JP6433377B2 - Heavy metal recovery method and recovery device - Google Patents

Heavy metal recovery method and recovery device Download PDF

Info

Publication number
JP6433377B2
JP6433377B2 JP2015108735A JP2015108735A JP6433377B2 JP 6433377 B2 JP6433377 B2 JP 6433377B2 JP 2015108735 A JP2015108735 A JP 2015108735A JP 2015108735 A JP2015108735 A JP 2015108735A JP 6433377 B2 JP6433377 B2 JP 6433377B2
Authority
JP
Japan
Prior art keywords
exchange resin
ion exchange
nickel
heavy metal
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015108735A
Other languages
Japanese (ja)
Other versions
JP2016221438A (en
Inventor
中村 彰
彰 中村
治雄 横田
治雄 横田
大江 太郎
太郎 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2015108735A priority Critical patent/JP6433377B2/en
Publication of JP2016221438A publication Critical patent/JP2016221438A/en
Application granted granted Critical
Publication of JP6433377B2 publication Critical patent/JP6433377B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、重金属の回収方法及び回収装置の技術に関する。   The present invention relates to a heavy metal recovery method and recovery device technology.

近年、金属資源の枯渇または地金価格の高騰、有害金属による環境汚染の懸念から、リサイクルを前提とした様々な重金属分離精製技術が開発されている。例えば、特許文献1には、抽出剤を用いて重金属を有機溶媒相中に抽出する方法が開示されている。また、特許文献2には、重金属を水酸化物として沈殿させ、溶液中より分離する方法が開示されている。   In recent years, various heavy metal separation and purification technologies have been developed on the premise of recycling due to the depletion of metal resources, rising prices of bullion, and concerns about environmental pollution caused by harmful metals. For example, Patent Document 1 discloses a method for extracting heavy metals into an organic solvent phase using an extractant. Patent Document 2 discloses a method in which heavy metal is precipitated as a hydroxide and separated from the solution.

また、イオン交換樹脂による重金属回収方法が知られている。イオン交換樹脂を用いた重金属回収方法は、目的とする重金属をイオン交換樹脂に吸着させ、次いで硫酸、塩酸等の酸溶液により、イオン交換樹脂に吸着した重金属を溶離して回収する方法が一般的である。   A heavy metal recovery method using an ion exchange resin is also known. A heavy metal recovery method using an ion exchange resin is generally a method in which the target heavy metal is adsorbed on the ion exchange resin and then recovered by eluting the heavy metal adsorbed on the ion exchange resin with an acid solution such as sulfuric acid or hydrochloric acid. It is.

例えば、特許文献3では、ニッケルメッキ廃液の処理方法としてニッケルイオンとリン酸とを含むニッケルメッキ廃液をイオン交換樹脂と接触させた後、硫酸または塩酸により溶離し、得られた溶離液を拡散透析することにより、ニッケル塩と硫酸または塩酸とを回収する方法が開示されている。   For example, in Patent Document 3, a nickel plating waste solution containing nickel ions and phosphoric acid is brought into contact with an ion exchange resin as a method for treating a nickel plating waste solution, then eluted with sulfuric acid or hydrochloric acid, and the resulting eluate is subjected to diffusion dialysis. Thus, a method for recovering nickel salt and sulfuric acid or hydrochloric acid is disclosed.

また、例えば、特許文献4では、硫酸イオンを含有する銅/コバルトメッキ液の再生方法として、弱塩基性陰イオン交換樹脂を用いて硫酸イオンの除去する方法が開示されている。   For example, Patent Document 4 discloses a method for removing sulfate ions using a weakly basic anion exchange resin as a method for regenerating a copper / cobalt plating solution containing sulfate ions.

特開2004−307983号公報JP 2004-307983 A 特開2005−248308号公報JP 2005-248308 A 特許第3279403号公報Japanese Patent No. 3279403 特許第4446157号公報Japanese Patent No. 4446157

ところで、酸溶液により、イオン交換樹脂に吸着した重金属を回収する方法において、回収した溶離液をリサイクル目的で使用する場合、不純物の含有量が少なく、且つ高濃度で目的の重金属が含まれていること(すなわち高回収率であること)に加え、酸の除去または、中和工程が省けることから、回収した溶離液のpHが低すぎないことが求められる。   By the way, in the method of recovering heavy metals adsorbed on the ion exchange resin with an acid solution, when the recovered eluent is used for recycling purposes, the content of impurities is small and the target heavy metal is contained at a high concentration. (That is, a high recovery rate) In addition, since the removal of the acid or the neutralization step can be omitted, it is required that the pH of the recovered eluent is not too low.

そこで、本発明の目的は、pH低下を抑え、高濃度の重金属が含まれる溶離液を回収することが可能な重金属の回収方法及び回収装置を提供することである。   Accordingly, an object of the present invention is to provide a heavy metal recovery method and a recovery device capable of suppressing an elution solution containing a high concentration of heavy metal while suppressing a decrease in pH.

本発明の重金属の回収方法は、重金属を吸着したイオン交換樹脂が充填されている円筒状の充填塔に酸溶液を通液して、前記重金属を溶離回収する溶離回収工程を含み、前記充填塔に通液する前記酸溶液の通液速度は、線速度(LV)が0.3〜8m/hの範囲であり、空間速度(SV)が〜2h−1の範囲であり、前記イオン交換樹脂は、Na形弱酸性陽イオン交換樹脂であり、前記酸溶液は硫酸濃度10〜20wt%の硫酸であるThe heavy metal recovery method of the present invention includes an elution and recovery step of eluting and recovering the heavy metal by passing an acid solution through a cylindrical packed tower packed with an ion exchange resin that adsorbs the heavy metal. liquid permeation speed of the acid solution to be passed through the ranges linear velocity (LV) of 0.3~8m / h, Ri range der space velocity (SV) is 1 through 2h -1, the ions The exchange resin is a Na-type weakly acidic cation exchange resin, and the acid solution is sulfuric acid having a sulfuric acid concentration of 10 to 20 wt% .

また、前記重金属の回収方法において、前記溶離回収工程前に、イオン交換樹脂が充填された充填塔に重金属含有溶液を通液して、前記重金属含有溶液中の重金属を前記イオン交換樹脂に吸着させる吸着工程を含むことが好ましい。   Further, in the heavy metal recovery method, prior to the elution recovery step, a heavy metal-containing solution is passed through a packed tower packed with an ion-exchange resin to adsorb the heavy metal in the heavy metal-containing solution to the ion-exchange resin. It is preferable to include an adsorption step.

