JP2015003950A - Novel polyester polyurethane polyol, polyol agent for two-liquid type laminate adhesive, resin composition, curable resin composition, adhesive for two-liquid type laminate and back sheet for solar cell - Google Patents

Novel polyester polyurethane polyol, polyol agent for two-liquid type laminate adhesive, resin composition, curable resin composition, adhesive for two-liquid type laminate and back sheet for solar cell Download PDF

Info

Publication number
JP2015003950A
JP2015003950A JP2013128483A JP2013128483A JP2015003950A JP 2015003950 A JP2015003950 A JP 2015003950A JP 2013128483 A JP2013128483 A JP 2013128483A JP 2013128483 A JP2013128483 A JP 2013128483A JP 2015003950 A JP2015003950 A JP 2015003950A
Authority
JP
Japan
Prior art keywords
polyol
aliphatic
resin composition
adhesive
polyester polyurethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013128483A
Other languages
Japanese (ja)
Other versions
JP6439237B2 (en
Inventor
晃生 海野
Akio Umino
晃生 海野
宇野 誠一
Seiichi Uno
誠一 宇野
正巳 穂積
Masami Hozumi
正巳 穂積
康二 秋田
Koji Akita
康二 秋田
戸田 哲也
Tetsuya Toda
哲也 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2013128483A priority Critical patent/JP6439237B2/en
Priority to CN201410260594.XA priority patent/CN104231201B/en
Priority to TW103120885A priority patent/TWI623560B/en
Publication of JP2015003950A publication Critical patent/JP2015003950A/en
Application granted granted Critical
Publication of JP6439237B2 publication Critical patent/JP6439237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4236Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups
    • C08G18/4238Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols
    • C08G18/4241Polycondensates having carboxylic or carbonic ester groups in the main chain containing only aliphatic groups derived from dicarboxylic acids and dialcohols from dicarboxylic acids and dialcohols in combination with polycarboxylic acids and/or polyhydroxy compounds which are at least trifunctional
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/06Polyurethanes from polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Epoxy Resins (AREA)
  • Photovoltaic Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a back sheet adhesive for solar cells which is notably improved in substrate adhesion under humid and hot conditions and causes less discoloration due to UV rays and less deterioration of the substrate adhesion during long-term service.SOLUTION: A two-liquid type laminate adhesive contains, as a main agent, a novel polyester polyurethane polyol having a resin structure which is formed by reacting together (i) an aliphatic polyester polyol obtained by reacting a branched alkylene polyol with an aliphatic dicarboxylic acid or an alkyl ester of the dicarboxylic acid, (ii) an aliphatic multifunctional isocyanate compound and (iii) a 2-13C aliphatic diol.

Description

本発明は、湿熱条件下での基材接着性と耐紫外線性に優れる太陽電池用バックシート、該バックシート用接着剤として有用な2液型ラミネート用接着剤、これを構成する硬化性樹脂組成物、その主剤を構成する新規ポリエステルポリウレタンポリオール及び2液型ラミネート接着剤用ポリオール剤、並びに樹脂組成物に関する。   The present invention relates to a back sheet for solar cells that is excellent in substrate adhesion and UV resistance under wet heat conditions, a two-component laminating adhesive useful as the back sheet adhesive, and a curable resin composition constituting the same Products, a novel polyester polyurethane polyol constituting the main component, a polyol component for a two-component laminate adhesive, and a resin composition.

近年、石油、石炭をはじめとする化石燃料の枯渇が危ぶまれ、これらの化石燃料により得られる代替エネルギーを確保するための開発が急務とされている。斯かる化石燃料代替エネルギーのうち、太陽光エネルギーを電気エネルギーに直接変換することが可能な太陽光発電は、半永久的で無公害の新たなエネルギー源として実用化されつつあり、実際に利用される上での価格性能比の向上が目覚しく、クリーンなエネルギー源として非常に期待が高い。   In recent years, the depletion of fossil fuels such as oil and coal has been threatened, and development to secure alternative energy obtained from these fossil fuels is urgently required. Among such fossil fuel alternative energy, solar power generation capable of directly converting solar energy into electric energy is being put into practical use as a new energy source that is semi-permanent and non-polluting, and is actually used. The improvement in price / performance ratio is remarkable, and it is highly expected as a clean energy source.

太陽光発電に使用される太陽電池は、太陽光のエネルギーを直接電気エネルギーに変換する太陽光発電システムの心臓部を構成するものであり、シリコンなどに代表される半導体から構成されており、その構造は、太陽電池素子を直列、並列に配線し、該素子を保護するために種々のパッケージングが施されユニット化されている。このようなパッケージに組み込まれたユニットは太陽電池モジュールと呼ばれ、一般に太陽光が当たる面をガラスで覆い、熱可塑性樹脂からなる充填材で間隙を埋め、裏面を封止シートで保護した構成となっている。熱可塑性樹脂からなる充填材としては、透明性が高く、耐湿性にも優れているという理由でエチレン−酢酸ビニル共重合樹脂が用いられることが多い。一方、裏面保護シート(バックシート)には、機械強度、耐候性、耐熱性、耐湿熱性、耐光性、といった特性が要求される。このような太陽電池モジュールは通常30年程度の長期間にわたって屋外にて使用されることから、バックシートを構成する接着剤には、長期信頼性のある接着強度が求められおり、具体的には、ポリエステルフィルムやポリフッ化ビニルフィルム等の異なる特徴を有する種々のフィルムに対する高い接着性や、露天環境下でも長期的に接着性を維持するための耐湿熱性が高いレベルで要求される。   Solar cells used for photovoltaic power generation constitute the heart of a photovoltaic power generation system that converts sunlight energy directly into electrical energy, and are composed of semiconductors such as silicon, In the structure, solar cell elements are wired in series and in parallel, and various packaging is applied to protect the elements so as to be unitized. A unit incorporated in such a package is called a solar cell module, and generally has a structure in which the surface exposed to sunlight is covered with glass, the gap is filled with a filler made of a thermoplastic resin, and the back surface is protected with a sealing sheet. It has become. As a filler made of a thermoplastic resin, an ethylene-vinyl acetate copolymer resin is often used because of its high transparency and excellent moisture resistance. On the other hand, the back protective sheet (back sheet) is required to have characteristics such as mechanical strength, weather resistance, heat resistance, moisture heat resistance, and light resistance. Since such a solar cell module is usually used outdoors for a long period of about 30 years, the adhesive constituting the back sheet is required to have a long-term reliable adhesive strength. In addition, high adhesion to various films having different characteristics such as polyester film and polyvinyl fluoride film, and high level of moisture and heat resistance for maintaining long-term adhesion even in an open-air environment are required.

このようなバックシート用接着剤として、例えば、芳香族二塩基酸とC9以上の脂肪族カルボン酸と、C5以上の脂肪族アルコールとを原料モノマーとして用いた高分子量ポリエステルポリオール、及び低分子量ポリエステルポリウレタンポリオールとを主剤として併用し、かつ、硬化剤としてポリイソシアネート化合物を用いることにより、芳香族二塩基酸に起因する樹脂の凝集力を高め、かつ、長鎖脂肪族アルコールによりエステル結合間距離を伸ばして水分浸入を抑制して耐湿熱性を改善すると共に、低分子量ウレタンを併用することにより塗工性、濡れ性を改善する技術が知られている(下記特許文献1参照)。   As such an adhesive for a back sheet, for example, a high molecular weight polyester polyol and a low molecular weight polyester polyurethane using an aromatic dibasic acid, a C9 or higher aliphatic carboxylic acid, and a C5 or higher aliphatic alcohol as raw material monomers. By using a polyisocyanate compound as a main agent in combination with a polyol and using a polyisocyanate compound as a curing agent, the cohesive strength of the resin resulting from the aromatic dibasic acid is increased, and the distance between ester bonds is increased by the long-chain aliphatic alcohol. A technique is known that improves moisture resistance and heat resistance by suppressing moisture intrusion, and improves coating properties and wettability by using a low molecular weight urethane together (see Patent Document 1 below).

然し乍ら、近年、バックシートの外装用フィルムには、様々な構造、意匠性を高めた太陽電池が開発されており、この場合、接着剤層には、紫外線による劣化を起こさない機能が要求されているところ、前記特許文献1記載の接着剤はバックシート自体の耐湿性、耐候性は良好であるものの未だ十分なレベルにはなく、更に、屋外での長期使用に際し、紫外線による変色や接着力の低下が避けられないものであった。   However, in recent years, solar cells with various structures and design properties have been developed for backsheet exterior films. In this case, the adhesive layer is required to have a function that does not cause deterioration due to ultraviolet rays. However, although the adhesive described in Patent Document 1 has good moisture resistance and weather resistance of the back sheet itself, it is still not at a sufficient level, and further, when used outdoors for a long period of time, discoloration due to ultraviolet rays and adhesive strength. The decrease was inevitable.

特許第4416047号公報Japanese Patent No. 4416047

従って、本発明が解決しようとする課題は、湿熱条件下での基材接着性が飛躍的に改善されると共に、長期使用した場合に紫外線による変色や基材接着性の劣化の少ない2液型ラミネート用接着剤、該接着剤を構成する硬化性樹脂組成物、該接着剤の主剤成分、これを構成する新規ポリエステルポリウレタンポリオール、及び耐湿熱性と耐変色性とに優れた性能を発現する太陽電池用バックシートを提供することにある。   Therefore, the problem to be solved by the present invention is a two-component type in which the substrate adhesiveness under wet heat conditions is drastically improved and the color change due to ultraviolet rays and the deterioration of the substrate adhesiveness are small when used for a long time. Laminating adhesive, curable resin composition constituting the adhesive, main component of the adhesive, novel polyester polyurethane polyol constituting the adhesive, and solar cell exhibiting excellent performance in moisture and heat resistance and discoloration resistance It is to provide a back sheet for use.

本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、分岐アルキレンポリオールを脂肪族ジカルボン酸成分と反応させて得られる脂肪族ポリエステルポリオールを、脂肪族多価イソシアネート及び炭素原子数2〜13の脂肪族ジオールと反応させて得られる樹脂構造を有するポリエステルポリオールが、耐湿性に極めて優れたものとなり、これを太陽電池用バックシートの外装フィルム用接着剤の主剤に用いた場合に、湿熱条件下での基剤密着性に著しく優れると共に、屋外での長期使用に際し、紫外線に起因する黄変や接着性劣化を効果的に防止できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the inventors of the present invention obtained an aliphatic polyester polyol obtained by reacting a branched alkylene polyol with an aliphatic dicarboxylic acid component, an aliphatic polyvalent isocyanate and a carbon atom number of 2 to 2. When the polyester polyol having a resin structure obtained by reacting with an aliphatic diol of No. 13 is extremely excellent in moisture resistance and used as a main ingredient of an adhesive for an exterior film of a solar cell backsheet, The present inventors have found that the base adhesiveness under the conditions is remarkably excellent and that yellowing and adhesion deterioration due to ultraviolet rays can be effectively prevented during long-term outdoor use, and the present invention has been completed.

即ち、本発明は、分岐アルキレンポリオールと脂肪族ジカルボン酸又はそのアルキルエステルとを反応させて得られる脂肪族ポリエステルポリオール(i)と、脂肪族多官能イソシアネート化合物(ii)と、炭素原子数2〜13の脂肪族ジオール(iii)とを反応させて得られる樹脂構造を有することを特徴とする新規ポリエステルポリウレタンポリオールに関する。   That is, the present invention provides an aliphatic polyester polyol (i) obtained by reacting a branched alkylene polyol with an aliphatic dicarboxylic acid or an alkyl ester thereof, an aliphatic polyfunctional isocyanate compound (ii), The present invention relates to a novel polyester polyurethane polyol characterized by having a resin structure obtained by reacting 13 aliphatic diols (iii).

本発明は、更に、前記新規ポリエステルポリウレタンポリオールからなる2液型ラミネート接着剤用ポリオール剤に関する。   The present invention further relates to a polyol agent for a two-component laminate adhesive comprising the novel polyester polyurethane polyol.

本発明は、更に、前記新規ポリエステルポリウレタンポリオール(A)及び多官能エポキシ化合物(B)を必須成分とする樹脂組成物に関する。   The present invention further relates to a resin composition comprising the novel polyester polyurethane polyol (A) and the polyfunctional epoxy compound (B) as essential components.

