JP2015003840A - BiVO4 PARTICLE AND PRODUCTION METHOD THEREOF - Google Patents

BiVO4 PARTICLE AND PRODUCTION METHOD THEREOF Download PDF

Info

Publication number
JP2015003840A
JP2015003840A JP2013129216A JP2013129216A JP2015003840A JP 2015003840 A JP2015003840 A JP 2015003840A JP 2013129216 A JP2013129216 A JP 2013129216A JP 2013129216 A JP2013129216 A JP 2013129216A JP 2015003840 A JP2015003840 A JP 2015003840A
Authority
JP
Japan
Prior art keywords
bivo
particles
bragg angle
plane
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013129216A
Other languages
Japanese (ja)
Other versions
JP5892478B2 (en
Inventor
徳留 弘優
Hiromasa Tokutome
弘優 徳留
さゆり 奥中
Sayuri Okunaka
さゆり 奥中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2013129216A priority Critical patent/JP5892478B2/en
Publication of JP2015003840A publication Critical patent/JP2015003840A/en
Application granted granted Critical
Publication of JP5892478B2 publication Critical patent/JP5892478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a visible light-responsive photocatalyst which achieves both high crystallinity and micronization of primary particles.SOLUTION: A visible light-responsive photocatalyst BiVOhas particle sizes of primary particles of 100 nm or smaller, and the peak at the Bragg angle 2θ=18.7° in the (101) plane and the peak at the Bragg angle 2θ=19.0° in the (011) plane, measured by X-ray diffraction, are independently observable. The photocatalyst has a high photocatalytic activity and is useful for high activation of visible light-responsive photocatalysts.

Description

本発明は、BiVO粒子とその製造方法に関する。 The present invention relates to BiVO 4 particles and a method for producing the same.

可視光応答型光触媒は、太陽光に多く含まれる可視光線を利用可能な光触媒として、有機物の光分解や、水の光分解による水素製造への応用に期待されている。中でも、水素製造を目指した水分解用光触媒は、再生可能エネルギーを利用した水素製造方法として注目されているが、その高活性化の要求が年々高まっている。   Visible light responsive photocatalysts are expected to be applied to hydrogen production by photolysis of organic matter and water by photolysis as a photocatalyst that can use visible light contained in a large amount of sunlight. Among them, water splitting photocatalysts aimed at hydrogen production are attracting attention as a method for producing hydrogen using renewable energy, but the demand for higher activation is increasing year by year.

可視光応答性がある水分解用光触媒として、バナジン酸ビスマス(BiVO)は、水からの酸素発生能が非常に高いことが知られており、水素発生用光触媒と組合せたZスキーム型システムにおいて、高い水分解反応におけるエネルギー変換効率が得られることが知られている(Sasakiら、J.Phys.Chem.C 17536〜17 542ページ、2009年(非特許文献1))。従来、BiVOは、固相反応法や酸エージング法により作製されることが知られている。特開2004−24936号公報(特許文献1)には、尿素の存在下でNHVOとBi(NOを反応させる均一沈殿法(酸エージング法)によるBiVOの製造方法が記載されている。また、Iwaseら、J.Mater.Chem.7356ページ、2010年(非特許文献2)には、固相反応法によるBiVOの製造方法が記載されている。 As a photocatalyst for water splitting with visible light responsiveness, bismuth vanadate (BiVO 4 ) is known to have a very high ability to generate oxygen from water. In a Z-scheme system combined with a photocatalyst for hydrogen generation, It is known that energy conversion efficiency in a high water splitting reaction can be obtained (Sasaki et al., J. Phys. Chem. C 17536-17542, 2009 (Non-patent Document 1)). Conventionally, it is known that BiVO 4 is produced by a solid phase reaction method or an acid aging method. Japanese Unexamined Patent Application Publication No. 2004-24936 (Patent Document 1) describes a method for producing BiVO 4 by a homogeneous precipitation method (acid aging method) in which NH 4 VO 3 and Bi (NO 3 ) 3 are reacted in the presence of urea. Has been. Iwase et al. Mater. Chem. On page 7356, 2010 (Non-Patent Document 2), a method for producing BiVO 4 by a solid phase reaction method is described.

特開2004−24936号公報JP 2004-24936 A

Sasakiら、J.Phys.Chem.C 17536〜17542ページ、2009年Sasaki et al. Phys. Chem. C 17536-17542, 2009 Iwaseら、J.Mater.Chem.7356ページ、2010年Iwase et al. Mater. Chem. 7356 pages, 2010

更なる高活性化の手法として、比表面積の増大が求められているが、高い反応活性を有しつつ比表面積の大きいBiVO粒子の開発は現状困難であり、さらに、水分解反応に対する高い反応活性を実現可能な結晶面に関する知見はほとんど得られていない。 As a method for further increasing the activity, an increase in specific surface area is required. However, it is difficult to develop BiVO 4 particles having a high specific activity and a large specific surface area. Little knowledge about crystal planes that can achieve activity has been obtained.

そこで、本発明は、このような課題に鑑みてなされたものであり、その目的は、大きい比表面積、すなわち、微細な一次粒子径と、高い水分解反応活性と相関のある結晶面を有するBiVO粒子を提供することにある。 Therefore, the present invention has been made in view of such problems, and its purpose is to provide a large specific surface area, that is, a BiVO having a crystal face correlated with a high primary water particle reaction activity and a fine primary particle diameter. To provide 4 particles.

本発明のBiVO粒子は、一次粒子径が100nm以下であり、X線回折スペクトルにより測定される結晶構造が単斜晶シーライト構造であり、かつ、(101)面におけるブラッグ角2θ=18.7°のピークと(011)面におけるブラッグ角2θ=19.0°のピークの中間であるブラッグ角2θ=18.8°のX線強度I(2θ=18.8°)と、(011)面におけるブラッグ角2θ=19.0°のX線強度I(2θ=19.0°)のX線強度比A(I(2θ=18.8°)/I(2θ=19.0°))が0.83以下であることを特徴とする。 The BiVO 4 particles of the present invention have a primary particle size of 100 nm or less, a crystal structure measured by an X-ray diffraction spectrum is a monoclinic celite structure, and a Bragg angle 2θ = 18.18 in the (101) plane. X-ray intensity I (2θ = 18.8 °) with a Bragg angle 2θ = 18.8 °, which is the middle between the peak at 7 ° and the Bragg angle 2θ = 19.0 ° in the (011) plane, and (011) X-ray intensity ratio A (I (2θ = 18.8 °) / I (2θ = 19.0 °)) of X-ray intensity I (2θ = 19.0 °) at a Bragg angle 2θ = 19.0 ° in the plane Is 0.83 or less.