また、本発明の重金属の回収装置は、重金属を吸着したイオン交換樹脂が充填されている円筒状の充填塔と、前記充填塔に酸溶液を通液する通液手段と、を備え、前記充填塔に通液する前記酸溶液の通液速度は、線速度(LV)が0.3〜8m/hの範囲であり、空間速度(SV)が〜2h−1の範囲であり、前記イオン交換樹脂は、Na形弱酸性陽イオン交換樹脂であり、前記酸溶液は硫酸濃度10〜20wt%の硫酸であるThe heavy metal recovery device of the present invention comprises a cylindrical packed tower filled with an ion exchange resin that adsorbs heavy metal, and a fluid passing means for passing an acid solution through the packed tower, liquid permeation speed of the acid solution that passed through the column ranges linear velocity (LV) of 0.3~8m / h, Ri range der space velocity (SV) is 1 through 2h -1, wherein The ion exchange resin is a Na-type weakly acidic cation exchange resin, and the acid solution is sulfuric acid having a sulfuric acid concentration of 10 to 20 wt% .

本発明によれば、pH低下を抑え、高濃度の重金属が含まれる溶離液を回収することが可能な重金属の回収方法及び回収装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the recovery method and collection | recovery apparatus of a heavy metal which can suppress pH fall and can collect | recover the eluent containing a high concentration heavy metal can be provided.

本実施形態に係る重金属の回収装置の構成の一例を示す模式図である。It is a schematic diagram which shows an example of a structure of the collection | recovery apparatus of the heavy metal which concerns on this embodiment.

以下、本発明の実施の形態について説明する。なお、本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

図1は、本実施形態に係る重金属の回収装置の構成の一例を示す模式図である。図1に示す回収装置1は、貯留槽10、流入ライン12、原水供給ポンプ14、イオン交換樹脂充填塔16、酸貯留槽18、酸供給ライン20、酸供給ポンプ22、排出ライン24、pH計26、ニッケルイオン濃度計28、回収液排出ライン30、バルブ32,34,36,38,40を備えている。イオン交換樹脂充填塔16には、イオン交換樹脂が充填されている。   FIG. 1 is a schematic diagram illustrating an example of a configuration of a heavy metal recovery apparatus according to the present embodiment. 1 includes a storage tank 10, an inflow line 12, a raw water supply pump 14, an ion exchange resin packed tower 16, an acid storage tank 18, an acid supply line 20, an acid supply pump 22, a discharge line 24, and a pH meter. 26, a nickel ion concentration meter 28, a recovered liquid discharge line 30, and valves 32, 34, 36, 38, 40. The ion exchange resin packed tower 16 is filled with an ion exchange resin.

流入ライン12の一端は貯留槽10に接続され、他端はイオン交換樹脂充填塔16の一端に接続されている。流入ライン12には、原水供給ポンプ14及びバルブ32,36が設置されている。酸供給ライン20の一端は、酸貯留槽18に接続され、他端は流入ライン12に接続されている。酸供給ライン20には、酸供給ポンプ22、バルブ34が設置されている。排出ライン24はイオン交換樹脂充填塔16の他端に接続されている。排出ライン24には、pH計26、ニッケルイオン濃度計28、バルブ40が設置されている。回収液排出ライン30はニッケルイオン濃度計28とバルブ40との間の排出ライン24に接続されている。回収液排出ライン30にはバルブ38が設置されている。   One end of the inflow line 12 is connected to the storage tank 10, and the other end is connected to one end of the ion exchange resin packed tower 16. The raw water supply pump 14 and valves 32 and 36 are installed in the inflow line 12. One end of the acid supply line 20 is connected to the acid storage tank 18, and the other end is connected to the inflow line 12. The acid supply line 20 is provided with an acid supply pump 22 and a valve 34. The discharge line 24 is connected to the other end of the ion exchange resin packed tower 16. A pH meter 26, a nickel ion concentration meter 28, and a valve 40 are installed in the discharge line 24. The recovered liquid discharge line 30 is connected to the discharge line 24 between the nickel ion concentration meter 28 and the valve 40. A valve 38 is installed in the recovered liquid discharge line 30.

以下に、図1に示す回収装置1の動作について説明する。   Below, operation | movement of the collection | recovery apparatus 1 shown in FIG. 1 is demonstrated.

図1に示す回収装置1の運転は、ニッケル含有溶液をイオン交換樹脂充填塔16に通液し、ニッケル含有溶液中のニッケルをイオン交換樹脂に吸着させる吸着工程と、ニッケルを吸着したイオン交換樹脂が充填されているイオン交換樹脂充填塔16に、酸溶液を通液し、ニッケルを溶離回収する溶離回収工程を含む。以下、各工程について説明する。   The operation of the recovery apparatus 1 shown in FIG. 1 includes an adsorption step in which a nickel-containing solution is passed through an ion exchange resin packed tower 16 and the nickel in the nickel-containing solution is adsorbed on the ion exchange resin, and an ion exchange resin that has adsorbed nickel The ion exchange resin packed column 16 filled with is supplied with an acid solution, and an elution and recovery step of eluting and recovering nickel is included. Hereinafter, each step will be described.

<吸着工程>
原水供給ポンプ14を稼動させると共に、バルブ32,36,40を開く。これにより、貯留槽10内のニッケル含有溶液が流入ライン12からイオン交換樹脂充填塔16に供給され、イオン交換樹脂充填塔16内のイオン交換樹脂により、ニッケル含有溶液中のニッケルが吸着される。そして、ニッケルが除去された処理液がイオン交換樹脂充填塔16から排出ライン24へ排出される。排出ライン24を通る処理液は、例えば、排出ライン24に設けられるニッケルイオン濃度計28にてニッケルイオン濃度が測定され、pH計26にてpHが測定され、排出ライン24から系外に排出される。処理液中のニッケルイオン濃度が所定値以上となった段階で、原水供給ポンプ14を停止し、バルブ32,36,40を閉じて、吸着工程を終了する。
<Adsorption process>
While operating the raw water supply pump 14, the valves 32, 36, and 40 are opened. Thus, the nickel-containing solution in the storage tank 10 is supplied from the inflow line 12 to the ion exchange resin packed tower 16, and the nickel in the nickel-containing solution is adsorbed by the ion exchange resin in the ion exchange resin packed tower 16. Then, the treatment liquid from which nickel has been removed is discharged from the ion exchange resin packed tower 16 to the discharge line 24. The treatment liquid passing through the discharge line 24 is, for example, measured for nickel ion concentration by a nickel ion concentration meter 28 provided in the discharge line 24, measured for pH by a pH meter 26, and discharged from the discharge line 24 to the outside of the system. The When the nickel ion concentration in the treatment liquid reaches a predetermined value or more, the raw water supply pump 14 is stopped, the valves 32, 36, and 40 are closed, and the adsorption process is completed.