本発明は、更に、新規ポリエステルポリウレタンジオール、又は前記樹脂組成物を主剤として用い、かつ、硬化剤として脂肪族ポリイソシアネート(D)を配合した硬化性樹脂組成物に関する。   The present invention further relates to a curable resin composition using the novel polyester polyurethane diol or the resin composition as a main agent and blended with an aliphatic polyisocyanate (D) as a curing agent.

本発明は、更に、硬化性樹脂組成物からなる2液型ラミネート用接着剤に関する。   The present invention further relates to a two-component laminating adhesive comprising a curable resin composition.

本発明は、更に、ポリエステルフィルム、フッ素系樹脂フィルム、ポリオレフィンフィルム、金属箔からなる群から選ばれる1種類以上のフィルムと、これらのフィルム同士を貼り合わせる為の前記2液型ラミネート用接着剤からなる接着層とから成形された太陽電池用バックシートに関する。   The present invention further includes one or more kinds of films selected from the group consisting of a polyester film, a fluororesin film, a polyolefin film, and a metal foil, and the two-component laminating adhesive for bonding these films together. It is related with the solar cell backsheet shape | molded from the adhesive layer which becomes.

本発明によれば、湿熱条件下での基材接着性が飛躍的に改善されると共に、長期使用した場合に紫外線による変色や基材接着性の劣化の少ない2液型ラミネート用接着剤、該接着剤を構成する硬化性樹脂組成物、該接着剤の主剤成分、これを構成する新規ポリエステルポリウレタンポリオール、及び耐湿熱性と耐変色性とに優れた性能を発現する太陽電池用バックシートを提供できる。   According to the present invention, the adhesive property for a base material under wet heat conditions is drastically improved, and when used for a long period of time, the adhesive for two-component laminating is less susceptible to discoloration due to ultraviolet rays or deterioration of the adhesive property of the base material. A curable resin composition constituting an adhesive, a main component of the adhesive, a novel polyester polyurethane polyol constituting the adhesive, and a solar cell backsheet exhibiting excellent performance in moisture and heat resistance and discoloration resistance can be provided. .

図1は、実施例1で得られたポリエステルポリウレタンポリオール(A1)のGPCチャート図である。1 is a GPC chart of the polyester polyurethane polyol (A1) obtained in Example 1. FIG. 図2は、実施例1で得られたポリエステルポリウレタンポリオール(A1)の赤外線吸収スペクトル図である。2 is an infrared absorption spectrum diagram of the polyester polyurethane polyol (A1) obtained in Example 1. FIG.

本発明の新規ポリエステルポリウレタンポリオールは、太陽電池用バックシート接着剤の主剤である2液型ラミネート接着剤用ポリオール剤として有用なものであり、ポリエステル構造部位を構成する原料ジオール成分として分岐アルキレンポリオールを用いていることから、該ポリエステル構造部位の耐加水分解性が飛躍的に向上する。また、脂肪族性が高いことから紫外線に起因する変色や接着劣化が生じにくく、加えてウレタン結合の凝集力から接着力が向上する。   The novel polyester polyurethane polyol of the present invention is useful as a polyol agent for a two-component laminate adhesive, which is a main component of a solar cell backsheet adhesive, and a branched alkylene polyol as a raw material diol component constituting a polyester structure part. Since it uses, the hydrolysis resistance of this polyester structure site | part improves dramatically. In addition, since the aliphaticity is high, discoloration and adhesion deterioration due to ultraviolet rays are unlikely to occur, and in addition, the adhesive force is improved due to the cohesive force of urethane bonds.

ここで、前記新規ポリエステルポリウレタンポリオールの主たる原料成分である、前記脂肪族ポリエステルポリオール(i)は、前記した通り、分岐アルキレンポリオールと脂肪族ジカルボン酸又はそのアルキルエステルとを反応させて得られる構造を有するものである。斯かる分岐アルキレンポリオールは、具体的には、分子構造中に3級炭素原子又は4級炭素原子が存在するアルキレン構造を有するポリオールであり、例えば、1,2−プロピレングリコール、1,3−ブチレングリコール、2−メチル−1,3−プロパンジオール、ネオペンチルグリコール、3−メチル−1,5−ペンタンジオール、2−n−ブチル−2−エチル−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、2,4−ジエチル−1,5−ペンタンジオール、1,2−ヘキサングリコール、1,2−オクチルグリコール等の分岐アルカンジオール;トリメチロールプロパン、ペンタエリスリトール等の3官能以上の分岐アルカン構造含有多官能アルコールが挙げられる。これらの中でも基材への塗工性に優れると共に、耐湿熱性に良好な接着剤が得られる点から炭素原子数4〜13の分岐アルキレンジオールが好ましく、特にネオペンチルグリコールが好ましい。また、本発明では、前記分岐アルカンジオールに、一部3官能以上の分岐アルカン構造含有多官能アルコールを併用することにより、これらの分岐アルキレンポリオールは、基材への接着力を向上できる点及び前記新規ポリエステルポリウレタンポリオールの分子量分布を制御することができる。この場合、分岐アルカンジオールと、前記した3官能以上の分岐アルカン構造含有多官能アルコールとの使用割合は、質量比[分岐アルカンジオール/3官能以上の分岐アルカン構造含有多官能アルコール]が99.5/0.5〜95/5となる割合であることが好ましい。   Here, the aliphatic polyester polyol (i), which is the main raw material component of the novel polyester polyurethane polyol, has a structure obtained by reacting a branched alkylene polyol and an aliphatic dicarboxylic acid or an alkyl ester thereof as described above. It is what you have. Such a branched alkylene polyol is specifically a polyol having an alkylene structure in which a tertiary carbon atom or a quaternary carbon atom is present in the molecular structure. For example, 1,2-propylene glycol, 1,3-butylene Glycol, 2-methyl-1,3-propanediol, neopentyl glycol, 3-methyl-1,5-pentanediol, 2-n-butyl-2-ethyl-1,3-propanediol, 2,2-dimethyl -1,3-propanediol, 2,2-diethyl-1,3-propanediol, 2,4-diethyl-1,5-pentanediol, 1,2-hexane glycol, 1,2-octyl glycol, etc. Alkanediol; a trifunctional or higher functional branched polyfunctional alcohol such as trimethylolpropane and pentaerythritol It is below. Among these, a branched alkylene diol having 4 to 13 carbon atoms is preferable, and neopentyl glycol is particularly preferable from the viewpoint that an adhesive having excellent coatability to a substrate and good heat and heat resistance can be obtained. In the present invention, the branched alkanediol is partially used in combination with a polyfunctional alcohol having a tri- or higher functional branched alkane structure, so that these branched alkylene polyols can improve the adhesion to a substrate and The molecular weight distribution of the novel polyester polyurethane polyol can be controlled. In this case, the use ratio between the branched alkanediol and the above-described trifunctional or higher functional branched polyalcohol is 99.5 mass ratio [branched alkanediol / trifunctional or higher branched alkane structure-containing polyfunctional alcohol]. A ratio of 0.5 / 95/5 is preferable.

他方、これと反応させる脂肪族ジカルボン酸又はそのアルキルエステルは、直鎖状脂肪族ジカルボン酸としては、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、ヘキサデカンニ酸、ヘプタデカン二酸、オクタデカン二酸、ノナデカン二酸、イコサン二酸、又はこれらの炭素原子数1〜4のアルキルエステル等が挙げられる。   On the other hand, the aliphatic dicarboxylic acid or alkyl ester thereof to be reacted with this is, as the linear aliphatic dicarboxylic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, Undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, hexadecanedioic acid, heptadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, icosanedioic acid, or those having 1 to 4 carbon atoms Examples include alkyl esters.

本発明では、これらのなかでも接着剤として使用した場合に基材への接着性及び耐湿熱性が良好なものとなる点から、特にアジピン酸、アゼライン酸、セバシン酸などの炭素原子数6〜10のジカルボン酸であることが好ましい。   In the present invention, among these, particularly when used as an adhesive, the adhesion to the base material and the heat-and-moisture resistance are good, and therefore the number of carbon atoms such as adipic acid, azelaic acid, sebacic acid and the like is 6-10. The dicarboxylic acid is preferably used.

また、本発明においては、接着剤としての柔軟性、濡れ性を向上させる目的で、また、本発明の効果を損なわない範囲において、上記各原料成分に、更に、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−ノナンジオール、ジエチレングリコール等の直鎖状アルカンジオールを併用してもよい。   Further, in the present invention, for the purpose of improving the flexibility and wettability as an adhesive, and within the range not impairing the effects of the present invention, ethylene glycol, 1,3-propylene is further added to each of the above raw material components. Linear alkanediols such as glycol, 1,4-butanediol, 1,6-hexanediol, 1,8-nonanediol, and diethylene glycol may be used in combination.

また、前記脂肪族ポリエステルポリオール(i)の分子量や粘度を調整する目的で、前記ポリエステルポリウレタンポリオール(A)の原料としてメタン酸、エタン酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ドデカン酸、テトラデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸等のモノカルボン酸を用いても良い。   For the purpose of adjusting the molecular weight and viscosity of the aliphatic polyester polyol (i), the raw material of the polyester polyurethane polyol (A) is methanoic acid, ethanoic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid. Monocarboxylic acids such as octanoic acid, nonanoic acid, decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, heptadecanoic acid, and octadecanoic acid may be used.

次に、上記した分岐アルキレンポリオールと脂肪族ジカルボン酸又はそのアルキルエステルとを反応させる条件は、例えば、分岐アルキレンポリオールと脂肪族ジカルボン酸又はそのアルキルエステルとをエステル化触媒の存在下、160〜270℃の温度範囲で反応させる方法が挙げられる。   Next, the conditions for reacting the branched alkylene polyol with the aliphatic dicarboxylic acid or the alkyl ester thereof are, for example, 160 to 270 in the presence of the esterification catalyst in the branched alkylene polyol and the aliphatic dicarboxylic acid or the alkyl ester thereof. The method of making it react in the temperature range of ° C is mentioned.

この様にして得られる前記脂肪族ポリエステルポリオール(i)は、水酸基価100〜130mgKOH/gの範囲にあるものが、最終的に得られる新規ポリエステルポリウレタンポリオール中のカルボニルオキシ基の量を少なくできて、耐湿性が向上し、最終的に得られるポリエステルポリウレタンポリオール(A)を接着剤用の主剤として用いた場合に、接着層への水の浸入を防ぎ耐湿熱性が改善される点から好ましい。   The aliphatic polyester polyol (i) obtained in this manner has a hydroxyl value in the range of 100 to 130 mgKOH / g, but can reduce the amount of carbonyloxy groups in the finally obtained new polyester polyurethane polyol. When the polyester polyurethane polyol (A) finally obtained is improved as the main agent for the adhesive, the moisture resistance is improved, and the moisture and heat resistance is improved by preventing water from entering the adhesive layer.

前記新規ポリエステルポリウレタンポリオールは、この様にして得られた脂肪族ポリエステルポリオール(i)を、脂肪族多官能イソシアネート化合物(ii)、及び、炭素原子数2〜13の脂肪族ジオール(iii)とを反応させることにより製造することができる。   The novel polyester polyurethane polyol comprises the aliphatic polyester polyol (i) thus obtained, an aliphatic polyfunctional isocyanate compound (ii), and an aliphatic diol (iii) having 2 to 13 carbon atoms. It can be produced by reacting.

ここで、前記した脂肪族多官能イソシアネート化合物(ii)は、脂肪族ジイソシアネート化合物(ii−1)、及び3官能以上の脂肪族ポリイソシアネート化合物(ii−2)が挙げられる。   Here, examples of the aliphatic polyfunctional isocyanate compound (ii) include an aliphatic diisocyanate compound (ii-1) and a trifunctional or higher functional aliphatic polyisocyanate compound (ii-2).