本発明によるBiVO粒子によれば、可視光照射下での高い光触媒活性の発現が可能となる。 According to the BiVO 4 particles of the present invention, high photocatalytic activity can be expressed under visible light irradiation.

BiVO粒子のX線回折スペクトルにより測定されるブラッグ角2θ=18.8°と、(011)面におけるブラッグ角2θ=19.0°におけるX線強度の概略図である。A Bragg angle 2 [Theta] = 18.8 ° as measured by X-ray diffraction spectrum of BiVO 4 particles is a schematic view of an X-ray intensity at a Bragg angle 2 [Theta] = 19.0 ° in (011) plane. BiVO粒子のX線回折スペクトルにより測定される(200)面におけるブラッグ角2θ=34.5°と、ブラッグ角2θ=34.85°におけるX線強度の概略図である。A Bragg angle 2 [Theta] = 34.5 ° in X-ray (200) plane measured by diffraction spectrum of BiVO 4 particles is a schematic view of an X-ray intensity at Bragg angle 2θ = 34.85 °. 本発明の実施例1で得られるBiVO粒子の走査型電子顕微鏡写真である。It is a scanning electron micrograph of BiVO 4 particles obtained in Example 1 of the present invention. 本発明の実施例1で得られるBiVO粒子のX線回折スペクトルにより測定されるブラッグ角2θ=18.8°と、(011)面におけるブラッグ角2θ=19.0°におけるX線強度である。X-ray intensity at the Bragg angle 2θ = 18.8 ° measured by the X-ray diffraction spectrum of BiVO 4 particles obtained in Example 1 of the present invention and the Bragg angle 2θ = 19.0 ° in the (011) plane. . 本発明の実施例1で得られるBiVO粒子のX線回折スペクトルにより測定される(011)面におけるブラッグ角2θ=34.5°と、ブラッグ角2θ=34.85°におけるX線強度である。X-ray intensities at a Bragg angle 2θ = 34.5 ° in the (011) plane and a Bragg angle 2θ = 34.85 ° as measured by the X-ray diffraction spectrum of BiVO 4 particles obtained in Example 1 of the present invention. .

BiVO 粒子のX線回折スペクトルによるピーク
本発明におけるBiVO粒子は、微細な一次粒子径と、高い反応活性と相関のある結晶面を有するという特徴を有する。
BiVO 4 particles at the peak <br/> present invention by X-ray diffraction spectrum of BiVO 4 particles have a primary particle size fine, a feature of having a crystal plane having a correlation with high reaction activity.

従来のBiVO粒子では、X線構造回折において、(101)面におけるブラッグ角2θ=18.7の回折ピークと(011)面におけるブラッグ角2θ=19.0°の回折ピークがそれぞれ独立のピークではなく、単一ピークとして観測されることが知られている。また、(200)面におけるブラッグ角2θ=34.5の回折ピークと(020)面におけるブラッグ角2θ=35.2°の回折ピークも、それぞれ独立のピークではなく単一ピークとして得られる傾向であることが知られていた。また、このようなBiVO粒子における光触媒活性に及ぼす結晶面依存性に関しても、全く知見がなかった。 In the conventional BiVO 4 particle, in the X-ray structure diffraction, the diffraction peak with the Bragg angle 2θ = 18.7 on the (101) plane and the diffraction peak with the Bragg angle 2θ = 19.0 ° on the (011) plane are independent peaks. Instead, it is known to be observed as a single peak. Also, the diffraction peak with a Bragg angle 2θ = 34.5 in the (200) plane and the diffraction peak with a Bragg angle 2θ = 35.2 ° in the (020) plane tend to be obtained as single peaks rather than as independent peaks. It was known that there was. Moreover, there was no knowledge about the crystal plane dependency on the photocatalytic activity in such BiVO 4 particles.

本発明者らは、本発明のBiVO粒子において、微細な一次粒子径を有し、かつ、X線構造回折における(101)面におけるブラッグ角2θ=18.7°のピークと、(011)面におけるブラッグ角2θ=19.0°のピークが、単一のピークではなく、それぞれ独立して観測されることが、BiVO粒子における高い光触媒活性の発現に必要であることを見出した。ここで、本発明において、(101)面におけるブラッグ角2θ=18.7°のピークと、(011)面におけるブラッグ角2θ=19.0°のピークがそれぞれ独立して観測されるとは、すなわち、(101)面におけるブラッグ角2θ=18.7°のピークと、(011)面におけるブラッグ角2θ=19.0°のピークの中間であるブラッグ角2θ=18.8°のX線強度I(2θ=18.8°)を(011)面におけるブラッグ角2θ=19.0°のX線強度I(2θ=19.0°)で割って得られるX線強度比Aが0.83以下であることを満たすことである。つまり、式で示すと以下のようになる。
A=I(2θ=18.8°)/I(2θ=19.0°)≦0.83
In the BiVO 4 particles of the present invention, the present inventors have a fine primary particle diameter and a peak at a Bragg angle 2θ = 18.7 ° in the (101) plane in X-ray structural diffraction, and (011) It was found that it is necessary for the expression of high photocatalytic activity in BiVO 4 particles that the peak at the Bragg angle 2θ = 19.0 ° in the plane is not a single peak but is observed independently. Here, in the present invention, the peak of the Bragg angle 2θ = 18.7 ° in the (101) plane and the peak of the Bragg angle 2θ = 19.0 ° in the (011) plane are observed independently. That is, the X-ray intensity of the Bragg angle 2θ = 18.8 °, which is the middle between the peak of the Bragg angle 2θ = 18.7 ° in the (101) plane and the peak of the Bragg angle 2θ = 19.0 ° in the (011) plane. The X-ray intensity ratio A obtained by dividing I (2θ = 18.8 °) by the X-ray intensity I (2θ = 19.0 °) at the Bragg angle 2θ = 19.0 ° in the (011) plane is 0.83. Satisfying that: In other words, this is expressed as follows:
A = I (2θ = 18.8 °) / I (2θ = 19.0 °) ≦ 0.83

X線構造回折における(101)面におけるブラッグ角2θ=18.7°のピークと、(011)面におけるブラッグ角2θ=19.0°のピークが、単一のピークではなく、それぞれ独立して観測されることが、BiVO粒子における高い光触媒活性の発現に必要であることを見出した。 The peak of the Bragg angle 2θ = 18.7 ° in the (101) plane and the peak of the Bragg angle 2θ = 19.0 ° in the (011) plane in X-ray structural diffraction are not a single peak, but are independent of each other. It was found that what is observed is necessary for the development of high photocatalytic activity in BiVO 4 particles.

