4 shows the removal rate of various metals, the recovery rate of nitric acid, and the recovery rate of hydrofluoric acid when the metal salt solution and the recovered acid are separated by the value of electrical conductivity (EC). As shown in FIG. 4, the nitric acid recovery rate was 71.4%, the hydrofluoric acid recovery rate was 34.0%, and the free acid recovery rate was 87.0%.

Claims (3)

チタンを含む弗硝酸液を強アニオン交換樹脂に通し、遊離酸を回収する場合において、チタンはフルオロ錯体として樹脂に吸着させ水を展開液として樹脂に通すことにより、チタンフルオロ錯体をチタンフルオロアコ錯体とし、樹脂から脱離させ、チタンを回収することを特徴とする分離回収方法。  In the case where a hydrofluoric acid solution containing titanium is passed through a strong anion exchange resin and free acid is recovered, titanium is adsorbed to the resin as a fluoro complex, and water is passed through the resin as a developing solution. And separating from the resin to recover titanium. 酸溶液の通液と展開水の切り替えを電気伝導率(EC)で行うことを特徴とする前記請求項1記載の分離回収方法。  2. The separation and recovery method according to claim 1, wherein the flow of the acid solution and the switching of the developing water are performed by electric conductivity (EC). 回収酸と金属溶液の切り替えを電気伝導率(EC)で行うことを特徴とする前記請求項1記載の分離回収方法。  2. The separation and recovery method according to claim 1, wherein the recovered acid and the metal solution are switched by electrical conductivity (EC).
JP2013147007A 2013-06-26 2013-06-26 Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter Pending JP2015010032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013147007A JP2015010032A (en) 2013-06-26 2013-06-26 Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147007A JP2015010032A (en) 2013-06-26 2013-06-26 Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter

Publications (1)

Publication Number Publication Date
JP2015010032A true JP2015010032A (en) 2015-01-19

Family

ID=52303503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147007A Pending JP2015010032A (en) 2013-06-26 2013-06-26 Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter

Country Status (1)

Country Link
JP (1) JP2015010032A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040865A (en) * 2018-01-17 2019-07-23 宁波春秋环保工程有限公司 A kind of pickling waste waters processing method and its nitrate treatment device rich in nitrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110040865A (en) * 2018-01-17 2019-07-23 宁波春秋环保工程有限公司 A kind of pickling waste waters processing method and its nitrate treatment device rich in nitrate

Similar Documents

Publication Publication Date Title
KR102168377B1 (en) Methodology for increasing the capacity of purification processes
JP4968345B2 (en) Suppressor using micro ion exchange tube and ion chromatograph using it
JP4856077B2 (en) Sample stream parking and sample suppression
JP2008513790A5 (en)
US9914651B2 (en) Current efficient electrolytic device and method
JP2011232351A (en) Capillaceous ion chromatography
JP5666196B2 (en) Copper sulfate recovery method and copper sulfate recovery device
JP5717997B2 (en) Method for producing aqueous tetraalkylammonium salt solution
JP2006514279A5 (en)
JP2015010032A (en) Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter
WO2020013070A1 (en) Acidic liquid regeneration device and regeneration method
Virolainen et al. Continuous ion exchange for hydrometallurgy: Purification of Ag (I)–NaCl from divalent metals with aminomethylphosphonic resin using counter-current and cross-current operation
JP2016095307A5 (en)
CN103105445A (en) Sodium cyclamate detection method
KR20160057329A (en) Ion exchange based volatile component removal device for ion chromatography
Miesiac Removal of zinc (II) and iron (II) from spent hydrochloric acid by means of anionic resins
JP2012016673A (en) Device and method of treating iodine/boron-containing solution
JP2009236739A (en) Electrical conductivity detection device
JP2014121695A (en) Acid recovery apparatus using electrical conductivity meter
JP6433377B2 (en) Heavy metal recovery method and recovery device
JP5408249B2 (en) Anion measurement method
CN107665746B (en) Device for adsorbing and separating uranium in radioactive wastewater by using graphene oxide dispersion liquid
JP2013184076A (en) Regeneration method of acid for regeneration of ion exchange resin, ion exchange resin regeneration device, and copper etching liquid regeneration apparatus using the same
JP2003094052A (en) Method for adsorbing and recovering emulsifier containing fluorine
CN102516340A (en) Method for separating and purifying hydroxycobalamin by using D150 macroporous resin