前記脂肪族ジイソシアネート化合物(ii−1)は、例えば、ブタン−1,4−ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、2,4,4−トリメチルヘキサメチレンジイソシアネート、キシリレンジイソシアネート、m−テトラメチルキシリレンジイソシアネート等の脂肪族ジイソシアネート;   Examples of the aliphatic diisocyanate compound (ii-1) include butane-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, and xylylene diene. Aliphatic diisocyanates such as isocyanate and m-tetramethylxylylene diisocyanate;

シクロヘキサン−1,4−ジイソシアネート、イソホロンジイソシアネート、リジンジイソシアネート、ジシクロヘキシルメタン−4,4’−ジイソシアネート、1,3−ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル−4,4’−ジイソシアネート、ノルボルナンジイソシアネート等の脂環族ジイソシアネートが挙げられる。   Cyclohexane-1,4-diisocyanate, isophorone diisocyanate, lysine diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexane diisocyanate, isopropylidene dicyclohexyl-4,4′-diisocyanate, And alicyclic diisocyanates such as norbornane diisocyanate.

一方、前記3官能以上のポリイソシアネート化合物(ii−2)は、例えば、分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物や、分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物が挙げられる。   On the other hand, examples of the trifunctional or higher polyisocyanate compound (ii-2) include adduct type polyisocyanate compounds having a urethane bond site in the molecule and nurate type polyisocyanate compounds having an isocyanurate ring structure in the molecule. It is done.

前記分子内にウレタン結合部位を有するアダクト型ポリイソシアネート化合物は、例えば、前記ジイソシアネート化合物(ii−1)と前記脂肪族ポリエステルポリオール(i)とを反応させて得ることができる。   The adduct type polyisocyanate compound having a urethane bond site in the molecule can be obtained, for example, by reacting the diisocyanate compound (ii-1) with the aliphatic polyester polyol (i).

また、前記分子内に分子内にイソシアヌレート環構造を有するヌレート型ポリイソシアネート化合物は、例えば、前記した脂肪族ジイソシアネート化合物(ii−1)をイソシアヌレート化触媒の存在下、40〜100℃の温度範囲で反応させて得ることができる。   The nurate type polyisocyanate compound having an isocyanurate ring structure in the molecule is, for example, a temperature of 40 to 100 ° C. of the aliphatic diisocyanate compound (ii-1) in the presence of an isocyanuration catalyst. It can be obtained by reacting in a range.

ここで、前記3官能以上のポリイソシアネート化合物(ii−2)を用いる場合には、前記したポリエスエルポリウレタンポリオール(A)の分岐度が向上し、前記した太陽電池バックシート用接着剤として使用した場合における耐湿熱性を一層向上させることができる。   Here, when using the polyisocyanate compound (ii-2) having three or more functional groups, the degree of branching of the above-described polyester polyurethane polyol (A) is improved and used as an adhesive for the above-described solar battery back sheet. The heat and humidity resistance in the case can be further improved.

以上詳述した前記脂肪族多官能イソシアネート化合物(ii)のなかでも、特に基材への塗工性や耐湿熱性に優れ、更に紫外線に対する接着劣化防止の効果に優れる接着剤が得られる点からイソホロンジイソシアネートが好ましい。   Among the aliphatic polyfunctional isocyanate compounds (ii) described in detail above, isophorone is particularly advantageous in that it provides an adhesive that is particularly excellent in coating properties on substrates and heat and moisture resistance, and also has an effect of preventing adhesion deterioration against ultraviolet rays. Diisocyanate is preferred.

一方、炭素原子数2〜13の脂肪族ジオール(iii)は、具体的には、エチレングリコール、1,3−プロピレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−ノナンジオール、ジエチレングリコール等の直鎖状アルカンジオール、或いは、前記した分岐アルカンポリオール(i−1)が挙げられる。これらのなかでも特に接着剤として使用した場合、基材への接着性に優れる接着剤が得られる観点から炭素原子数4〜9の直鎖状アルカンジオールが好ましく、特に1,6−ヘキサンジオールが好ましい。   On the other hand, the aliphatic diol (iii) having 2 to 13 carbon atoms specifically includes ethylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,8- Examples thereof include linear alkanediols such as nonanediol and diethylene glycol, and the branched alkane polyol (i-1) described above. Among these, particularly when used as an adhesive, a linear alkanediol having 4 to 9 carbon atoms is preferable from the viewpoint of obtaining an adhesive excellent in adhesion to a substrate, and 1,6-hexanediol is particularly preferable. preferable.

前記した脂肪族ポリエステルポリオール(i)と、脂肪族多官能イソシアネート化合物(ii)と、及び、炭素原子数2〜13の脂肪族ジオール(iii)との反応は、例えば、脂肪族ポリエステルポリオール(i)と脂肪族多官能イソシアネート化合物(ii)とを反応させた後、次いで、炭素原子数2〜13の脂肪族ジオール(iii)を反応させる方法(方法1)、並びに、脂肪族ポリエステルポリオール(i)と、脂肪族多官能イソシアネート化合物(ii)と、炭素原子数2〜13の脂肪族ジオール(iii)とを同時に反応させる方法(方法2)が挙げられる。   The reaction between the aliphatic polyester polyol (i), the aliphatic polyfunctional isocyanate compound (ii), and the aliphatic diol (iii) having 2 to 13 carbon atoms is, for example, an aliphatic polyester polyol (i ) And an aliphatic polyfunctional isocyanate compound (ii), and then a method of reacting an aliphatic diol (iii) having 2 to 13 carbon atoms (Method 1) and an aliphatic polyester polyol (i) ), An aliphatic polyfunctional isocyanate compound (ii), and an aliphatic diol (iii) having 2 to 13 carbon atoms (method 2).

前記方法1は、具体的には、先ず、脂肪族ポリエステルポリオール(i)と脂肪族多官能イソシアネート化合物(ii)とを当量比[(ii)中のイソシアネート基/(i)中の水酸基]が3/1〜1.1/1となる割合で、60〜100℃の温度条件下に反応させ、反応液の粘度が一定になったところを反応終点とし、脂肪族ポリエステルポリイソシアネートを得る。更に、前記脂肪族ポリエステルポリイソシアネートと炭素原子数4〜13の脂肪族ジオール(iii)とを、当量比[前記脂肪族ポリエステルポリイソシアネート中のイソシアネート基/(iii)中の水酸基]が1.2/1〜1.001/1となる割合で、60〜100℃の温度条件下で反応させる方法が挙げられる。   Specifically, in the method 1, first, an aliphatic polyester polyol (i) and an aliphatic polyfunctional isocyanate compound (ii) have an equivalent ratio [isocyanate group in (ii) / hydroxyl group in (i)]. Reaction is performed at a temperature of 60 to 100 ° C. at a ratio of 3/1 to 1.1 / 1, and the reaction end point is obtained when the viscosity of the reaction solution becomes constant, thereby obtaining an aliphatic polyester polyisocyanate. Furthermore, the equivalent ratio [isocyanate group in the aliphatic polyester polyisocyanate / hydroxyl group in (iii)] of the aliphatic polyester polyisocyanate and the aliphatic diol (iii) having 4 to 13 carbon atoms is 1.2. The method of making it react on the temperature conditions of 60-100 degreeC in the ratio used as /1-1.001/1.

一方、前記方法2は、具体的には、脂肪族ポリエステルポリオール(i)と、脂肪族多官能イソシアネート化合物(ii)と、炭素原子数4〜13の脂肪族ジオール(iii)とを、質量比[(i)/(iii)]が1/1〜20/1となる割合であって、かつ、(i)中の水酸基と(iii)中の水酸基の合計に対する、脂肪族多官能イソシアネート化合物(ii)中のイソシアネート基の当量比[((i)中の水酸基+(iii)中の水酸基)/(ii)中のイソシアネート基]が1.2/1〜1.001/1となる割合で、60〜100℃の温度条件下で反応させる方法が挙げられる。   On the other hand, the method 2 specifically includes an aliphatic polyester polyol (i), an aliphatic polyfunctional isocyanate compound (ii), and an aliphatic diol (iii) having 4 to 13 carbon atoms in a mass ratio. [(I) / (iii)] is a ratio of 1/1 to 20/1, and an aliphatic polyfunctional isocyanate compound (to the total of the hydroxyl groups in (i) and (iii) ( The ratio of the equivalent ratio of isocyanate groups in ii) [(hydroxyl group in (i) + hydroxyl group in (iii)) / isocyanate group in (ii)] is from 1.2 / 1 to 1.001 / 1. The method of making it react on 60-100 degreeC temperature conditions is mentioned.

また、前記方法1又は方法2におけるウレタン化の反応では、ウレタン化触媒を用いてもよい。   In the urethanization reaction in Method 1 or Method 2, a urethanization catalyst may be used.

上記した方法1及び方法2のなかでも、特に、本発明では前記方法2が、最終的に得られる新規ポリエステルウレタンポリオール中に前記炭素原子数2〜13の脂肪族ジオール(iii)に起因する脂肪族基と、前記脂肪族ポリエステルポリオール(i)に起因するポリエステル構造部位とがランダムに存在することとなり、該新規ポリエステルウレタンポリオールの耐湿性を高めることができる点から好ましい。   Among the above-described methods 1 and 2, in particular, in the present invention, the method 2 is a fat resulting from the aliphatic diol (iii) having 2 to 13 carbon atoms in the finally obtained new polyester urethane polyol. Since the group and the polyester structure site resulting from the aliphatic polyester polyol (i) are present at random, it is preferable from the viewpoint that the moisture resistance of the novel polyester urethane polyol can be improved.

このようにして得られる新規ポリエステルポリウレタンポリオールは、その重量平均分子量(Mw)が10,000〜200,000の範囲であることが好ましい。重量平均分子量(Mw)がこの範囲にある場合、硬化物が高い強度を示すものとなり、初期の接着強度に優れる樹脂組成物となる他、樹脂組成物が塗工に適した粘度のものとなる。即ち、重量平均分子量(Mw)が10,000未満の場合には、初期の接着強度が低下する上、粘度が低いため均一に塗工しにくい樹脂組成物となる。一方、200,000を超える場合には、粘度が高いために塗工し難い樹脂組成物となる。中でも、初期の接着強度が高く、かつ、湿熱条件下での基材接着性にも優れる樹脂組成物が得られる点で、重量平均分子量(Mw)は10,000〜100,000の範囲であることが好ましい。   The novel polyester polyurethane polyol thus obtained preferably has a weight average molecular weight (Mw) in the range of 10,000 to 200,000. When the weight average molecular weight (Mw) is in this range, the cured product exhibits high strength, and the resin composition has excellent initial adhesive strength, and the resin composition has a viscosity suitable for coating. . That is, when the weight average molecular weight (Mw) is less than 10,000, the initial adhesive strength is lowered, and the viscosity is low, so that the resin composition is difficult to apply uniformly. On the other hand, when it exceeds 200,000, it becomes a resin composition that is difficult to apply due to its high viscosity. Among them, the weight average molecular weight (Mw) is in the range of 10,000 to 100,000 in that a resin composition having high initial adhesive strength and excellent base material adhesion under wet heat conditions can be obtained. It is preferable.

また、前記新規ポリエステルポリウレタンポリオールは、分子量分布(Mw/Mn)が、2.0〜15の範囲であることが好ましい。即ち、分子量分布(Mw/Mn)が前記範囲内にあることにより、低分子量成分に起因した基材との密着性が向上する効果と、高分子量成分に起因した硬化物が高強度となる効果が同時に発揮されるため、湿熱条件下での基材接着性に優れ、初期の接着強度が高い樹脂組成物となる。具体的には、分子量分布(Mw/Mn)が2.0以上の場合、初期の接着強度が向上する。中でも、湿熱条件下での基材接着性により優れる樹脂組成物が得られる点で、分子量分布(Mw/Mn)は2.0〜10.0の範囲であることが特に好ましい。   The novel polyester polyurethane polyol preferably has a molecular weight distribution (Mw / Mn) in the range of 2.0 to 15. That is, when the molecular weight distribution (Mw / Mn) is within the above range, the effect of improving the adhesion to the substrate due to the low molecular weight component and the effect of increasing the strength of the cured product due to the high molecular weight component. Are exhibited simultaneously, so that the resin composition is excellent in base material adhesion under wet heat conditions and has high initial adhesive strength. Specifically, when the molecular weight distribution (Mw / Mn) is 2.0 or more, the initial adhesive strength is improved. Especially, it is especially preferable that molecular weight distribution (Mw / Mn) is the range of 2.0-10.0 at the point from which the resin composition which is excellent by the base-material adhesiveness in wet heat conditions is obtained.