本発明のBiVO粒子のX線構造回折における(101)面におけるブラッグ角2θ=18.7°と、(011)面におけるブラッグ角2θ=19.0°におけるX線強度の概略図を図1に示す。 FIG. 1 is a schematic diagram of the X-ray intensity at the Bragg angle 2θ = 18.7 ° in the (101) plane and the Bragg angle 2θ = 19.0 ° in the (011) plane in the X-ray structure diffraction of BiVO 4 particles of the present invention. Shown in

また、本発明のBiVO粒子においては、(200)面における2θ=34.5°のピークと、(020)面におけるブラッグ角2θ=35.2°のピークがそれぞれ独立して観測されることが好ましい。ここで、本発明において、(200)面における2θ=34.5°のピークと、(020)面におけるブラッグ角2θ=35.2°のピークがそれぞれ独立して観測されるとは、すなわち、これらのブラッグ角の中間の角度である2θ=34.85°でのX線強度I(2θ=34.85°)を(200)面におけるブラッグ角2θ=34.5°のX線強度I(2θ=34.5°)で割って得られるX線強度比Bが0.5以下であることを満たすことである。つまり、式で示すと以下のようになる。
B=I(2θ=34.85°)/I(2θ=34.5°)≦0.5
In the BiVO 4 particles of the present invention, the peak at 2θ = 34.5 ° in the (200) plane and the peak at the Bragg angle 2θ = 35.2 ° in the (020) plane are observed independently. Is preferred. Here, in the present invention, the 2θ = 34.5 ° peak in the (200) plane and the Bragg angle 2θ = 35.2 ° peak in the (020) plane are observed independently, that is, The X-ray intensity I (2θ = 34.85 °) at 2θ = 34.85 °, which is an intermediate angle between these Bragg angles, is changed to the X-ray intensity I (2θ = 34.5 ° in the (200) plane) ( 2θ = 34.5 °) and satisfying that the X-ray intensity ratio B obtained by dividing by 2) is 0.5 or less. In other words, this is expressed as follows:
B = I (2θ = 34.85 °) / I (2θ = 34.5 °) ≦ 0.5

本発明のX線構造回折における(200)面における2θ=34.5°と、(020)面におけるブラッグ角2θ=35.2°のX線強度の概略図を図2に示す。 FIG. 2 shows a schematic diagram of the X-ray intensity of 2θ = 34.5 ° in the (200) plane and the Bragg angle 2θ = 35.2 ° in the (020) plane in the X-ray structure diffraction of the present invention.

本発明のBiVO粒子は、このようなX線回折特性を有することで、良好に発達した特定の結晶面を有すると考えられる。また、この発達した結晶面の表面が、光触媒による酸化還元反応サイトとして機能することで、迅速に光触媒反応が進行すると考えられる。よって、本発明のBiVO粒子では、可視光照射下での高い光触媒活性の発現が可能であると考えている。 The BiVO 4 particles of the present invention are considered to have specific crystal planes that are well developed by having such X-ray diffraction characteristics. Further, it is considered that the photocatalytic reaction proceeds rapidly by the surface of the developed crystal plane functioning as a redox reaction site by the photocatalyst. Therefore, it is considered that the BiVO 4 particles of the present invention can exhibit high photocatalytic activity under visible light irradiation.

本発明のBiVO粒子のX線回折スペクトルの測定方法としては、例えば、X線回折装置(PANalytical製)を用いて、X線管の運転条件が、25℃の温度条件で、印加電圧45kV、電流200mAであり、ブラッグ角2θ=10°〜60°の範囲を、2θのスキャン速度が毎分1.0〜5.0°で、0.02〜0.1°間隔で測定することで可能となる。 As a method for measuring the X-ray diffraction spectrum of BiVO 4 particles of the present invention, for example, using an X-ray diffractometer (manufactured by PANalytical), the operating condition of the X-ray tube is 25 ° C., the applied voltage is 45 kV, Current is 200 mA, and the Bragg angle 2θ = 10 ° -60 ° can be measured at 0.02-0.1 ° intervals with a 2θ scan rate of 1.0-5.0 ° per minute. It becomes.

BiVO の一次粒子径
本発明のBiVO粒子は、微細な一次粒子径を有し、好ましくは、100nm以下の一次粒子径であり、さらに好ましくは80nm以下である。このように微細な一次粒子径を有することで、高い比表面積となり、分解対象物質との接触面積が増加し、光触媒活性の向上が期待できるようになる。BiVO粒子における一次粒子径の評価手法としては、例えば、走査型電子顕微鏡(株式会社日立製作所製、“S−4100” 、以下、SEM)を用い、倍率40000倍で観察した際の結晶粒子50個の円形近似にて求めた直径の平均値で定義することが可能である。
BiVO 4 particles of the primary particle size <br/> present invention BiVO 4 has a fine primary particle size, or preferably less primary particle size 100 nm, still more preferably 80nm or less. By having such a fine primary particle size, a high specific surface area is obtained, the contact area with the substance to be decomposed is increased, and an improvement in photocatalytic activity can be expected. As an evaluation method of the primary particle diameter of BiVO 4 particles, for example, a scanning electron microscope (manufactured by Hitachi, Ltd., “S-4100”, hereinafter referred to as SEM) is used, and the crystal particles 50 are observed at a magnification of 40000 times. It is possible to define the average value of the diameters obtained by round approximation.

以上のように、本発明のBiVO粒子は、上記に示すX線回折スペクトルによる(101)面におけるブラッグ角2θ=18.7°のピークと、(011)面におけるブラッグ角2θ=19.0°のピークのそれぞれ独立したピークと、SEMによる微細な一次粒子形状を両立することで、高い光触媒活性の発現が可能となる。 As described above, the BiVO 4 particles of the present invention have a Bragg angle 2θ = 18.7 ° peak in the (101) plane and a Bragg angle 2θ = 19.0 in the (011) plane according to the X-ray diffraction spectrum shown above. High photocatalytic activity can be achieved by satisfying both the independent peak of ° and the fine primary particle shape by SEM.