高回収率でニッケルを回収するためには、イオン交換樹脂の官能基がニッケルで飽和された状態となった段階で吸着工程を終了することが好ましい。ここで、イオン交換樹脂の官能基がニッケルで飽和されると、ニッケル含有溶液のニッケルは、イオン交換樹脂に吸着されることなく、ほとんどそのままイオン交換樹脂充填塔16を通過するため、イオン交換樹脂充填塔16から排出された処理液のニッケル濃度は、貯留槽10内のニッケル濃度と等しくなる。そこで、イオン交換樹脂充填塔16から排出される処理液のニッケル濃度が、貯留槽10内のニッケル濃度と等しくなったことをニッケルイオン濃度計28により確認した後、原水供給ポンプ14を停止し、バルブ32,36,40を閉じて、吸着工程を終了することが好ましい。   In order to recover nickel at a high recovery rate, it is preferable to end the adsorption step when the functional group of the ion exchange resin is saturated with nickel. Here, when the functional group of the ion exchange resin is saturated with nickel, the nickel in the nickel-containing solution passes through the ion exchange resin packed tower 16 almost as it is without being adsorbed by the ion exchange resin. The nickel concentration of the treatment liquid discharged from the packed tower 16 becomes equal to the nickel concentration in the storage tank 10. Therefore, after confirming by the nickel ion concentration meter 28 that the nickel concentration of the treatment liquid discharged from the ion exchange resin packed tower 16 is equal to the nickel concentration in the storage tank 10, the raw water supply pump 14 is stopped, It is preferable to close the valves 32, 36, and 40 to complete the adsorption process.

<溶離回収工程>
吸着工程終了後、酸供給ポンプ22を稼動させると共に、バルブ34,36,38を開く。これにより、酸貯留槽18内の酸溶液が酸供給ライン20及び流入ライン12を通ってイオン交換樹脂充填塔16に供給され、イオン交換樹脂に吸着されたニッケルが酸溶液とイオン交換される。そして、ニッケルを含む溶離液がイオン交換樹脂充填塔16から排出ライン24へ排出される。排出ライン24を通る溶離液は、例えば、排出ライン24に設けられるニッケルイオン濃度計28にてニッケルイオン濃度が測定され、pH計26にてpHが測定される。本実施形態では、溶離液中のニッケルイオン濃度やpHの値に基づいて、溶離液を回収液排出ライン30から回収液貯留槽(不図示)等に供給することにより回収するか、溶離液を回収液排出ライン30から系外に排出(廃棄)するかを選択することが望ましい。
<Elution recovery process>
After completion of the adsorption process, the acid supply pump 22 is operated and the valves 34, 36, and 38 are opened. Thereby, the acid solution in the acid storage tank 18 is supplied to the ion exchange resin packed tower 16 through the acid supply line 20 and the inflow line 12, and the nickel adsorbed on the ion exchange resin is ion-exchanged with the acid solution. Then, the eluent containing nickel is discharged from the ion exchange resin packed tower 16 to the discharge line 24. The eluent passing through the discharge line 24 has a nickel ion concentration measured by a nickel ion concentration meter 28 provided in the discharge line 24 and a pH measured by a pH meter 26, for example. In the present embodiment, based on the nickel ion concentration or pH value in the eluent, the eluent is recovered by supplying it from the recovery liquid discharge line 30 to a recovery liquid storage tank (not shown) or the like. It is desirable to select whether to discharge (discard) out of the system from the recovered liquid discharge line 30.

例えば、ニッケルイオン濃度計28により、排出ライン24を通る溶離液のニッケルイオン濃度をモニタリングし、溶離液中のニッケル濃度が所定値以上、好ましくは1000mg/l以上、より好ましくは2000mg/l以上となった段階で、溶離液の回収を開始することが望ましい。これにより、イオン交換樹脂充填塔16から排出される溶離液のうちニッケル濃度の高い溶離液を回収することができるため、ニッケルの回収率を上昇させることが可能となる。   For example, the nickel ion concentration meter 28 monitors the nickel ion concentration of the eluent passing through the discharge line 24, and the nickel concentration in the eluent is not less than a predetermined value, preferably not less than 1000 mg / l, more preferably not less than 2000 mg / l. At this stage, it is desirable to start collecting the eluent. As a result, the eluent having a high nickel concentration can be recovered from the eluent discharged from the ion-exchange resin packed tower 16, so that the nickel recovery rate can be increased.

また、例えば、pH計26により、排出ライン24を通る溶離液のpHをモニタリングし、溶離液のpHが所定範囲、好ましくは3〜3.5の範囲となった段階で、溶離液の回収を停止することが望ましい。溶離回収工程の終期は、イオン交換樹脂充填塔16から排出される溶離液に、イオン交換樹脂とイオン交換されない硫酸が多く含まれるため、急激なpHの低下が生じるが、上記のように溶離液のpHに基づいて溶離液の回収を停止することにより、回収した溶離液の過度の酸混入によるpHの低下を抑制することが可能となる。なお、溶離液のpHが3.5まで低下する前に溶離液の回収を停止すると、ニッケルの回収率が低下してしまう場合があり、溶離液のpHが3より低くなった段階で溶離液の回収を停止すると、回収された溶離液のpHが過度に低下してしまう場合がある。   Further, for example, the pH of the eluent passing through the discharge line 24 is monitored by the pH meter 26, and the eluent is recovered when the pH of the eluent reaches a predetermined range, preferably in the range of 3 to 3.5. It is desirable to stop. At the end of the elution recovery process, the eluent discharged from the ion exchange resin packed column 16 contains a large amount of sulfuric acid that is not ion-exchanged with the ion exchange resin. By stopping the recovery of the eluent based on the pH, it is possible to suppress a decrease in pH due to excessive acid contamination of the recovered eluent. If the recovery of the eluent is stopped before the pH of the eluent drops to 3.5, the nickel recovery rate may decrease, and the eluent is reduced when the pH of the eluent becomes lower than 3. If the recovery of is stopped, the pH of the recovered eluent may be excessively lowered.

