JP2015010032A - Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter - Google Patents
Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter Download PDFInfo
- Publication number
- JP2015010032A JP2015010032A JP2013147007A JP2013147007A JP2015010032A JP 2015010032 A JP2015010032 A JP 2015010032A JP 2013147007 A JP2013147007 A JP 2013147007A JP 2013147007 A JP2013147007 A JP 2013147007A JP 2015010032 A JP2015010032 A JP 2015010032A
- Authority
- JP
- Japan
- Prior art keywords
- acid
- titanium
- recovery
- separation
- complex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treatment Of Water By Ion Exchange (AREA)
Abstract
Description
本発明は、チタン含有弗硝酸の酸濃度を電気伝導率計(EC計)で検知し、弗硝酸とチタンを分離回収に関する分野 The present invention relates to the field of separation and recovery of hydrofluoric acid and titanium by detecting the acid concentration of titanium-containing hydrofluoric acid with an electric conductivity meter (EC meter).
金属の弗硝酸エッチング液からの金属塩と遊離酸の分離回収、酸回収方法として拡散透析膜、電気透析、圧力透析、強アニオン交換樹脂によるクロマト的分離のアシッドリターデーション法があり、ランニングコスト面から近年はアシッドリターデーション法が主流となってきている。
現在行われている金属塩と酸回収のアシッドリターデーション法によるクロマト的分離にはRf値(移動率)を測定し、SV(L/r−L 樹脂量に対する通液量比)で通液時間による分離方法が行われている。Separation and recovery of metal salt and free acid from metal hydrofluoric acid etching solution, acid recovery methods include diffusion dialysis membrane, electrodialysis, pressure dialysis, and acid retardation method of chromatographic separation with strong anion exchange resin. In recent years, the acid retardation method has become the mainstream.
For the chromatographic separation of acid salt recovery of metal salts and acids currently being carried out, the Rf value (transfer rate) is measured, and the flow time is measured by SV (liquid flow ratio to L / r-L resin volume). Separation method is performed.
従来の金属と酸回収方法であるアシッドリターデーション法によるクロマト的分離はRf値(移動率)を測定し、SV(L/r−L 樹脂に対する通液量比)を用いた通液時間による分離方法が行われていた。
この方法では「チタンのフッ化物が先に溶離されて、次に酸が遅れて溶離されてくる」ということが前提であった。しかし、チタン板を弗硝酸でエッチングした場合TiF4という塩ではなく、[TiF6]2−という錯体を作り、アシッドリターデーション法の適応は困難であった。Chromatographic separation by the acid retardation method, which is a conventional metal and acid recovery method, measures the Rf value (transfer rate) and separates it by the flow time using SV (liquid flow rate ratio to L / r-L resin). The way was done.
This method is based on the premise that "fluoride of titanium is eluted first, and then acid is eluted later". However, when a titanium plate is etched with hydrofluoric acid, a complex of [TiF 6 ] 2− is formed instead of a salt of TiF 4 , and it is difficult to apply the acid retardation method.
特願2006−528972にあるようにインジウムのクロロ錯体の酸溶液を強アニオン交換樹脂に通した後、出口側に電気伝導率計を設けて、酸濃度を測りながら酸溶液を通液し、その後、展開液(水)を通水する。先に酸が回収され、樹脂内の酸濃度が通水によって低下するとクロロ錯体がクロロアコ錯体となる。
弗硝酸中のチタンも同様にアニオンであるチタンフルオロ錯体として樹脂に吸着され最初は出てこない。主に酸のみが排出してくる。酸を回収した後、水を展開水として流すと酸濃度の低下に伴い、チタンのフルオロ錯体がフルオロアコ錯体となって強アニオン交換樹脂から溶離してくる。 図5にそのメカニズムを示す。EC計で自動的にバルブの切り替えを行い、ECによる酸濃度の測定によって酸の分離とチタンの分離回収を行い、分離能力と回収率を向上させる。After passing the acid solution of the chloro complex of indium through the strong anion exchange resin as described in Japanese Patent Application No. 2006-528972, an electric conductivity meter is provided on the outlet side, and the acid solution is passed while measuring the acid concentration. Pass the developing solution (water) through. When the acid is first recovered and the acid concentration in the resin is lowered by passing water, the chloro complex becomes a chloroaco complex.