BiVO 粒子の製造方法
本発明におけるBiVO粒子の製造方法としては、固相反応法などの乾式反応法や、酸エージング法、ゾル-ゲル法、錯体重合法、水熱反応法、均一沈殿法等の湿式反応法が利用可能である。例えば、固相反応法による作製方法としては、酸化ビスマスと酸化バナジウムを原料として混合し、600℃以上での焼成を経てBiVO粒子を得る。また、湿式反応法の1つである酸エージング法による作製方法としては、酸化ビスマスと酸化バナジウムを原料として、酢酸または硝酸を含む水溶液に添加後、溶解させ、400℃以上の焼成により、結晶化させる方法がある。本発明のBiVO粒子の製造方法としては、特に制限は無いが、以下の方法が好ましく利用できる。
As a method for producing BiVO 4 particles in the production process <br/> present invention BiVO 4 particles, solid or phase reaction method a dry reaction method, such as, acid aging method, a sol - gel method, complex polymerization method, a hydrothermal reaction method A wet reaction method such as a uniform precipitation method can be used. For example, as a production method by a solid phase reaction method, BiVO 4 particles are obtained by mixing bismuth oxide and vanadium oxide as raw materials and firing at 600 ° C. or higher. In addition, as a manufacturing method by an acid aging method, which is one of wet reaction methods, bismuth oxide and vanadium oxide are added as raw materials to an aqueous solution containing acetic acid or nitric acid, dissolved, and then crystallized by baking at 400 ° C. or higher. There is a way to make it. As a method for producing BiVO 4 particles of the present invention is not particularly limited, the following method can be preferably utilized.

ビスマスイオンおよびバナジウムイオンを含む水溶液を用いた粒子の製造
本発明におけるBiVO粒子の製造方法として、ビスマスイオン及びバナジウムイオンを含む水溶液を用いた熱分解法(水溶液熱分解法)を好ましく用いることが可能である。水溶液熱分解法とは、BiVO前駆体を原料として用い、このBiVO前駆体を含む水溶液を加熱することで、溶媒である水の蒸発に伴い、BiVO前駆体同士の脱水重縮合反応を起こす方法である。金属アルコキシドや塩化物等を用いるゾル‐ゲル法では、BiVO前駆体同士の加水分解による金属水酸化物の生成と、これらの脱水重縮合が速やかに起こることで、結晶核が粗大化しやすい。これに対して、この水溶液熱分解法では、加水分解反応が緩やかなBiVO前駆体を原料として用いることで、水への安定な溶解が可能となる。また、このBiVO前駆体を含む水溶液を加熱して、溶媒である水が蒸発することに伴い、BiVO前駆体同士の脱水重縮合反応が緩やかに起こる。これにより、熱分解時の結晶核の生成速度が遅くなり、結果的に結晶核の微細化が可能となる。
Production of particles using aqueous solution containing bismuth ions and vanadium ions As a method for producing BiVO 4 particles in the present invention, a thermal decomposition method (aqueous solution thermal decomposition method) using an aqueous solution containing bismuth ions and vanadium ions is used. It can be preferably used. The aqueous solution pyrolysis method uses a BiVO 4 precursor as a raw material, and heats an aqueous solution containing this BiVO 4 precursor to cause dehydration polycondensation reaction between the BiVO 4 precursors with the evaporation of water as a solvent. It is a way to wake up. In the sol-gel method using a metal alkoxide, a chloride, or the like, the crystal nucleus is likely to be coarsened due to the generation of metal hydroxide by hydrolysis of BiVO 4 precursors and the rapid dehydration polycondensation thereof. On the other hand, in this aqueous solution thermal decomposition method, by using a BiVO 4 precursor, which has a mild hydrolysis reaction, as a raw material, stable dissolution in water becomes possible. Further, when the aqueous solution containing the BiVO 4 precursor is heated to evaporate water as the solvent, the dehydration polycondensation reaction between the BiVO 4 precursors occurs gradually. This slows down the generation rate of crystal nuclei during pyrolysis, and as a result, miniaturization of crystal nuclei becomes possible.

本発明において、従来難水溶性であるビスマス塩やバナジウム塩を水溶化させる方法として、原料としてビスマスを含む化合物やバナジウムを含む化合物に、錯化剤を添加することが好ましい。ビスマスイオンやバナジウムイオンに錯化剤を配位させ、水溶性ビスマス錯体及び水溶性バナジウム錯体を形成することで、水への安定な溶解が可能となり、加水分解を抑制させることが好ましい。 In the present invention, it is preferable to add a complexing agent to a compound containing bismuth or a compound containing vanadium as a raw material as a method for water-solubilizing a bismuth salt or vanadium salt that has been conventionally poorly water-soluble. By coordinating a complexing agent to bismuth ions and vanadium ions to form a water-soluble bismuth complex and a water-soluble vanadium complex, it is possible to achieve stable dissolution in water and to suppress hydrolysis.

ビスマスを含む化合物としては、水溶性であり、加熱結晶化の際に、残渣としてアニオン成分が残らないものであればよく、例えば、硝酸ビスマス、酢酸ビスマス、臭化ビスマス、塩化ビスマス、よう化ビスマス、フッ化ビスマス、クエン酸ビスマス、水酸化ビスマス、次没食子酸ビスマス等が好ましく用いられ、より好ましくは、硝酸ビスマスが用いられる。また、バナジウムを含む化合物としては、水溶性であり、加熱結晶化の際に、残渣としてアニオン成分が残らないものであればよく、例えば、バナジン酸アンモニウム、塩化バナジウム、臭化バナジウム、フッ化バナジウム、等が用いられ、より好ましくは、バナジン酸アンモニウムが用いられる。 The bismuth-containing compound may be any compound that is water-soluble and does not leave an anionic component as a residue during heat crystallization. For example, bismuth nitrate, bismuth acetate, bismuth bromide, bismuth chloride, bismuth iodide Bismuth fluoride, bismuth citrate, bismuth hydroxide, bismuth subgallate and the like are preferably used, and bismuth nitrate is more preferably used. The vanadium-containing compound may be any compound that is water-soluble and does not leave an anionic component as a residue upon heat crystallization. For example, ammonium vanadate, vanadium chloride, vanadium bromide, vanadium fluoride More preferably, ammonium vanadate is used.

ビスマスを含む化合物に添加する錯化剤としては、ビスマスイオンに配位でき、さらに好ましくは、ビスマスイオンに対して1当量で配位できるものが好適に用いられる。例えば、分子中に2つのカルボキシ基を有する水溶性カルボン酸等の親水性錯化剤を好ましく用いることができ、より好ましくは、水溶液中で、ビスマスイオンへの配位能が極めて高いエチレンジアミン四酢酸(EDTA)を用いることができる。 As the complexing agent added to the compound containing bismuth, those capable of coordinating to bismuth ions, and more preferably capable of coordinating with 1 equivalent to bismuth ions are preferably used. For example, a hydrophilic complexing agent such as a water-soluble carboxylic acid having two carboxy groups in the molecule can be preferably used, and more preferably ethylenediaminetetraacetic acid having an extremely high coordination ability to bismuth ions in an aqueous solution. (EDTA) can be used.

