JP2019084527A - Z scheme-type photocatalyst system - Google Patents

Z scheme-type photocatalyst system Download PDF

Info

Publication number
JP2019084527A
JP2019084527A JP2018142779A JP2018142779A JP2019084527A JP 2019084527 A JP2019084527 A JP 2019084527A JP 2018142779 A JP2018142779 A JP 2018142779A JP 2018142779 A JP2018142779 A JP 2018142779A JP 2019084527 A JP2019084527 A JP 2019084527A
Authority
JP
Japan
Prior art keywords
photocatalyst
semiconductor
reduced
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018142779A
Other languages
Japanese (ja)
Other versions
JP6829229B2 (en
Inventor
登美子 毛利
Tomiko Mori
登美子 毛利
森川 健志
Kenji Morikawa
健志 森川
工藤 昭彦
Akihiko Kudo
昭彦 工藤
顕秀 岩瀬
Akihide Iwase
顕秀 岩瀬
隼矢 吉野
Junya Yoshino
隼矢 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Science
Toyota Central R&D Labs Inc
Original Assignee
Tokyo University of Science
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Science, Toyota Central R&D Labs Inc filed Critical Tokyo University of Science
Publication of JP2019084527A publication Critical patent/JP2019084527A/en
Application granted granted Critical
Publication of JP6829229B2 publication Critical patent/JP6829229B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

To provide a Z scheme type photocatalyst system having an oxidation photocatalyst particle and a reduction photocatalyst particle, capable of reducing carbon dioxide by using water as an electron donor in an aqueous medium by irradiation of visible light, and improving reduction performance of carbon dioxide more.SOLUTION: A photocatalyst system 1 has an aqueous medium, an oxidation photocatalyst 2 for oxidizing water, a reduction photocatalyst 3 for reducing carbon dioxide, and a mediator 4 for transferring electron between the oxidation photocatalyst particle 2 and the reduction photocatalyst particle 3, in which the mediator 4 is a metal complex compound or the reduction photocatalyst particle 3 contains a semiconductor particle and a metal complex catalyst.SELECTED DRAWING: Figure 1

Description

本発明は、酸化光触媒粒子と還元光触媒粒子とを備えるZスキーム型光触媒系に関する。   The present invention relates to a Z scheme type photocatalyst system comprising oxidation photocatalyst particles and reduction photocatalyst particles.

地球環境問題や化石燃料の枯渇の解決策の一つである二酸化炭素の固定技術として、半導体への光照射による半導体表面での光触媒作用を利用して二酸化炭素を還元する技術が知られている。光照射による二酸化炭素の高効率・高選択的な光還元は、太陽エネルギーの化学変換ならびに二酸化炭素の常温・常圧下での有効利用の観点から重要な技術であり、中でも水を電子源として用いるものがクリーンなエネルギー生成法として期待されている。   As a technology to fix carbon dioxide, which is one of the solutions to global environmental problems and the exhaustion of fossil fuels, there is known a technology to reduce carbon dioxide using photocatalysis on the semiconductor surface by light irradiation to semiconductors. . Highly efficient and selective photoreduction of carbon dioxide by light irradiation is an important technology from the viewpoint of chemical conversion of solar energy and effective utilization of carbon dioxide at normal temperature and pressure, and above all, water is used as an electron source Things are expected as a clean energy generation method.

ここで、光触媒を用いた還元技術の主なものとしては、電極を用いた光触媒系と、粒子を媒体に分散懸濁させた光触媒系の2つがある。後者の粒子懸濁型の光触媒系は、前者に比べて、工業化における大規模化やコストの点で優れていると考えられている(T. F. Jaramillo, et al., Energy Environ. Sci., 2013, 6, 1983-2002)。また、2段階励起型(Zスキーム型)光触媒系は、2種類の半導体を用いて、一方の半導体(酸化光触媒)で光触媒酸化反応を行い、他方の半導体(還元光触媒)で光触媒還元反応を行う光触媒系である。これまでに、2種類の半導体粒子が媒体中に懸濁ないし分散してなるZスキーム型光触媒系が提案されている(特許文献1〜3、非特許文献1〜3)。   Here, two main methods of reduction technology using a photocatalyst are a photocatalyst system using an electrode and a photocatalyst system in which particles are dispersed and suspended in a medium. The latter particle suspension type photocatalyst system is considered to be superior to the former in terms of large scale and cost in industrialization (TF Jaramillo, et al., Energy Environ. Sci., 2013, 6, 1983-2002). The two-stage excitation type (Z scheme type) photocatalyst system performs photocatalytic oxidation reaction with one semiconductor (oxidation photocatalyst) using two types of semiconductors, and performs photocatalytic reduction reaction with the other semiconductor (reduction photocatalyst). It is a photocatalyst system. So far, Z scheme type photocatalyst systems in which two types of semiconductor particles are suspended or dispersed in a medium have been proposed (patent documents 1 to 3, non-patent documents 1 to 3).

特開2005−199187号公報JP 2005-199187 A 特開2013−150972号公報JP, 2013-150972, A 特開2014−46236号公報JP 2014-46236 A

T. Kato, et al., The Journal of Physical Chemistry Letters, (米), 2015, Vol.6, p.1042-1047T. Kato, et al., The Journal of Physical Chemistry Letters, (US), 2015, Vol. 6, p. 1042-1047 A. Iwase, et al., The Journal of American Chemical Society, 2016, Vol.138, p.10260-10264A. Iwase, et al., The Journal of the American Chemical Society, 2016, Vol. 138, p. 10260-10264 T. Takayama, et al., Faraday Discussions, (英), 2017, Vol.198, p.397-407T. Takayama, et al., Faraday Discussions, (UK), 2017, Vol. 198, p. 397-407

2種類の光触媒粒子を用いたZスキーム型光触媒系では、電極を用いた光触媒系とは異なり、酸化光触媒及び還元光触媒が媒体中に分散しているため、酸化光触媒から還元光触媒への電子の移動効率が低く、反応速度が遅くなることが問題であった。そこで、従来は、光触媒粒子間の電子移動を媒介するレドックスメディエータを媒体に添加するか(特許文献1、非特許文献1〜3)、或いは、光触媒粒子間の電子移動を媒介するとともに、両光触媒粒子を接合又は電気的に接近させる物質を光触媒粒子に接合する(特許文献1及び2)ことで、上記の問題の解決を図っていた。   In the Z scheme type photocatalyst system using two types of photocatalyst particles, unlike the photocatalyst system using an electrode, since the oxidation photocatalyst and the reduction photocatalyst are dispersed in the medium, the transfer of electrons from the oxidation photocatalyst to the reduction photocatalyst The problem was that the efficiency was low and the reaction rate was slow. Therefore, conventionally, a redox mediator that mediates electron transfer between photocatalyst particles is added to the medium (patent document 1, non-patent documents 1 to 3), or while electron transfer between photocatalyst particles is mediated, both photocatalysts are The above problem has been solved by bonding a substance for bonding or electrically approaching particles to photocatalyst particles (Patent Documents 1 and 2).

一方、上述の通り、よりクリーンなエネルギー生成法として、水性媒体中で水を電子供与体として使用し、可視光によって二酸化炭素を還元する技術が期待されている。しかしながら、特許文献1〜3及び非特許文献1に記載された光触媒系は、水の完全分解により酸素及び水素を生成するものであり、CO還元反応について全く記載されていない。非特許文献2及び3に記載されたZスキーム型光触媒系では、水性媒体中で水を電子供与体として使用して、可視光によるCO還元反応によるCO生成が実現している。しかしながら、非特許文献2及び3では、水素イオンの還元による水素生成反応も同時に生起しており、しかもCO生成量は水素生成量の1/100以下であるため、CO還元反応の選択性が極めて低い。またCO還元生成物としてギ酸は検出されていない。 On the other hand, as described above, as a cleaner energy generation method, a technology of using water as an electron donor in an aqueous medium and reducing carbon dioxide by visible light is expected. However, the photocatalytic systems described in Patent Documents 1 to 3 and Non-Patent Document 1 generate oxygen and hydrogen by complete decomposition of water, and do not describe CO 2 reduction reaction at all. The Z Scheme optical catalyst system described in Non-Patent Documents 2 and 3, the water in an aqueous medium using as electron donors, CO generation is realized by CO 2 reduction reaction with visible light. However, in Non-Patent Documents 2 and 3, since the hydrogen generation reaction by reduction of hydrogen ions also occurs simultaneously, and the CO generation amount is 1/100 or less of the hydrogen generation amount, the selectivity of the CO 2 reduction reaction is Extremely low. Also, formic acid is not detected as a CO 2 reduction product.

このように、水性媒体中で水を電子供与体として使用した可視光によるCO還元がほとんど実現されていない理由としては、第一に、CO還元反応では、水素イオンの還元反応(水素生成反応)に比べてより高い(ネガティブな、卑電位側の)準位の電子を必要とするため、半導体光触媒上でより高い準位に電子を励起させる必要があること、第二に、水性媒体中では多くの水素イオンが周囲に存在するため、より低い準位の電子で起こる水素生成反応が優先し、CO還元反応の生起が困難となることが考えられる。 Thus, the reason why the reduction of CO 2 by visible light using water as an electron donor in an aqueous medium is hardly realized is primarily the reduction reaction of hydrogen ions (hydrogen generation in the CO 2 reduction reaction) It is necessary to excite electrons to a higher level on the semiconductor photocatalyst to require higher (negative, zeta potential side) level electrons compared to the reaction) Second, an aqueous medium Among them, since many hydrogen ions exist in the surroundings, it is considered that the hydrogen generation reaction occurring at lower level electrons takes precedence and the CO 2 reduction reaction becomes difficult.

本発明の課題は、酸化光触媒粒子及び還元光触媒粒子を備えるZスキーム型光触媒系であって、可視光を照射することにより、水性媒体中で水を電子供与体として使用して二酸化炭素を還元することができ、なお且つ、二酸化炭素の還元性能がより一層向上したZスキーム型光触媒系を提供することにある。   An object of the present invention is a Z scheme type photocatalyst system comprising oxidized photocatalyst particles and reduced photocatalyst particles, wherein water is used as an electron donor to reduce carbon dioxide in an aqueous medium by irradiating visible light An object of the present invention is to provide a Z scheme type photocatalytic system in which the reduction performance of carbon dioxide can be further improved.

本発明に係る光触媒系は、水性媒体と、水を酸化する酸化光触媒粒子と、二酸化炭素を還元する還元光触媒粒子と、前記酸化光触媒粒子と前記還元光触媒粒子との間で電子を伝達するレドックスメディエータと、を備え、前記レドックスメディエータが金属錯体化合物であるか、又は、前記還元光触媒粒子が半導体粒子と金属錯体触媒とを含む。   The photocatalyst system according to the present invention comprises an aqueous medium, an oxidation photocatalyst particle for oxidizing water, a reduction photocatalyst particle for reducing carbon dioxide, a redox mediator for transferring electrons between the oxidation photocatalyst particle and the reduction photocatalyst particle. And the redox mediator is a metal complex compound, or the reduced photocatalyst particle comprises a semiconductor particle and a metal complex catalyst.

好適な態様では、レドックスメディエータが金属錯体化合物であり、より好適には、金属錯体化合物が周期表の第6族から第12族のいずれかに属する金属から選択される少なくとも1つの金属の錯体であり、更に好適には、金属錯体化合物がコバルト、鉄及び銅からなる群から選択される少なくとも1つの金属の錯体である。他の好適な態様では、還元光触媒粒子が半導体粒子と金属錯体触媒とを含み、より好適には、金属錯体触媒が周期表の第6族から第10族までのいずれかに属する金属から選択される少なくとも1つの金属の錯体であり、更に好適には、半導体粒子の伝導帯下端の準位が金属錯体触媒の最低空軌道の準位よりも卑である。   In a preferred embodiment, the redox mediator is a metal complex compound, more preferably a complex of at least one metal selected from metals belonging to any of Groups 6 to 12 of the periodic table. Preferably, the metal complex compound is a complex of at least one metal selected from the group consisting of cobalt, iron and copper. In another preferred embodiment, the reduced photocatalyst particles comprise semiconductor particles and a metal complex catalyst, and more preferably, the metal complex catalyst is selected from metals belonging to any of Groups 6 to 10 of the periodic table. And the level of the lower end of the conduction band of the semiconductor particle is more negative than the level of the lowest unoccupied orbital of the metal complex catalyst.

他の好適な態様では、還元光触媒粒子に含まれる半導体粒子の伝導帯下端の電位が、pH0における標準水素電極の電位に対して−0.3V以下である。他の好適な態様では、還元光触媒粒子に含まれる半導体粒子が硫化物半導体で構成されており、より好適には、硫化物半導体が亜鉛を含有する。   In another preferred embodiment, the potential at the lower end of the conduction band of the semiconductor particles contained in the reduced photocatalyst particles is -0.3 V or less with respect to the potential of the standard hydrogen electrode at pH 0. In another preferred embodiment, the semiconductor particles contained in the reduced photocatalyst particles are composed of a sulfide semiconductor, and more preferably, the sulfide semiconductor contains zinc.

他の好適な態様では、水性媒体が電解質の水溶液であり、より好適には、電解質が炭酸塩、重炭酸塩及びリン酸塩からなる群より選択される少なくとも1つである。他の好適な態様では、酸化光触媒粒子の伝導帯下端の電位が、還元光触媒粒子に含まれる半導体粒子の価電子帯上端の電位よりも卑である。他の好適な態様では、酸化光触媒粒子がバナジン酸ビスマス半導体を含む。   In another preferred embodiment, the aqueous medium is an aqueous solution of electrolyte, and more preferably, the electrolyte is at least one selected from the group consisting of carbonate, bicarbonate and phosphate. In another preferred embodiment, the potential at the lower end of the conduction band of the oxidized photocatalyst particle is lower than the potential at the upper end of the valence band of the semiconductor particles contained in the reduced photocatalyst particle. In another preferred embodiment, the oxidized photocatalyst particle comprises a bismuth vanadate semiconductor.

本発明に係るZスキーム型光触媒系によれば、可視光を照射することにより、水性媒体中で水を電子供与体として使用して二酸化炭素を還元することができ、なお且つ、二酸化炭素の還元性能をより一層向上させることができる。   According to the Z scheme type photocatalyst system according to the present invention, by irradiating visible light, carbon dioxide can be reduced using water as an electron donor in an aqueous medium, and furthermore, reduction of carbon dioxide Performance can be further improved.

本実施形態に係る光触媒系の構成の一例を示す図である。It is a figure which shows an example of a structure of the photocatalyst system which concerns on this embodiment. 本実施形態に係る光触媒系の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the photocatalyst system which concerns on this embodiment. 光照射時間とギ酸生成量との関係を示すグラフである。It is a graph which shows the relationship between light irradiation time and the formic acid production amount. 光照射時間と一酸化炭素及び酸素の生成量との関係を示すグラフである。It is a graph which shows the relationship between light irradiation time and the production amount of carbon monoxide and oxygen. 光照射時間と一酸化炭素、水素及び酸素の生成量との関係を示すグラフである。It is a graph which shows the relationship between light irradiation time and the production amount of carbon monoxide, hydrogen, and oxygen.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

[Zスキーム型光触媒系]
図1に、本実施形態に係るZスキーム型光触媒系1(以下単に「光触媒系1」ともいう)の構成を示す。光触媒系1は、酸化光触媒粒子2と、還元半導体粒子3aを含んで構成される還元光触媒粒子3と、レドックスメディエータ(以下単に「メディエータ」ともいう)4と、を備える。メディエータ4は、酸化光触媒粒子2と還元光触媒粒子3との間で電子を伝達する。
[Z scheme type photocatalyst system]
FIG. 1 shows the configuration of a Z scheme type photocatalyst system 1 (hereinafter, also simply referred to as “photocatalyst system 1”) according to the present embodiment. The photocatalyst system 1 includes an oxidation photocatalyst particle 2, a reduction photocatalyst particle 3 including the reduction semiconductor particle 3a, and a redox mediator (hereinafter, also simply referred to as a "mediator") 4. The mediator 4 transfers electrons between the oxidized photocatalyst particle 2 and the reduced photocatalyst particle 3.