更に、前記新規ポリエステルポリウレタンポリオールの数平均分子量(Mn)は、湿熱条件下での基材接着性に優れ、塗工に適した粘度の樹脂組成物となる点で、5,000〜50,000の範囲であることが好ましく、6,000〜30,000の範囲であることが特に好ましい。   Further, the number average molecular weight (Mn) of the novel polyester polyurethane polyol is 5,000 to 50,000 in that it is excellent in substrate adhesion under wet heat conditions and becomes a resin composition having a viscosity suitable for coating. It is preferable that it is the range of 6,000, and it is especially preferable that it is the range of 6,000-30,000.

尚、本願発明において、新規ポリエステルポリウレタンポリオールの重量平均分子量(Mw)及び数平均分子量(Mn)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定される値である。   In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the novel polyester polyurethane polyol are values measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 ;東ソー株式会社製 HLC−8220GPC
カラム ;東ソー株式会社製 TSK−GUARDCOLUMN SuperHZ−L
+東ソー株式会社製 TSK−GEL SuperHZM−M×4
検出器 ;RI(示差屈折計)
データ処理;東ソー株式会社製 マルチステーションGPC−8020modelII
測定条件 ;カラム温度 40℃
溶媒 テトラヒドロフラン
流速 0.35ml/分
標準 ;単分散ポリスチレン
試料 ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation
+ Tosoh Corporation TSK-GEL SuperHZM-M x 4
Detector: RI (differential refractometer)
Data processing: Multi-station GPC-8020 model II manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate: 0.35 ml / min Standard: Monodispersed polystyrene Sample: Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)

また、前記新規ポリエステルポリウレタンポリオールの水酸基価は、湿熱条件下での基材に対する接着性に優れる点で、2〜30mgKOH/gの範囲であることが好ましく、5〜20mgKOH/gの範囲であることがより好ましい。   Further, the hydroxyl value of the novel polyester polyurethane polyol is preferably in the range of 2 to 30 mgKOH / g, more preferably in the range of 5 to 20 mgKOH / g, in terms of excellent adhesion to the substrate under wet heat conditions. Is more preferable.

以上詳述した本発明の新規ポリエステルポリウレタンポリオールは、2液型ラミネート接着剤の主剤であるポリオール剤として有用であり、硬化剤と共に使用することができるが、前記新規ポリエステルポリウレタンポリオール(以下、これを「ポリエステルポリウレタンポリオール(A)」と表記する。)と、多官能エポキシ化合物(B)とを含有する樹脂組成物を2液型ラミネート接着剤の主剤として用いることが好ましい。即ち、前記ポリエステルポリウレタンポリオール(A)に加え、多官能エポキシ化合物(B)を併用することにより、接着層が吸湿した際に、該ポリエステルポリウレタンポリオール(A)の加水分解によって発生するカルボキシ基を前記多官能エポキシ化合物(B)中のエポキシ基が捕捉し、該接着層の耐湿熱性を一層向上させることができる。斯かる多官能エポキシ化合物(B)は、その数平均分子量(Mn)が300〜5,000の範囲である水酸基含有のエポキシ樹脂であることが好ましい。即ち、数平均分子量(Mn)が300以上の場合には、耐湿熱性に加え、基材に対する接着強度が一層良好なものとなる他、数平均分子量(Mn)が5,000以下の場合には、前記ポリエステルポリウレタンポリオール(A)との相溶性が良好なものとなる。これらのバランスに優れる点から、中でも、数平均分子量(Mn)が400〜2,000の範囲であるものがより好ましい。   The novel polyester polyurethane polyol of the present invention described in detail above is useful as a polyol agent which is a main component of a two-component laminate adhesive, and can be used together with a curing agent. It is preferable to use a resin composition containing “polyester polyurethane polyol (A)”) and a polyfunctional epoxy compound (B) as the main component of the two-component laminate adhesive. That is, by using the polyfunctional epoxy compound (B) in addition to the polyester polyurethane polyol (A), the carboxy group generated by hydrolysis of the polyester polyurethane polyol (A) when the adhesive layer absorbs moisture is added to the polyester polyurethane polyol (A). The epoxy group in the polyfunctional epoxy compound (B) is captured, and the heat-and-moisture resistance of the adhesive layer can be further improved. The polyfunctional epoxy compound (B) is preferably a hydroxyl group-containing epoxy resin having a number average molecular weight (Mn) in the range of 300 to 5,000. That is, when the number average molecular weight (Mn) is 300 or more, in addition to the heat and moisture resistance, the adhesion strength to the substrate is further improved, and when the number average molecular weight (Mn) is 5,000 or less. The compatibility with the polyester polyurethane polyol (A) will be good. From the viewpoint of excellent balance, those having a number average molecular weight (Mn) in the range of 400 to 2,000 are more preferable.

また、前記多官能エポキシ化合物(B)は、より硬化性に優れる樹脂組成物が得られることから、水酸基価が30〜160mgKOHの範囲であることが好ましく、50〜150mgKOH/gの範囲であることがより好ましい。   Moreover, since the polyfunctional epoxy compound (B) provides a resin composition with more excellent curability, the hydroxyl value is preferably in the range of 30 to 160 mgKOH, and in the range of 50 to 150 mgKOH / g. Is more preferable.

前記多官能エポキシ化合物(B)は、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂;ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂等のビフェニル型エポキシ樹脂;ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。これらの中でも、湿熱条件下での基材接着性及び初期の接着強度に優れる樹脂組成物が得られる点で、ビスフェノール型のエポキシ樹脂が好ましい。   The polyfunctional epoxy compound (B) is, for example, a bisphenol type epoxy resin such as a bisphenol A type epoxy resin or a bisphenol F type epoxy resin; a biphenyl type epoxy resin such as a biphenyl type epoxy resin or a tetramethylbiphenyl type epoxy resin; Examples include pentadiene-phenol addition reaction type epoxy resins. These may be used alone or in combination of two or more. Among these, a bisphenol type epoxy resin is preferable in that a resin composition excellent in base material adhesion under wet heat conditions and initial adhesive strength can be obtained.

更に、前記樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)及び多官能エポキシ化合物(B)と共に、更に、水酸基含有脂肪族ポリカーボネート(C)を併用することにより、硬化物の架橋密度を飛躍的に向上させることができ、基材接着性を更に高めることができる。   Furthermore, the resin composition can drastically increase the crosslinking density of the cured product by using the polyester polyurethane polyol (A) and the polyfunctional epoxy compound (B) together with a hydroxyl group-containing aliphatic polycarbonate (C). It is possible to improve the adhesion to the substrate.

ここで用いる水酸基含有脂肪族ポリカーボネート(C)は、数平均分子量(Mn)が5〜3,000の範囲にあるものが、水酸基濃度が適度に高くなり、硬化時における架橋密度の向上が顕著なものとなる点から好ましく、特に、数平均分子量(Mn)が800〜2,000の範囲であるものがより好ましい。なお、ここで、数平均分子量(Mn)の測定方法は、前記した新規ポリエステルポリウレタンポリオールにおけるGPC測定条件と同一条件にて測定される値である。   The hydroxyl group-containing aliphatic polycarbonate (C) used here has a number average molecular weight (Mn) in the range of 5 to 3,000. The hydroxyl group concentration is moderately high, and the crosslinking density during curing is significantly improved. The number average molecular weight (Mn) is particularly preferably in the range of 800 to 2,000. Here, the method for measuring the number average molecular weight (Mn) is a value measured under the same conditions as the GPC measurement conditions in the above-described novel polyester polyurethane polyol.

前記水酸基含有脂肪族ポリカーボネート(C)は、より硬化性に優れる樹脂組成物となる点で、水酸基価が20〜300mgKOH/gの範囲であること、特に40〜250mgKOH/gの範囲であることがより好ましい。また、湿熱条件下での基材接着性に優れる点で、ポリカーボネートジオールであることが好ましい。   The hydroxyl group-containing aliphatic polycarbonate (C) has a hydroxyl value in the range of 20 to 300 mgKOH / g, particularly in the range of 40 to 250 mgKOH / g, in that it becomes a resin composition with more excellent curability. More preferred. Moreover, it is preferable that it is polycarbonate diol at the point which is excellent in the base-material adhesiveness on wet heat conditions.

ここで、前記水酸基含有ポリカーボネート(C)は、例えば、多価アルコールとカルボニル化剤とを重縮合反応させる方法により製造することができる。   Here, the hydroxyl group-containing polycarbonate (C) can be produced, for example, by a method of polycondensation reaction between a polyhydric alcohol and a carbonylating agent.

前記水酸基含有ポリカーボネート(C)の製造で用いる多価アルコールは、例えば、前記した新規ポリエステルポリウレタンジオールの原料である分岐アルカンポリオール(i−1)又は非分岐アルカンジオール(i−2)としてあげた化合物が何れも使用できる。   Examples of the polyhydric alcohol used in the production of the hydroxyl group-containing polycarbonate (C) include the compounds mentioned as the branched alkane polyol (i-1) or unbranched alkane diol (i-2) as the raw material of the above-described novel polyester polyurethane diol. Can be used.

また、前記水酸基含有ポリカーボネート(C)の製造で用いるカルボニル化剤は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジフェニルカーボネート等を挙げることができる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。   Examples of the carbonylating agent used in the production of the hydroxyl group-containing polycarbonate (C) include ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, diphenyl carbonate and the like. These may be used alone or in combination of two or more.

本発明の樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)と、前記多官能エポキシ化合物(B)と、前記水酸基含有ポリカーボネート樹脂(C)とを、前記ポリエステルポリウレタンポリオール(A)100質量部に対し、前記多官能エポキシ化合物(B)が5〜20質量部の範囲となる割合であって、かつ、前記ポリカーボネート樹脂(C)が5〜20質量部の範囲となる割合で含有することにより、種々の基材に対する接着性に優れ、湿熱条件下であっても高い基材接着性を維持できる樹脂組成物となる点から好ましい。   The resin composition of the present invention comprises the polyester polyurethane polyol (A), the polyfunctional epoxy compound (B), and the hydroxyl group-containing polycarbonate resin (C) with respect to 100 parts by mass of the polyester polyurethane polyol (A). When the polyfunctional epoxy compound (B) is contained in a proportion in the range of 5 to 20 parts by mass and the polycarbonate resin (C) is contained in a proportion in the range of 5 to 20 parts by mass, It is preferable from the viewpoint that the resin composition is excellent in adhesion to the substrate and can maintain high substrate adhesion even under wet heat conditions.

本発明の樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)、前記多官能エポキシ化合物(B)、及び前記水酸基含有ポリカーボネート樹脂(C)の他の水酸基含有化合物を含有していても良い。このような水酸基含有化合物は、例えば、多塩基酸と多価アルコールとを反応させて得られるポリエステルポリオール、多塩基酸、多価アルコール及びポリイソシアネートを反応させて得られる数平均分子量(Mw)が25,000未満のポリエステルポリウレタンポリオール、二塩基酸、ジオール及びジイソシアネートを反応させて得られる直鎖型のポリエステルポリウレタンポリオール、ポリオキシエチレングリコール、ポリオキシプロピレングリコール等のエーテルグリコール、ビスフェノールA、ビスフェノールF等のビスフェノール、前記ビスフェノールにエチレンオキサイド、プロプレンオキサイド等を付加して得られるビスフェノールのアルキレンオキサイド付加物等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。   The resin composition of the present invention may contain other hydroxyl group-containing compounds of the polyester polyurethane polyol (A), the polyfunctional epoxy compound (B), and the hydroxyl group-containing polycarbonate resin (C). Such a hydroxyl group-containing compound has, for example, a number average molecular weight (Mw) obtained by reacting a polyester polyol, polybasic acid, polyhydric alcohol and polyisocyanate obtained by reacting a polybasic acid with a polyhydric alcohol. Polyester polyurethane polyols less than 25,000, linear polyester polyurethane polyols obtained by reacting dibasic acids, diols and diisocyanates, ether glycols such as polyoxyethylene glycol and polyoxypropylene glycol, bisphenol A, bisphenol F, etc. Bisphenol, and alkylene oxide adducts of bisphenol obtained by adding ethylene oxide, propylene oxide and the like to the bisphenol. These may be used alone or in combination of two or more.