Similarly, titanium in hydrofluoric acid is adsorbed on the resin as a titanium fluoro complex which is an anion and does not come out at first. Only acid is mainly discharged. After the acid is recovered, when water is flowed as developing water, the titanium fluorocomplex becomes a fluoroaquo complex and elutes from the strong anion exchange resin as the acid concentration decreases. FIG. 5 shows the mechanism. The valve is automatically switched by an EC meter, and acid separation and titanium separation / recovery are performed by measuring the acid concentration by EC to improve separation ability and recovery rate.
図1に示す酸回収フローシートより今回開発した電気伝導率計を用いた酸回収及びチタン回収装置では、廃酸はT−1酸タンクよりMV1電動バルブを開とし、P−1(AQ用ポンプ)で配管▲1▼を通り、T−6マイクロフィルターで浮遊物質(SS)を取り除いた後、T−5AQ樹脂塔を通して液の酸濃度を、電気伝導率(EC)を測定しながらECの値が2〜6S/mまで、MV3電動バルブを開として配管▲4▼を通ってT−3金属溶液タンクに送られる。 In the acid recovery and titanium recovery device using the electric conductivity meter developed this time from the acid recovery flow sheet shown in FIG. 1, the waste acid is opened from the T-1 acid tank by opening the MV1 electric valve, and P-1 (AQ pump ) Through pipe (1), remove suspended solids (SS) with a T-6 microfilter, and then measure the acid concentration of the liquid through the T-5AQ resin tower and the EC value while measuring the electrical conductivity (EC). Is sent to the T-3 metal solution tank through the pipe (4) with the MV3 electric valve being opened up to 2-6 S / m.
酸が出始めて電気伝導率(EC)の値が2〜6S/mになるとMV3電動バルブを閉、MV4電動バルブを開として、回収酸は配管▲5▼を通ってT−4回収酸タンクに送られる。次にEC15〜20S/mとなると、MV1電動バルブは閉、MV2電動バルブを開とする。T−2水タンクより展開液である水が配管▲2▼でT−6マイクロフィルターを経由した後、T−5AQ樹脂塔に通り、MV4電動バルブが開となった配管▲5▼でT−4回収酸タンクに送液される。通液された液は回収酸である。 When the acid begins to come out and the electrical conductivity (EC) value is 2 to 6 S / m, the MV3 electric valve is closed and the MV4 electric valve is opened, and the recovered acid passes through the pipe (5) to the T-4 recovered acid tank. Sent. Next, when EC15 to 20 S / m, the MV1 electric valve is closed and the MV2 electric valve is opened. Water from the T-2 water tank, which is the developing solution, passes through the T-6 microfilter in the pipe (2) and then passes through the T-5AQ resin tower, where the MV4 electric valve is opened. 4 Liquid is sent to the recovered acid tank. The liquid passed through is recovered acid.
電気伝導率(EC)が下降しEC10〜15S/mになると、MV2電動バルブを開、MV3電動バルブを開、MV4電動バルブを閉とし、T−2水タンクより展開液である水が配管▲2▼、T−6マイクロフィルター、T−5AQ樹脂塔を経由し、配管▲5▼を通して金属溶液としてT−3金属溶液タンクに送られる。 When the electrical conductivity (EC) drops and reaches EC10-15S / m, the MV2 electric valve is opened, the MV3 electric valve is opened, the MV4 electric valve is closed, and the water as the developing liquid is piped from the T-2 water tank. 2) Via a T-6 microfilter and a T-5AQ resin tower, and sent to a T-3 metal solution tank as a metal solution through a pipe (5).