本実施形態に係る光触媒系1は、光照射によって水性媒体中で二酸化炭素(CO)を還元する。光触媒系1において、酸化光触媒粒子2に可視光5が照射されると、光触媒反応によって、水(HO)が酸化され、酸素((1/2)O)又は過酸化水素等を生成するとともに、励起された電子eが酸化光触媒粒子2の伝導帯に移動する。メディエータ4は、酸化光触媒粒子2の励起電子eを受け取り、還元光触媒粒子3を構成する還元半導体粒子3aの価電子帯に引き渡す。ここで、還元光触媒粒子3に可視光5が照射されると、光触媒反応によって、価電子帯の電子eが光励起されて還元半導体粒子3aの伝導帯に移動し、励起電子eがCO還元反応に利用される。このCO還元反応により、一酸化炭素(CO)及びギ酸(HCOOH)等の還元生成物が生成する。 The photocatalyst system 1 according to the present embodiment reduces carbon dioxide (CO 2 ) in an aqueous medium by light irradiation. In the photocatalyst system 1, when the oxidation photocatalyst particles 2 are irradiated with visible light 5, water (H 2 O) is oxidized by the photocatalytic reaction to generate oxygen ((1/2) O 2 ) or hydrogen peroxide etc. At the same time, excited electrons e move to the conduction band of the oxidized photocatalyst particle 2. The mediator 4 receives the excited electrons e of the oxidized photocatalyst particles 2 and delivers the excited electrons e to the valence band of the reduced semiconductor particles 3 a constituting the reduced photocatalyst particles 3. Here, when the reduced photocatalyst particle 3 is irradiated with the visible light 5, the electron e − in the valence band is photoexcited by the photocatalytic reaction to move to the conduction band of the reduced semiconductor particle 3 a, and the excited electron e is CO 2 It is used for the reduction reaction. This CO 2 reduction reaction produces reduction products such as carbon monoxide (CO) and formic acid (HCOOH).

図2に、本実施形態に係る光触媒系1の構成の他の例を示す。図2に示す光触媒系1では、還元光触媒粒子3が還元半導体粒子3aと金属錯体触媒3bとを含んで構成されている。図2に示す光触媒系1では、メディエータ4からの励起電子eは、還元光触媒粒子3の還元半導体粒子3aの価電子帯に引き渡される。還元光触媒粒子3に可視光5が照射されると、電子eが光励起されて還元半導体粒子3aの伝導帯に移動し、更に還元半導体粒子3aの伝導帯から金属錯体触媒3bへと移動して、金属錯体触媒3bにおけるCO還元反応に利用され、還元生成物が生成する。 FIG. 2 shows another example of the configuration of the photocatalyst system 1 according to the present embodiment. In the photocatalyst system 1 shown in FIG. 2, the reduction photocatalyst particle 3 is configured to include the reduction semiconductor particle 3a and the metal complex catalyst 3b. In the photocatalyst system 1 shown in FIG. 2, excited electrons e from the mediator 4 are handed over to the valence band of the reduced semiconductor particles 3 a of the reduced photocatalyst particles 3. When the reduced photocatalyst particle 3 is irradiated with the visible light 5, the electron e is photoexcited to move to the conduction band of the reduced semiconductor particle 3a, and further to the metal complex catalyst 3b from the conduction band of the reduced semiconductor particle 3a is utilized to CO 2 reduction in the metal complex catalyst 3b, the reduction product is produced.

本実施形態の光触媒系1では、2種類の光触媒粒子及びメディエータ4を水性媒体中に懸濁させた状態で、光エネルギーを利用した二段階励起型(Zスキーム型)反応により、水を電子供与剤として利用しつつ、COを還元して有用な炭素化合物を合成することができる。また、本実施形態の光触媒系1では、還元光触媒として還元半導体粒子3a及び金属錯体触媒3bからなる還元光触媒粒子3を利用することにより、CO還元性能を向上させることができる。即ち、本実施形態の光触媒系1では、CO還元反応による還元生成物の生成量を向上させることができ、及び/又は、水の還元反応に対するCO還元反応の選択性を向上させることができる。更に、本実施形態の光触媒系1は、光触媒粒子が懸濁した粒子懸濁型であるため、酸化触媒電極及び還元触媒電極を用いた系に比べて、大規模化及び製造コストの抑制が可能である点で優れる。加えて、本実施形態の光触媒系1では水を電子供与剤として利用するため、クリーンなエネルギー生成法を提供することができる。 In the photocatalyst system 1 of the present embodiment, in the state where two types of photocatalyst particles and the mediator 4 are suspended in an aqueous medium, water is donated by two-stage excitation type (Z scheme type) reaction using light energy. While being used as an agent, CO 2 can be reduced to synthesize useful carbon compounds. Further, in the photocatalyst system 1 of the present embodiment, the CO 2 reduction performance can be improved by utilizing the reduced photocatalyst particles 3 composed of the reduced semiconductor particles 3 a and the metal complex catalyst 3 b as the reduced photocatalyst. That is, in the photocatalyst system 1 of the present embodiment, the generation amount of the reduction product by the CO 2 reduction reaction can be improved, and / or the selectivity of the CO 2 reduction reaction to the water reduction reaction can be improved. it can. Furthermore, since the photocatalyst system 1 of the present embodiment is a particle suspension type in which photocatalyst particles are suspended, it is possible to increase the scale and to suppress the manufacturing cost as compared with a system using an oxidation catalyst electrode and a reduction catalyst electrode. Excellent in that In addition, in the photocatalyst system 1 of the present embodiment, since water is used as an electron donor, a clean energy generation method can be provided.

[酸化光触媒粒子]
酸化光触媒粒子2は、可視光の照射によって光触媒機能を発揮し、水の酸化反応を生起する半導体化合物(以下「酸化半導体」とも記載する)で構成された粒子であれば、特に限定されない。ここで、可視光とは波長λが360nm以上である光を意味する。酸化半導体は、価電子帯上端の電位が水の酸化(O/HO)電位(標準水素電極(SHE)に対して1.23V)より貴(ポジティブ)であるものが好ましい。
[Oxidized photocatalyst particles]
The oxidation photocatalyst particle 2 is not particularly limited as long as it is a particle composed of a semiconductor compound (hereinafter, also described as “an oxidation semiconductor”) which exhibits a photocatalytic function by irradiation of visible light and causes an oxidation reaction of water. Here, visible light means light having a wavelength λ of 360 nm or more. The oxide semiconductor is preferably one in which the potential at the top of the valence band is more noble (positive) than the oxidation (O 2 / H 2 O) potential of water (1.23 V with respect to a standard hydrogen electrode (SHE)).

酸化光触媒粒子2を構成する酸化半導体のバンドギャップは特に制限されないが、例えば、4.0eV以下が好ましい。4.0eV以下のバンドギャップを有する半導体粒子は、波長λが300nm〜1000nmの光を吸収して、電子と正孔を形成することができる。また、酸化半導体は、n型半導体であってもp型半導体であってもよい。   Although the band gap in particular of the oxidation semiconductor which comprises the oxidation photocatalyst particle 2 is not restrict | limited, For example, 4.0 eV or less is preferable. Semiconductor particles having a band gap of 4.0 eV or less can absorb light with a wavelength λ of 300 nm to 1000 nm to form electrons and holes. The oxide semiconductor may be either an n-type semiconductor or a p-type semiconductor.

酸化半導体として、例えば、各種金属の酸化物(金属が部分的に酸化されているものを含む)、複合酸化物(金属が部分的に酸化されているものを含む)、窒化物(金属が部分的に窒化されているものを含む)、酸窒化物(金属酸化物が部分的に窒化されているもの、金属窒化物が部分的に酸化されているものを含む)、硫化物(金属が部分的に硫化されているものを含む)、酸硫化物(金属酸化物が部分的に硫化されているもの、金属硫化物が部分的に酸化されているものを含む)、窒弗化物(金属窒化物が部分的に弗化されているもの、金属弗化物が部分的に窒化されているものを含む)、酸弗化物(金属酸化物が部分的に弗化されているもの、金属弗化物が部分的に酸化されているものを含む)、酸窒素弗化物(金属酸窒化物が部分的に弗化されているもの、金属酸弗化物が部分的に窒化されているもの、金属窒弗化物が部分的に酸化されているものを含む)、炭化物(金属が部分的に炭化されているものを含む)、炭素含有酸化物(金属が部分的に酸化されているものを含む)、リン化合物、シリサイド化合物等が挙げられる。また、酸化半導体には、窒素、硫黄、炭素、リン及び金属元素のうち少なくとも1種の元素がドープされていてもよい。   As the oxide semiconductor, for example, oxides of various metals (including those in which the metal is partially oxidized), complex oxides (including those in which the metal is partially oxidized), nitrides (where the metal is (Including those that are nitrided), oxynitrides (including those in which metal oxides are partially nitrided, and those in which metal nitrides are partially oxidized), (Including those that are sulfurized), oxysulfides (including those in which metal oxides are partially sulfided, and those in which metal sulfides are partially oxidized), nitrofluoride (metal nitrides) Substances are partially fluorinated, including those in which metal fluoride is partially nitrided, acid fluorides (where metal oxide is partially fluorinated), metal fluoride (Including those which are partially oxidized), oxy-nitrogen fluorides (metal oxynitrides are partially Those which are fluorinated, those in which metal oxyfluorides are partially nitrided, those in which metal nitrofluorides are partially oxidized, carbides (where metals are partially carbonized) And carbon-containing oxides (including those in which the metal is partially oxidized), phosphorus compounds, silicide compounds and the like. In addition, the oxide semiconductor may be doped with at least one element of nitrogen, sulfur, carbon, phosphorus, and a metal element.

更に具体的な酸化半導体としては、バナジウム化合物、チタン化合物、タンタル化合物、鉄化合物、亜鉛化合物、銅化合物等が挙げられる。   Further specific examples of the oxide semiconductor include vanadium compounds, titanium compounds, tantalum compounds, iron compounds, zinc compounds, copper compounds and the like.

バナジウム化合物としては特に制限されないが、例えば、酸化バナジウム(V)、バナジン酸ビスマス(BiVO)、AgVO、AgVO、Bi11、CuV、FeVO、Cu、FeV等が挙げられる。また、これら以外のBiV、AgV、CuV、CoV、MnV、NiV、FeV、CrVの酸化物であってもよい。 The vanadium compound is not particularly limited, and, for example, vanadium oxide (V 2 O 5 ), bismuth vanadate (BiVO 4 ), Ag 3 VO 4 , AgVO 3 , Bi 4 V 2 O 11 , CuV 2 O 6 , Fe 2 VO 4, Cu 3 V 2 O 8, FeV 2 O 4 and the like. In addition, oxides of BiV, AgV, CuV, CoV, MnV, NiV, FeV, and CrV other than these may be used.

チタン化合物としては特に制限はないが、例えば、TiO、M−TiO(元素MをドープしたTiOを表し、元素Mとしては、N、S、F、Ni、Ru、Rh、Fe、Cu、Co等が挙げられる。)、SrTiO、M−SrTiO(元素MをドープしたSrTiOを表し、元素Mとしては、Cr、Mn、Ru、Rh、Ir等が挙げられる。)、CaTiO、SrTi、SrTi、KLaTi10、RbLaTi10、CsLaTi10、CsLaTiNbO10、LaTiO、LaTi、LaTi、NaTi13、KTi13、KTiNbO等が挙げられる。 No particular limitation is imposed on the titanium compound, for example, TiO 2, M-TiO 2 (represents TiO 2 of the element M doped, as the element M, N, S, F, Ni, Ru, Rh, Fe, Cu , Co etc.), SrTiO 3 , M-SrTiO 3 (represents SrTiO 3 doped with the element M, and examples of the element M include Cr, Mn, Ru, Rh, Ir etc.), CaTiO 3 , Sr 3 Ti 2 O 7 , Sr 4 Ti 3 O 7 , K 2 La 2 Ti 3 O 10 , Rb 2 La 2 Ti 3 O 10 , Cs 2 La 2 Ti 3 O 10 , CsLaTi 2 NbO 10 , La 2 TiO 5 , La 2 Ti 3 O 9 , La 2 Ti 2 O 7 , Na 2 Ti 6 O 13 , K 2 Ti 6 O 13 , KTiNbO 5 and the like.

タンタル化合物としては特に制限はないが、例えば、Ta、N−Ta(窒素ドープ酸化タンタル)、TaON、Ta、CaTaON、SrTaON、BaTaON、LaTaON、YTaN、InTaO、Ni−TaO(ニッケルドープTaO)等が挙げられる。 The tantalum compound is not particularly limited. For example, Ta 2 O 5 , N-Ta 2 O 5 (nitrogen-doped tantalum oxide), TaON, Ta 3 N 5 , CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N, InTaO 4 , Ni-TaO 4 (nickel-doped TaO 4 ), and the like.

鉄化合物としては特に制限はないが、例えば、Fe、M−Fe(元素MをドープしたFeを表し、元素Mとしては、N、Zn、(N,Zn)、Cu、Ni、Ti、Si、Nb等が挙げられる。)、CaFe、CuFe、CuFeO、ZnFe、BiFeO等が挙げられる。 No particular limitation is imposed on the iron compounds, for example, Fe 2 O 3, M- Fe 2 O 3 ( represents Fe 2 O 3 of the element M doped, as the element M, N, Zn, (N , Zn) Cu, Ni, Ti, Si, Nb, etc.), CaFe 2 O 4 , CuFe 2 O 4 , CuFeO 2 , ZnFe 2 O 4 , BiFeO 3 etc.

亜鉛化合物としては特に制限はないが、例えば、ZnS、Ni−ZnS(ニッケルドープ硫化亜鉛)、Cu−ZnS(銅ドープ硫化亜鉛)等が挙げられる。   The zinc compound is not particularly limited, and examples thereof include ZnS, Ni-ZnS (nickel-doped zinc sulfide), Cu-ZnS (copper-doped zinc sulfide) and the like.

銅化合物としては特に制限はないが、例えばCuO、CuO、CuBi、CuI、Cu(InGa)S、Cu(InGa)Se、CuGaS、CuGaSSe、CuGaSe等が挙げられる。また、銅化合物としては、例えばCu−Zn−S系化合物、Cu−Zn−Sn−S系化合物、Cu−Sn−S系化合物、Cu−In−Ga−Se系化合物、Cu−In−Ga−S系化合物、Cu−In−Se系化合物等が挙げられる。 The copper compound is not particularly limited, and examples thereof include Cu 2 O, CuO, CuBi 2 O 4 , CuI, Cu (InGa) S 2 , Cu (InGa) Se 2 , CuGaS 2 , CuGaSSe, CuGaSe 2 and the like. Moreover, as a copper compound, a Cu-Zn-S type compound, a Cu-Zn-Sn-S type compound, a Cu-Sn-S type compound, a Cu-In-Ga-Se type compound, Cu-In-Ga-, for example is mentioned. Examples include S-based compounds and Cu-In-Se-based compounds.

また、WO、BiMoO、Nb、NiO、ZnO、SnO、ZrO、CeO、ZrO/CeO固溶体等の金属酸化物や、InP、InAs、GaP、GaAs、GaAsP、GaN、GaInAsP、GaSb、CdS、CdSe、Si、SiC、Ge、SiC、各種金属(Mo、W、Ti、Co、Ni、Fe等)のシリサイド等の半導体化合物も、酸化光触媒粒子2を構成する酸化半導体として使用できる。 In addition, metal oxides such as WO 3 , Bi 2 MoO 6 , Nb 2 O 5 , NiO, ZnO, SnO 2 , ZrO 2 , ZrO 2 , CeO 2 , and ZrO 2 / CeO 2 solid solution, InP, InAs, GaP, GaAs, GaAsP Semiconductor compounds such as GaN, GaInAsP, GaSb, CdS, CdSe, Si, SiC, Ge, SiC, and silicides of various metals (Mo, W, Ti, Co, Ni, Fe, etc.) also constitute the oxidized photocatalyst particle 2 It can be used as an oxide semiconductor.