本発明の樹脂組成物が、前記ポリエステルポリウレタンポリオール(A)、前記多官能エポキシ化合物(B)、及び前記水酸基含有ポリカーボネート樹脂(C)の他の水酸基含有化合物を含有する場合、種々の基材に対する接着性に優れ、湿熱条件下であっても高い基材接着性を維持できる樹脂組成物が得られることから、その含有量は、前記ポリエステルポリウレタンポリオール(A)100質量部に対し、5〜20質量部の範囲となる割合であることが好ましい。   When the resin composition of the present invention contains the polyester polyurethane polyol (A), the polyfunctional epoxy compound (B), and other hydroxyl group-containing compounds of the hydroxyl group-containing polycarbonate resin (C), various kinds of substrates are used. Since the resin composition which is excellent in adhesiveness and can maintain high base-material adhesiveness even under wet heat conditions is obtained, the content thereof is 5 to 20 with respect to 100 parts by mass of the polyester polyurethane polyol (A). It is preferable that it is the ratio used as the range of a mass part.

本発明の硬化性樹脂組成物は、前記ポリエステルポリウレタンポリオール(A)を含む2液型ラミネート接着剤用ポリオール剤、又は、前記(A)〜(C)の各成分を含む樹脂組成物を主剤として用い、かつ、その硬化剤として、脂肪族ポリイソシアネート(D)を用いるものである。   The curable resin composition of the present invention is mainly composed of a polyol composition for a two-component laminate adhesive containing the polyester polyurethane polyol (A) or a resin composition containing the components (A) to (C). The aliphatic polyisocyanate (D) is used as the curing agent.

該脂肪族ポリイソシアネート(D)は、例えば、前記脂肪族多官能イソシアネート化合物(ii)として列記した種々のポリイソシアネートが挙げられる。これらポリイソシアネート(D)は一種類を単独で用いても良いし、二種類以上を併用しても良い。   Examples of the aliphatic polyisocyanate (D) include various polyisocyanates listed as the aliphatic polyfunctional isocyanate compound (ii). These polyisocyanate (D) may be used individually by 1 type, and may use 2 or more types together.

これら脂肪族ポリイソシアネート(D)の中でも、湿熱条件下での基材密着性に優れる点では、前記ヌレート型ポリイソシアネート化合物が好ましい。   Among these aliphatic polyisocyanates (D), the nurate type polyisocyanate compound is preferable in terms of excellent substrate adhesion under wet heat conditions.

本発明において、前記脂肪族ポリイソシアネート(D)の配合割合は、より硬化性に優れる硬化性樹脂組成物となることから、前記ポリエステルポリウレタンポリオール(A)、前記エポキシ化合物(B)及び前記水酸基含有ポリカーボネート樹脂(C)に含まれる水酸基の合計モル数[OH]と、前記脂肪族ポリイソシアネート(D)に含まれるイソシアネート基のモル数[NCO]との比[OH]/[NCO]が、1/1〜1/2の範囲であることが好ましく、1/1.05〜1/1.5の範囲であることがより好ましい。   In the present invention, since the blending ratio of the aliphatic polyisocyanate (D) becomes a curable resin composition having more excellent curability, the polyester polyurethane polyol (A), the epoxy compound (B), and the hydroxyl group-containing The ratio [OH] / [NCO] between the total number of moles [OH] of hydroxyl groups contained in the polycarbonate resin (C) and the number of moles [NCO] of isocyanate groups contained in the aliphatic polyisocyanate (D) is 1 The range is preferably from 1/1 to 1/2, and more preferably from 1 / 1.05 to 1 / 1.5.

また、主剤として用いる前記した樹脂組成物が、前記ポリエステルポリウレタンポリオール(A)、前記多官能エポキシ化合物(B)、及び前記水酸基含有ポリカーボネート(C)の他の水酸基含有化合物を含有する場合、前記脂肪族ポリイソシアネート(D)の配合割合は、前記硬化性樹脂組成物における水酸基の合計モル数[OH]と、前記ポリイソシアネート化合物(D)に含まれるイソシアネート基のモル数[NCO]との比[OH]/[NCO]は、1/1〜1/2の範囲であることが好ましく、1/1.05〜1/1.5の範囲であることがより好ましい。   Moreover, when the above-mentioned resin composition used as a main ingredient contains the said polyester polyurethane polyol (A), the said polyfunctional epoxy compound (B), and the other hydroxyl-containing compound of the said hydroxyl-containing polycarbonate (C), the said fat The mixing ratio of the group polyisocyanate (D) is a ratio of the total number of moles [OH] of hydroxyl groups in the curable resin composition to the number of moles [NCO] of isocyanate groups contained in the polyisocyanate compound (D) [ OH] / [NCO] is preferably in the range of 1/1 to 1/2, and more preferably in the range of 1 / 1.05 to 1 / 1.5.

本願発明の硬化性樹脂組成物は、更に、各種の溶剤を含有していても良い。前記溶媒は、例えば、例えば、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン等のケトン系化合物、テトラヒドロフラン(THF)、ジオキソラン等の環状エーテル系化合物、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル系化合物、トルエン、キシレン等の芳香族系化合物、カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール系化合物が挙げられる。これらは単独で使用しても二種類以上を併用しても良い。   The curable resin composition of the present invention may further contain various solvents. Examples of the solvent include ketone compounds such as acetone, methyl ethyl ketone (MEK) and methyl isobutyl ketone, cyclic ether compounds such as tetrahydrofuran (THF) and dioxolane, and ester compounds such as methyl acetate, ethyl acetate and butyl acetate. Aromatic compounds such as toluene and xylene, and alcohol compounds such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether. These may be used alone or in combination of two or more.

本発明の硬化性樹脂組成物は、更に、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤等の各種添加剤を含有しても良い。   The curable resin composition of the present invention further includes various additives such as an ultraviolet absorber, an antioxidant, a silicon-based additive, a fluorine-based additive, a rheology control agent, a defoaming agent, an antistatic agent, and an antifogging agent. May be contained.

本願発明の硬化性樹脂組成物は、種々のプラスチックフィルムを接着する為の2液型ラミネート用接着剤として有用である。   The curable resin composition of the present invention is useful as a two-component laminating adhesive for bonding various plastic films.

ここで貼り合わせに用いられるプラスチックフィルムは、例えば、ポリカーボネート、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ樹脂、メラミン樹脂、トリアセチルセルロース樹脂、ポリビニルアルコール、ABS樹脂、ノルボルネン系樹脂、環状オレフィン系樹脂、ポリイミド樹脂、ポリフッ化ビニル樹脂、ポリフッ化ビニリデン樹脂等からなるフィルムが挙げられる。本願発明の2液型ラミネート用接着剤は、上記各種フィルムの中でも特に接着が難しいポリフッ化ビニル樹脂やポリフッ化ビニリデン樹脂からなるフィルムに対しても高い接着性を示す。   The plastic film used for bonding here is, for example, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cellulose resin, polyvinyl alcohol, ABS resin, norbornene resin, cyclic Examples include films made of olefin-based resins, polyimide resins, polyvinyl fluoride resins, polyvinylidene fluoride resins, and the like. The two-pack type laminating adhesive of the present invention exhibits high adhesion to films made of polyvinyl fluoride resin or polyvinylidene fluoride resin, which are particularly difficult to bond among the various films.

前記各種フィルム同士を接着する際、本願発明の2液型ラミネート用接着剤の使用量は、2〜50g/mの範囲であることが好ましい。 When bonding the various films, the amount of the two-component laminating adhesive of the present invention is preferably in the range of 2 to 50 g / m 2 .

本願発明の2液型ラミネート用接着剤を用い、複数のフィルムを接着して得られる積層フィルムは、湿熱条件下でも高い接着性を有し、フィルム同士が剥がれ難いという特徴がある。従って、本願発明の2液型ラミネート用接着剤は、屋外等の厳しい環境下で用いる積層フィルム用途に好適に用いることができ、前記した通り、とりわけ太陽電池のバックシートを製造する際の接着剤として好ましく用いることができる。   A laminated film obtained by adhering a plurality of films using the two-component laminating adhesive of the present invention has a feature that it has high adhesiveness even under wet heat conditions, and the films are difficult to peel off. Therefore, the two-pack type laminating adhesive of the present invention can be suitably used for laminated film applications used in harsh environments such as outdoors, and as described above, the adhesive particularly used for producing a solar cell backsheet. Can be preferably used.

本発明の2液型ラミネート用接着剤を用い、太陽電池バックシートを製造する方法は、例えば、プラスチックフィルムに本発明の2液型ラミネート用接着剤を塗工し、次いで、この硬化性樹脂組成物層に他のプラスチック基材を重ねた後、25〜80℃の温度条件にて硬化させシート成形体を得る方法が挙げられる。   A method for producing a solar battery backsheet using the two-component laminating adhesive of the present invention includes, for example, applying the two-component laminating adhesive of the present invention to a plastic film and then applying this curable resin composition. A method in which another plastic substrate is overlaid on the physical layer and then cured under a temperature condition of 25 to 80 ° C. to obtain a sheet molded body can be mentioned.

ここで、本発明の2液型ラミネート用接着剤をプラスチックフィルムに塗工する装置としては、コンマコーター、ロールナイフコーター、ダイコーター、ロールコーター、バーコーター、グラビアロールコーター、リバースロールコーター、ブレードコーター、グラビアコーター、マイクログラビアコーター等が挙げられる。また、プラスチック基材への前記2液型ラミネート用接着剤の塗布量は、乾燥膜厚で1〜50μm程度であることが好ましい。   Here, as an apparatus for applying the two-component laminating adhesive of the present invention to a plastic film, a comma coater, roll knife coater, die coater, roll coater, bar coater, gravure roll coater, reverse roll coater, blade coater , Gravure coater, micro gravure coater and the like. The amount of the two-component laminating adhesive applied to the plastic substrate is preferably about 1 to 50 μm in terms of dry film thickness.

上記したプラスチックフィルムおよび接着剤層は複数存在してもよい。また、プラスチックフィルムの表面に金属蒸着膜等のガスバリア層を設け、その上に前記2液型ラミネート用接着剤を塗工、もう一つのプラスチックフィルムをラミネートする構造であってもよい。更に、太陽電池素子を封止する封止材料との接着性を向上させるため、該太陽電池用バックシートの封止材側表面には易接着層が設けられていてもよい。この易接着層は易接着層の表面に凹凸を形成でき、密着性を向上させる為にTiO、SiO、CaCO、SnO、ZrOおよびMgCO等の金属微粒子とバインダーとから構成されるものであることが好ましい。 There may be a plurality of the above-described plastic film and adhesive layer. Further, a structure may be employed in which a gas barrier layer such as a metal vapor deposition film is provided on the surface of the plastic film, the two-component laminating adhesive is applied thereon, and another plastic film is laminated. Furthermore, in order to improve adhesiveness with the sealing material which seals a solar cell element, the easily bonding layer may be provided in the sealing material side surface of this solar cell backsheet. This easy-adhesion layer can form irregularities on the surface of the easy-adhesion layer, and is composed of fine metal particles such as TiO 2 , SiO 2 , CaCO 3 , SnO 2 , ZrO 2 and MgCO 3 and a binder in order to improve adhesion. It is preferable that it is a thing.

また、本名発明の太陽電池用バックシートにおける接着層の厚さは、1以上50μmの範囲であること、特に5〜15μmの範囲であることが好ましい。   Further, the thickness of the adhesive layer in the solar cell backsheet of the present invention is preferably in the range of 1 to 50 μm, particularly preferably in the range of 5 to 15 μm.