イオン交換樹脂充填塔16に通液する酸溶液の通液速度は、酸溶液の線速度が0.3〜8m/hの範囲であり、酸溶液の空間速度が0.2〜2h−1の範囲である。ここで、本発明者らは、高濃度の重金属を含む溶離液を回収する目的(すなわち、重金属の回収率を上げる目的)で酸溶液の空間速度(SV)を上げると、溶離液のpHが低下してしまい、その一方で、回収する溶離液のpH低下を防ぐ目的で酸溶液の線速度(LV)を下げると、回収した溶離液中の重金属濃度が低下(すなわち、重金属の回収率が低下)してしまうという知見に基づいて鋭意検討した結果、前述のように、酸溶液の線速度を0.3〜8m/hの範囲とし、且つ酸溶液の空間速度を0.2〜2h−1の範囲とすることにより、pH低下を抑制し、高濃度の重金属を含む溶離液を回収すること(高回収率で重金属を回収すること)ができることを見出した。本明細書における回収率は、次式により定義され、一般的に、回収率80%以上を高回収率と言う。
回収率(%)=[(回収液量×回収液重金属濃度)/(溶離液量×溶離液重金属濃度)]×100(%)
回収液:イオン交換樹脂充填塔から排出される全溶離液のうち回収した溶離液
溶離液:イオン交換樹脂充填塔から排出される全溶離液
The acid solution passing through the ion-exchange resin packed tower 16 has a linear velocity of the acid solution in the range of 0.3 to 8 m / h, and a space velocity of the acid solution of 0.2 to 2 h −1 . It is a range. Here, when the space velocity (SV) of the acid solution is increased for the purpose of recovering an eluent containing a high concentration of heavy metals (that is, for the purpose of increasing the recovery rate of heavy metals), the present inventors set the pH of the eluent to be lower. On the other hand, if the linear velocity (LV) of the acid solution is lowered in order to prevent the pH of the recovered eluent from being lowered, the concentration of heavy metals in the recovered eluent decreases (that is, the recovery rate of heavy metals is reduced). As a result of intensive studies based on the knowledge that the acid solution linear velocity of the acid solution is in the range of 0.3 to 8 m / h and the space velocity of the acid solution is 0.2 to 2 h − as described above. It was found that by setting the ratio in the range of 1, the elution solution containing a high concentration of heavy metals can be recovered (recovering heavy metals at a high recovery rate) while suppressing pH drop. The recovery rate in this specification is defined by the following equation, and generally, a recovery rate of 80% or more is referred to as a high recovery rate.
Recovery rate (%) = [(recovered liquid amount × recovered liquid heavy metal concentration) / (eluent amount × eluent heavy metal concentration)] × 100 (%)
Recovery: Collected eluent out of all eluent discharged from the ion-exchange resin packed tower Eluent: All eluent discharged from the ion-exchange resin packed tower

酸溶液の線速度(LV)は、0.3〜8m/hの範囲であればよいが、0.3〜3m/hの範囲が好ましく、0.3〜2m/hの範囲がより好ましい。酸溶液の線速度(LV)が0.3m/h未満であると、イオン交換樹脂充填塔16内において、酸溶液の片流れが起こり、溶離液への酸溶液の混入が早まるため、ニッケルの回収率が低下してしまう。また、酸溶液の線速度(LV)が8m/hを超えると、イオン交換樹脂充填塔16内におけるイオン交換帯長さが長くなり、早期に酸溶液が充填塔から排出されるため、溶離液中のニッケル濃度の低下、酸濃度の上昇によるpHの低下が起こり、ニッケルの回収率が低下してしまう。   The linear velocity (LV) of the acid solution may be in the range of 0.3 to 8 m / h, preferably in the range of 0.3 to 3 m / h, and more preferably in the range of 0.3 to 2 m / h. When the linear velocity (LV) of the acid solution is less than 0.3 m / h, a single flow of the acid solution occurs in the ion exchange resin packed column 16 and the mixing of the acid solution into the eluent is accelerated. The rate will drop. Also, when the linear velocity (LV) of the acid solution exceeds 8 m / h, the ion exchange zone length in the ion exchange resin packed column 16 becomes long, and the acid solution is discharged from the packed column at an early stage. The nickel concentration in the medium is lowered and the pH is lowered due to the increase in the acid concentration, so that the nickel recovery rate is lowered.

酸溶液の空間速度(SV)は、0.2〜2h−1の範囲であればよいが、0.3〜1.5h−1の範囲が好ましく、0.5〜1h−1の範囲がより好ましい。酸溶液の空間速度(SV)が0.2h−1未満であると、溶離回収工程の時間が長くなることから、ニッケルの回収効率が著しく低下してしまう。また、酸溶液の空間速度(SV)が2h−1を超えると、イオン交換樹脂充填塔16内におけるイオン交換帯長さが長くなり、早期に酸溶液が充填塔から排出されるため、溶離液中のニッケル濃度の低下、酸濃度の上昇によるpHの低下が起こり、ニッケルの回収率が低下してしまう。 Space velocity acid solution (SV), which may be in the range of 0.2~2H -1, preferably in the range of 0.3~1.5H -1, more in the range of 0.5~1H -1 preferable. When the space velocity (SV) of the acid solution is less than 0.2 h −1 , the elution recovery process takes a long time, and thus the nickel recovery efficiency is significantly reduced. Further, when the space velocity (SV) of the acid solution exceeds 2h −1 , the ion exchange zone length in the ion exchange resin packed column 16 becomes long and the acid solution is discharged from the packed column at an early stage. The nickel concentration in the medium is lowered and the pH is lowered due to the increase in the acid concentration, so that the nickel recovery rate is lowered.

酸溶液の線速度は、酸溶液の流量(L/h)を、充填塔に充填されたイオン交換樹脂の断面積(m、充填塔の断面積に相当)で除することにより求められ、酸溶液の空間速度は、酸溶液の流量(L/h)を、充填塔に充填されたイオン交換樹脂の体積(m)で除することにより求められる。イオン交換樹脂の体積は使用したイオン交換樹脂をH形イオン交換樹脂に換算した体積である。 The linear velocity of the acid solution is obtained by dividing the flow rate (L / h) of the acid solution by the cross-sectional area of the ion exchange resin packed in the packed tower (m 2 , corresponding to the cross-sectional area of the packed tower), The space velocity of the acid solution is determined by dividing the flow rate (L / h) of the acid solution by the volume (m 3 ) of the ion exchange resin packed in the packed tower. The volume of the ion exchange resin is a volume obtained by converting the used ion exchange resin into an H-type ion exchange resin.