本実施形態では、より高い光触媒活性が発現する観点から、酸化光触媒粒子2を構成する酸化半導体が、バナジウム、タンタル、チタン、タングステン、ビスマス及び鉄からなる群から選択される少なくとも1種を含む化合物であることが好ましく、上記の群から選択される少なくとも1種を含む酸化物であることがより好ましい。好適な酸化半導体の具体的な例としては、例えば、BiVO、TiO、Fe、BiWO、BiMoO、TaON、N−TiO及びWO等が挙げられる。 In this embodiment, from the viewpoint of expression of higher photocatalytic activity, a compound containing at least one selected from the group consisting of vanadium, tantalum, titanium, tungsten, bismuth, and iron from the oxide semiconductor constituting the oxidation photocatalyst particle 2 It is preferable that it is an oxide containing at least one selected from the above group. Specific examples of suitable oxidizing semiconductor, e.g., BiVO 4, TiO 2, Fe 2 O 3, Bi 2 WO 6, Bi 2 MoO 6, TaON, N-TiO 2 and WO 3, and the like.

本実施形態に係る酸化光触媒粒子2の粒径は特に制限はないが、平均一次粒子径が100μm以下であることが好ましく、10μm以下がより好ましい。酸化光触媒粒子2の粒径が大きすぎると、粒子の比表面積が減少し、粒子同士の接触確率が低下する場合がある。平均一次粒子径の下限は特に制限はなく、例えば、1nm以上である。酸化光触媒粒子2の平均一次粒子径は、公知の方法によって測定でき、例えば、X線回折(XRD)測定、透過型電子顕微鏡(TEM)観察、走査型電子顕微鏡(SEM)観察等で得られた画像から、任意に選択した複数個の粒子サンプルについて、長径及び短径の平均を取り、これを複数個の粒子サンプルについて平均化することによって、算出することができる。また、酸化光触媒粒子2の形状は特に制限されない。   The particle size of the oxidation photocatalyst particles 2 according to the present embodiment is not particularly limited, but the average primary particle size is preferably 100 μm or less, and more preferably 10 μm or less. If the particle size of the oxidized photocatalyst particles 2 is too large, the specific surface area of the particles may be reduced, and the probability of contact between particles may be reduced. The lower limit of the average primary particle size is not particularly limited, and is, for example, 1 nm or more. The average primary particle size of the oxidized photocatalyst particles 2 can be measured by a known method, and is obtained, for example, by X-ray diffraction (XRD) measurement, transmission electron microscope (TEM) observation, scanning electron microscope (SEM) observation, etc. From the image, the average of the major axis and the minor axis can be calculated for a plurality of arbitrarily selected particle samples, and this can be averaged for the plurality of particle samples. Moreover, the shape in particular of the oxidation photocatalyst particle 2 is not restrict | limited.

また、本実施形態に係る酸化光触媒粒子2の比表面積としては特に制限はないが、例えば5m/g以上が好ましい。酸化光触媒粒子2の比表面積が小さすぎると、粒子同士の接触確率や光触媒活性が低下する場合があるためである。 Further, the specific surface area of the oxidation photocatalyst particle 2 according to the present embodiment is not particularly limited, but for example, 5 m 2 / g or more is preferable. If the specific surface area of the oxidized photocatalyst particles 2 is too small, the contact probability between particles and the photocatalytic activity may decrease.

酸化光触媒粒子2は、公知の方法により合成した半導体粒子であってもよく、市販の半導体粒子を使用してもよい。酸化光触媒粒子2に粉砕、研磨等の処理を施して粒子径を調整してもよい。   The oxidation photocatalyst particles 2 may be semiconductor particles synthesized by a known method, or commercially available semiconductor particles may be used. The particle size may be adjusted by subjecting the oxidized photocatalyst particles 2 to processing such as grinding or polishing.

[還元光触媒粒子]
還元光触媒粒子3は、可視光の照射によって光触媒機能を発揮し、水の酸化反応を生起する半導体化合物(以下「還元半導体」とも記載する)からなる還元半導体粒子3aを含んで構成される。還元光触媒粒子3は、少なくとも還元半導体粒子3aを含むものであれば、特に限定されない。
[Reduced photocatalyst particle]
The reduced photocatalyst particle 3 is configured to include the reduced semiconductor particle 3a made of a semiconductor compound (hereinafter, also described as a “reduced semiconductor”) that exhibits a photocatalytic function by irradiation of visible light and causes an oxidation reaction of water. The reduced photocatalyst particle 3 is not particularly limited as long as it contains at least the reduced semiconductor particle 3a.

(還元半導体粒子)
還元半導体粒子3aを構成する還元半導体としては、還元半導体の伝導帯下端(CBM)の電位が、酸化光触媒粒子2を構成する酸化半導体の価電子帯上端(VBM)の電位より貴(ポジティブ)であるものが挙げられる。これにより、酸化光触媒粒子2において光励起した電子がメディエータ4を介して還元半導体粒子3aの価電子帯へ移動し、その電子が再び還元半導体粒子3aの伝導帯に光励起する、という2段階光励起システムが形成される。還元光触媒粒子3は、還元半導体のCBMの電位から酸化半導体のVBMの電位を差し引いた電位差が0.1V以上であるものが好ましい。
(Reduced semiconductor particles)
As the reduced semiconductor constituting the reduced semiconductor particle 3a, the potential of the conduction band lower end (CBM) of the reduced semiconductor is noble (positive) than the potential of the valence band upper end (VBM) of the oxidized semiconductor constituting the oxidized photocatalyst particle 2 Some are mentioned. Thereby, a two-step photoexcitation system is such that electrons photoexcited in the oxidized photocatalyst particle 2 move to the valence band of the reduced semiconductor particle 3a via the mediator 4, and the electrons are photoexcited again in the conduction band of the reduced semiconductor particle 3a. It is formed. The reduced photocatalyst particle 3 preferably has a potential difference of 0.1 V or more obtained by subtracting the potential of the VBM of the oxidized semiconductor from the potential of CBM of the reduced semiconductor.

還元半導体粒子3aを構成する還元半導体のバンドギャップは特に制限されず、例えば、4.0eV以下が好ましい。4.0eV以下のバンドギャップを有する半導体粒子は、波長λが300nm〜1000nmの光を吸収して、電子と正孔を形成することができる。また、還元半導体は、n型半導体であってもp型半導体であってもよい。   The band gap in particular of the reduction semiconductor which constitutes reduction semiconductor particle 3a is not restricted, for example, 4.0 eV or less is preferred. Semiconductor particles having a band gap of 4.0 eV or less can absorb light with a wavelength λ of 300 nm to 1000 nm to form electrons and holes. Further, the reduction semiconductor may be an n-type semiconductor or a p-type semiconductor.

還元半導体として、例えば、各種金属の硫化物(金属が部分的に硫化されているものを含む)、酸硫化物(金属酸化物が部分的に硫化されているもの、金属硫化物が部分的に酸化されているものを含む)、酸化物(金属が部分的に酸化されているものを含む)、複合酸化物(金属が部分的に酸化されているものを含む)、窒化物(金属が部分的に窒化されているものを含む)、酸窒化物(金属酸化物が部分的に窒化されているもの、金属窒化物が部分的に酸化されているものを含む)、窒弗化物(金属窒化物が部分的に弗化されているもの、金属弗化物が部分的に窒化されているものを含む)、酸弗化物(金属酸化物が部分的に弗化されているもの、金属弗化物が部分的に酸化されているものを含む)、酸窒素弗化物(金属酸窒化物が部分的に弗化されているもの、金属酸弗化物が部分的に窒化されているもの、金属窒弗化物が部分的に酸化されているものを含む)、炭化物(金属が部分的に炭化されているものを含む)、炭素含有酸化物(金属が部分的に酸化されているものを含む)、リン化合物、シリサイド化合物等が挙げられる。また、還元半導体には、窒素、硫黄、炭素、リン並びに金属元素(銀、アルカリ金属、アルカリ土類金属及びランタノイド等)のうち、1種又は2種以上の元素がドープされていてもよい。   As a reduced semiconductor, for example, sulfides of various metals (including those in which metals are partially sulfided), acid sulfides (in which metal oxides are partially sulfided, metal sulfides are partially contained) Oxides (including oxidized), oxides (including partially oxidized metal), complex oxides (including partially oxidized metal), nitride (partially metal) (Including those which are nitrided in nature), oxynitrides (in which metal oxides are partially nitrided, including in which metal nitrides are partially oxidized), nitrofluorides (metal nitrides) Substances are partially fluorinated, including those in which metal fluoride is partially nitrided, acid fluorides (where metal oxide is partially fluorinated), metal fluoride (Including those which are partially oxidized), oxy-nitrogen fluorides (metal oxynitrides are partially Those which are fluorinated, those in which metal oxyfluorides are partially nitrided, those in which metal nitrofluorides are partially oxidized, carbides (where metals are partially carbonized) And carbon-containing oxides (including those in which the metal is partially oxidized), phosphorus compounds, silicide compounds and the like. In addition, the reduced semiconductor may be doped with one or more elements of nitrogen, sulfur, carbon, phosphorus, and metal elements (such as silver, alkali metals, alkaline earth metals, and lanthanoids).

還元半導体粒子3aを構成する還元半導体の好適な具体例として、硫化物半導体が挙げられる。還元半導体粒子3aを構成する硫化物半導体としては、金属硫化物からなる還元半導体であれば特に制限されない。硫化物半導体としては、例えば、カドミウム(Cd)及び亜鉛(Zn)等のII族元素(第12族元素)の硫化物、ビスマス(Bi)及びアンチモン(Sb)等のV族元素(第15族元素)の硫化物、スズ(Sn)、鉛(Pb)等のIV族元素(第14族元素)の硫化物、銅ガリウム(CuGa)、銅インジウム(CuIn)、銀インジウム(AgIn)、銅アルミニウム(CuAl)、銀ガリウム(AgGa)等のI族元素(第11族元素)及びIII族元素(第2族元素又は第13族元素)の硫化物、銅亜鉛(CuZn)等のI族元素及びII族元素の硫化物、銅ガリウム亜鉛(CuGaZn)、銅インジウム亜鉛(CuInZn)、銀インジウム亜鉛(AgInZn)等のI族元素、II族元素及びIII族元素の硫化物、並びに、これらの硫化物の固溶体が挙げられる。   A sulfide semiconductor is mentioned as a suitable example of a reduction semiconductor which constitutes reduction semiconductor particle 3a. The sulfide semiconductor constituting the reduced semiconductor particles 3a is not particularly limited as long as it is a reduced semiconductor composed of metal sulfide. As the sulfide semiconductor, for example, a sulfide of a group II element (group 12 element) such as cadmium (Cd) and zinc (Zn), a group V element (group 15 such as bismuth (Bi) and antimony (Sb) Element sulfides, group IV elements (group 14 elements) such as tin (Sn) and lead (Pb), copper gallium (CuGa), copper indium (CuIn), silver indium (AgIn), copper aluminum Sulfides of group I elements (group 11 elements) such as (CuAl) and silver gallium (AgGa) and group III elements (group 2 elements or group 13 elements), group I elements such as copper zinc (CuZn) and the like Sulfides of group II elements, copper gallium zinc (CuGaZn), copper indium zinc (CuInZn), silver indium zinc (AgInZn), and the like; sulfides of group II elements and group II elements and group III elements; Solid solution of La sulfides.

硫化物半導体が亜鉛(Zn)を含有することが好ましい。Znを含有する硫化物半導体は比較的卑電位側の(ネガティブな)CBMを有することから、Znを含有する硫化物半導体からなる還元半導体粒子3aは、COの還元反応又は金属錯体触媒3bへの電子移動に有利であるためである。Znを含有する硫化物半導体としては、ZnSとI族元素及びIII族元素を含む金属硫化物との固溶体が好ましく、より具体的には、例えば組成式が(CuGa)1−xZn2x、(AgIn)1−xZn2x、又は、(CuIn)1−xZn2x(いずれも0<x<1)で表される化合物がより好ましい。また、Znを含有する硫化物半導体における金属総量に対するZnの含有率は、20モル%以上が好ましく、40モル%以上がより好ましい。上限は特に制限されないが、例えば、金属総量に対するZnの含有率が、99質量%以下であればよく、太陽光の有効利用の観点からは95質量%以下が好ましい。 The sulfide semiconductor preferably contains zinc (Zn). Since Zn-containing sulfide semiconductors have relatively negative potential side (negative) CBM, the reduced semiconductor particles 3a made of Zn-containing sulfide semiconductors are reduced to CO 2 or to the metal complex catalyst 3b. Is advantageous for the electron transfer of As a sulfide semiconductor containing Zn, a solid solution of ZnS and a metal sulfide containing a group I element and a group III element is preferable, and more specifically, for example, the composition formula is (CuGa) 1-x Zn 2 x S 2 , (AgIn) 1-x Zn 2x S 2, or, (CuIn) 1-x Zn 2x S 2 ( both 0 <x <1) compound represented by is more preferable. Moreover, 20 mol% or more is preferable and, as for the content rate of Zn with respect to the total metal in the sulfide semiconductor containing Zn, 40 mol% or more is more preferable. Although the upper limit is not particularly limited, for example, the content of Zn with respect to the total amount of metals may be 99% by mass or less, and from the viewpoint of effective use of sunlight, 95% by mass or less is preferable.

還元半導体粒子3aとして使用される硫化物半導体の製造方法は特に制限されず、公知の方法で製造すればよい。また、硫化物半導体として、市販の硫化物半導体の粒子を使用してもよい。硫化物半導体は、例えば、硫化物半導体を構成する金属の化合物を溶媒に溶解させ、その溶液に硫黄化合物を含有する溶液を投入して攪拌した後、遠心分離及び再分散を行い、上澄みを除去した上で乾燥させることによって、合成することができる。使用する金属化合物としては、用いる金属によって異なるが、例えば、金属の塩化物、臭化物、ヨウ化物、硝酸塩、亜硝酸塩、硫酸塩、酢酸塩、過塩素酸塩等が挙げられる。また、複数の金属を含有する複合金属硫化物半導体を製造する場合、各金属の硫化物を使用してもよい。硫化物半導体の合成に使用する硫黄化合物としては、例えば、硫化水素、硫化ナトリウム水和物、SCl、SBr、SI、チオ酢酸、チオ尿素、チオアセトアミド、チオシナミン等が挙げられる。 The method for producing the sulfide semiconductor used as the reduced semiconductor particles 3a is not particularly limited, and may be produced by a known method. In addition, particles of a commercially available sulfide semiconductor may be used as the sulfide semiconductor. The sulfide semiconductor dissolves, for example, a metal compound constituting the sulfide semiconductor in a solvent, and after adding and stirring a solution containing a sulfur compound to the solution, centrifugation and redispersion are performed to remove the supernatant. Can be synthesized by drying it. Although it changes with metals to be used as a metal compound to be used, metal chloride, a bromide, an iodide, nitrate, a nitrite, a sulfate, an acetate, a perchlorate etc. are mentioned, for example. Further, in the case of producing a composite metal sulfide semiconductor containing a plurality of metals, sulfides of the respective metals may be used. Examples of sulfur compounds used for the synthesis of sulfide semiconductors include hydrogen sulfide, sodium sulfide hydrate, SCl 2 , SBr 2 , SI 2 , thioacetic acid, thiourea, thioacetamide, thiocinamine and the like.

また、硫化物半導体は、上記の金属化合物の溶液中で硫化水素ガスをバブリングさせた後、得られた沈殿物を洗浄及び乾燥し、次いで焼成することにより、製造してもよい。加えて、複数の金属を含有する金属硫化物の固溶体を製造する場合は、各金属硫化物を目的とする組成比で混合して得た混合物を焼成することにより、製造してもよい。製造された硫化物半導体の粒子に粉砕、研磨等の処理を施して粒子径を調整してもよい。更に、金属錯体触媒3bの担持をスムーズに行うため、硫化物半導体に予め前処理を施してもよい。   Further, the sulfide semiconductor may be produced by bubbling hydrogen sulfide gas in a solution of the above metal compound, and then washing and drying the obtained precipitate and then firing. In addition, in the case of producing a solid solution of metal sulfides containing a plurality of metals, it may be produced by calcining a mixture obtained by mixing each metal sulfide at a target composition ratio. The particles of the produced sulfide semiconductor may be subjected to a treatment such as grinding or polishing to adjust the particle diameter. Furthermore, in order to support the metal complex catalyst 3b smoothly, the sulfide semiconductor may be pretreated in advance.