また、斯かる太陽電池用バックシートを用いてなる太陽電池モジュールは、カバーガラス板上にエチレン酢酸ビニル樹脂(EVA)シート、複数の太陽電池セル、エチレン酢酸ビニル樹脂(EVA)シート、本発明のバックシートを配設し、真空排気しながら加熱、EVAシートが溶解して太陽電池素子を封止することによって製造することができる。この際、複数の太陽電池素子はインターコネクタにより直列に接合されている。
ここで、太陽電池素子としては、例えば、単結晶シリコン系太陽電池素子、多結晶シリコン系太陽電池素子、シングル接合型、またはタンデム構造型等で構成されるアモルファスシリコン系太陽電池素子、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII−V族化合物半導体太陽電池素子、カドミウムテルル(CdTe)等のII−VI族化合物半導体太陽電池素子、銅/インジウム/セレン系(CIS系)、銅/インジウム/ガリウム/セレン系(CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(CIGSS系)等のI−III−VI族化合物半導体太陽電池素子、色素増感型太陽電池素子、有機太陽電池素子等が挙げられる。
In addition, a solar cell module using such a back sheet for a solar cell includes an ethylene vinyl acetate resin (EVA) sheet, a plurality of solar cells, an ethylene vinyl acetate resin (EVA) sheet on the cover glass plate, It can be manufactured by disposing a back sheet, heating while evacuating, and melting the EVA sheet to seal the solar cell element. At this time, the plurality of solar cell elements are joined in series by the interconnector.
Here, as the solar cell element, for example, a single-crystal silicon-based solar cell element, a polycrystalline silicon-based solar cell element, an amorphous silicon-based solar cell element composed of a single junction type or a tandem structure type, gallium arsenide ( III-V compound semiconductor solar cell elements such as GaAs) and indium phosphide (InP), II-VI compound semiconductor solar cell elements such as cadmium tellurium (CdTe), copper / indium / selenium (CIS), copper / Indium / gallium / selenium-based (CIGS-based), copper / indium / gallium / selenium / sulfur-based (CIGSS-based) I-III-VI group compound semiconductor solar cell elements, dye-sensitized solar cell elements, organic solar cells An element etc. are mentioned.

以下に本発明を具体的な合成例、実施例を挙げてより詳細に説明するが、本発明はこれら実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to specific synthesis examples and examples, but the present invention is not limited to these examples.

尚、本願実施例では、数平均分子量(Mn)及び重量平均分子量(Mw)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定した。   In Examples of the present application, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were measured by gel permeation chromatography (GPC) under the following conditions.

測定装置 ;東ソー株式会社製 HLC−8220GPC
カラム ;東ソー株式会社製 TSK−GUARDCOLUMN SuperHZ−L
+東ソー株式会社製 TSK−GEL SuperHZM−M×4
検出器 ;RI(示差屈折計)
データ処理;東ソー株式会社製 マルチステーションGPC−8020modelII
測定条件 ;カラム温度 40℃
溶媒 テトラヒドロフラン
流速 0.35ml/分
標準 ;単分散ポリスチレン
試料 ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
Measuring device: HLC-8220GPC manufactured by Tosoh Corporation
Column: TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation
+ Tosoh Corporation TSK-GEL SuperHZM-M x 4
Detector: RI (differential refractometer)
Data processing: Multi-station GPC-8020 model II manufactured by Tosoh Corporation
Measurement conditions: Column temperature 40 ° C
Solvent tetrahydrofuran
Flow rate: 0.35 ml / min Standard: Monodispersed polystyrene Sample: Filtered 0.2% by mass tetrahydrofuran solution in terms of resin solids with a microfilter (100 μl)

また、赤外線吸収スペクトルは、ポリエステルポリウレタンポリオール(A1)の溶液をKBr板に塗装し、溶剤を揮発させた試料を作成し、これを測定した。   The infrared absorption spectrum was measured by coating a solution of polyester polyurethane polyol (A1) on a KBr plate to prepare a sample in which the solvent was volatilized.

実施例1〔ポリエステルポリウレタンポリオール(A1)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール471.6質量部、アジピン酸510.5質量部及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)0.6質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が2.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80質量%に希釈しポリエステルジオールの酢酸エチル溶液を得た。得られたポリエステルジオールの水酸基価は、117mgKOH/gであった。
Example 1 [Synthesis of Polyester Polyurethane Polyol (A1)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 471.6 parts by mass of neopentyl glycol, 510.5 parts by mass of adipic acid and titanium (di-i-propoxide) bis (acetylacetonate) (Matsumoto Fine Chemical Co., Ltd.) 0.6 parts by mass of “Orgachix TC-100” manufactured by the company was charged, and dry nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 2.0 mgKOH / g or less, and after cooling to 100 ° C., the mixture was diluted with ethyl acetate to a solid content of 80% by mass to obtain an ethyl acetate solution of polyester diol. The obtained polyester diol had a hydroxyl value of 117 mgKOH / g.

次いで、このポリエステルジオールの酢酸エチル溶液(ポリエステルポリオールの固形分765.0質量部)に、1,6−ヘキサンジオール90.2質量部、イソホロンジイソシアネート343.1質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70〜80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量11000、重量平均分子量29000、分子量分布(Mw/Mn)が2.6で、水酸基価が8のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分60質量%の樹脂溶液をポリエステルポリウレタンポリオール(A1)とする。   Next, 90.2 parts by mass of 1,6-hexanediol and 343.1 parts by mass of isophorone diisocyanate were charged into the ethyl acetate solution of the polyester diol (solid content of polyester polyol 765.0 parts by mass), and dry nitrogen was introduced into the flask. The mixture was heated to 70 to 80 ° C. with stirring and subjected to urethanization reaction. The reaction was stopped when the isocyanate content became 0.3% or less, and a polyester polyurethane polyol having a number average molecular weight of 11,000, a weight average molecular weight of 29000, a molecular weight distribution (Mw / Mn) of 2.6, and a hydroxyl value of 8 was obtained. It was. A resin solution having a solid content of 60% by mass obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A1).

実施例2〔ポリエステルポリウレタンポリオール(A2)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール428.7質量部、トリメチロールプロパン5.0質量部、アジピン酸464.1質量部、及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)0.6質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が2.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80質量%に希釈しポリエステルジオールの酢酸エチル溶液を得た。得られたポリエステルジオールの水酸基価は120mgKOH/gであった。
Example 2 [Synthesis of Polyester Polyurethane Polyol (A2)]
In a flask having a stirring bar, a temperature sensor, and a rectifying tube, 428.7 parts by mass of neopentyl glycol, 5.0 parts by mass of trimethylolpropane, 464.1 parts by mass of adipic acid, and titanium (di-i-propoxide) Charge 0.6 parts by mass of bis (acetylacetonate) (Matsumoto Fine Chemical Co., Ltd. “Orgatechs TC-100”), flow dry nitrogen into the flask and heat to 230-250 ° C. with stirring to conduct the esterification reaction. went. The reaction was stopped when the acid value became 2.0 mgKOH / g or less, and after cooling to 100 ° C., the mixture was diluted with ethyl acetate to a solid content of 80% by mass to obtain an ethyl acetate solution of polyester diol. The obtained polyester diol had a hydroxyl value of 120 mgKOH / g.

次いで、このポリエステルジオールの酢酸エチル溶液(ポリエステルポリオールの固形分760.3質量部)に、1,6−ヘキサンジオール83.7質量部、イソホロンジイソシアネート343.1質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70〜80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3質量%以下となったところで反応を停止し、数平均分子量9000、重量平均分子量42000、分子量分布(Mw/Mn)が4.7で、水酸基価が10のポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分60%の樹脂溶液をポリエステルポリウレタンポリオール(A2)とする。   Next, 83.7 parts by mass of 1,6-hexanediol and 343.1 parts by mass of isophorone diisocyanate were charged into this ethyl acetate solution of polyester diol (polyester polyol solid content 760.3 parts by mass), and dry nitrogen was introduced into the flask. The mixture was heated to 70 to 80 ° C. with stirring and subjected to urethanization reaction. The reaction was stopped when the isocyanate content became 0.3% by mass or less, and a polyester polyurethane polyol having a number average molecular weight of 9000, a weight average molecular weight of 42000, a molecular weight distribution (Mw / Mn) of 4.7, and a hydroxyl value of 10 was obtained. Obtained. A resin solution having a solid content of 60% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (A2).

比較例1〔ポリエステルポリオール(a1)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール371.0部、エチレングリコール556.5質量部、セバシン酸927.5質量部、イソフタル酸1298.6質量部及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)1.0質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分60%に希釈した。この合成方法により、数平均分子量が23000、重量平均分子量が75000、分子量分布(Mw/Mn)が3.3で、水酸基価が13mgKOH/gのポリエステルポリオールを得た。この樹脂溶液をポリエステルポリオール(a1)とする。
Comparative Example 1 [Synthesis of Polyester Polyol (a1)]
In a flask having a stirring bar, a temperature sensor, and a rectifying tube, 371.0 parts of neopentyl glycol, 556.5 parts by weight of ethylene glycol, 927.5 parts by weight of sebacic acid, 1298.6 parts by weight of isophthalic acid, and titanium (di- i-propoxide) bis (acetylacetonate) ("Orgachix TC-100" manufactured by Matsumoto Fine Chemical Co., Ltd.) 1.0 part by mass, heated to 230-250 ° C while stirring and flowing dry nitrogen into the flask Then, esterification reaction was performed. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 60% solid content with ethyl acetate. By this synthesis method, a polyester polyol having a number average molecular weight of 23,000, a weight average molecular weight of 75,000, a molecular weight distribution (Mw / Mn) of 3.3, and a hydroxyl value of 13 mgKOH / g was obtained. This resin solution is designated as polyester polyol (a1).

比較例2〔ポリエステルポリウレタンポリオール(a2)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール382.1部、エチレングリコール573.1質量部、セバシン酸859.7質量部、イソフタル酸1337.3質量部及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)1.0質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が1.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分80%に希釈した。次いで、イソホロンジイソシアネート129.0部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら70〜80℃に加熱しウレタン化反応を行った。イソシアネート含有率0.3%以下となったところで反応を停止し、数平均分子量12000、重量平均分子量37000、分子量分布(Mw/Mn)が3.1で、水酸基価が14mgKOH/gのポリエステルポリウレタンポリオールを得た。これを酢酸エチルで希釈して得られた固形分60%の樹脂溶液をポリエステルポリウレタンポリオール(a2)とする。
Comparative Example 2 [Synthesis of Polyester Polyurethane Polyol (a2)]
In a flask having a stir bar, temperature sensor, and rectifying tube, 382.1 parts neopentyl glycol, 573.1 parts by weight ethylene glycol, 859.7 parts by weight sebacic acid, 1337.3 parts by weight isophthalic acid, and titanium (di- i-propoxide) bis (acetylacetonate) ("Orgachix TC-100" manufactured by Matsumoto Fine Chemical Co., Ltd.) 1.0 part by mass, heated to 230-250 ° C while stirring and flowing dry nitrogen into the flask Then, esterification reaction was performed. The reaction was stopped when the acid value became 1.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 80% solid content with ethyl acetate. Next, 129.0 parts of isophorone diisocyanate was charged, and dry nitrogen was allowed to flow into the flask and heated to 70 to 80 ° C. with stirring to conduct a urethanization reaction. The reaction was stopped when the isocyanate content was 0.3% or less, and the polyester polyurethane polyol had a number average molecular weight of 12,000, a weight average molecular weight of 37,000, a molecular weight distribution (Mw / Mn) of 3.1, and a hydroxyl value of 14 mgKOH / g. Got. A resin solution having a solid content of 60% obtained by diluting this with ethyl acetate is designated as polyester polyurethane polyol (a2).

比較例3 〔ポリエステルポリオール(a3)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール514.3質量部、1,6−ヘキサンジオール291.7質量部、アジピン酸1053.0質量部及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)0.8質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が2.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分60%に希釈した。この合成方法により、数平均分子量が9000、重量平均分子量が22000、分子量分布(Mw/Mn)が2.4で、水酸基価が14mgKOH/gのポリエステルポリオールを得た。この樹脂溶液をポリエステルポリオール(a3)とする。
Comparative Example 3 [Synthesis of Polyester Polyol (a3)]
In a flask having a stirring bar, a temperature sensor, and a rectifying tube, 514.3 parts by mass of neopentyl glycol, 291.7 parts by mass of 1,6-hexanediol, 1053.0 parts by mass of adipic acid and titanium (di-i-propoxy E) 0.8 parts by weight of bis (acetylacetonate) (Matsumoto Fine Chemical Co., Ltd. “Orgatics TC-100”) was charged, and dry nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to perform esterification. Reaction was performed. The reaction was stopped when the acid value became 2.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 60% solid content with ethyl acetate. By this synthesis method, a polyester polyol having a number average molecular weight of 9000, a weight average molecular weight of 22000, a molecular weight distribution (Mw / Mn) of 2.4, and a hydroxyl value of 14 mgKOH / g was obtained. This resin solution is designated as polyester polyol (a3).