本実施形態の処理対象である重金属含有溶液は、ニッケル含有溶液に限定されるものではなく、重金属を含有する溶液であればよい。ここで、重金属とは、比重が4以上の金属をいい、例えば、鉄、水銀、銅、ニッケル、亜鉛、カドミウム、コバルト、マンガン、チタン等が挙げられる。   The heavy metal-containing solution to be processed in the present embodiment is not limited to the nickel-containing solution, and may be a solution containing heavy metal. Here, the heavy metal means a metal having a specific gravity of 4 or more, and examples thereof include iron, mercury, copper, nickel, zinc, cadmium, cobalt, manganese, and titanium.

イオン交換樹脂充填塔16に充填されるイオン交換樹脂は、目的とする重金属を吸着することができるイオン交換樹脂であれば特に制限されるものではないが、重金属の吸着性の点等から、イミノジ酢酸型のキレート樹脂または、弱酸性陽イオン交換樹脂が好ましく、カルボキシル基を有する弱酸性陽イオン交換樹脂がより好ましい。イミノジ酢酸型のキレート樹脂又は弱酸性陽イオン交換樹脂は、H形、Na形等特に制限されるものではないが、重金属の吸着効率を高める点、吸着工程における処理液のpH低下を防ぐために、イオン交換基をNa形に変換して使用することが望ましい。   The ion exchange resin packed in the ion exchange resin packed column 16 is not particularly limited as long as it is an ion exchange resin capable of adsorbing the target heavy metal. An acetic acid type chelate resin or a weakly acidic cation exchange resin is preferable, and a weakly acidic cation exchange resin having a carboxyl group is more preferable. The iminodiacetic acid-type chelate resin or weakly acidic cation exchange resin is not particularly limited to H form, Na form, etc., but in order to increase the adsorption efficiency of heavy metals, in order to prevent the pH of the treatment liquid in the adsorption process from decreasing, It is desirable to use ion exchange groups after converting them to Na form.

重金属を吸着可能なイオン交換樹脂は、イミノジ酢酸型のキレート樹脂または、弱酸性陽イオン交換樹脂の他に、例えばアミノリン酸型、ポリアミン型、ビスピコリルアミン型等のキレート樹脂または、強酸性陽イオン交換樹脂などが挙げられるが、これらの樹脂は、重金属(特にニッケルイオン)との親和性が強いため、酸溶液による溶離効率が低下する場合がある。   The ion exchange resin capable of adsorbing heavy metals is not only iminodiacetic acid type chelate resin or weak acid cation exchange resin, but amino acid phosphate type, polyamine type, bispicolylamine type chelate resin or strong acid cation, for example. Although exchange resins etc. are mentioned, since these resins have strong affinity with heavy metals (especially nickel ions), the elution efficiency by an acid solution may decrease.

イオン交換樹脂充填塔16内のイオン交換樹脂の体積(充填量)、イオン交換樹脂充填塔16内のイオン交換樹脂の断面積(イオン交換樹脂充填塔16の断面積)、及び酸溶液の流量は、酸溶液の通液速度が上記範囲を満たすようにそれぞれ設定されれば特に制限されるものではない。   The volume (packing amount) of the ion exchange resin in the ion exchange resin packed tower 16, the cross sectional area of the ion exchange resin in the ion exchange resin packed tower 16 (the cross sectional area of the ion exchange resin packed tower 16), and the flow rate of the acid solution are as follows. As long as the flow rate of the acid solution is set so as to satisfy the above range, there is no particular limitation.

イオン交換樹脂充填塔16に通液する酸溶液は、イオン交換樹脂から重金属を溶離できるものであれば特に制限されるものではないが、好ましくは1〜25重量%の範囲、より好ましくは10〜25重量%の範囲の濃度を有する硫酸または塩酸が用いられる。濃度が1重量%未満だと、重金属の溶離効率が低下する場合があり、25重量%より高いと、溶離液中の酸濃度の上昇によるpHの低下が起こり、ニッケルの回収率が低下する場合がある。   The acid solution passed through the ion exchange resin packed tower 16 is not particularly limited as long as it can elute heavy metals from the ion exchange resin, but is preferably in the range of 1 to 25% by weight, more preferably 10 to 10. Sulfuric acid or hydrochloric acid having a concentration in the range of 25% by weight is used. If the concentration is less than 1% by weight, the elution efficiency of heavy metals may be reduced. If the concentration is higher than 25% by weight, the pH will decrease due to an increase in the acid concentration in the eluent, and the nickel recovery rate will decrease. There is.

以下、実施例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in detail more concretely, this invention is not limited to a following example.

(実施例1)
図1に示す処理装置を用いて、以下の条件でニッケル含有溶液を処理した。
Example 1
The nickel-containing solution was processed under the following conditions using the processing apparatus shown in FIG.

(イオン交換樹脂)
Na形弱酸性陽イオン交換樹脂として、「アンバーライトIRC76」(ダウ・ケミカル社製、総交換容量3.0g当量/L−R(樹脂))を使用した。
(Ion exchange resin)
As the Na-type weakly acidic cation exchange resin, “Amberlite IRC76” (manufactured by Dow Chemical Co., Ltd., total exchange capacity 3.0 g equivalent / LR (resin)) was used.

(イオン交換樹脂充填塔)
内直径2.6cm、長さ200cmの樹脂製カラムに、上記Na形弱酸性陽イオン交換樹脂941mL(H形換算で614mL)を充填し、これをイオン交換樹脂充填塔とした。
(Ion exchange resin packed tower)
A resin column having an inner diameter of 2.6 cm and a length of 200 cm was charged with 941 mL of the Na-type weakly acidic cation exchange resin (614 mL in terms of H-type), and this was used as an ion-exchange resin packed tower.

(ニッケル含有溶液)
ニッケル含有溶液の液質は、ニッケル濃度が61mg/L、pHが7.6であった。
(Nickel-containing solution)
The nickel-containing solution had a nickel concentration of 61 mg / L and a pH of 7.6.

(ニッケルイオン濃度計)
笠原理化工業社製「ニッケル濃度計Ni−5Z」を用いた。
(Nickel ion concentration meter)
“Nickel concentration meter Ni-5Z” manufactured by Kasahara Chemical Co., Ltd. was used.

(pH計)
東亜ディーケーケー社製「イオンpHメーターIM−55G」を用いた。
(PH meter)
An “ion pH meter IM-55G” manufactured by Toa DKK Corporation was used.