還元半導体粒子3aを構成する還元半導体は、そのCBMの電位がpH0における標準水素電極の電位に対して(以下「vs.NHE」と記載する)−0.3V以下であることが好ましい。CO還元反応は水素生成反応に比べてより卑電位側の準位の電子を必要とするところ、CBMの電位が−0.3(vs.NHE)以下である還元半導体を使用することにより光触媒系においてCO還元反応をより有利に進めることができるためである。上記の観点から、還元半導体は、CBMの電位が−0.5V(vs.NHE)以下であることがより好ましく、−1.0V(vs.NHE)以下であることが特に好ましい。 The reduced semiconductor constituting the reduced semiconductor particle 3a preferably has a CBM potential of -0.3 V or less relative to the potential of a standard hydrogen electrode at pH 0 (hereinafter referred to as "vs. NHE"). The CO 2 reduction reaction requires electrons at levels more on the zeta potential side than the hydrogen generation reaction, and by using a reduced semiconductor whose CBM potential is -0.3 (vs. NHE) or less This is because the CO 2 reduction reaction can be more advantageously promoted in the system. From the above viewpoint, the reduced semiconductor more preferably has a CBM potential of −0.5 V (vs. NHE) or less, and particularly preferably −1.0 V (vs. NHE) or less.

CBM電位が上記の範囲である還元半導体の種類は特に限定されず、例えばタンタル、鉄、銅、インジウム及びガリウムからなる群から選択される少なくとも1種を含む半導体化合物等が挙げられ、上記群から選択される少なくとも1種を含む酸化物半導体が好ましい。また、CBM電位が上記の範囲である還元半導体としては、上述の硫化物半導体が挙げられる。   The type of reduced semiconductor having a CBM potential in the above range is not particularly limited, and examples thereof include semiconductor compounds containing at least one selected from the group consisting of tantalum, iron, copper, indium and gallium, etc. An oxide semiconductor containing at least one selected is preferable. Moreover, the above-mentioned sulfide semiconductor is mentioned as a reduced semiconductor whose CBM potential is in the above range.

当該タンタル化合物としては特に制限はないが、例えば、Ta、TaON、Ta、CaTaON、SrTaON、BaTaON、LaTaON、YTaN、InTaO、LiTaO、KTaO、AgTaO、RbTaO、CSTaO、NaTa、KTa、CaTa、SrTa、BaTa、NiTa、CaTa、SrTa及びLaTaO、並びに、これらの化合物に窒素、アルカリ金属、アルカリ土類金属及びランタノイドからなる群より選択される1種又は2種以上の元素がドープされた化合物(例えばN−Ta、Ni−TaO、Na‐TaO、La−TaO等)が挙げられる。 The tantalum compound is not particularly limited, and, for example, Ta 2 O 5 , TaON, Ta 3 N 5 , CaTaO 2 N, SrTaO 2 N, BaTaO 2 N, LaTaO 2 N, Y 2 Ta 2 O 5 N, InTaO 4 , LiTaO 3 , KTaO 3 , AgTaO 3 , RbTaO 3 , CSTaO 3 , CSTaO 3 , Na 2 Ta 2 O 6 , K 2 Ta 2 O 6 , CaTa 2 O 6 , SrTa 2 O 6 , BaTa 2 O 6 , NiTa 2 O 6 , Ca 2 Ta 2 O 7 , Sr 2 Ta 2 O 7 and LaTaO 4 , and one or more elements selected from the group consisting of nitrogen, alkali metals, alkaline earth metals and lanthanoids in these compounds There doped compounds (e.g. N-Ta 2 O 5, Ni -TaO 4, Na-TaO 3, La-TaO Etc.) and the like.

当該鉄化合物としては特に制限はないが、例えば、Fe、AFeの組成を有するフェライト化合物(元素Aとしては、Ca、Sr、Cu、Mg、Ni、Zn、Ba等が挙げられる)、並びに、元素Mをドープした化合物であるM‐Fe及びM‐Fe(元素Mとしては、N、Ag、Zn、Cu、Mg、Ni、Ti、Si、Nb等が挙げられる)等が挙げられる。 The iron compound is not particularly limited, but for example, a ferrite compound having a composition of Fe 2 O 3 and AFe 2 O 4 (as element A, Ca, Sr, Cu, Mg, Ni, Zn, Ba, etc. may be mentioned) And M-Fe 2 O 3 and M-Fe 2 O 4 , which are compounds doped with element M (as element M, N, Ag, Zn, Cu, Mg, Ni, Ti, Si, Nb, etc.) And the like).

当該銅化合物としては特に制限はないが、例えば、銅酸化物、銅と他の元素との酸化物(例えば銅アルミニウム酸化物、銅ビスマス酸化物等)、ヨウ化銅、Cu−In−Ga−Se系化合物、Cu−In−Se系化合物等が挙げられ、より具体的には、CuO、CuO、CuAlO、CuBi、CuI、Cu(InGa)Se、CuGaSe等が挙げられる。 The copper compound is not particularly limited, but, for example, copper oxide, an oxide of copper and another element (for example, copper aluminum oxide, copper bismuth oxide, etc.), copper iodide, Cu—In—Ga— Se-based compounds, Cu-In-Se-based compounds, etc. are mentioned, and more specifically, Cu 2 O, CuO, CuAlO 2 , CuBi 2 O 4 , CuI, Cu (InGa) Se 2 , CuGaSe 2 etc. Be

CBMの電位が−0.3(vs.NHE)以下である硫化物半導体以外の還元半導体としては、酸化タンタル、酸化鉄(フェライト)及びそれらが窒素又は銀によりドープされた化合物が好ましい。当該酸化物半導体の好ましい具体例としては、例えば、窒素ドープ酸化タンタル(N−Ta、CBM:約−1.3V)、窒素ドープ酸化鉄(N−Fe、CBM:約−0.6V)、カルシウム酸化鉄(CaFe、CBM:約−0.6V)、銀ドープカルシウム酸化鉄(Ag−CaFe、CBM:約−0.6V)等が挙げられる。 As a reduced semiconductor other than a sulfide semiconductor in which the potential of CBM is −0.3 (vs. NHE) or less, tantalum oxide, iron oxide (ferrite) and compounds in which they are doped with nitrogen or silver are preferable. Preferable specific examples of the oxide semiconductor include, for example, nitrogen-doped tantalum oxide (N-Ta 2 O 5 , CBM: about -1.3 V), nitrogen-doped iron oxide (N-Fe 2 O 3 , CBM: about- 0.6 V), calcium iron oxide (CaFe 2 O 4 , CBM: about −0.6 V), silver-doped calcium iron oxide (Ag—CaFe 2 O 4 , CBM: about −0.6 V) and the like.

硫化物半導体以外の還元半導体粒子3aの製造方法は特に制限されず、公知の方法で製造すればよい。また、還元半導体粒子3aとして、市販の半導体化合物の粒子を使用してもよい。例えば、窒素ドープ酸化タンタルは、酸化タンタルをアンモニアガスを含む雰囲気で加熱処理することによって生成することができる。アンモニアは非酸化性のガス(アルゴン、窒素等)によって希釈することが好適であり、例えば、アンモニアとアルゴンとを流量の比率が1:1〜3:1となるように混合したガス流中に酸化タンタルを配して加熱することが好適である。加熱温度は500℃以上900℃以下が好ましく、さらには550℃以上850℃以下がより好ましい。処理時間は6時間以上15時間以下が好ましい。窒素をドープする前の酸化タンタルは、市販品であってもよく、又は、塩化タンタル、タンタルアルコキシド等のタンタル含有化合物の溶液に加水分解処理等を施すことによって調製してもよい。他の窒素ドープ金属酸化物もまた上記の製造方法に準じて製造することができる。   The method for producing reduced semiconductor particles 3a other than the sulfide semiconductor is not particularly limited, and may be produced by a known method. Alternatively, particles of a commercially available semiconductor compound may be used as the reduced semiconductor particles 3a. For example, nitrogen-doped tantalum oxide can be produced by heat treatment of tantalum oxide in an atmosphere containing ammonia gas. Ammonia is preferably diluted with a non-oxidizing gas (argon, nitrogen, etc.), for example, in a gas stream mixed with ammonia and argon so that the flow ratio is 1: 1 to 3: 1. Tantalum oxide is preferably disposed and heated. The heating temperature is preferably 500 ° C. to 900 ° C., and more preferably 550 ° C. to 850 ° C. The treatment time is preferably 6 hours or more and 15 hours or less. Tantalum oxide before doping with nitrogen may be a commercially available product, or may be prepared by subjecting a solution of a tantalum-containing compound such as tantalum chloride or tantalum alkoxide to hydrolysis treatment or the like. Other nitrogen-doped metal oxides can also be produced according to the above-mentioned production method.

(金属錯体触媒)
還元光触媒粒子3は、還元半導体粒子3aと金属錯体触媒3bとを含んで構成されていてもよい。金属錯体触媒3bとしては、金属と非金属の配位子とが結合した構造を有し、電子を利用することによりCOの還元活性を示す化合物であれば特に制限なく使用できる。金属錯体触媒3bは、例えば、還元半導体粒子3aを構成する半導体化合物のCBMの準位が金属錯体触媒3bの最低空軌道(LUMO)の準位に対して+0.2V以下である化合物であればよい。電子移動の効率の観点から、還元半導体粒子3aのVBMの準位が金属錯体触媒3bのLUMOの準位よりも卑であることが好ましい。
(Metal complex catalyst)
The reduced photocatalyst particles 3 may be configured to include the reduced semiconductor particles 3a and the metal complex catalyst 3b. Any metal complex catalyst 3b may be used without particular limitation as long as it is a compound having a structure in which a metal and a nonmetal ligand are bonded and which exhibits a CO 2 reduction activity by utilizing electrons. If the metal complex catalyst 3b is, for example, a compound in which the CBM level of the semiconductor compound constituting the reduced semiconductor particle 3a is +0.2 V or less with respect to the lowest unoccupied molecular orbital (LUMO) level of the metal complex catalyst 3b. Good. From the viewpoint of the efficiency of the electron transfer, it is preferable that the level of VBM of the reduced semiconductor particles 3a is more negative than the level of LUMO of the metal complex catalyst 3b.

金属錯体触媒3bとしては、例えば、周期表の第6族から第10族のいずれかに属する金属から選ばれる少なくとも1種の金属と配位子との錯体が挙げられる。金属錯体触媒3bを構成する金属としては、例えば、Cr、Mo、W、Ru、Re、Mn、Fe、Os、Co、Rh、Ir、Ni、Pd、Pt等が挙げられ、Ru及びRhが好ましい。このような錯体は、単核であっても2核以上の多核であってもよい。また、2種以上の金属が含まれていてもよい。   Examples of the metal complex catalyst 3b include complexes of at least one metal selected from metals belonging to any of Groups 6 to 10 of the periodic table and a ligand. Examples of the metal constituting the metal complex catalyst 3b include Cr, Mo, W, Ru, Re, Mn, Fe, Os, Co, Rh, Ir, Ni, Pd, Pt and the like, and Ru and Rh are preferable. . Such a complex may be mononuclear or polynuclear of two or more nuclei. Moreover, 2 or more types of metals may be contained.

金属錯体触媒3bにおける配位子としては、特に制限はなく、例えば、典型的な主配位子としては、含窒素複素環化合物、含酸素複素環化合物、含酸素化合物、含硫黄複素環化合物等が挙げられ、補助配位子としては、CO、ハロゲン、シアン、ホスフィン類等が挙げられる。補助配位子は、反応の過程でCO、塩基、又は水と接触して一部解離し、副配位子へ変換されてもよい。副配位子としては、例えば−CO、−CO、−COOH、−COH、−(CO)−、−OH、−OH等が挙げられる。これらの配位子は、1種を単独で使用しても2種以上を併用してもよい。これらの配位子において、金属に配位する元素としては特に制限はないが、例えば、O、N、C、P、S、Si、ハロゲン等が挙げられる。このような元素は、1種が配位していても2種以上が配位していてもよい。 The ligand in the metal complex catalyst 3b is not particularly limited. For example, as a typical main ligand, a nitrogen-containing heterocyclic compound, an oxygen-containing heterocyclic compound, an oxygen-containing compound, a sulfur-containing heterocyclic compound, etc. And CO, halogen, cyan, phosphines and the like can be mentioned as auxiliary ligands. The auxiliary ligand may be partially dissociated in contact with CO 2 , a base, or water in the course of the reaction, and converted to a secondary ligand. The subsidiary ligand, for example -CO, -CO 2, -COOH, -COH , - (CO 2) -, - OH, -OH 2 and the like. These ligands may be used alone or in combination of two or more. Although there is no restriction | limiting in particular as an element coordinated to a metal in these ligands, For example, O, N, C, P, S, Si, a halogen, etc. are mentioned. Such an element may be coordinated by one or more species.

主配位子となる含窒素複素環化合物としては、例えば、ピリジン、ビピリジン、ジホスホネートビピリジン、フェナントロリン、ターピリジン、クアテルピリジン、ピロール、インドール、カルバゾール、イミダゾール、ピラゾール、キノリン、イソキノリン、アクリジン、ピリダジン、ピリミジン、ピラジン、フタラジン、キナゾリン、キノキサリン及びそれらの誘導体等が挙げられる。主配位子となる含酸素複素環化合物としては、フラン、ベンゾフラン、オキサゾール、ピラン、ピロン、クマリン、ベンゾピロン及びそれらの誘導体等が挙げられる。主配位子となる含酸素化合物としては、ポリオキソメタレート及びその誘導体が挙げられる。主配位子となる含硫黄複素環化合物としては、チオフェン、チオナフテン、チアゾール及びそれらの誘導体等が挙げられる。   Examples of the nitrogen-containing heterocyclic compound as the main ligand include pyridine, bipyridine, diphosphonate bipyridine, phenanthroline, terpyridine, quaterpyridine, pyrrole, indole, carbazole, imidazole, pyrazole, quinoline, isoquinoline, acridine, pyridazine, Pyrimidine, pyrazine, phthalazine, quinazoline, quinoxaline and derivatives thereof and the like can be mentioned. Examples of the oxygen-containing heterocyclic compound as a main ligand include furan, benzofuran, oxazole, pyran, pyrone, coumarin, benzopyrone and derivatives thereof. Examples of the oxygen-containing compound as a main ligand include polyoxometalate and its derivatives. Examples of the sulfur-containing heterocyclic compound as a main ligand include thiophene, thionaphthene, thiazole and derivatives thereof.

金属錯体触媒3bの具体例としては、ジホスホネートビピリジン(dpbpy)、ジホスホネートエチルビピリジン(dpebpy)、ジカルボキシビピリジン(dcbpy)、ビピリジン(bpy)及びジ(ピロリルプロピルカーボネート)ビピリジン(pypcbpy)からなる群より選択される少なくとも一つを主配位子として有するルテニウム錯体及びレニウム錯体等が挙げられる。より具体的には、[Ru(dpbpy)(CO)2Cl2]2+、[Ru(dpbpy)(bpy)(CO)2]2+、[Ru(dcbpy)(CO)2Cl2]2+、[Ru(pypcbpy)(CO)(MeCN)Cl2]2+、[Ru(dpebpy)(bpy)(CO)2]2+、[Ru(dcbpy)(bpy)(CO)2]2+、[Re(dcbpy)(CO)3P(OEt)3]2+、[Re(dcbpy)(CO)3Cl]2+、[Re(dcbpy)(CO)3MeCN]2+等が挙げられる。また、これらを重合させた金属錯体ポリマーであっても構わない。 Specific examples of the metal complex catalyst 3b include diphosphonate bipyridine (dpbpy), diphosphonate ethyl bipyridine (dpebpy), dicarboxybipyridine (dcbpy), bipyridine (bpy) and di (pyrrolylpropyl carbonate) bipyridine (pypcbpy) The ruthenium complex, rhenium complex, etc. which have at least one selected from the group as a main ligand are mentioned. More specifically, [Ru (dpbpy) (CO) 2 Cl 2 ] 2+ , [Ru (dpbpy) (bpy) (CO) 2 ] 2+ , [Ru (dcbpy) (CO) 2 Cl 2 ] 2 + , [Ru (pypcbpy) (CO) (MeCN) Cl 2 ] 2+ , [Ru (dpebpy) (bpy) (CO) 2 ] 2+ , [Ru (dcbpy) (bpy) (CO) 2 ] 2+ , [Re (dcbpy) (CO) 3 P (OEt) 3 ] 2+ , [Re (dcbpy) (CO) 3 Cl] 2 + , [Re (dcbpy) (CO) 3 MeCN] 2 +, etc. . Moreover, the metal complex polymer which polymerized these may be used.