バナジウムを含む化合物に添加する錯化剤としては、バナジウムイオンに配位でき、さらに好ましくは、1当量で配位できるものが好適に用いられる。例えば、分子中に2つ以下のカルボキシ基、および1つ以上2つ以内の親水基を有する水溶性カルボン酸等の親水性錯化剤を好ましく用いることができ、より好ましくは、水溶液中で、バナジウムイオンへの配位能が極めて高い酒石酸を用いることができる。これにより、従来極めて水に難溶のビスマスイオンやバナジウムイオンを水溶化でき、さらに、親水部であるカルボキシ基が溶媒相側に露出した場合に起こる分子間での脱水重縮合による分子間重合を抑制できるため、熱分解時の結晶核の微細化が達成でき、熱分解反応後の粒子微細化が可能となる。 As the complexing agent added to the compound containing vanadium, those capable of coordinating with vanadium ions, and more preferably capable of coordinating with one equivalent are suitably used. For example, a hydrophilic complexing agent such as a water-soluble carboxylic acid having 2 or less carboxy groups in the molecule and 1 or more and 2 or less hydrophilic groups can be preferably used, and more preferably in an aqueous solution. Tartaric acid having extremely high coordination ability to vanadium ions can be used. As a result, bismuth ions and vanadium ions that have been extremely insoluble in water can be solubilized in the past, and intermolecular polymerization by dehydration polycondensation between molecules that occurs when the carboxy group, which is a hydrophilic part, is exposed to the solvent phase side. Since it can suppress, the refinement | miniaturization of the crystal nucleus at the time of thermal decomposition can be achieved, and the refinement | miniaturization of the particle | grains after a thermal decomposition reaction is attained.

本発明のBiVO粒子の製造において、水溶性バナジウム錯体を含む水溶液と水溶性ビスマス錯体を含む水溶液を混合して、BiVO前駆体を含む水溶液を調製することが好ましい。これらの好ましい混合比率は、水100重量部に対して、水溶性バナジウム錯体は、バナジウム換算で0.0001〜0.02モルであり、水溶性ビスマスを錯体は、ビスマス換算で0.0001〜0.02モルである。また、水溶性バナジウム錯体を形成するために添加する錯化剤は、バナジウム1モルに対して1〜10倍モルであることが好ましい。また、水溶性ビスマス錯体を形成するために添加する錯化剤は、ビスマス1モルに対して1〜10倍モルであることが好ましい。この比率で混合することで、ビスマスイオンおよびバナジウムイオンが良好に水溶化し、熱分解後の高結晶性化及び微細化が可能となる。この範囲以外では、加水分解反応の進行や、分子の疎水性向上による水溶性の低下が起こる恐れがある。また、BiVO前駆体を含む水溶液のpHは、好ましくは2〜10であり、より好ましくは、4〜10である。この範囲とすることで、水溶液中での各イオンの安定性を維持し、結晶化後の微細化が可能になる。また、強酸・強アルカリ雰囲気による加水分解重縮合の促進による結晶粗大化を抑制できる。 In the production of BiVO 4 particles of the present invention, it is preferable to prepare an aqueous solution containing a BiVO 4 precursor by mixing an aqueous solution containing a water-soluble vanadium complex and an aqueous solution containing a water-soluble bismuth complex. These preferred mixing ratios are 0.0001 to 0.02 mol of the water-soluble vanadium complex in terms of vanadium with respect to 100 parts by weight of water, and the water-soluble bismuth complex is 0.0001 to 0 in terms of bismuth. 0.02 mole. Moreover, it is preferable that the complexing agent added in order to form a water-soluble vanadium complex is 1-10 times mole with respect to 1 mol of vanadium. Moreover, it is preferable that the complexing agent added in order to form a water-soluble bismuth complex is 1-10 times mole with respect to 1 mol of bismuth. By mixing at this ratio, the bismuth ions and vanadium ions are water-soluble satisfactorily, and high crystallinity and miniaturization after thermal decomposition are possible. Outside this range, the hydrolysis reaction may progress or the water solubility may decrease due to the improved hydrophobicity of the molecule. The pH of the aqueous solution containing the BiVO 4 precursor is preferably 2 to 10, and more preferably 4 to 10. By setting it as this range, the stability of each ion in aqueous solution is maintained, and refinement | miniaturization after crystallization is attained. Moreover, the crystal coarsening by acceleration | stimulation of the hydrolysis polycondensation by a strong acid and strong alkali atmosphere can be suppressed.

BiVO前駆体を含む水溶液から、BiVO粒子を製造する方法として、以下の方法が好ましく用いられる。BiVO前駆体を含む水溶液を200℃以下の低温で乾燥し、乾燥体を回収する。この乾燥体を結晶化する為に焼成することで、BiVO粒子を製造することが可能である。また、この水溶液の乾燥および焼成工程を、連続的に行っても良い。BiVOにおける結晶化の際の焼成温度は、400℃を超え700℃未満であり、より好ましくは、450℃以上600℃以下である。この温度範囲とすることで、錯化剤の脱水重縮合により生成するポリマー粒子を熱分解しつつ、高純度なBiVO粒子を高度に結晶化することが可能となる。 As a method for producing BiVO 4 particles from an aqueous solution containing a BiVO 4 precursor, the following method is preferably used. The aqueous solution containing the BiVO 4 precursor is dried at a low temperature of 200 ° C. or lower, and the dried product is recovered. BiVO 4 particles can be produced by calcination to crystallize the dried body. Moreover, you may perform the drying and baking process of this aqueous solution continuously. The calcination temperature at the time of crystallization in BiVO 4 is more than 400 ° C. and less than 700 ° C., more preferably 450 ° C. or more and 600 ° C. or less. By adjusting to this temperature range, it is possible to highly crystallize high-purity BiVO 4 particles while thermally decomposing polymer particles generated by dehydration polycondensation of the complexing agent.

光触媒としての利用方法
本発明のBiVO粒子を光触媒として水の光分解に用いる場合、水素発生用光触媒とともに、水中に適当なレドックス対(Fe2+/Fe3+、[Co(bpy)3+/2+、[Co(phen)3+/2+、I/I 、I/IO 、Co2+/Co3+等)を溶解させるか、もしくは凝集や焼成などの手法により水素発生光触媒と接触させ、水を完全分解できるZスキームシステムの構成とすることで、可視光照射により、水の完全分解が達成可能となる。本発明における水素発生用光触媒として、好ましくは、ロジウムドープチタン酸ストロンチウムである。
Method of Use as Photocatalyst When the BiVO 4 particles of the present invention are used as a photocatalyst for photolysis of water, a suitable redox couple (Fe 2+ / Fe 3+ , [Co (bpy) 3 ] 3 + / 2+ , [Co (phen) 3 ] 3 + / 2 + , I / I 3 , I / IO 3 , Co 2+ / Co 3+, etc.) or hydrogen generation by a technique such as aggregation or firing By contacting with a photocatalyst to form a Z scheme system that can completely decompose water, complete decomposition of water can be achieved by irradiation with visible light. The photocatalyst for hydrogen generation in the present invention is preferably rhodium-doped strontium titanate.