(吸着工程)
イオン交換樹脂充填塔に通液するニッケル含有溶液の流量を86.9L/h(LV=34m/h、SV=58h−1(H形換算))として、ニッケル含有溶液の通液を行い、イオン交換樹脂にニッケルを吸着させた。イオン交換樹脂充填塔から排出される処理液のニッケル濃度が、ニッケル含有溶液のニッケル濃度と同じになった段階で、ニッケル含有溶液の通液を終了した(吸着工程の終了)。
(Adsorption process)
The flow rate of the nickel-containing solution passed through the ion-exchange resin packed tower was set to 86.9 L / h (LV = 34 m / h, SV = 58 h −1 (H type conversion)), and the nickel-containing solution was passed through to Nickel was adsorbed on the exchange resin. When the nickel concentration of the treatment liquid discharged from the ion exchange resin packed tower became the same as the nickel concentration of the nickel-containing solution, the flow of the nickel-containing solution was terminated (end of the adsorption step).

(溶離回収工程)
20wt%硫酸を2BV(BV:処理倍量、(硫酸の総通液量)/(イオン交換樹脂充填量(H形換算))で算出される)使用し、硫酸の線速度(LV)を0.3m/h、空間速度(SV)を0.2h−1(H形換算)に設定して、ニッケルを吸着したイオン交換樹脂が充填されているイオン交換樹脂充填塔に硫酸を通液し、イオン交換樹脂に吸着しているニッケルを溶離させた。イオン交換樹脂充填塔から排出される溶離液の性状をニッケルイオン濃度計および、pH計でモニタリングし、溶離液のニッケル濃度が2000mg/lになったところから、溶離液を回収し、溶離液のpHが3になった時点で、溶離液の回収を終了した。
(Elution recovery process)
20 wt% sulfuric acid was used at 2 BV (BV: treatment doubled volume, (total sulfuric acid flow rate) / (calculated ion exchange resin filling amount (H type conversion))), and the sulfuric acid linear velocity (LV) was 0. .3 m / h, the space velocity (SV) is set to 0.2 h −1 (H-type conversion), and sulfuric acid is passed through an ion exchange resin packed tower packed with an ion exchange resin that has adsorbed nickel, The nickel adsorbed on the ion exchange resin was eluted. The properties of the eluent discharged from the ion exchange resin packed tower are monitored with a nickel ion concentration meter and a pH meter, and when the nickel concentration of the eluent reaches 2000 mg / l, the eluent is recovered and the eluent is collected. When the pH reached 3, collection of the eluent was terminated.

実施例1において回収された溶離液(回収液)の性状は、液量1019mL(1.3BV)、ニッケル濃度80276.3mg/L、pH=4.3であり、ニッケル回収率は、94.4%であった。   The properties of the eluent (recovered solution) recovered in Example 1 were a liquid volume of 1019 mL (1.3 BV), a nickel concentration of 80276.3 mg / L, pH = 4.3, and a nickel recovery rate of 94.4. %Met.

(実施例2)
イオン交換樹脂94mL(H形換算で61mL)を、内直径2.6cm、長さ100cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を0.3m/h、空間速度(SV)を2.0h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。実施例2において回収された溶離液(回収液)の性状は、液量94.1mL(1.2BV)、ニッケル濃度74506.1mg/L、pH=4.0であり、ニッケル回収率は、85.6%であった。
(Example 2)
Using an ion exchange resin packed tower in which 94 mL of ion exchange resin (61 mL in H form conversion) was packed in a resin column having an inner diameter of 2.6 cm and a length of 100 cm, the linear velocity (LV) of sulfuric acid was 0.3 m. / H, the space velocity (SV) was set to 2.0 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Example 2 were a liquid volume of 94.1 mL (1.2 BV), a nickel concentration of 74506.1 mg / L, pH = 4.0, and a nickel recovery rate of 85 It was 6%.

(実施例3)
イオン交換樹脂627mL(H形換算で409mL)を、内直径2.6cm、長さ200cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を1.0m/h、空間速度(SV)を1.0h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。実施例3において回収された溶離液(回収液)の性状は、液量627mL(1.2BV)、ニッケル濃度84036.2mg/L、pH=4.3であり、ニッケル回収率は、89.8%であった。
Example 3
An ion exchange resin packed tower in which 627 mL of ion exchange resin (409 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 200 cm was used, and the linear velocity (LV) of sulfuric acid was 1.0 m. / H, the space velocity (SV) was set to 1.0 h −1 (converted to H form), and the elution recovery step was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Example 3 were a liquid amount of 627 mL (1.2 BV), a nickel concentration of 84036.2 mg / L, pH = 4.3, and a nickel recovery rate of 89.8. %Met.

(実施例4)
イオン交換樹脂2508mL(H形換算で1636mL)を、内直径2.6cm、長さ500cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を4.0m/h、空間速度(SV)を1.0h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。実施例4において回収された溶離液(回収液)の性状は、液量2403.6mL(1.15BV)、ニッケル濃度80365.5mg/L、pH=3.6であり、ニッケル回収率は、83.3%であった。
(Example 4)
Using an ion exchange resin packed tower in which 2508 mL of ion exchange resin (1636 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 500 cm, the linear velocity (LV) of sulfuric acid was 4.0 m. / H, the space velocity (SV) was set to 1.0 h −1 (converted to H form), and the elution recovery step was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Example 4 were a liquid volume of 2403.6 mL (1.15 BV), a nickel concentration of 80365.5 mg / L, pH = 3.6, and a nickel recovery rate of 83 3%.

(実施例5)
イオン交換樹脂2508mL(H形換算で1636mL)を、内直径2.6cm、長さ500cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を8.0m/h、空間速度(SV)を2.0h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。実施例5において回収された溶離液(回収液)の性状は、液量2613mL(1.25BV)、ニッケル濃度72054.2mg/L、pH=3.5であり、ニッケル回収率は、80.8%であった。
(Example 5)
An ion exchange resin packed tower in which 2508 mL of ion exchange resin (1636 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 500 cm was used, and the linear velocity (LV) of sulfuric acid was 8.0 m. / H, the space velocity (SV) was set to 2.0 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Example 5 were a liquid volume of 2613 mL (1.25 BV), a nickel concentration of 72054.2 mg / L, pH = 3.5, and a nickel recovery rate of 80.8. %Met.

(比較例1)
イオン交換樹脂627mL(H形換算で409mL)を、内直径2.6cm、長さ200cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を0.2m/h、空間速度(SV)を0.2h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。比較例1において回収された溶離液(回収液)の性状は、液量523mL(1BV)、ニッケル濃度69701.8mg/L、pH=3.5であり、ニッケル回収率は、74.5%であった。
(Comparative Example 1)
An ion exchange resin packed tower in which 627 mL of ion exchange resin (409 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 200 cm was used, and the linear velocity (LV) of sulfuric acid was 0.2 m. / H, the space velocity (SV) was set to 0.2 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Comparative Example 1 were a liquid amount of 523 mL (1 BV), a nickel concentration of 69701.8 mg / L, pH = 3.5, and a nickel recovery rate of 74.5%. there were.