還元半導体粒子3aと金属錯体触媒3bとを含んで構成される還元光触媒粒子3は、例えば、金属錯体触媒3bを還元半導体粒子3aに担持することにより調製される。金属錯体触媒3bの担持方法としては特に制限はなく、例えば、吸着担持法、光析出法(光電着法、光電析法等ともいう)、沈着沈殿法、ナノ粒子担持法、物理的気相成長法(PVD法)等が挙げられる。例えば、金属錯体触媒3bに対応する金属錯体イオンを含有する溶液に還元半導体粒子3aを含浸させ、所定の時間(例えば6時間以上、好ましくは12時間以上)攪拌した後、洗浄及び乾燥することにより、金属錯体触媒3bが還元半導体粒子3aに担持(吸着)してなる還元光触媒粒子3が得られる。これらの担持方法は2種以上を併用してもよい。また、還元半導体粒子3aに上述の配位子を吸着させた後、金属錯体触媒3bを合成してもよい。   The reduced photocatalyst particle 3 including the reduced semiconductor particle 3a and the metal complex catalyst 3b is prepared, for example, by supporting the metal complex catalyst 3b on the reduced semiconductor particle 3a. There is no particular limitation on the method of supporting the metal complex catalyst 3b, and there are no particular limitations, and for example, an adsorption supporting method, a photoprecipitation method (also referred to as photo electrodeposition method, photoelectric precipitation method), a deposition precipitation method, nanoparticle support method, physical vapor deposition The method (PVD method) etc. are mentioned. For example, a solution containing metal complex ions corresponding to metal complex catalyst 3b is impregnated with reduced semiconductor particles 3a, stirred for a predetermined time (for example, 6 hours or more, preferably 12 hours or more), and then washed and dried. The reduced photocatalyst particles 3 formed by supporting (adsorbing) the metal complex catalyst 3b on the reduced semiconductor particles 3a are obtained. Two or more of these loading methods may be used in combination. Alternatively, the metal complex catalyst 3b may be synthesized after adsorbing the above-mentioned ligand to the reduced semiconductor particles 3a.

還元半導体粒子3aと金属錯体触媒3bとは連結基によって化学的に結合していることが好ましい。この連結基は、還元半導体粒子3aと化学的に結合可能な官能基であれば特に限定されず、例えば、カルボキシル基、リン酸基、スルホン酸基、シラノール基、メルカプト基及びこれらの誘導体が挙げられる。ここで、連結基は、還元半導体粒子3aと連結した状態では、プロトンが脱離した構造、又は金属と酸素原子が配位している構造を有し得る。これらの連結基は、1種単独であってもよいし、2種以上の組合せを用いてもよい。   It is preferable that the reduced semiconductor particles 3a and the metal complex catalyst 3b be chemically bonded by a linking group. This linking group is not particularly limited as long as it is a functional group capable of chemically bonding to the reduced semiconductor particle 3a, and examples thereof include a carboxyl group, a phosphoric acid group, a sulfonic acid group, a silanol group, a mercapto group and derivatives thereof. Be Here, the linking group may have a structure in which a proton is eliminated, or a structure in which a metal and an oxygen atom are coordinated, in a state of being linked to the reduced semiconductor particle 3a. These linking groups may be used alone or in combination of two or more.

連結基により還元半導体粒子3aと金属錯体触媒3bとを結合する方法は、両者が連結基を介して化学的に結合するものであれば、特に制限されない。例えば、(1)配位子に連結基を導入した金属錯体触媒3bを硫化物半導体に吸着させる、(2)連結基を導入した配位子を硫化物半導体に吸着させた後に直接金属錯体触媒3bを形成させる、(3)連結基を導入した硫化物半導体に金属錯体触媒3bを結合させる、等の方法が挙げられる。   The method of binding the reduced semiconductor particles 3a and the metal complex catalyst 3b by the linking group is not particularly limited as long as both are chemically linked via the linking group. For example, (1) a metal complex catalyst 3b in which a linking group is introduced to a ligand is adsorbed to a sulfide semiconductor, (2) a ligand in which a linking group is introduced is adsorbed to a sulfide semiconductor and then directly a metal complex catalyst Methods such as forming 3b, (3) bonding metal complex catalyst 3b to a sulfide semiconductor having a linking group introduced, and the like can be mentioned.

還元光触媒粒子3が金属錯体触媒3bを含む場合の金属錯体触媒3bの含有量は特に制限はないが、例えば、100質量部の還元半導体粒子3aに対して0.01質量部以上50質量部以下であることが好ましく、0.03質量部以上40質量部以下がより好ましい。金属錯体触媒3bの含有量(担持量)が少なすぎると、金属錯体触媒3bによるCO還元活性効果が十分得られない場合がある。金属錯体触媒3bの担持量が多すぎると、還元半導体粒子3aの光吸収を妨げ、或いは、再結合中心として作用することにより還元光触媒粒子3の触媒活性が低下する場合がある。還元光触媒粒子3における金属錯体触媒3bの含有量は、例えば吸着後の溶液の吸収スペクトル測定、又は、錯体担持半導体サンプルの誘導結合プラズマ(ICP)分析により測定することができる。 Although there is no restriction | limiting in particular in content of the metal complex catalyst 3b in case the reduction photocatalyst particle 3 contains the metal complex catalyst 3b, For example, 0.01 mass part or more and 50 mass parts or less with respect to 100 mass parts reduction semiconductor particle 3a Is preferably, and more preferably 0.03 parts by mass or more and 40 parts by mass or less. If the content (loading amount) of the metal complex catalyst 3 b is too small, the CO 2 reduction activation effect by the metal complex catalyst 3 b may not be sufficiently obtained. When the supported amount of the metal complex catalyst 3b is too large, the light absorption of the reduced semiconductor particles 3a may be hindered or the catalyst activity of the reduced photocatalyst particles 3 may be reduced by acting as a recombination center. The content of the metal complex catalyst 3b in the reduced photocatalyst particle 3 can be measured, for example, by absorption spectrum measurement of a solution after adsorption or inductively coupled plasma (ICP) analysis of a complex-supported semiconductor sample.

本実施形態に係る還元光触媒粒子3の粒径は特に制限はないが、平均一次粒子径が100μm以下であることが好ましく、10μm以下がより好ましい。還元光触媒粒子3の粒径が大きすぎると、粒子の比表面積が減少し、粒子同士の接触確率が低下する場合がある。平均一次粒子径の下限は特に制限はなく、例えば、1nm以上である。還元光触媒粒子3の平均一次粒子径は、上述の酸化光触媒粒子2の平均一次粒子径と同様の方法で測定すればよい。また、本実施形態に係る還元光触媒粒子3の比表面積は、特に制限はないが、例えば5m/g以上が好ましい。還元光触媒粒子3の比表面積が小さすぎると、粒子同士の接触確率や光触媒活性が低下する場合があるためである。 The particle size of the reduced photocatalyst particles 3 according to the present embodiment is not particularly limited, but the average primary particle size is preferably 100 μm or less, and more preferably 10 μm or less. If the particle size of the reduced photocatalyst particles 3 is too large, the specific surface area of the particles may be reduced, and the probability of contact between the particles may be reduced. The lower limit of the average primary particle size is not particularly limited, and is, for example, 1 nm or more. The average primary particle size of the reduced photocatalyst particles 3 may be measured by the same method as the average primary particle size of the oxidation photocatalyst particles 2 described above. Further, the specific surface area of the reduced photocatalyst particle 3 according to the present embodiment is not particularly limited, but preferably 5 m 2 / g or more, for example. If the specific surface area of the reduced photocatalyst particles 3 is too small, the contact probability between particles and the photocatalytic activity may decrease.

本実施形態に係る光触媒系1において、酸化光触媒粒子2及び還元光触媒粒子3の含有量は特に制限はないが、光触媒系1全体としての酸化還元反応の効率の観点から、酸化光触媒粒子2及び還元光触媒粒子3が質量比で1:20以上20:1以下で存在することが好ましく、1:10以上10:1以下がより好ましい。   In the photocatalyst system 1 according to the present embodiment, the contents of the oxidation photocatalyst particles 2 and the reduction photocatalyst particles 3 are not particularly limited, but from the viewpoint of the oxidation-reduction reaction of the photocatalyst system 1 as a whole, the oxidation photocatalyst particles 2 and reduction The photocatalyst particles 3 are preferably present at a mass ratio of 1:20 or more and 20: 1 or less, and more preferably 1:10 or more and 10: 1 or less.

[レドックスメディエータ]
本実施形態に係る光触媒系1で使用されるメディエータ4は、酸化光触媒粒子2と還元光触媒粒子3との間で電子を伝達可能な化合物であれば、特に制限されない。換言すれば、メディエータ4としては、光触媒系1を含有する水性媒体中において、酸化光触媒粒子2から電子eを受け取ることで酸化体から還元体となり、且つ、還元光触媒粒子3(還元半導体粒子3a)に電子eを引き渡すことで還元体から酸化体に戻ることができる化合物であれば、いずれも使用できる。
[Redox mediator]
The mediator 4 used in the photocatalyst system 1 according to the present embodiment is not particularly limited as long as it is a compound capable of transmitting electrons between the oxidized photocatalyst particle 2 and the reduced photocatalyst particle 3. In other words, as the mediator 4, in the aqueous medium containing the photocatalyst system 1, receiving the electron e from the oxidized photocatalyst particle 2 results in a reduced product from the oxidized body, and the reduced photocatalyst particle 3 (reduced semiconductor particle 3a Any compound can be used as long as it can return from reductant to oxidant by handing over electron e to.

メディエータ4は、水性媒体中において、酸化光触媒粒子2及び還元光触媒粒子3の両者と接触可能な形態で存在していればよい。メディエータ4としては、例えば、水性媒体に溶解又は懸濁している溶液系メディエータ、酸化光触媒粒子2又は還元光触媒粒子3のいずれか一方と接合している固体型メディエータが挙げられる。   The mediator 4 may be present in the aqueous medium in a form capable of being in contact with both the oxidized photocatalyst particle 2 and the reduced photocatalyst particle 3. Examples of the mediator 4 include a solution-based mediator dissolved or suspended in an aqueous medium, and a solid-type mediator joined to either the oxidized photocatalyst particle 2 or the reduced photocatalyst particle 3.

溶液系メディエータに用いられる化合物としては、水性媒体に溶解又は懸濁可能なメディエータであれば特に制限されず、例えば溶液系メディエータとして公知の鉄イオン、ヨウ素系化合物及び金属含有化合物等が挙げられる。鉄イオンとしては、例えばFe3+/Fe2+レドックス等が挙げられる。ヨウ素系化合物としては、例えば、ヨウ素酸イオン/ヨウ化物イオン(IO3−/I)、三ヨウ化物イオン/ヨウ化物イオン(I3−/I)等が挙げられる。金属含有化合物は、金属の錯体化合物であってもよい。金属錯体化合物に含まれる金属(中心金属)としては、例えば周期表の第6族から第12族のいずれかに属する金属であってよく、具体的にはFe、Co、Cu、Cr、Mo、W、Ru、Re、Mn、Os、Rh、Ir、Ni、Pd、Pt、Zn等が挙げられ、Fe、Co及びCuが好ましい。 The compound used for the solution-based mediator is not particularly limited as long as it is a mediator that can be dissolved or suspended in an aqueous medium, and examples thereof include iron ions, iodine-based compounds and metal-containing compounds known as solution-based mediators. Examples of iron ions include Fe 3+ / Fe 2+ redox and the like. Examples of the iodine compound include iodate ion / iodide ion (IO 3− / I ), triiodide ion / iodide ion (I 3− / I ), and the like. The metal-containing compound may be a complex compound of metal. The metal (central metal) contained in the metal complex compound may be, for example, a metal belonging to any of Groups 6 to 12 of the periodic table, and specifically, Fe, Co, Cu, Cr, Mo, W, Ru, Re, Mn, Os, Rh, Ir, Ni, Pd, Pt, Zn and the like can be mentioned, with preference given to Fe, Co and Cu.

本実施形態に係る光触媒系1では、水の還元反応に対するCO還元反応の選択性をより高められることから、メディエータ4として金属錯体化合物を使用することが好ましい。金属錯体化合物の使用によりCO還元反応の選択性が高まる理由は定かではないが、水性媒体に懸濁又は溶解した金属錯体化合物が、メディエータ4としての役割(粒子間の電子移動のサポート)に加えて、金属錯体に含まれる配位子によって還元光触媒粒子3の表面上でCO還元反応が進行しやすい環境を作り出している可能性が考えられる。 In the photocatalyst system 1 according to the present embodiment, it is preferable to use a metal complex compound as the mediator 4 because the selectivity of the CO 2 reduction reaction to the reduction reaction of water can be further enhanced. The reason why the selectivity of the CO 2 reduction reaction is enhanced by the use of the metal complex compound is not clear, but the metal complex compound suspended or dissolved in the aqueous medium plays a role as a mediator 4 (support for electron transfer between particles) In addition, it is possible that the ligand contained in the metal complex may create an environment in which the CO 2 reduction reaction is likely to proceed on the surface of the reduced photocatalyst particle 3.

金属錯体化合物の中心金属としては、上記の周期表の第6族から第11族のいずれかに属する金属が挙げられ、コバルト、鉄及び銅からなる群より選択される少なくとも1つであることが好ましい。金属錯体化合物は、単核であっても2核以上の多核であってもよく、また、2種以上の金属が含まれていてもよい。金属錯体化合物における配位子としては、特に制限はなく、例えば上述の金属錯体触媒3bの説明において配位子として記載した各化合物が挙げられる。より具体的には、例えばCO、ハロゲン、シアン、ホスフィン、ピリジン、ビピリジン、ジホスホネートビピリジン、フェナントロリン、ターピリジン、クアテルピリジン、ピロール、インドール、カルバゾール、イミダゾール、ピラゾール、キノリン、イソキノリン、アクリジン、ピリダジン、ピリミジン、ピラジン、フタラジン、キナゾリン、キノキサリン、フラン、ベンゾフラン、オキサゾール、ピラン、ピロン、クマリン、ベンゾピロン、ポリオキソメタレート、チオフェン、チオナフテン、チアゾール及びそれらの誘導体等が挙げられる。これらの配位子において、金属に配位する元素としては特に制限はなく、例えば、O、N、C、P、S、Si、ハロゲン等が挙げられる。このような元素は、1種が配位していても2種以上が配位していてもよい。金属錯体化合物の配位子としては、ターピリジン(tpy)、ビピリジン(bpy)及びフェナントロリン(phen)からなる群より選択される少なくとも一つが好ましい。   The central metal of the metal complex compound includes a metal belonging to any of Groups 6 to 11 of the periodic table above, and is at least one selected from the group consisting of cobalt, iron and copper preferable. The metal complex compound may be mononuclear or polynuclear having two or more nuclei, and may contain two or more metals. There is no restriction | limiting in particular as a ligand in a metal complex compound, For example, each compound described as a ligand in description of the above-mentioned metal complex catalyst 3b is mentioned. More specifically, for example, CO, halogen, cyan, phosphine, pyridine, bipyridine, diphosphonate bipyridine, phenanthroline, terpyridine, quaterpyridine, pyrrole, indole, carbazole, imidazole, pyrazole, quinoline, isoquinoline, acridine, pyridazine, pyrimidine Pyrazine, phthalazine, quinazoline, quinoxaline, furan, benzofuran, oxazole, pyran, pyrone, coumarin, benzopyrone, polyoxometalate, thiophene, thionaphthene, thiazole and derivatives thereof and the like. In these ligands, the element to be coordinated to the metal is not particularly limited, and examples thereof include O, N, C, P, S, Si and halogen. Such an element may be coordinated by one or more species. The ligand of the metal complex compound is preferably at least one selected from the group consisting of terpyridine (tpy), bipyridine (bpy) and phenanthroline (phen).