以下の実施例によって本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。 The following examples further illustrate the present invention. The present invention is not limited to these examples.

BiVO 粒子の作製
(実施例1〜4)
20mLサンプル瓶に、水10gと錯化剤であるL−(+)酒石酸(和光純薬製)0.0017mol(0.2536g)を添加し、室温で撹拌しながら、メタバナジン酸アンモニウム(アルドリッチ製)0.0017mol(0.20g)添加し、50℃で1時間撹拌して水溶性バナジウム錯体を含む赤茶色透明な水溶液を作製した。また、20mLサンプル瓶に、水10gに、親水性錯化剤であるエチレンジアミン四酢酸(和光純薬製)0.017mol(0.494g)を添加し、25%アンモニア水を1g滴下して水に溶解させた後、室温で撹拌しながら、硝酸ビスマス五水和物(和光純薬製)0.0017mol(0.82g)添加し、室温で1時間撹拌して水溶性ビスマス錯体を含む無色透明な水溶液を作製した。
次いで、上記で作製した水溶性ビスマス錯体を含む水溶液に、水溶性バナジウム錯体を含む水溶液を添加して、室温で3時間撹拌を行った。これにより、BiVO前駆体を含む青色透明な水溶液を得た。この水溶液のpHは、およそ8であった。
以上のように作製した、BiVO前駆体水溶液を、80℃で1時間乾燥させた後、表1に示す焼成温度および焼成時間で焼成することで、高温結晶化させ、BiVO粒子を作製した。作製条件および特性については、表1にまとめる。
Preparation of BiVO 4 particles (Examples 1 to 4)
To a 20 mL sample bottle, 10 g of water and 0.0017 mol (0.2536 g) of L-(+) tartaric acid (manufactured by Wako Pure Chemical Industries) as a complexing agent are added and stirred at room temperature, while ammonium metavanadate (manufactured by Aldrich) 0.0017 mol (0.20 g) was added and stirred at 50 ° C. for 1 hour to prepare a red-brown transparent aqueous solution containing a water-soluble vanadium complex. Further, 0.017 mol (0.494 g) of ethylenediaminetetraacetic acid (manufactured by Wako Pure Chemical Industries, Ltd.), a hydrophilic complexing agent, was added to 10 g of water in a 20 mL sample bottle, and 1 g of 25% ammonia water was added dropwise to the water. After dissolving, 0.0017 mol (0.82 g) of bismuth nitrate pentahydrate (manufactured by Wako Pure Chemical Industries, Ltd.) was added while stirring at room temperature, and the mixture was stirred at room temperature for 1 hour to be colorless and transparent containing a water-soluble bismuth complex. An aqueous solution was prepared.
Next, an aqueous solution containing a water-soluble vanadium complex was added to the aqueous solution containing the water-soluble bismuth complex prepared above, and the mixture was stirred at room temperature for 3 hours. As a result, a blue transparent aqueous solution containing the BiVO 4 precursor was obtained. The pH of this aqueous solution was approximately 8.
The BiVO 4 precursor aqueous solution prepared as described above was dried at 80 ° C. for 1 hour, and then fired at the firing temperature and firing time shown in Table 1 to be crystallized at a high temperature to produce BiVO 4 particles. . The manufacturing conditions and characteristics are summarized in Table 1.

(実施例5)
錯化剤として乳酸を用いた以外は、実施例1のBiVO粒子の作製方法と同様の方法にて、BiVO粒子を作製した。
(Example 5)
Except for using lactic acid as complexing agent, in the same manner as the method for preparing the BiVO 4 particles of Example 1 were produced BiVO 4 particles.

(比較例1)
比較例1として、従来の固相反応法により作製したBiVOを作製した。固相反応法による作製方法は、以下の通りである。
酸化ビスマス(和光純薬製)、五酸化バナジウム(和光純薬製)の各粉末を、Bi:V=1:1のモル比率となるように混合し、700℃で8時間焼成し、比較例1のBiVO粉末を作製した。作製条件および特性については、表1にまとめる。
(Comparative Example 1)
As Comparative Example 1, BiVO 4 produced by a conventional solid phase reaction method was produced. The production method by the solid phase reaction method is as follows.
Each powder of bismuth oxide (manufactured by Wako Pure Chemical Industries) and vanadium pentoxide (manufactured by Wako Pure Chemical Industries) was mixed so as to have a molar ratio of Bi: V = 1: 1 and baked at 700 ° C. for 8 hours. 1 BiVO 4 powder was prepared. The manufacturing conditions and characteristics are summarized in Table 1.

(比較例2)
焼成温度を700℃とした以外は、実施例1のBiVO粒子の作製方法と同様の方法にて、BiVO粒子を作製した。作製条件および特性については、表1にまとめる。
(Comparative Example 2)
Except that the firing temperature was 700 ° C., at the same method as the method for manufacturing a BiVO 4 particles of Example 1 were produced BiVO 4 particles. The manufacturing conditions and characteristics are summarized in Table 1.

(比較例3)
焼成温度を400℃とした以外は、実施例1のBiVO粒子の作製方法と同様の方法にて、BiVO粒子を作製した。作製条件および特性については、表1にまとめる。
(Comparative Example 3)
Except that the firing temperature was 400 ° C., at the same method as the method for manufacturing a BiVO 4 particles of Example 1 were produced BiVO 4 particles. The manufacturing conditions and characteristics are summarized in Table 1.

BiVO 粒子の結晶構造と微細構造
実施例および比較例で作製したBiVOのX線回折測定を行った。その結果、すべてのBiVO粒子が、単相のモノクリニック−シーライト構造を有することが明らかとなった。次いで、走査型電子顕微鏡による観察からBiVO粒子の一次粒子径を算出した。実施例の一例として、図3に500℃で2時間焼成した後の粉末のSEM像を示す。一次粒子径は、100nm以下であり、高温結晶化処理後も、微細な粒子形状を維持することが分かる。
X-ray diffraction measurement was performed on BiVO 4 produced in the examples and comparative examples of the crystal structure and microstructure of BiVO 4 particles . As a result, it was revealed that all BiVO 4 particles have a single-phase monoclinic-celite structure. It was then calculated primary particle diameter of BiVO 4 particles observed with a scanning electron microscope. As an example of the example, FIG. 3 shows an SEM image of the powder after baking at 500 ° C. for 2 hours. It can be seen that the primary particle diameter is 100 nm or less, and the fine particle shape is maintained even after the high temperature crystallization treatment.