(比較例2)
イオン交換樹脂2571mL(H形換算で1677mL)を、内直径2.6cm、長さ500cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を8.5m/h、空間速度(SV)を2.0h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。比較例2において回収された溶離液(回収液)の性状は、液量1500mL(0.7BV)、ニッケル濃度70012.2mg/L、pH=3.5であり、ニッケル回収率は、73.3%であった。
(Comparative Example 2)
An ion exchange resin packed tower in which 2571 mL of ion exchange resin (1677 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 500 cm was used, and the linear velocity (LV) of sulfuric acid was 8.5 m. / H, the space velocity (SV) was set to 2.0 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Comparative Example 2 were a liquid volume of 1500 mL (0.7 BV), a nickel concentration of 70012.2 mg / L, pH = 3.5, and a nickel recovery rate of 73.3. %Met.

(比較例3)
イオン交換樹脂1881mL(H形換算で1227mL)を、内直径2.6cm、長さ500cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を0.3m/h、空間速度(SV)を0.1h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。比較例3において回収された溶離液(回収液)の性状は、液量1568mL(1.0BV)、ニッケル濃度69701.8mg/L、pH=3.6であり、ニッケル回収率は、75.0%であった。
(Comparative Example 3)
An ion exchange resin packed tower in which 1881 mL of ion exchange resin (1227 mL in terms of H form) was packed in a resin column with an inner diameter of 2.6 cm and a length of 500 cm was used, and the linear velocity (LV) of sulfuric acid was 0.3 m. / H, the space velocity (SV) was set to 0.1 h −1 (converted to H-form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Comparative Example 3 were a liquid volume of 1568 mL (1.0 BV), a nickel concentration of 69701.8 mg / L, pH = 3.6, and a nickel recovery rate of 75.0. %Met.

(比較例4)
イオン交換樹脂150mL(H形換算で98mL)を、内直径2.6cm、長さ100cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を0.6m/h、空間速度(SV)を2.5h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。比較例4において回収された溶離液(回収液)の性状は、液量113mL(0.9BV)、ニッケル濃度70012.2mg/L、pH=3.4であり、ニッケル回収率は、71.6%であった。
(Comparative Example 4)
An ion exchange resin packed tower in which 150 mL of ion exchange resin (98 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 100 cm was used, and the linear velocity (LV) of sulfuric acid was 0.6 m. / H, the space velocity (SV) was set to 2.5 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Comparative Example 4 were a liquid volume of 113 mL (0.9 BV), a nickel concentration of 70012.2 mg / L, pH = 3.4, and a nickel recovery rate of 71.6. %Met.

(比較例5)
イオン交換樹脂1881mL(H形換算で1227mL)を、内直径2.6cm、長さ500cmの樹脂製カラムに充填したイオン交換樹脂充填塔を用いたこと、硫酸の線速度(LV)を7.5m/h、空間速度(SV)を2.5h−1(H形換算)に設定して溶離回収工程を行ったこと以外は、実施例1と同様の方法で試験した。比較例5において回収された溶離液(回収液)の性状は、液量1254mL(0.8BV)、ニッケル濃度69300.0mg/L、pH=3.5であり、ニッケル回収率は、72.6%であった。
(Comparative Example 5)
An ion exchange resin packed tower in which 1881 mL of ion exchange resin (1227 mL in terms of H form) was packed in a resin column having an inner diameter of 2.6 cm and a length of 500 cm was used, and the linear velocity (LV) of sulfuric acid was 7.5 m. / H, the space velocity (SV) was set to 2.5 h −1 (converted to H form), and the elution recovery process was performed, and the test was performed in the same manner as in Example 1. The properties of the eluent (recovered solution) recovered in Comparative Example 5 were a liquid amount of 1254 mL (0.8 BV), a nickel concentration of 69300.0 mg / L, pH = 3.5, and a nickel recovery rate of 72.6. %Met.

実施例1〜5及び比較例1〜5の硫酸の通液速度(LV及びSV)、ニッケル回収率、pHの結果を表1にまとめた。   The results of the flow rate of sulfuric acid (LV and SV), nickel recovery rate, and pH of Examples 1 to 5 and Comparative Examples 1 to 5 are summarized in Table 1.

Figure 0006433377
Figure 0006433377

表1の結果から分かるように、硫酸の線速度を0.3〜8m/hの範囲、空間速度を0.2〜2h−1の範囲とした実施例1〜5では、回収された溶離液のpH低下を抑制しながら、比較例1〜5よりニッケル回収率を向上させることができた。 As can be seen from the results in Table 1, in Examples 1 to 5 in which the linear velocity of sulfuric acid was in the range of 0.3 to 8 m / h and the space velocity was in the range of 0.2 to 2 h −1 , the recovered eluent The nickel recovery rate was able to be improved from Comparative Examples 1-5, suppressing the pH fall of this.

1 回収装置、10 貯留槽、12 流入ライン、14 原水供給ポンプ、16 イオン交換樹脂充填塔、18 酸貯留槽、20 酸供給ライン、22 酸供給ポンプ、24 排出ライン、26 pH計、28 ニッケルイオン濃度計、30 回収液排出ライン、32,34,36,38,40 バルブ。
DESCRIPTION OF SYMBOLS 1 Recovery apparatus, 10 Reservoir tank, 12 Inflow line, 14 Raw water supply pump, 16 Ion exchange resin packed tower, 18 Acid storage tank, 20 Acid supply line, 22 Acid supply pump, 24 Discharge line, 26 pH meter, 28 Nickel ion Densitometer, 30 recovered liquid discharge line, 32, 34, 36, 38, 40 valves

Claims (3)