溶液系メディエータとして使用される金属錯体化合物の好適な具体例としては、例えば、ビス(2,2’:6’,2”−ターピリジン)コバルトイオン([Co(tpy)2]3+/2+)、ビス(2,2’:6’,2”−ターピリジン)鉄イオン([Fe(tpy)2]3+/2+)、ビス(2,2’:6’,2”−ターピリジン)銅イオン([Cu(tpy)2]2+/1+)、トリス(2,2’−ビピリジン)コバルトイオン([Co(bpy)3]3+/2+)及びトリス(1,10−フェナントロリン)コバルトイオン([[Co(phen)3]3+/2+)等が挙げられる。また、金属錯体化合物が錯イオンである場合の対イオンは、光触媒系1において生じる反応を阻害しないものであれば、任意のものを用いることができる。 Preferred specific examples of the metal complex compound used as a solution-based mediator include, for example, bis (2,2 ′: 6 ′, 2 ′ ′-terpyridine) cobalt ion ([Co (tpy) 2 ] 3 + / 2 + ), Bis (2,2 ′: 6 ′, 2 ′ ′-terpyridine) iron ion ([Fe (tpy) 2 ] 3 + / 2 + ), bis (2,2 ′: 6 ′, 2 ′ ′-terpyridine) copper Ions ([Cu (tpy) 2 ] 2 + / 1 + ), tris (2,2'-bipyridine) cobalt ion ([Co (bpy) 3 ] 3 + / 2 + ) and tris (1,10-phenanthroline) Cobalt ion ([[Co (phen) 3 ] 3 + / 2 + ), etc. Also, if the metal complex compound is a complex ion, it may be a counter ion which does not inhibit the reaction occurring in photocatalyst system 1. For example, any can be used.

メディエータ4が溶液系メディエータである場合、水性媒体に含まれる溶液系メディエータの含有量は、例えば水性媒体の総量に対して0.005mM(mmol/L)以上であればよく、0.01mM(mmol/L)以上であることが好ましい。溶液系メディエータの含有量の上限は、水性媒体における飽和濃度でよい。   When the mediator 4 is a solution-based mediator, the content of the solution-based mediator contained in the aqueous medium may be, for example, 0.005 mM (mmol / L) or more relative to the total amount of the aqueous medium, 0.01 mM (mmol) / L) or more is preferable. The upper limit of the content of the solution-based mediator may be the saturation concentration in the aqueous medium.

固体型メディエータとしては、酸化光触媒粒子2と還元光触媒粒子3との間の電子移動に介在することが可能な化合物であれば特に制限されず、好適な例としては、例えば還元型酸化グラフェン(RGO)等のカーボン系材料が挙げられる。RGOは、酸化グラフェンを還元する公知の方法により調製すればよい。例えば、酸化グラフェン及び酸化光触媒粒子2が懸濁する懸濁液に可視光を照射して、酸化グラフェンの光還元反応を行うことにより、酸化光触媒粒子2に接合したRGOを調製することができる。RGOの原料となる酸化グラフェンも特に制限されず、例えば過マンガン酸カリウムを酸化剤として用いてグラファイトを酸化させるHummers法等の公知の方法により調製された酸化グラフェンを使用すればよい。   The solid mediator is not particularly limited as long as it is a compound that can intervene in the electron transfer between the oxidized photocatalyst particle 2 and the reduced photocatalyst particle 3, and preferred examples thereof include, for example, reduced graphene oxide (RGO And other carbon-based materials. RGO may be prepared by a known method for reducing graphene oxide. For example, RGO bonded to the oxidized photocatalyst particle 2 can be prepared by irradiating visible light to a suspension in which graphene oxide and the oxidized photocatalyst particle 2 are suspended and performing a photoreduction reaction of graphene oxide. Graphene oxide as a raw material of RGO is also not particularly limited, and for example, graphene oxide prepared by a known method such as Hummers method of oxidizing graphite using potassium permanganate as an oxidizing agent may be used.

メディエータ4が固体型メディエータである場合、固体型メディエータの使用量は、例えば、接合する酸化光触媒粒子2又は還元光触媒粒子3の総量に対して、0.05質量%以上50質量%以下であればよく、0.5質量%以上20質量%以下であることが好ましい。   When the mediator 4 is a solid-type mediator, the amount of use of the solid-type mediator is, for example, 0.05% by mass or more and 50% by mass or less based on the total amount of the oxidation photocatalyst particles 2 or the reduction photocatalyst particles 3 to be joined. The content is preferably 0.5% by mass or more and 20% by mass or less.

[水性媒体]
本実施形態で使用する水性媒体としては、水を主成分として含有する媒体であれば適宜使用可能である。水性媒体は、水及びメディエータ4を含有するほか、例えば、電解質を含有していてもよく、メタノール及びエタノール等の水溶性有機溶媒を含有していてもよい。
[Aqueous medium]
As the aqueous medium used in the present embodiment, any medium containing water as a main component can be used appropriately. The aqueous medium contains water and the mediator 4, and may contain, for example, an electrolyte, and may contain a water-soluble organic solvent such as methanol and ethanol.

水性媒体に含まれる電解質としては、水の電解反応における支持電解質として一般的に使用される化合物であって、光触媒系1の作用を阻害しないものであれば特に制限なく使用することができ、例えばオキソ酸及びオキソ酸塩が挙げられる。本実施形態では、水性媒体が電解質の水溶液であることが好ましい。理由は定かではないが、水性溶媒が電解質を含有することにより、CO還元反応の選択性及びCO還元生成物の生成量がより一層優れる傾向にあるためである。なお、本明細書では便宜上、「電解質」と記載した場合、水性媒体中で陽イオン及び陰イオンに電離した電解質も含むものとする。 The electrolyte contained in the aqueous medium is a compound generally used as a supporting electrolyte in the electrolytic reaction of water and can be used without particular limitation as long as it does not inhibit the action of the photocatalyst system 1, for example And oxo acids and oxo acid salts. In the present embodiment, the aqueous medium is preferably an aqueous solution of electrolyte. The reason is not clear, but the inclusion of the electrolyte in the aqueous solvent tends to further enhance the selectivity of the CO 2 reduction reaction and the generation amount of the CO 2 reduction product. In the present specification, for the sake of convenience, the term “electrolyte” also includes an electrolyte ionized into positive ions and negative ions in an aqueous medium.

電解質を構成するオキソ酸としては、例えば炭酸、リン酸、硝酸、硫酸、ホウ酸、ハロゲンオキソ酸(次亜塩素酸、塩素酸及び過塩素酸等)等が挙げられる。オキソ酸塩を構成する陽イオンとしては、例えばナトリウム及びカリウム等のアルカリ金属が挙げられる。具体的な電解質としては、例えば炭酸ナトリウム、炭酸カリウム等の炭酸塩、炭酸水素ナトリウム、炭酸水素カリウム等の重炭酸塩、リン酸カリウム、リン酸ナトリウム等のリン酸塩(リン酸二水素塩、リン酸水素塩を含む)、硫酸ナトリウム、硫酸カリウム等の硫酸塩、過塩素酸ナトリウム、及び、過塩素酸カリウム等の過塩素酸塩が挙げられる。水性媒体に使用される電解質としては、炭酸塩、重炭酸塩及びリン酸塩からなる群より選択される少なくとも1つが好ましい。   As an oxo acid which comprises an electrolyte, carbonic acid, phosphoric acid, nitric acid, a sulfuric acid, boric acid, halogen oxo acids (hypochlorous acid, chloric acid, perchloric acid etc.) etc. are mentioned, for example. As a cation which comprises an oxo acid salt, alkali metals, such as sodium and potassium, are mentioned, for example. Specific examples of the electrolyte include carbonates such as sodium carbonate and potassium carbonate, bicarbonates such as sodium hydrogen carbonate and potassium bicarbonate, phosphates such as potassium phosphate and sodium phosphate (dihydrogen phosphate, And hydrogen sulfates such as sodium sulfate and potassium sulfate; sodium perchlorate; and perchlorates such as potassium perchlorate. The electrolyte used for the aqueous medium is preferably at least one selected from the group consisting of carbonates, bicarbonates and phosphates.

電解質の水性媒体における濃度は特に制限されないが、例えば水性媒体の総量に対する電解質のモル濃度が0.001M(mol/L)以上2M以下が好ましく、0.01M以上1M以下がより好ましい。電解質の濃度が上記の範囲にあると、光触媒間及び触媒と反応物との間の電子の移動に優れるためである。   The concentration of the electrolyte in the aqueous medium is not particularly limited. For example, the molar concentration of the electrolyte relative to the total amount of the aqueous medium is preferably 0.001 M (mol / L) or more and 2 M or less, more preferably 0.01 M or more and 1 M or less. When the concentration of the electrolyte is in the above range, the electron transfer between the photocatalyst and between the catalyst and the reactant is excellent.

[光触媒系の形成]
本実施形態に係る光触媒系1は、水性媒体、酸化光触媒粒子2、還元光触媒粒子3及びメディエータ4を混合することによって得ることができる。例えば、酸化光触媒粒子2と還元光触媒粒子3とを混合し、メディエータ4を含有する水性媒体に添加することにより、本実施形態に係る光触媒系1が形成される。
[Formation of photocatalyst system]
The photocatalyst system 1 which concerns on this embodiment can be obtained by mixing an aqueous medium, the oxidation photocatalyst particle 2, the reduction photocatalyst particle 3, and the mediator 4. For example, the photocatalyst system 1 according to the present embodiment is formed by mixing the oxidized photocatalyst particles 2 and the reduced photocatalyst particles 3 and adding them to the aqueous medium containing the mediator 4.

このようにして形成された光触媒系1に可視光5を照射すると、上述したように、還元光触媒粒子3における還元反応によって、水中の二酸化炭素からギ酸及び一酸化炭素等の還元生成物が生成するとともに、酸化光触媒粒子2における酸化反応によって、酸素ガスが生成する。また、本実施形態に係る光触媒系1では、還元光触媒粒子3における還元半導体粒子3a又は金属錯体触媒3bを選択し、適正な環境で触媒反応を生起することで、ギ酸及び一酸化炭素に限らず、エタノール等の有用な炭素化合物を二酸化炭素から合成することも可能となる。   When the photocatalyst system 1 thus formed is irradiated with visible light 5, as described above, reduction products such as formic acid and carbon monoxide are generated from carbon dioxide in water by the reduction reaction in the reduction photocatalyst particles 3 At the same time, the oxidation reaction in the oxidation photocatalyst particles 2 generates oxygen gas. In addition, in the photocatalyst system 1 according to the present embodiment, the reduced semiconductor particles 3a or the metal complex catalyst 3b in the reduced photocatalyst particles 3 are selected, and the catalyst reaction occurs in an appropriate environment, and not only formic acid and carbon monoxide. It is also possible to synthesize useful carbon compounds such as ethanol from carbon dioxide.

本実施形態に係る光触媒系1は、紫外線も含む光及び紫外線も利用し得る。本実施形態の光触媒系1は、波長λが360nmより長い可視光において十分な光触媒活性が得られるため、太陽光等の光エネルギーをより一層効果的に利用することができる。   The photocatalyst system 1 according to the present embodiment can also utilize light including ultraviolet light and ultraviolet light. The photocatalyst system 1 of the present embodiment can obtain sufficient photocatalytic activity in visible light with a wavelength λ longer than 360 nm, so that light energy such as sunlight can be used more effectively.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described based on examples and comparative examples, but the present invention is not limited to the following examples.

〔還元半導体粒子の調製〕
(調製例A−1)
硫化銅(II)(Cu2S、株式会社高純度化学研究所製)、硫化ガリウム(III)(Ga2S3、株式会社高純度化学研究所製)、及び、硫化亜鉛(ZnS、株式会社高純度化学研究所製)を、モル比がCu:Ga:Zn=0.5:0.6:1となる量で混合した。得られた混合物を石英管に入れ密封した後、1073Kで10時間焼成することにより結晶化させて、組成式(CuGa)0.5ZnS2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
[Preparation of reduced semiconductor particles]
Preparation Example A-1
Copper sulfide (II) (Cu 2 S, manufactured by High Purity Chemical Laboratories, Inc.), gallium sulfide (III) (Ga 2 S 3 , manufactured by High Purity Chemical Laboratories, Inc.), and zinc sulfide (ZnS, Inc. The high purity chemical laboratory make) was mixed in the quantity which becomes the molar ratio Cu: Ga: Zn = 0.5: 0.6: 1. The resulting mixture is sealed in a quartz tube and crystallized by firing at 1073 K for 10 hours to obtain reduced semiconductor particles composed of a composite metal sulfide semiconductor represented by the composition formula (CuGa) 0.5 ZnS 2 The

(調製例A−2)
硫化銅(II)、硫化ガリウム(III)及び硫化亜鉛を、モル比がCu:Ga:Zn=0.3:0.36:1.4となる量で混合すること以外は、調製例A−1の方法に従って、組成式(CuGa)0.3Zn1.4S2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-2
Preparation Example A- except that copper (II) sulfide, gallium (III) sulfide and zinc sulfide are mixed in an amount such that the molar ratio is Cu: Ga: Zn = 0.3: 0.36: 1.4. According to the method of 1, a reduced semiconductor particle composed of a composite metal sulfide semiconductor represented by the composition formula (CuGa) 0.3 Zn 1.4 S 2 was obtained.

(調製例A−3)
硫化銅(II)、硫化ガリウム(III)及び硫化亜鉛を、モル比がCu:Ga:Zn=0.1:0.12:1.8となる量で混合すること以外は、調製例A−1の方法に従って、組成式(CuGa)0.1Zn1.8S2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-3
Preparation Example A- except that copper (II) sulfide, gallium (III) sulfide and zinc sulfide are mixed in an amount such that the molar ratio is Cu: Ga: Zn = 0.1: 0.12: 1.8. According to the method of 1, a reduced semiconductor particle composed of a composite metal sulfide semiconductor represented by the composition formula (CuGa) 0.1 Zn 1.8 S 2 was obtained.

(調製例A−4)
硝酸銀(I)(AgNO3、田中貴金属工業株式会社製)、硝酸インジウム(III)水和物(In(NO3)3・3.9H2O、株式会社高純度化学研究所製)、及び、硝酸亜鉛水和物(Zn(NO3)2・6H2O、和光純薬工業株式会社製)を、モル比がAg:In:Zn=0.22:0.22:1.56となる量で含有する混合水溶液中で、硫化水素ガスをバブリングした。生成した沈殿物を洗浄、乾燥後、窒素気流下において1123Kで5時間焼成することにより結晶化させて、組成式(AgIn)0.22Zn1.56S2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-4
Silver nitrate (I) (AgNO 3 , manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.), indium nitrate (III) hydrate (In (NO 3 ) 3 · 3.9H 2 O, manufactured by High Purity Chemical Laboratory Co., Ltd.), and nitric acid Zinc hydrate (Zn (NO 3 ) 2 · 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) in an amount such that the molar ratio is Ag: In: Zn = 0.22: 0.22: 1.56 Hydrogen sulfide gas was bubbled in the mixed aqueous solution contained. The formed precipitate is washed and dried, and then crystallized by baking for 5 hours at 1123 K under a nitrogen stream to form a reduced semiconductor composed of a composite metal sulfide semiconductor represented by the composition formula (AgIn) 0.22 Zn 1.56 S 2 I got the particles.