比較例4 〔ポリエステルポリオール(a4)の合成〕
攪拌棒、温度センサー、精留管を有するフラスコに、ネオペンチルグリコール560.0質量部、エチレングリコール400.0質量部、1,6−ヘキサンジオール100.0質量部、イソフタル酸136.0質量部、セバシン酸580.0質量部、無水フタル酸1290.0質量部及びチタン(ジ-i-プロポキシド)ビス(アセチルアセトナート)(マツモトファインケミカル株式会社製「オルガチックスTC−100」)1.0質量部を仕込み、乾燥窒素をフラスコ内にフローさせ攪拌しながら230〜250℃に加熱しエステル化反応を行った。酸価が2.0mgKOH/g以下となったところで反応を停止し、100℃まで冷却後、酢酸エチルで固形分60%に希釈した。この合成方法により、数平均分子量が14000、重量平均分子量が38000、分子量分布(Mw/Mn)が2.7で、水酸基価が12mgKOH/gのポリエステルポリオールを得た。この樹脂溶液をポリエステルポリオール(a4)とする。
Comparative Example 4 [Synthesis of Polyester Polyol (a4)]
In a flask having a stirring bar, a temperature sensor, and a rectifying tube, 560.0 parts by mass of neopentyl glycol, 400.0 parts by mass of ethylene glycol, 100.0 parts by mass of 1,6-hexanediol, 136.0 parts by mass of isophthalic acid , 580.0 parts by mass of sebacic acid, 1290.0 parts by mass of phthalic anhydride, and titanium (di-i-propoxide) bis (acetylacetonate) ("Orgatics TC-100" manufactured by Matsumoto Fine Chemical Co., Ltd.) 1.0 A mass part was charged, dry nitrogen was flowed into the flask and heated to 230 to 250 ° C. with stirring to conduct an esterification reaction. The reaction was stopped when the acid value became 2.0 mgKOH / g or less, cooled to 100 ° C., and diluted to 60% solid content with ethyl acetate. By this synthesis method, a polyester polyol having a number average molecular weight of 14,000, a weight average molecular weight of 38000, a molecular weight distribution (Mw / Mn) of 2.7, and a hydroxyl value of 12 mgKOH / g was obtained. This resin solution is designated as polyester polyol (a4).

実施例3〜9及び比較例5〜7
表1又は表2の配合組成に従い、接着剤主剤を調製し、次いで、表1、表2に示す配合に従い、得られた接着剤主剤と、硬化剤を一括混合して硬化性樹脂組成物を調整した。尚、表中の主剤配合量は固形分質量部である。硬化剤の配合量は、主剤固形分100質量部に対する固形分質量である。
Examples 3-9 and Comparative Examples 5-7
According to the composition of Table 1 or Table 2, the adhesive main agent is prepared, and then, according to the formulations shown in Table 1 and Table 2, the obtained adhesive main agent and the curing agent are mixed together to obtain a curable resin composition. It was adjusted. In addition, the main ingredient compounding quantity in a table | surface is a solid content mass part. The compounding quantity of a hardening | curing agent is solid content mass with respect to 100 mass parts of main ingredient solid content.

(評価サンプルの調製)
評価サンプル(A)(耐変色性評価サンプル)
30μm厚のアルミ箔(東洋アルミ製 「A1N30H-O」)を基材として用い、各実施例及び比較例で得られた硬化性樹脂組成物を5〜6g/m2(乾燥質量)に塗装して、貼合用フィルムとして25μm厚のフッ素フィルム(旭硝子株式会社製「アフレックス25PW」)を貼合して積層フィルムを得た。これを50℃、72時間、エージングした後評価用サンプル(A)を得た。
(Preparation of evaluation sample)
Evaluation sample (A) (discoloration resistance evaluation sample)
Using a 30 μm thick aluminum foil (“A1N30H-O” manufactured by Toyo Aluminum Co., Ltd.) as a base material, the curable resin composition obtained in each Example and Comparative Example was applied to 5 to 6 g / m 2 (dry mass). As a bonding film, a 25 μm-thick fluorine film (“Aflex 25PW” manufactured by Asahi Glass Co., Ltd.) was bonded to obtain a laminated film. After aging this at 50 ° C. for 72 hours, an evaluation sample (A) was obtained.

評価サンプル(B)(耐湿熱性評価サンプル)
125μm厚のPETフィルム(東レ(株)「X10S」)を基材として用い、各実施例及び比較例で得られた硬化性樹脂組成物を5〜6g/m2(乾燥質量)に塗装して、貼合用フィルムとして25μm厚のフッ素フィルム(旭硝子株式会社製「アフレックス25PW」)を貼合して積層フィルムを得た。これを50℃、72時間、エージングした後評価用サンプル(B)を得た。
Evaluation sample (B) (Moisture and heat resistance evaluation sample)
Using a 125 μm thick PET film (Toray Co., Ltd. “X10S”) as a base material, the curable resin compositions obtained in each Example and Comparative Example were applied to 5 to 6 g / m 2 (dry mass), A laminating film was obtained by laminating a 25 μm-thick fluorine film (“Aflex 25PW” manufactured by Asahi Glass Co., Ltd.) as a laminating film. After aging this at 50 ° C. for 72 hours, an evaluation sample (B) was obtained.

(評価サンプル(A)の評価方法:耐変色性)
前記評価サンプル(B)を、引っ張り試験機(SHIMADZU社製「AGS500NG」)を用い、剥離速度300mm/min、N/15mmの条件下でT型剥離試験を行い、その初期の接着強度を評価した。この初期の接着強度に対する、フッ素フィルム側より100mW/cmの紫外線を100時間照射した後の接着力の保持率と、塗膜の黄変性を評価した。
(Evaluation method of evaluation sample (A): Discoloration resistance)
Using the tensile tester (“AGS500NG” manufactured by SHIMADZU), the evaluation sample (B) was subjected to a T-type peel test under conditions of a peel rate of 300 mm / min and N / 15 mm, and the initial adhesive strength was evaluated. . With respect to the initial adhesive strength, the adhesive strength retention after irradiation with 100 mW / cm 2 ultraviolet rays from the fluorine film side for 100 hours and the yellowing of the coating film were evaluated.

(評価サンプル(B)の評価方法:耐湿熱性)
前記評価サンプル(A)を、引っ張り試験機(SHIMADZU社製「AGS500NG」)を用い、剥離速度300mm/min、N/15mmの条件下でT型剥離試験を行い、その強度を接着力として評価した。評価サンプル(A)の初期の接着力と、121℃、湿度100%環境下で25時間、50時間、75時間暴露した後のそれぞれのサンプルの接着力を測定した。
(Evaluation method of evaluation sample (B): heat and humidity resistance)
The evaluation sample (A) was subjected to a T-type peel test using a tensile tester (“AGS500NG” manufactured by SHIMADZU) under the conditions of a peel rate of 300 mm / min and N / 15 mm, and the strength was evaluated as adhesive strength. . The initial adhesive strength of the evaluation sample (A) and the adhesive strength of each sample after exposure for 25 hours, 50 hours, and 75 hours in an environment of 121 ° C. and 100% humidity were measured.

Figure 2015003950
Figure 2015003950

Figure 2015003950
Figure 2015003950

本発明の実施例及び比較例で用いたエポキシ樹脂(B)を以下に示す。
・エポキシ樹脂(B1):水素化ビスフェノールAエポキシ樹脂(三菱化学社製「YX8034」、分子量約470)
・エポキシ樹脂(B2):数平均分子量(Mn)470、エポキシ当量245g/eq、水酸基価54mgKOH/gのビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン860」)
・ポリカーボネート樹脂(C):数平均分子量(Mn)1,000、水酸基価110mgKOH/gのポリカーボネートジオール(ダイセル化学社製「プラクセルCD210」)
・硬化剤(D):ヘキサメチレンジイソシアネートのヌレート変性体(住友バイエルウレタン社製「スミジュールN3300」)
The epoxy resin (B) used in Examples and Comparative Examples of the present invention is shown below.
Epoxy resin (B1): Hydrogenated bisphenol A epoxy resin (“YX8034” manufactured by Mitsubishi Chemical Corporation, molecular weight of about 470)
Epoxy resin (B2): bisphenol A type epoxy resin (“Epiclon 860” manufactured by DIC Corporation) having a number average molecular weight (Mn) of 470, an epoxy equivalent of 245 g / eq, and a hydroxyl value of 54 mgKOH / g
Polycarbonate resin (C): polycarbonate diol having a number average molecular weight (Mn) of 1,000 and a hydroxyl value of 110 mgKOH / g (“Placcel CD210” manufactured by Daicel Chemical Industries)
Curing agent (D): Nurate-modified product of hexamethylene diisocyanate (“Sumijour N3300” manufactured by Sumitomo Bayer Urethane Co., Ltd.)

尚、上記エポキシ樹脂(B2)の水酸基価は、該エポキシ樹脂(B2)中に存在する重合度の異なるエポキシ樹脂の存在比率をGPCにて測定し、該存在比率と、各重合度のエポキシ樹脂の理論水酸基価との値から算出した値である。   The hydroxyl value of the epoxy resin (B2) is determined by measuring the abundance ratio of epoxy resins having different degrees of polymerization present in the epoxy resin (B2) by GPC. This is a value calculated from the value of the theoretical hydroxyl value.

Claims (11)

分岐アルキレンポリオールと脂肪族ジカルボン酸又はそのアルキルエステルとを反応させて得られる脂肪族ポリエステルポリオール(i)と、脂肪族多官能イソシアネート化合物(ii)と、炭素原子数2〜13の脂肪族ジオール(iii)とを反応させて得られる樹脂構造を有することを特徴とする新規ポリエステルポリウレタンポリオール。 An aliphatic polyester polyol (i) obtained by reacting a branched alkylene polyol with an aliphatic dicarboxylic acid or an alkyl ester thereof, an aliphatic polyfunctional isocyanate compound (ii), an aliphatic diol having 2 to 13 carbon atoms ( A novel polyester polyurethane polyol having a resin structure obtained by reacting with iii). 脂肪族ポリエステルポリオール(i)が、炭素原子数4〜13の分岐アルキレンジオールと、脂肪族ジカルボン酸又はそのアルキルエステルとを反応させて得られるものである請求項1記載の新規ポリエステルポリウレタンポリオール。 The novel polyester polyurethane polyol according to claim 1, wherein the aliphatic polyester polyol (i) is obtained by reacting a branched alkylene diol having 4 to 13 carbon atoms with an aliphatic dicarboxylic acid or an alkyl ester thereof. 前記脂肪族ポリエステルポリオール(i)が、重量平均分子量(Mw)1,000〜6,000の範囲にあるものである請求項2記載の新規ポリエステルポリウレタンポリオール。 The novel polyester polyurethane polyol according to claim 2, wherein the aliphatic polyester polyol (i) is in the range of 1,000 to 6,000 in weight average molecular weight (Mw). 水酸基価が2〜30mgKOH/gの範囲にある請求項3記載の新規ポリエステルポリウレタンポリオール。 The novel polyester polyurethane polyol according to claim 3, wherein the hydroxyl value is in the range of 2 to 30 mgKOH / g. 重量平均分子量(Mw)が10,000〜200,000の範囲にある請求項4記載の新規ポリエステルポリウレタンポリオール。 The novel polyester polyurethane polyol according to claim 4, wherein the weight average molecular weight (Mw) is in the range of 10,000 to 200,000. 請求項1〜5の何れか1つに記載の新規ポリエステルポリウレタンポリオールからなる2液型ラミネート接着剤用ポリオール剤。 A polyol agent for a two-component laminate adhesive comprising the novel polyester polyurethane polyol according to any one of claims 1 to 5. 請求項1〜5の何れか1つに記載の新規ポリエステルポリウレタンポリオール(A)、及び多官能エポキシ化合物(B)を必須成分とする樹脂組成物。 A resin composition comprising the novel polyester polyurethane polyol (A) according to any one of claims 1 to 5 and a polyfunctional epoxy compound (B) as essential components. 請求項1〜5の何れか1つに記載の新規ポリエステルポリウレタンポリオール(A)、多官能エポキシ化合物(B)、及び水酸基含有脂肪族ポリカーボネート(C)を必須成分とする請求項7記載の樹脂組成物。 The resin composition according to claim 7, comprising the novel polyester polyurethane polyol (A) according to any one of claims 1 to 5, a polyfunctional epoxy compound (B), and a hydroxyl group-containing aliphatic polycarbonate (C) as essential components. object. 請求項6記載の2液型ラミネート接着剤用ポリオール剤、又は請求項7又は8記載の樹脂組成物を主剤として用い、かつ、硬化剤として脂肪族ポリイソシアネート(D)を配合してなる硬化性樹脂組成物。 Curability obtained by using the polyol component for a two-component laminate adhesive according to claim 6 or the resin composition according to claim 7 or 8 as a main agent and blending an aliphatic polyisocyanate (D) as a curing agent. Resin composition. 請求項9記載の硬化性樹脂組成物からなる2液型ラミネート用接着剤。 A two-component laminating adhesive comprising the curable resin composition according to claim 9. ポリエステルフィルム、フッ素系樹脂フィルム、ポリオレフィンフィルム、金属箔からなる群から選ばれる1種類以上のフィルムと、これらのフィルム同士を貼り合わせる為の請求項10記載の2液型ラミネート用接着剤からなる接着層とから成形された太陽電池用バックシート。 Adhesion comprising one or more kinds of films selected from the group consisting of a polyester film, a fluororesin film, a polyolefin film, and a metal foil, and an adhesive for two-component laminating according to claim 10 for bonding these films together. A solar cell backsheet formed from the layers.
JP2013128483A 2013-06-19 2013-06-19 Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet Active JP6439237B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013128483A JP6439237B2 (en) 2013-06-19 2013-06-19 Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet
CN201410260594.XA CN104231201B (en) 2013-06-19 2014-06-12 New polyester polyurethane polyol, the polyalcohol agent of two-component-type laminating adhesive, resin combination, hardening resin composition
TW103120885A TWI623560B (en) 2013-06-19 2014-06-17 Novel polyester polyurethane polyol, two-liquid type laminating adhesive polyol, resin composition, curable resin composition, two-liquid type laminating adhesive, and solar cell back sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013128483A JP6439237B2 (en) 2013-06-19 2013-06-19 Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet

Publications (2)

Publication Number Publication Date
JP2015003950A true JP2015003950A (en) 2015-01-08
JP6439237B2 JP6439237B2 (en) 2018-12-19

Family

ID=52220177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013128483A Active JP6439237B2 (en) 2013-06-19 2013-06-19 Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet

Country Status (3)

Country Link
JP (1) JP6439237B2 (en)
CN (1) CN104231201B (en)
TW (1) TWI623560B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047672A1 (en) * 2016-09-06 2018-03-15 Dic株式会社 Adhesive, blister pack laminate and blister pack using same
WO2018117082A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Polyester polyol, reactive adhesive, and laminate
US10224445B2 (en) * 2015-11-02 2019-03-05 S-Energy Co., Ltd. Back sheet, method of manufacturing the same, solar cell module using the same and method of manufacturing solar cell
WO2022215521A1 (en) * 2021-04-08 2022-10-13 株式会社スリーボンド Two-part curable resin composition and cured product thereof
WO2022215522A1 (en) * 2021-04-08 2022-10-13 株式会社スリーボンド Two-part curable resin composition and cured product thereof
CN115679702A (en) * 2022-10-18 2023-02-03 广东裕田霸力科技股份有限公司 Yellowing-resistant flying-weaving treating agent and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520049A (en) * 2016-10-13 2017-03-22 苏州长业材料技术有限公司 Polyester adhesive, and preparation method and application thereof on solar energy back plate
TW201942308A (en) * 2018-03-28 2019-11-01 日商迪愛生股份有限公司 Reactive adhesive agent, laminate film, and packaging body
CN109293904A (en) * 2018-09-03 2019-02-01 杭州福斯特应用材料股份有限公司 A kind of high-weatherability polyester resin and purposes
JP6888161B1 (en) * 2020-10-02 2021-06-16 大日精化工業株式会社 Urethane prepolymers, moisture-curable urethane hot-melt resin compositions, and laminates.

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157348A (en) * 1995-12-08 1997-06-17 Kuraray Co Ltd Novel polyester polyurethane and its molding
JP2003073445A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Thermoplastic polyurethane resin for golf ball cover or inner use, and golf ball using the same
JP2008222984A (en) * 2007-03-16 2008-09-25 Nippon Polyurethane Ind Co Ltd Non-yellowing low-hardness polyurethane elastomer forming composition and method for producing non-yellowing low-hardness polyurethane elastomer using the same
JP2010280814A (en) * 2009-06-04 2010-12-16 Lock Paint Kk Two-liquid type adhesive composition for lamination, hardly influenced by moisture
WO2012029737A1 (en) * 2010-08-31 2012-03-08 Dic株式会社 Adhesive composition for two-pack type laminate
WO2012105220A1 (en) * 2011-02-04 2012-08-09 東洋インキScホールディングス株式会社 Polyurethane adhesive, adhesive for solar cell protective sheet, and backside protective sheet for solar cell
WO2012144329A1 (en) * 2011-04-22 2012-10-26 Dic株式会社 Resin composition, two-pack type adhesive for laminates, multilayer film, and back sheet for solar cells
JP2013155282A (en) * 2012-01-30 2013-08-15 Dic Corp Resin composition, adhesive for two-component laminate, laminated film, and backsheet of solar cell
JP2014162824A (en) * 2013-02-22 2014-09-08 Dic Corp Polyol agent for two-liquid type laminate adhesive, resin composition, curable resin composition, adhesive for two-liquid type laminate and back sheet for solar battery
WO2015033857A1 (en) * 2013-09-06 2015-03-12 Dic株式会社 Polyester polyol, polyol preparation for laminating adhesive agent, resin composition, curable resin composition, adhesive agent for laminating use, and back sheet for solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2298648C (en) * 1997-07-29 2005-04-05 Kyowa Yuka Co., Ltd. A polyurethane adhesive; a method of using it for adhesion; and a use of the mixture
CN1265697C (en) * 2004-04-19 2006-07-26 韩省华 Edible mushroom cultivating and producing basket and basket type cultivating method
JP4416047B1 (en) * 2008-07-16 2010-02-17 東洋インキ製造株式会社 Outdoor polyurethane adhesive
CN101698695B (en) * 2009-10-22 2011-08-10 陕西科技大学 Method for synthesizing heat-resistance epoxy resin modified thermoplastic linear polyurethane elastomer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09157348A (en) * 1995-12-08 1997-06-17 Kuraray Co Ltd Novel polyester polyurethane and its molding
JP2003073445A (en) * 2001-08-31 2003-03-12 Nippon Polyurethane Ind Co Ltd Thermoplastic polyurethane resin for golf ball cover or inner use, and golf ball using the same
JP2008222984A (en) * 2007-03-16 2008-09-25 Nippon Polyurethane Ind Co Ltd Non-yellowing low-hardness polyurethane elastomer forming composition and method for producing non-yellowing low-hardness polyurethane elastomer using the same
JP2010280814A (en) * 2009-06-04 2010-12-16 Lock Paint Kk Two-liquid type adhesive composition for lamination, hardly influenced by moisture
WO2012029737A1 (en) * 2010-08-31 2012-03-08 Dic株式会社 Adhesive composition for two-pack type laminate
WO2012105220A1 (en) * 2011-02-04 2012-08-09 東洋インキScホールディングス株式会社 Polyurethane adhesive, adhesive for solar cell protective sheet, and backside protective sheet for solar cell
WO2012144329A1 (en) * 2011-04-22 2012-10-26 Dic株式会社 Resin composition, two-pack type adhesive for laminates, multilayer film, and back sheet for solar cells
JP2013155282A (en) * 2012-01-30 2013-08-15 Dic Corp Resin composition, adhesive for two-component laminate, laminated film, and backsheet of solar cell
JP2014162824A (en) * 2013-02-22 2014-09-08 Dic Corp Polyol agent for two-liquid type laminate adhesive, resin composition, curable resin composition, adhesive for two-liquid type laminate and back sheet for solar battery
WO2015033857A1 (en) * 2013-09-06 2015-03-12 Dic株式会社 Polyester polyol, polyol preparation for laminating adhesive agent, resin composition, curable resin composition, adhesive agent for laminating use, and back sheet for solar cell

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224445B2 (en) * 2015-11-02 2019-03-05 S-Energy Co., Ltd. Back sheet, method of manufacturing the same, solar cell module using the same and method of manufacturing solar cell
WO2018047672A1 (en) * 2016-09-06 2018-03-15 Dic株式会社 Adhesive, blister pack laminate and blister pack using same
JP6308413B1 (en) * 2016-09-06 2018-04-11 Dic株式会社 Adhesive, laminate for blister pack and blister pack using the same
WO2018117082A1 (en) * 2016-12-20 2018-06-28 Dic株式会社 Polyester polyol, reactive adhesive, and laminate
JPWO2018117082A1 (en) * 2016-12-20 2019-03-14 Dic株式会社 Polyester polyol, reactive adhesive, and laminate
WO2022215521A1 (en) * 2021-04-08 2022-10-13 株式会社スリーボンド Two-part curable resin composition and cured product thereof
WO2022215522A1 (en) * 2021-04-08 2022-10-13 株式会社スリーボンド Two-part curable resin composition and cured product thereof
CN115679702A (en) * 2022-10-18 2023-02-03 广东裕田霸力科技股份有限公司 Yellowing-resistant flying-weaving treating agent and preparation method thereof
CN115679702B (en) * 2022-10-18 2023-09-12 广东裕田霸力科技股份有限公司 Yellowing-resistant fly-weaving treating agent and preparation method thereof

Also Published As

Publication number Publication date
TW201504272A (en) 2015-02-01
JP6439237B2 (en) 2018-12-19
CN104231201B (en) 2019-01-01
CN104231201A (en) 2014-12-24
TWI623560B (en) 2018-05-11

Similar Documents

Publication Publication Date Title
JP5787202B2 (en) Polyester polyol, polyol agent for laminating adhesive, resin composition, curable resin composition, laminating adhesive, and solar cell backsheet
JP6439237B2 (en) Novel polyester polyurethane polyol, polyol component for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet
JP6210307B2 (en) Resin composition, two-component laminating adhesive, laminated film and solar cell backsheet
JP6057041B1 (en) Polyol composition, adhesive coating agent, cured product thereof, adhesive sheet, and solar cell module
JP5413704B1 (en) Resin composition, two-component laminate adhesive, laminated film, and solar cell backsheet
JP5170349B2 (en) Resin composition, two-component laminating adhesive, laminated film and solar cell backsheet
JPWO2016010132A1 (en) Adhesive for solar cell backsheet, polyol composition for solar cell backsheet adhesive, solar cell backsheet, and solar cell module
JP2016089034A (en) Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP2016089035A (en) Polyester polyisocyanate, curing agent for two-liquid type urethane adhesive using the same, two-liquid type urethane adhesive, laminate film and back sheet for solar battery
JP2017110103A (en) Adhesive composition, polyol mixture, adhesive for two-liquid type laminate, laminated film and back sheet of solar cell
JP2017114937A (en) Polyol composition for polyisocyanate-curable adhesive coating agent, adhesive coating agent, cured material thereof, adhesive sheet, and solar battery module
JP2017110126A (en) Polyol composition for polyisocyanate-curable adhesive coating agent, adhesive coating agent, cured material thereof, adhesive sheet, and solar battery module
JP6123347B2 (en) Polyol agent for two-component laminate adhesive, resin composition, curable resin composition, adhesive for two-component laminate, and solar cell backsheet
JP2017193657A (en) Urethane-modified polyisocyanate compound and solar cell back sheet
WO2018193957A1 (en) Urethane-modified polyisocyanate compound, curing agent for two-part curable urethane adhesive agent, adhesive agent, and back sheet for solar cell
JP2015067669A (en) Resin composition, two liquid type laminate adhesive agent, laminate film and back sheet for solar cell
JP2017193652A (en) Urethane-modified polyisocyanate compound and solar cell back sheet
JP2017193653A (en) Urethane-modified polyisocyanate compound and solar cell back sheet
WO2023047186A1 (en) Adhesive compositions, layered articles and photovoltaic sheets

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180201

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180209

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20180220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181105

R151 Written notification of patent or utility model registration

Ref document number: 6439237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250