BiVO 粒子のX線構造解析によるピーク特性
実施例および比較例で作製したBiVOのX線構造回折スペクトルを以下の方法にて測定した。具体的には、X線回折装置(PANalytical製)を用いて、X線管の運転条件が、25℃の温度条件で、印加電圧45kV、電流200mAであり、ブラッグ角2θ=10°〜60°の範囲を、2θのスキャン速度が毎分2.5°で、0.05°間隔で測定した。得られたX線強度から下記の式を用いて、X線強度比AおよびX線強度比Bを求めた。
X線強度比A=I(2θ=18.8°)/I(2θ=19.0°)
X線強度比B=I(2θ=34.85°)/I(2θ=34.5°)
Peak characteristics by X-ray structure analysis of BiVO 4 particles X-ray structure diffraction spectra of BiVO 4 prepared in Examples and Comparative Examples were measured by the following method. Specifically, using an X-ray diffractometer (manufactured by PANalytical), the operating conditions of the X-ray tube are a temperature condition of 25 ° C., an applied voltage of 45 kV, a current of 200 mA, and a Bragg angle 2θ = 10 ° to 60 °. Was measured at 0.05 ° intervals with a 2θ scan rate of 2.5 ° per minute. The X-ray intensity ratio A and the X-ray intensity ratio B were determined from the obtained X-ray intensity using the following formula.
X-ray intensity ratio A = I (2θ = 18.8 °) / I (2θ = 19.0 °)
X-ray intensity ratio B = I (2θ = 34.85 °) / I (2θ = 34.5 °)

Figure 2015003840
Figure 2015003840

BiVO 粒子の水分解による酸素発生活性
実施例および比較例で作製したBiVO粒子の可視光照射による水分解活性を以下のような方法で調べた。パイレックス(登録商標)製上方照射用の窓付きのガラスフラスコに、BiVO粉末0.2gと、犠牲試薬となる硝酸銀(和光純薬製)を20mmol/L含む水溶液150mlを入れて、スターラーで撹拌しながら、反応溶液とした。そして、この反応溶液を入れたガラスフラスコを閉鎖循環装置(幕張理化学製)に装着し、反応系内の雰囲気をアルゴン置換した。そして、UVカットフィルター(L−42、HOYA製)を装着した300Wキセノンランプ(Cermax製、PE−300BF)により、可視光をパイレックス(登録商標)窓側から照射した。そして、光照射した後3時間の、水が酸化されて生成する酸素の発生量を、ガスクロマトグラフ(GLサイエンス製、GC−8A、TCD検出器、MS−5Aカラム)により経時的に調べた。
BiVO 4 Water degradation activity by irradiation of visible light BiVO 4 particles produced by oxygen evolution activity Examples and Comparative Examples with water decomposition of the particles were examined by the following method. In a glass flask with a window for upward irradiation made of Pyrex (registered trademark), 0.2 g of BiVO 4 powder and 150 ml of an aqueous solution containing 20 mmol / L of silver nitrate (manufactured by Wako Pure Chemical Industries) as a sacrificial reagent are added and stirred with a stirrer. The reaction solution was made. The glass flask containing the reaction solution was attached to a closed circulation device (Makuhari Chemical), and the atmosphere in the reaction system was replaced with argon. And visible light was irradiated from the Pyrex (registered trademark) window side by a 300 W xenon lamp (manufactured by Cermax, PE-300BF) equipped with a UV cut filter (L-42, manufactured by HOYA). Then, the amount of oxygen generated by oxidizing water for 3 hours after the light irradiation was examined over time by a gas chromatograph (manufactured by GL Science, GC-8A, TCD detector, MS-5A column).

Claims (5)

一次粒子径が100nm以下であり、X線構造解析により測定される結晶構造がモノクリニック‐シーライト構造であり、かつ、(101)面におけるブラッグ角2θ=18.7°のピークと(011)面におけるブラッグ角2θ=19.0°のピークとの中間であるブラッグ角2θ=18.8°のX線強度I(2θ=18.8°)を(011)面におけるブラッグ角2θ=19.0°のX線強度I(2θ=19.0°)で割ることにより得られるX線強度比Aが下記式:
A=I(2θ=18.8°)/I(2θ=19.0°)≦0.83
を満たすことを特徴とする、BiVO粒子。
The primary particle size is 100 nm or less, the crystal structure measured by X-ray structural analysis is a monoclinic-celite structure, and the peak at the Bragg angle 2θ = 18.7 ° on the (101) plane is (011) The X-ray intensity I (2θ = 18.8 °) of the Bragg angle 2θ = 18.8 °, which is intermediate between the peak of the Bragg angle 2θ = 19.0 ° in the plane, is the Bragg angle 2θ = 19.19 in the (011) plane. The X-ray intensity ratio A obtained by dividing by 0 ° X-ray intensity I (2θ = 19.0 °) is expressed by the following formula:
A = I (2θ = 18.8 °) / I (2θ = 19.0 °) ≦ 0.83
BiVO 4 particles characterized by satisfying:
一次粒子径が80nm以下であることを特徴とする、請求項1に記載のBiVO粒子。 The BiVO 4 particles according to claim 1, wherein the primary particle diameter is 80 nm or less. 請求項1又は2に記載のBiVO粒子と水素発生光触媒からなる、水分解用光触媒。 A photocatalyst for water splitting, comprising the BiVO 4 particles according to claim 1 or 2 and a hydrogen generating photocatalyst. 請求項1〜3のいずれか一項に記載のBiVOの製造方法であって、
ビスマス化合物、バナジウム化合物及び錯化剤を水に溶解させた水溶液を、乾燥および焼成することを特徴とする、BiVO粒子の製造方法。
A BiVO 4 of the manufacturing method according to any one of claims 1 to 3,
A method for producing BiVO 4 particles, comprising drying and firing an aqueous solution in which a bismuth compound, a vanadium compound and a complexing agent are dissolved in water.
請求項3記載のBiVO粒子の製造方法であって、焼成温度が、450℃以上600℃以下であることを特徴とする、BiVO粒子の製造方法。 A method of manufacturing a BiVO 4 particles according to claim 3, firing temperature, and wherein the at 450 ° C. or higher 600 ° C. A method for fabricating BiVO 4 particles.
JP2013129216A 2013-06-20 2013-06-20 BiVO4 particles and method for producing the same Active JP5892478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129216A JP5892478B2 (en) 2013-06-20 2013-06-20 BiVO4 particles and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129216A JP5892478B2 (en) 2013-06-20 2013-06-20 BiVO4 particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2015003840A true JP2015003840A (en) 2015-01-08
JP5892478B2 JP5892478B2 (en) 2016-03-23