(調製例A−5)
硫化銅(II)、硫化ガリウム(III)及び硫化亜鉛を、モル比がCu:Ga:Zn=0.8:0.96:1.4となる量で混合すること以外は、調製例A−1の方法に従って、組成式(CuGa)0.8Zn1.4S2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-5
Preparation Example A- except that copper (II) sulfide, gallium (III) sulfide and zinc sulfide are mixed in an amount such that the molar ratio is Cu: Ga: Zn = 0.8: 0.96: 1.4. According to the method of 1, a reduced semiconductor particle composed of a composite metal sulfide semiconductor represented by the composition formula (CuGa) 0.8 Zn 1.4 S 2 was obtained.

(調製例A−6)
塩化銅(CuCl、純度99.9%、和光純薬工業株式会社製)、硝酸インジウム(III)水和物(In(NO3)3・3.9H2O、純度99.99%、株式会社高純度化学研究所製)及び硝酸亜鉛水和物(Zn(NO3)2・6H2O、純度99.0%、和光純薬工業株式会社製)を、モル比がCu:In:Zn=0.09:0.09:1.8となる量で含有する混合水溶液中で、硫化水素ガスをバブリングした。生成した沈殿物を洗浄、乾燥後、窒素気流下において1123Kで5時間焼成することにより結晶化させて、組成式(CuIn)0.09Zn1.8S2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-6
Copper chloride (CuCl, purity 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.), indium (III) nitrate hydrate (In (NO 3 ) 3 · 3.9H 2 O, purity 99.99%, high Purity Chemical Research Institute) and zinc nitrate hydrate (Zn (NO 3 ) 2 · 6H 2 O, purity 99.0%, Wako Pure Chemical Industries, Ltd.), the molar ratio of Cu: In: Zn = 0 Hydrogen sulfide gas was bubbled in the mixed aqueous solution containing the amount of .09: 0.09: 1.8. The formed precipitate is washed and dried, and then crystallized by baking for 5 hours at 1123 K under a nitrogen stream to form a reduced semiconductor composed of a composite metal sulfide semiconductor represented by the composition formula (CuIn) 0.09 Zn 1.8 S 2 I got the particles.

(調製例A−7)
硫化銅(II)及び硫化ガリウム(III)を、モル比がCu:Ga=1:1.2となる量で混合すること以外は、調製例A−1の方法に従って、組成式CuGaS2で表される複合金属硫化物半導体からなる還元半導体粒子を得た。
Preparation Example A-7
Copper (II) sulfide and gallium sulfide (III), the molar ratio of Cu: Ga = 1: except that mixing in an amount of 1.2, according to the method of Preparation A-1, Table by a composition formula CuGaS 2 Thus, reduced semiconductor particles composed of the composite metal sulfide semiconductor obtained are obtained.

(調製例A−8)
5gの塩化タンタル(和光純薬工業株式会社製)を100mlのエタノール中に溶解し、5%のアンモニア水溶液を加えて300mlにメスアップした。この溶液を5時間攪拌することによりタンタル酸化物(Ta2O5)の粉末を合成した。この白色粉末を大気下、500℃で5時間熱処理した後、アンモニアとアルゴンの混合気流(アンモニアガス:0.4L/min、アルゴンガス:0.2L/min)下において575℃で5時間処理し、窒素ドープ酸化タンタル半導体(N-Ta2O5)からなる還元半導体粒子を黄色の結晶粉末として得た。
Preparation Example A-8
5 g of tantalum chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was dissolved in 100 ml of ethanol, and a 5% aqueous ammonia solution was added to make up to 300 ml. The solution was stirred for 5 hours to synthesize tantalum oxide (Ta 2 O 5 ) powder. The white powder was heat-treated at 500 ° C. for 5 hours in the atmosphere, and then treated at 575 ° C. for 5 hours under a mixed flow of ammonia and argon (ammonia gas: 0.4 L / min, argon gas: 0.2 L / min). Then, reduced semiconductor particles composed of a nitrogen-doped tantalum oxide semiconductor (N-Ta 2 O 5 ) were obtained as a yellow crystal powder.

〔還元半導体粒子及び金属錯体触媒を含む還元光触媒粒子の調製〕
下記の調製例B−1〜B−8により、金属錯体触媒が担持された還元半導体粒子からなる還元光触媒粒子を調製した。調製例B−1〜B−8で調製された還元光触媒粒子における金属錯体触媒の担持量は、吸着後の上澄み溶液の吸光度を測定することにより算出した。
[Preparation of reduced photocatalyst particles containing reduced semiconductor particles and metal complex catalyst]
According to the following Preparation Examples B-1 to B-8, reduced photocatalyst particles composed of reduced semiconductor particles supporting a metal complex catalyst were prepared. The supported amount of the metal complex catalyst in the reduced photocatalyst particles prepared in Preparation Examples B-1 to B-8 was calculated by measuring the absorbance of the supernatant solution after adsorption.

(調製例B−1)
Inorganic Chemistry, 1995, Vol.34, No.24, p.6145-6157に記載の方法に従って、[Ru(CO)2Cl2]nとジホスホネートビピリジンとを、メタノール中、N気流下にて80℃で3時間還流することにより、ジホスホネートビピリジン配位子を有するルテニウム錯体([Ru(4,4’-diphosphonate-2,2’-bipyridine)(CO)2Cl2]2+)(以下「Ru−dpbpy」とも記載する)を合成した。次いで、調製例A−1で合成した還元半導体粒子200mgに、Ru−dpbpyのメタノール溶液5mLを添加し、16時間撹拌することにより、還元半導体粒子表面に金属錯体触媒を吸着させた。得られた混合物をろ過した後、メタノールで洗浄し、乾燥することにより、0.06質量%のRu−dpbpyが担持された半導体(組成式(CuGa)0.5ZnS2)の粒子を得た。
Preparation Example B-1
In accordance with the method described in Inorganic Chemistry, 1995, Vol. 34, No. 24, p. 6145-6157, [Ru (CO) 2 Cl 2 ] n and diphosphonate bipyridine in methanol under a stream of N 2 Ruthenium complex having a diphosphonate bipyridine ligand ([Ru (4,4'-diphosphonate-2,2'-bipyridine) (CO) 2 Cl 2 ] 2+ ) (below) by refluxing at 80 ° C. for 3 hours "Ru-dpbpy" was synthesized. Subsequently, 5 mL of a methanol solution of Ru-dpbpy was added to 200 mg of the reduced semiconductor particles synthesized in Preparation Example A-1, and the metal complex catalyst was adsorbed on the surface of the reduced semiconductor particles by stirring for 16 hours. The obtained mixture was filtered, washed with methanol, and dried to obtain particles of a semiconductor (composition formula (CuGa) 0.5 ZnS 2 ) supporting 0.06 mass% of Ru-dpbpy.

(調製例B−2)
調製例A−1で合成した還元半導体粒子に代えて調製例A−2で合成した還元半導体粒子を用いたこと以外は、調製例B−1の方法に従って、0.03質量%のRu−dpbpyが担持された半導体(組成式(CuGa)0.3Zn1.4S2)の粒子を得た。
Preparation Example B-2
According to the method of Preparation Example B-1, 0.03% by mass of Ru-dpbpy is used except that the reduced semiconductor particles synthesized in Preparation Example A-1 are replaced with the reduced semiconductor particles synthesized in Preparation Example A-2. The particles of the supported semiconductor (composition formula (CuGa) 0.3 Zn 1.4 S 2 ) were obtained.

(調製例B−3)
調製例A−2で合成した還元半導体粒子に代えて調製例A−3で合成した還元半導体粒子を用いたこと以外は、調製例B−2の方法に従って、0.03質量%のRu−dpbpyが担持された半導体(組成式(CuGa)0.1Zn1.8S2)の粒子を得た。
Preparation Example B-3
0.03% by mass of Ru-dpbpy according to the method of Preparation Example B-2, except that the reduced semiconductor particles synthesized in Preparation Example A-2 are replaced with the reduced semiconductor particles synthesized in Preparation Example A-3 There was obtained particles of the supported semiconductor (composition formula (CuGa) 0.1 Zn 1.8 S 2 ).

(調製例B−4)
調製例A−1で合成した還元半導体粒子に代えて調製例A−4で合成した還元半導体粒子を用いたこと以外は、調製例B−1の方法に従って、0.05質量%のRu−dpbpyが担持された半導体(組成式(AgIn)0.22Zn1.56S2)の粒子を得た。
Preparation Example B-4
0.05% by mass of Ru-dpbpy according to the method of Preparation Example B-1, except that the reduced semiconductor particles synthesized in Preparation Example A-4 are used instead of the reduced semiconductor particles synthesized in Preparation Example A-1 The particles of the supported semiconductor (composition formula (AgIn) 0.22 Zn 1.56 S 2 ) were obtained.

(調製例B−5)
調製例A−1で合成した還元半導体粒子に代えて調製例A−8で合成した還元半導体粒子を用いたこと以外は、調製例B−1の方法に従って、0.19質量%のRu−dpbpyが担持された窒素ドープ酸化タンタル半導体(N-Ta2O5)の粒子を得た。
Preparation Example B-5
0.19% by mass of Ru-dpbpy according to the method of Preparation Example B-1 except that the reduced semiconductor particles synthesized in Preparation Example A-1 are used instead of the reduced semiconductor particles synthesized in Preparation Example A-1 The particle of the nitrogen-doped tantalum oxide semiconductor (N-Ta 2 O 5 ) supported is obtained.

(調製例B−6)
調製例B−1と同様に、Inorganic Chemistry, 1995, Vol.34, No.24, p.6145-6157に記載の方法に従って、ジホスホネートビピリジン配位子及びビピリジン配位子を有するルテニウム錯体([Ru(4,4’-diphosphonate-2,2’-bipyridine)(2,2’-bipyridine)(CO)2]2+)(以下「Ru−(dpbpy)(bpy)」とも記載する)を合成した。次いで、Ru−dpbpyのメタノール溶液に代えてRu−(dpbpy)(bpy)のメタノール溶液を用いたこと以外は、調製例B−2の方法に従って、0.03質量%のRu−(dpbpy)(bpy)が担持された半導体(組成式(CuGa)0.1Zn1.8S2)の粒子を得た。
Preparation Example B-6
Similar to Preparation Example B-1, according to the method described in Inorganic Chemistry, 1995, Vol. 34, No. 24, p. 6145-6157, a ruthenium complex having a diphosphonate bipyridine ligand and a bipyridine ligand ([[ Synthesis of Ru (4,4'-diphosphonate-2,2'-bipyridine) (2,2'-bipyridine) (CO) 2 ] 2+ (hereinafter also referred to as "Ru- (dpbpy) (bpy)") did. Then, according to the method of Preparation Example B-2, 0.03 mass% of Ru- (dpbpy) (m) was used except that a methanol solution of Ru- (dpbpy) (bpy) was used instead of the Ru-dpbpy methanol solution. bpy) resulting in particles of the supported semiconductor (composition formula (CuGa) 0.1 Zn 1.8 S 2 ).

(調製例B−7)
調製例B−1と同様に、Inorganic Chemistry, 1995, Vol.34, No.24, p.6145-6157に記載の方法に従って、ジカルボキシビピリジン配位子を有するルテニウム錯体([Ru(4,4’-dicarboxy-2,2’-bipyridine) (CO)2Cl2]2+)(以下「Ru−dcbpy」とも記載する)を合成した。次いで、Ru−dpbpyのメタノール溶液に代えてRu−dcbpyのメタノール溶液を用いたこと以外は、調製例B−2の方法に従って、0.03質量%のRu−dcbpyが担持された半導体(組成式(CuGa)0.1Zn1.8S2)の粒子を得た。
Preparation Example B-7
Similar to Preparation Example B-1, according to the method described in Inorganic Chemistry, 1995, Vol. 34, No. 24, p. 6145-6157, a ruthenium complex ([Ru (4,4 '-dicarboxyl-2,2'-bipyridine (CO) 2 Cl 2 ] 2+ ) (hereinafter also described as "Ru-dcbpy") was synthesized. Then, according to the method of Preparation Example B-2, a semiconductor on which 0.03 mass% of Ru-dcbpy was supported (composition formula except for using a methanol solution of Ru-dcbpy instead of the methanol solution of Ru-dpbpy) (CuGa) was obtained 0.1 Zn 1.8 S 2) of the particles.

(調製例B−8)
Journal of Material Chemistry A, 2015, Vol.3, p.13283-13290に記載の方法に従って、[Ru(CO)2Cl2]nとジ(ピロリルプロピルカーボネート)ビピリジンとを、メタノール中、N気流下にて80℃で3時間還流することにより、ジ(ピロリルプロピルカーボネート)ビピリジン配位子を有するルテニウム錯体([Ru{4,4’-di(1H-pyrrolyl-3-propyl carbonate)-2,2’-bipyridine}(CO)2Cl2]2+)(以下「Ru−pypcbpy」とも記載する)を合成した。次いで、Ru−dpbpyのメタノール溶液に代えてRu−pypcbpyのメタノール溶液を用いたこと以外は、調製例B−1の方法に従って、0.06質量%のRu−pypcbpyが担持された半導体(組成式(CuGa)0.1Zn1.8S2)の粒子を得た。
Preparation Example B-8
According to the method described in Journal of Material Chemistry A, 2015, Vol. 3, p. 13283-13290, [Ru (CO) 2 Cl 2 ] n and di (pyrrolylpropyl carbonate) bipyridine were dissolved in N 2 in methanol. A ruthenium complex having a di (pyrrolylpropyl carbonate) bipyridine ligand ([Ru {4,4'-di (1H-pyrrolyl-3-propyl carbonate)-) by refluxing at 80 ° C. for 3 hours under air flow] 2,2′-bipyridine} (CO) 2 Cl 2 ] 2+ ) (hereinafter also referred to as “Ru-pypcbpy”) was synthesized. Then, a semiconductor on which 0.06 mass% of Ru-pypcbpy is supported according to the method of Preparation Example B-1 (composition formula, except that a methanol solution of Ru-pypcbpy is used instead of the methanol solution of Ru-dpbpy) (CuGa) was obtained 0.1 Zn 1.8 S 2) of the particles.

〔酸化光触媒粒子の調製〕
(調製例C−1)
<バナジン酸ビスマス半導体(BiVO)粒子の合成>
20mmolの硝酸ビスマス水和物(Bi(NO3)3・5H2O、関東化学株式会社製)、及び、10mmolの五酸化バナジウム(V2O5、和光純薬工業株式会社製)を0.5mol/Lの硝酸水溶液100mLに添加し、得られた混合液を室温で72時間撹拌した。生成した粒子をろ過した後、水で洗浄し、120℃で乾燥することにより、バナジン酸ビスマス半導体(BiVO4)からなる酸化光触媒粒子を得た。
[Preparation of oxidation photocatalyst particles]
Preparation Example C-1
<Synthesis of bismuth vanadate semiconductor (BiVO 4 ) particles>
20 mmol of bismuth nitrate hydrate (Bi (NO 3 ) 3 .5 H 2 O, manufactured by Kanto Chemical Co., Ltd.), and 10 mmol of vanadium pentoxide (V 2 O 5 , manufactured by Wako Pure Chemical Industries, Ltd.) were mixed with 0. The mixture was added to 100 mL of a 5 mol / L aqueous nitric acid solution, and the obtained mixture was stirred at room temperature for 72 hours. The formed particles were filtered, washed with water, and dried at 120 ° C. to obtain oxidized photocatalyst particles made of bismuth vanadate semiconductor (BiVO 4 ).

〔メディエータの調製〕
(調製例D−1)
硝酸コバルト(II)六水和物(Co(NO3)2・6H2O、和光純薬工業株式会社製)1.5mmol、及び、2,2’:6’,2”−ターピリジン(東京化成工業株式会社製)3.0mmolをメタノールに溶解し、撹拌及び減圧濃縮した。次いで、得られた残渣を再結晶化することにより、[Co(2,2’:6’,2”-terpyridine)2](NO3)2で表されるメディエータを合成した。
[Preparation of mediator]
Preparation Example D-1
Cobalt (II) hexahydrate (Co (NO 3 ) 2 · 6H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 1.5 mmol, and 2,2 ′: 6 ′, 2 ′ ′-terpyridine (Tokyo Kasei Kogyo Co., Ltd.) 3.0 mmol of Industrial Co., Ltd.) was dissolved in methanol, stirred and concentrated under reduced pressure, and then the obtained residue was recrystallized to obtain [Co (2,2 ′: 6 ′, 2 ′ ′-terpyridine)) 2 ] (NO 3 ) The mediator represented by 2 was synthesized.