金属の回収が進行するにつれに電気伝導率(EC)は低下する。電気伝導率(EC)が1〜5S/mになると、MV1電動バルブ開、MV2電動バルブ閉、MV3電動バルブ開、MV4電動バルブ閉とし1サイクルの酸回収プロセスを終了する。再度、同じ工程が行われる。T−1酸タンクより廃酸がT−5AQ樹脂塔に送液され回収プロセスを開始する。このプロセスを電気伝導率計により連続的に制御し金属溶液と酸の分離回収を行う。 As metal recovery proceeds, the electrical conductivity (EC) decreases. When the electrical conductivity (EC) reaches 1 to 5 S / m, the MV1 electric valve is opened, the MV2 electric valve is closed, the MV3 electric valve is opened, and the MV4 electric valve is closed to complete one cycle of the acid recovery process. The same process is performed again. Waste acid is sent from the T-1 acid tank to the T-5AQ resin tower and the recovery process is started. This process is continuously controlled by an electric conductivity meter to separate and recover the metal solution and the acid.
これまで強アニオン交換樹脂を用いたアシッドリターデーション法による金属塩と酸の分離回収が行われてきた。しかし、塩酸や弗酸でクロロ錯体やフルオロ錯体を作るものではこの方法の適応は困難であり、先に酸が回収され、その後酸濃度の低下に伴いクロロアコ錯体やフルオロアコ錯体となった金属が溶離してくる。この原理を用いて、酸濃度の低下をEC計で検知しながら、金属と回収酸の切り替えを行っているために、金属塩と酸の分離能、回収率を向上させ、安定した制御が実現し汎用性が高まった。 Until now, separation and recovery of metal salts and acids have been performed by the acid retardation method using a strong anion exchange resin. However, it is difficult to apply this method to the production of chloro complexes or fluoro complexes with hydrochloric acid or hydrofluoric acid. The acid is first recovered, and then the metal that has become chloro aco complex or fluoro aco complex as the acid concentration decreases is eluted. Come on. Using this principle, the metal and recovered acid are switched while detecting the decrease in acid concentration with an EC meter, so the separation and recovery of the metal salt and acid are improved and stable control is realized. And versatility has increased.
チタンの弗硝酸溶液を用いて強アニオン交換樹脂を使用しチタンのフルオロ錯体と酸の回収の処理を行った。処理方法としてはクロマトカラムに強アニオン交換樹脂75mLを充填し、LV(線速度m/Hr)=5で弗硝酸を75mL(SV=1 L/R−L)流した後、展開水として蒸留水150mL(SV=2 L/R−L)を通液した。
通液された液は5mLずつ分画し、その時の電気伝導率を測定し、分画されたサンプルは、弗酸根、硝酸根、遊離酸、チタンの分析を行った。Using a strong hydrofluoric acid solution of titanium, a strong anion exchange resin was used to recover the titanium fluorocomplex and acid. As a treatment method, a chromatographic column is filled with 75 mL of strong anion exchange resin, 75 mL of hydrofluoric acid (SV = 1 L / R-L) is flown at LV (linear velocity m / Hr) = 5, and then distilled water is used as developing water. 150 mL (SV = 2 L / RL) was passed through.
The flowed liquid was fractionated by 5 mL each, and the electrical conductivity at that time was measured. The fractionated samples were analyzed for hydrofluoric acid radicals, nitrate radicals, free acids, and titanium.
図2は電気伝導率(EC)の変化と遊離酸のクロマトグラフである。図2よりECの変化と遊離酸濃度の変化は同じクロマトグラフを描き、ECで遊離酸濃度が推定されることが判明した。 FIG. 2 is a chromatograph of changes in electrical conductivity (EC) and free acid. FIG. 2 shows that the change in EC and the change in free acid concentration draw the same chromatograph, and the free acid concentration is estimated by EC.