Family

ID=52300044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129216A Active JP5892478B2 (en) 2013-06-20 2013-06-20 BiVO4 particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5892478B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100057A (en) * 2015-11-30 2017-06-08 国立研究開発法人産業技術総合研究所 Semiconductor photocatalyst having characteristic absorption band and manufacturing method therefor
CN107827154A (en) * 2017-12-08 2018-03-23 吉林师范大学 The preparation method of sword-shaped monoclinic phase pucherite in a kind of hand of preferential exposure (040) crystal face
JP2019084527A (en) * 2017-11-01 2019-06-06 株式会社豊田中央研究所 Z scheme-type photocatalyst system
JP2020021658A (en) * 2018-08-01 2020-02-06 国立研究開発法人産業技術総合研究所 Battery system
CN116889875A (en) * 2023-07-28 2023-10-17 中国科学院地理科学与资源研究所 BiVO (binary organic acid) 4 CoAlLa-LDH composite photocatalyst, and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636419A (en) * 2018-03-14 2018-10-12 西安建筑科技大学 A kind of pucherite-magnesium ferrite composite photo-catalyst, preparation method and applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843554A (en) * 1970-09-24 1974-10-22 Du Pont Catalyst compositions of scheelite crystal structure containing vanadium,bismuth and cation vacancies
JP2004024936A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp New synthetic method for fine powder of visible light-responsive bismuth vanadate, photocatalyst of fine powder of new visible light-responsive bismuth vanadate and cleaning method using the same
JP2004202335A (en) * 2002-12-25 2004-07-22 Sk Kaken Co Ltd Photocatalyst compound powder having visible light responsiveness
JP2005035853A (en) * 2003-07-18 2005-02-10 Sk Kaken Co Ltd Method of manufacturing bismuth vanadate particulate
JP2011178638A (en) * 2010-03-03 2011-09-15 Osaka Univ Bismuth vanadate pigment
WO2012008838A1 (en) * 2010-07-16 2012-01-19 Universiteit Twente Photocatalytic water splitting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843554A (en) * 1970-09-24 1974-10-22 Du Pont Catalyst compositions of scheelite crystal structure containing vanadium,bismuth and cation vacancies
JP2004024936A (en) * 2002-06-21 2004-01-29 Japan Science & Technology Corp New synthetic method for fine powder of visible light-responsive bismuth vanadate, photocatalyst of fine powder of new visible light-responsive bismuth vanadate and cleaning method using the same
JP2004202335A (en) * 2002-12-25 2004-07-22 Sk Kaken Co Ltd Photocatalyst compound powder having visible light responsiveness
JP2005035853A (en) * 2003-07-18 2005-02-10 Sk Kaken Co Ltd Method of manufacturing bismuth vanadate particulate
JP2011178638A (en) * 2010-03-03 2011-09-15 Osaka Univ Bismuth vanadate pigment
WO2012008838A1 (en) * 2010-07-16 2012-01-19 Universiteit Twente Photocatalytic water splitting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017100057A (en) * 2015-11-30 2017-06-08 国立研究開発法人産業技術総合研究所 Semiconductor photocatalyst having characteristic absorption band and manufacturing method therefor
JP2019084527A (en) * 2017-11-01 2019-06-06 株式会社豊田中央研究所 Z scheme-type photocatalyst system
CN107827154A (en) * 2017-12-08 2018-03-23 吉林师范大学 The preparation method of sword-shaped monoclinic phase pucherite in a kind of hand of preferential exposure (040) crystal face
JP2020021658A (en) * 2018-08-01 2020-02-06 国立研究開発法人産業技術総合研究所 Battery system
JP7109069B2 (en) 2018-08-01 2022-07-29 国立研究開発法人産業技術総合研究所 battery system
CN116889875A (en) * 2023-07-28 2023-10-17 中国科学院地理科学与资源研究所 BiVO (binary organic acid) 4 CoAlLa-LDH composite photocatalyst, and preparation method and application thereof

Also Published As

Publication number Publication date
JP5892478B2 (en) 2016-03-23

Similar Documents

Publication Publication Date Title
JP5892478B2 (en) BiVO4 particles and method for producing the same
Jalalah et al. Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light
Ravidhas et al. Facile synthesis of nanostructured monoclinic bismuth vanadate by a co-precipitation method: Structural, optical and photocatalytic properties
EP2459485B1 (en) Photocatalytic materials and process for producing the same
US9561493B2 (en) Synthesis of pyrochlore nanostructures and uses thereof
Wu et al. Synthesis, structures and photocatalytic activities of microcrystalline ABi2Nb2O9 (A= Sr, Ba) powders
Padmini et al. Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies
JPWO2013180307A1 (en) Visible light responsive photocatalyst particles and method for producing the same
JP3845720B2 (en) Potassium niobate photocatalyst and method for producing the same
Fu et al. Effect of calcination temperature on microstructure and photocatalytic activity of BiOX (X= Cl, Br)
RU2549421C2 (en) Method of obtaining nanoneedles of sodium vanadium oxide bronze
Pan et al. Zinc titanium glycolate acetate hydrate and its transformation to zinc titanate microrods: synthesis, characterization and photocatalytic properties
Guru et al. Influence of nature of surfactant and precursor salt anion on the microwave assisted synthesis of barium carbonate nanoparticles
Goswami et al. A novel synthetic approach for the preparation of sulfated titania with enhanced photocatalytic activity
Obregón et al. Water splitting performance of Er3+-doped YVO4 prepared from a layered K3V5O14 precursor
JP6521316B2 (en) Semiconductor photocatalyst having characteristic absorption band and method of manufacturing the same
KR20140092483A (en) Conversion method of crystal shape to control titanium dioxide
JP4051433B2 (en) Zinc oxide polycrystalline tube
Zhang et al. Photocatalytic activities of europium (III) and niobium (V) co-doped TiO2 nanopowders synthesized in Ar/O2 radio-frequency thermal plasmas
RU2739773C1 (en) Method of producing nanostructured hollow microspheres of vanadium oxide (versions)
JP2008179528A (en) Manufacture method of titanium oxide
Hongsong et al. Preparation, characterization of A2Ce2O7 (A= La and Gd) and their photo-catalytic properties
Dogu et al. Photocatalytic properties and characterization of praseodymium-doped titanium dioxide
JP6218116B2 (en) Composite metal oxide particles and method for producing the same
JP2015020936A (en) Method for producing tantalum-oxide nanowire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5892478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160214