重金属を吸着したイオン交換樹脂が充填されている円筒状の充填塔に酸溶液を通液して、前記重金属を溶離回収する溶離回収工程を含み、
前記充填塔に通液する前記酸溶液の通液速度は、線速度(LV)が0.3〜8m/hの範囲であり、空間速度(SV)が〜2h−1の範囲であり、
前記イオン交換樹脂は、Na形弱酸性陽イオン交換樹脂であり、前記酸溶液は硫酸濃度10〜20wt%の硫酸であることを特徴とする重金属の回収方法。
An elution and recovery step of eluting and recovering the heavy metal by passing an acid solution through a cylindrical packed column packed with an ion exchange resin that adsorbs the heavy metal;
Liquid permeation speed of the acid solution to be passed through the packed column, the linear velocity (LV) is in the range of 0.3~8m / h, the space velocity (SV) is Ri range der of 1 through 2h -1 ,
The method for recovering heavy metals, wherein the ion exchange resin is a Na-type weakly acidic cation exchange resin, and the acid solution is sulfuric acid having a sulfuric acid concentration of 10 to 20 wt% .
前記溶離回収工程前に、前記イオン交換樹脂が充填された充填塔に重金属含有溶液を通液して、前記重金属含有溶液中の重金属を前記イオン交換樹脂に吸着させる吸着工程を含むことを特徴とする請求項1に記載の重金属の回収方法。 Before the elution recovery step, and passed through a heavy metal containing solution packed column wherein the ion exchange resin is filled, and comprising a suction step of adsorbing heavy metals of the heavy metal containing solution to the ion-exchange resin The heavy metal recovery method according to claim 1. 重金属を吸着したイオン交換樹脂が充填されている円筒状の充填塔と、
前記充填塔に酸溶液を通液する通液手段と、を備え、
前記充填塔に通液する前記酸溶液の通液速度は、線速度(LV)が0.3〜8m/hの範囲であり、空間速度(SV)が〜2h−1の範囲であり、
前記イオン交換樹脂は、Na形弱酸性陽イオン交換樹脂であり、前記酸溶液は硫酸濃度10〜20wt%の硫酸であることを特徴とする重金属の回収装置。
A cylindrical packed tower filled with an ion exchange resin adsorbing heavy metals;
A flow means for passing an acid solution through the packed tower, and
Liquid permeation speed of the acid solution to be passed through the packed column, the linear velocity (LV) is in the range of 0.3~8m / h, the space velocity (SV) is Ri range der of 1 through 2h -1 ,
The heavy metal recovery apparatus , wherein the ion exchange resin is a Na-type weakly acidic cation exchange resin, and the acid solution is sulfuric acid having a sulfuric acid concentration of 10 to 20 wt% .
JP2015108735A 2015-05-28 2015-05-28 Heavy metal recovery method and recovery device Active JP6433377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015108735A JP6433377B2 (en) 2015-05-28 2015-05-28 Heavy metal recovery method and recovery device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015108735A JP6433377B2 (en) 2015-05-28 2015-05-28 Heavy metal recovery method and recovery device

Publications (2)

Publication Number Publication Date
JP2016221438A JP2016221438A (en) 2016-12-28
JP6433377B2 true JP6433377B2 (en) 2018-12-05

Family

ID=57746990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015108735A Active JP6433377B2 (en) 2015-05-28 2015-05-28 Heavy metal recovery method and recovery device

Country Status (1)

Country Link
JP (1) JP6433377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031264B2 (en) * 2017-12-04 2022-03-08 住友金属鉱山株式会社 Lithium recovery method
CN108467943A (en) * 2018-03-29 2018-08-31 美丽国土(北京)生态环境工程技术研究院有限公司 Heavy metal collection system and heavy metal collection method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206054A (en) * 1983-04-13 1984-11-21 Ebara Infilco Co Ltd Process for removing iron and regeneration of ion exchange resin
JP3062448B2 (en) * 1997-03-07 2000-07-10 核燃料サイクル開発機構 Separation and recovery method of uranium and impurities using chelating resin
JP2006137987A (en) * 2004-11-11 2006-06-01 Japan Organo Co Ltd Method for regenerating trivalent chromate liquid
JP2010022923A (en) * 2008-07-17 2010-02-04 Mitsubishi Chemicals Corp Wastewater treatment method
JP4723629B2 (en) * 2008-11-13 2011-07-13 Jx日鉱日石金属株式会社 Silver recovery method using anion exchange resin
JP5283783B2 (en) * 2010-04-21 2013-09-04 春男 上原 Rare metal recovery method and apparatus
JP6097104B2 (en) * 2013-03-14 2017-03-15 オルガノ株式会社 Method for treating heavy metal-containing solution

Also Published As

Publication number Publication date
JP2016221438A (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US10472261B2 (en) Contaminants removal with simultaneous desalination using carbon dioxide regenerated hybrid ion exchanger nanomaterials
JP5666196B2 (en) Copper sulfate recovery method and copper sulfate recovery device
AU2011349335B2 (en) Rhenium recovery
CN101050487A (en) Method for eliminating impurities of lead, zinc from nickel solution
CN103693711A (en) Method for treating nickel/copper-containing electroplating wastewater by using weak acid ion exchange fibers
Tang et al. Novel combined method of biosorption and chemical precipitation for recovery of Pb 2+ from wastewater
CN105420495B (en) In a kind of Bayer process alumina producing in gallium processing procedure uranium separation method
KR101806823B1 (en) METHOD FOR PRODUClNG AQUEOUS SOLUTION OF TETRAALKYL AMMONIUM SALT
JP6433377B2 (en) Heavy metal recovery method and recovery device
MX2012009308A (en) Ion exchange cobalt recovery.
JP7195649B2 (en) Acidic liquid regeneration device and regeneration method
CN104229859A (en) Method for removing iron impurities and gathering cupric ions in copper sulfate solution
CN109637686B (en) Purification treatment method for uranium tetrafluoride fluorinated tail gas leacheate
KR20150048866A (en) Method of desalinating boron-containing solution
CN110724838A (en) Method for separating tungsten and molybdenum from waste catalyst containing tungsten and molybdenum
JP7102743B2 (en) Lithium recovery method
CN105753219A (en) Process for purifying and treating vanadium-containing wastewater in advanced manner and process for recycling vanadium and chromium
CN101618898A (en) Method for recovering gold, platinum and porpezite from acidic waste water by ion exchange
JP6437874B2 (en) Method and apparatus for regenerating ion exchange resin
JP6097104B2 (en) Method for treating heavy metal-containing solution
Mitchenko et al. Optimization of sorption purification of industrial effluents, waste waters and technological solutions from polyvalent metal ions
JP6134892B2 (en) Method for producing silica / polymer composite type iminodiacetic acid chelate adsorbent, quantitative analysis method using silica / polymer composite type iminodiacetic acid chelate adsorbent, and method for recovering trace metal elements
JP5539823B2 (en) Electrolyte purification method
CN103395746B (en) Method for purifying byproduct hydrochloric acid in 3, 4-dichloronitrobenzene production process
AU2018275187B2 (en) Recovery of uranium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6433377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250