図3はチタン濃度と遊離酸濃度変化である。図3よりチタンも遊離酸もクロマト的に分離されてピークを持つ。そして弗酸のフルオロ錯体となっていることが先に遊離酸が分離されて、チタンが遅れて分離されることにより、チタンと遊離酸は分離された。 FIG. 3 shows changes in titanium concentration and free acid concentration. From FIG. 3, both titanium and free acid are chromatographically separated and have peaks. The fact that the fluoro complex of hydrofluoric acid was formed first separated the free acid and separated titanium with a delay, so that titanium and the free acid were separated.
電気伝導率(EC)の値で金属塩溶液と回収酸を分けた場合の各種金属の除去率、硝酸回収率、弗酸回収率を図4に示す。図4より硝酸の回収率は71.4%、弗酸の回収率は34.0%、遊離酸の回収率は87.0%であった。 FIG. 4 shows the removal rate of various metals, the recovery rate of nitric acid, and the recovery rate of hydrofluoric acid when the metal salt solution and the recovered acid are separated by the value of electrical conductivity (EC). As shown in FIG. 4, the nitric acid recovery rate was 71.4%, the hydrofluoric acid recovery rate was 34.0%, and the free acid recovery rate was 87.0%.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013147007A JP2015010032A (en) | 2013-06-26 | 2013-06-26 | Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013147007A JP2015010032A (en) | 2013-06-26 | 2013-06-26 | Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015010032A true JP2015010032A (en) | 2015-01-19 |
Family
ID=52303503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013147007A Pending JP2015010032A (en) | 2013-06-26 | 2013-06-26 | Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015010032A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110040865A (en) * | 2018-01-17 | 2019-07-23 | 宁波春秋环保工程有限公司 | A kind of pickling waste waters processing method and its nitrate treatment device rich in nitrate |
-
2013
- 2013-06-26 JP JP2013147007A patent/JP2015010032A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110040865A (en) * | 2018-01-17 | 2019-07-23 | 宁波春秋环保工程有限公司 | A kind of pickling waste waters processing method and its nitrate treatment device rich in nitrate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102168377B1 (en) | Methodology for increasing the capacity of purification processes | |
JP4968345B2 (en) | Suppressor using micro ion exchange tube and ion chromatograph using it | |
JP4856077B2 (en) | Sample stream parking and sample suppression | |
JP2008513790A5 (en) | ||
US9914651B2 (en) | Current efficient electrolytic device and method | |
JP2011232351A (en) | Capillaceous ion chromatography | |
JP5666196B2 (en) | Copper sulfate recovery method and copper sulfate recovery device | |
JP5717997B2 (en) | Method for producing aqueous tetraalkylammonium salt solution | |
JP2006514279A5 (en) | ||
JP2015010032A (en) | Separation and recovery of fluoronitric acid and titanium using electrical conductivity meter | |
WO2020013070A1 (en) | Acidic liquid regeneration device and regeneration method | |
Virolainen et al. | Continuous ion exchange for hydrometallurgy: Purification of Ag (I)–NaCl from divalent metals with aminomethylphosphonic resin using counter-current and cross-current operation | |
JP2016095307A5 (en) | ||
CN103105445A (en) | Sodium cyclamate detection method | |
KR20160057329A (en) | Ion exchange based volatile component removal device for ion chromatography | |
Miesiac | Removal of zinc (II) and iron (II) from spent hydrochloric acid by means of anionic resins | |
JP2012016673A (en) | Device and method of treating iodine/boron-containing solution | |
JP2009236739A (en) | Electrical conductivity detection device | |
JP2014121695A (en) | Acid recovery apparatus using electrical conductivity meter | |
JP6433377B2 (en) | Heavy metal recovery method and recovery device | |
JP5408249B2 (en) | Anion measurement method | |
CN107665746B (en) | Device for adsorbing and separating uranium in radioactive wastewater by using graphene oxide dispersion liquid | |
JP2013184076A (en) | Regeneration method of acid for regeneration of ion exchange resin, ion exchange resin regeneration device, and copper etching liquid regeneration apparatus using the same | |
JP2003094052A (en) | Method for adsorbing and recovering emulsifier containing fluorine | |
CN102516340A (en) | Method for separating and purifying hydroxycobalamin by using D150 macroporous resin |