(調製例D−2)
硫酸鉄(II)七水和物(FeSO4・7H2O、和光純薬工業株式会社製)1.5mmol、及び、2,2’:6’,2”−ターピリジン(東京化成工業株式会社製)3.0mmolをメタノールに溶解し、撹拌及び減圧濃縮した。次いで、得られた残渣を再結晶化することにより、[Fe(2,2’:6’,2”-terpyridine)2]SO4で表されるメディエータを合成した。
Preparation Example D-2
Iron (II) sulfate heptahydrate (FeSO 4 · 7 H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 1.5 mmol, and 2,2 ': 6', 2 "-terpyridine (manufactured by Tokyo Chemical Industry Co., Ltd.) 3.0 mmol was dissolved in methanol, stirred and concentrated under reduced pressure, and then the obtained residue was recrystallized to obtain [Fe (2,2 ′: 6 ′, 2 ′ ′-terpyridine) 2 ] SO 4 The mediator represented by was synthesized.

(調製例D−3)
硫酸銅(II)五水和物(CuSO4・5H2O、和光純薬工業株式会社製)3.0mmol、及び、2,2’:6’,2”−ターピリジン(東京化成工業株式会社製)3.0mmolをメタノールに溶解し、撹拌及び減圧濃縮した。次いで、得られた残渣を再結晶化することにより、[Cu(2,2’:6’,2”-terpyridine)2]SO4で表されるメディエータを合成した。
Preparation Example D-3
Copper sulfate (II) pentahydrate (CuSO 4 · 5 H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 3.0 mmol, and 2,2 ′: 6 ′, 2 ′ ′-terpyridine (manufactured by Tokyo Chemical Industry Co., Ltd.) 3.0 mmol was dissolved in methanol, stirred and concentrated under reduced pressure, and then the obtained residue was recrystallized to obtain [Cu (2,2 ′: 6 ′, 2 ′ ′-terpyridine) 2 ] SO 4 The mediator represented by was synthesized.

(調製例D−4)
酸化グラファイト(日本黒鉛工業株式会社製、「CMX−40」)をHummers法(Journal of American Chemical Society, 1958, Vol.80, p.1339)に従って酸化させ、酸化グラフェン(GO)を作製した。得られた酸化グラフェン0.05g、及び、調製例C−1で得られた酸化光触媒粒子1gをメタノール水溶液(50容量%)40mLに添加して懸濁液を得た。この懸濁液に、Arガスを流通させながら可視光を3時間照射することにより、メディエータである還元型酸化グラフェン(RGO)と酸化光触媒粒子との複合体を調製した。
Preparation Example D-4
Graphite oxide ("CMX-40" manufactured by Japan Graphite Industry Co., Ltd.) was oxidized according to the Hummers method (Journal of American Chemical Society, 1958, Vol. 80, p. 1339) to prepare graphene oxide (GO). A suspension was obtained by adding 0.05 g of the obtained graphene oxide and 1 g of the oxidized photocatalyst particles obtained in Preparation Example C-1 to 40 mL of an aqueous methanol solution (50% by volume). The suspension was irradiated with visible light for 3 hours while flowing Ar gas, thereby preparing a complex of reduced type graphene oxide (RGO), which is a mediator, and oxidized photocatalyst particles.

(調製例D−5)
硫酸コバルト(II)七水和物(CoSO4・7H2O、和光純薬工業株式会社製)2.5mmol、及び、2,2’−ビピリジン(和光純薬工業株式会社製)7.5mmolをエタノールに溶解し、撹拌及び減圧濃縮した。次いで、得られた残渣を再結晶化することにより、[Co(2,2’-bipyridine)3]SO4で表されるメディエータを合成した。
Preparation Example D-5
Cobalt (II) heptahydrate (CoSO 4 · 7 H 2 O, manufactured by Wako Pure Chemical Industries, Ltd.) 2.5 mmol, and 7.5 mmol of 2,2'-bipyridine (manufactured by Wako Pure Chemical Industries, Ltd.) Dissolve in ethanol, stir and concentrate under reduced pressure. Next, the obtained residue was recrystallized to synthesize a mediator represented by [Co (2,2′-bipyridine) 3 ] SO 4 .

〔光触媒系の製造、試験管法による光触媒性能評価〕
<実施例1>
NaHCOを0.25Mの濃度で含有する電解質水溶液に、調製例D−1で得られたメディエータを0.02mMの濃度となるように添加して水性媒体を調製し、得られた水性媒体4mLを容量8mlのガラス製の試験管に入れた。次いで、調製例B−1で得られた還元光触媒粒子10.7mg、及び、調製例C−1で得られた酸化光触媒粒子5.3mgを試験管に添加し、本実施形態に係る光触媒系である試料液を調製した。
[Production of photocatalytic system, evaluation of photocatalytic performance by test tube method]
Example 1
The mediator obtained in Preparation Example D-1 was added to an aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.25 M to a concentration of 0.02 mM to prepare an aqueous medium, and 4 mL of the aqueous medium obtained Was placed in a glass test tube with a volume of 8 ml. Next, 10.7 mg of the reduced photocatalyst particles obtained in Preparation Example B-1 and 5.3 mg of the oxidized photocatalyst particles obtained in Preparation Example C-1 are added to a test tube, and the photocatalyst system according to the present embodiment is used. A sample solution was prepared.

上記で得られた試料液に対して、試験管法による光触媒性能の評価試験を行った。得られた試料液中にCOガスを15分間通気して試料液を飽和させ、ゴム栓で試験管を密閉した。この試験管をメリーゴーラウンド方式の回転装置に装着した。スターラーで試料液を攪拌しながら、光源としてキセノンランプ(ウシオ電機株式会社製)を使用して、熱線吸収フィルタ(旭硝子株式会社製「SCF−1」)を通過した可視光(λ>390nm)を試料液に16時間照射した。光照射後、試験管内の気相部分に含まれるガス成分をガスクロマトグラフ(株式会社島津製作所製「GC−2014」)を用いて分析及び定量し、液相部分に含まれる化合物をイオンクロマトグラフ(Thermo Fisher SCIENTIFIC社製「DIONEX ICS−2100」)を用いて分析及び定量した。 The evaluation test of the photocatalytic performance by the test tube method was performed with respect to the sample solution obtained above. CO 2 gas was bubbled into the obtained sample solution for 15 minutes to saturate the sample solution, and the test tube was sealed with a rubber stopper. The test tube was attached to a merry-go-round rotating apparatus. Using a xenon lamp (manufactured by Ushio Inc.) as a light source while stirring the sample solution with a stirrer, the visible light (λ> 390 nm) that has passed through the heat ray absorption filter (“SCF-1” manufactured by Asahi Glass Co., Ltd.) The sample solution was irradiated for 16 hours. After light irradiation, the gas component contained in the gas phase portion in the test tube is analyzed and quantified using a gas chromatograph ("GC-2014" manufactured by Shimadzu Corporation), and the compound contained in the liquid phase portion is ion chromatography ( It analyzed and quantified using Thermo Fisher SCIENTIFIC company "DIONEX ICS-2100").

<実施例2>
NaHCOを0.1Mの濃度で含有する電解質水溶液に、調製例D−1で得られたメディエータを0.02mMの濃度となるように添加して水性媒体を調製し、得られた水性媒体4mLを容量8mlのガラス製の試験管に入れた。次いで、調製例B−2で得られた還元光触媒粒子8.0mg、及び、調製例C−1で得られた酸化光触媒粒子8.0mgを試験管に添加し、本実施形態に係る光触媒系である試料液を調製した。得られた試料液の光触媒性能を、実施例1の方法に従って評価した。
Example 2
The mediator obtained in Preparation Example D-1 was added to an aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.1 M to a concentration of 0.02 mM to prepare an aqueous medium, and 4 mL of the aqueous medium obtained Was placed in a glass test tube with a volume of 8 ml. Next, 8.0 mg of the reduced photocatalyst particles obtained in Preparation Example B-2 and 8.0 mg of the oxidized photocatalyst particles obtained in Preparation Example C-1 are added to the test tube, and the photocatalyst system according to the present embodiment is used. A sample solution was prepared. The photocatalytic performance of the obtained sample solution was evaluated according to the method of Example 1.

<実施例3>
調製例B−1で得られた還元光触媒粒子に代えて調製例B−2で得られた還元光触媒粒子を使用したこと以外は実施例1の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 3
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 1, except that the reduced photocatalyst particle obtained in Preparation Example B-2 is used instead of the reduced photocatalyst particle obtained in Preparation Example B-1 The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例4>
NaHCOを含有する電解質水溶液に代えて、電解質を含有しない精製水を使用して水性媒体を調製したこと以外は実施例3の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 4
According to the method of Example 3, a sample solution which is a photocatalyst system according to the present embodiment is prepared according to the method of Example 3, except that the purified aqueous solution containing no electrolyte is used instead of the aqueous electrolyte solution containing NaHCO 3. The photocatalytic performance of the obtained sample solution was evaluated.

<実施例5>
調製例B−2で得られた還元光触媒粒子に代えて調製例B−3で得られた還元光触媒粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 5
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced photocatalyst particles obtained in Preparation Example B-3 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例6>
調製例B−2で得られた還元光触媒粒子に代えて調製例B−4で得られた還元光触媒粒子を使用したこと、及び、NaHCOを0.1Mの濃度で含有する電解質水溶液に代えてNaCOを0.1Mの濃度で含有する電解質水溶液を用いたこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 6
Using the reduced photocatalyst particles obtained in Preparation Example B-4 instead of the reduced photocatalyst particles obtained in Preparation Example B-2, and replacing the aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.1 M A sample solution which is a photocatalyst system according to the present embodiment is prepared according to the method of Example 2 except that an aqueous electrolyte solution containing Na 2 CO 3 at a concentration of 0.1 M is used, and a photocatalyst of the obtained sample solution is prepared. The performance was evaluated.

<実施例7>
調製例D−1で得られたメディエータに代えて調製例D−2で得られたメディエータを使用したこと以外は実施例3の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 7
According to the method of Example 3 except that the mediator obtained in Preparation Example D-2 is used instead of the mediator obtained in Preparation Example D-1, a sample solution which is a photocatalyst system according to the present embodiment is prepared. The photocatalytic performance of the obtained sample solution was evaluated.

<実施例8>
調製例D−1で得られたメディエータに代えて調製例D−3で得られたメディエータを使用したこと以外は実施例3の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 8
A sample solution which is a photocatalyst system according to the present embodiment is prepared according to the method of Example 3 except that the mediator obtained in Preparation Example D-3 is used instead of the mediator obtained in Preparation Example D-1 The photocatalytic performance of the obtained sample solution was evaluated.

<実施例9>
NaHCOを0.25Mの濃度で含有する電解質水溶液4mLを容量8mlのガラス製の試験管に入れた。次いで、調製例B−2で得られた還元光触媒粒子10.7mg、及び、調製例D−4で得られた還元型酸化グラフェン(RGO)と酸化光触媒との複合体5.3mgを試験管に添加し、本実施形態に係る光触媒系である試料液を調製した。得られた試料液の光触媒性能を実施例1の方法に従って評価した。
Example 9
Four mL of an aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.25 M was placed in a glass test tube having a volume of 8 ml. Next, 10.7 mg of the reduced photocatalyst particles obtained in Preparation Example B-2 and 5.3 mg of a complex of reduced graphene oxide (RGO) and the oxidation photocatalyst obtained in Preparation Example D-4 are provided in a test tube. The sample solution was added to prepare a photocatalyst system according to the present embodiment. The photocatalytic performance of the obtained sample solution was evaluated according to the method of Example 1.

<実施例10>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−2で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 10
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-2 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例11>
調製例D−1で得られたメディエータに代えて調製例D−5で得られたメディエータを使用したこと、及び、NaHCOを0.25Mの濃度で含有する電解質水溶液に代えてNaHCOを0.1Mの濃度で含有する電解質水溶液を使用したこと以外は実施例10の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 11
Preparation for using mediators obtained in Preparation Example D-5 in place of the resultant mediator in D-1, and a NaHCO 3 instead of NaHCO 3 in an aqueous electrolyte solution containing a concentration of 0.25M 0 According to the method of Example 10 except that an aqueous electrolyte solution containing 1 M concentration was used, a sample solution which is a photocatalyst system according to the present embodiment was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例12>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−2で得られた還元半導体粒子を使用したこと、並びに、NaHCOを0.1Mの濃度で含有する電解質水溶液に代えてKHPO及びKHPOをそれぞれ0.05Mの濃度で含有する電解質水溶液を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 12
Using the reduced semiconductor particles obtained in Preparation Example A-2 instead of the reduced photocatalyst particles obtained in Preparation Example B-2, and replacing the aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.1 M A sample solution which is a photocatalyst system according to the present embodiment is prepared and obtained according to the method of Example 2 except that an aqueous electrolyte solution containing K 2 HPO 4 and KH 2 PO 4 each at a concentration of 0.05 M is used. The photocatalytic performance of the sample solution was evaluated.

<実施例13>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−1で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 13
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-1 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例14>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−5で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 14
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-5 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例15>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−6で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 15
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-6 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例16>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−7で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 16
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-7 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例17>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−8で得られた還元半導体粒子を使用したこと以外は実施例2の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 17
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 2, except that the reduced semiconductor particles obtained in Preparation Example A-8 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-2. The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例18>
調製例B−1で得られた還元光触媒粒子に代えて調製例B−5で得られた還元光触媒粒子を使用したこと以外は実施例1の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 18
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 1, except that the reduced photocatalyst particles obtained in Preparation Example B-5 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-1 The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例19>
調製例B−1で得られた還元光触媒粒子に代えて調製例B−6で得られた還元光触媒粒子を使用したこと以外は実施例1の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 19
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 1, except that the reduced photocatalyst particle obtained in Preparation Example B-6 is used instead of the reduced photocatalyst particle obtained in Preparation Example B-1 The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例20>
調製例B−1で得られた還元光触媒粒子に代えて調製例B−7で得られた還元光触媒粒子を使用したこと以外は実施例1の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 20
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 1, except that the reduced photocatalyst particles obtained in Preparation Example B-7 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-1 The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<実施例21>
調製例B−1で得られた還元光触媒粒子に代えて調製例B−8で得られた還元光触媒粒子を使用したこと以外は実施例1の方法に従って、本実施形態に係る光触媒系である試料液を調製し、得られた試料液の光触媒性能を評価した。
Example 21
A sample which is a photocatalyst system according to the present embodiment according to the method of Example 1, except that the reduced photocatalyst particles obtained in Preparation Example B-8 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-1 The solution was prepared, and the photocatalytic performance of the obtained sample solution was evaluated.

<比較例1>
調製例B−1で得られた還元光触媒粒子に代えて調製例A−2で得られた還元半導体粒子を使用したこと、及び、NaHCOを0.25Mの濃度で含有する電解質水溶液にメディエータを添加しなかったこと以外は実施例1の方法に従って試料液を調製し、得られた試料液の光触媒性能を評価した。
Comparative Example 1
Using the reduced semiconductor particles obtained in Preparation Example A-2 instead of the reduced photocatalyst particles obtained in Preparation Example B-1, and using a mediator in an aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.25 M A sample solution was prepared according to the method of Example 1 except that it was not added, and the photocatalytic performance of the obtained sample solution was evaluated.

<比較例2>
調製例B−2で得られた還元光触媒粒子に代えて調製例A−2で得られた還元半導体粒子を使用したこと以外は実施例9の方法に従って試料液を調製し、得られた試料液の光触媒性能を評価した。
Comparative Example 2
A sample solution was prepared according to the method of Example 9, except that the reduced semiconductor particles obtained in Preparation Example A-2 were used instead of the reduced photocatalyst particles obtained in Preparation Example B-2, and a sample solution obtained. The photocatalytic performance of was evaluated.

<比較例3>
酸化光触媒粒子を試験管に添加しなかったこと以外は実施例3の方法に従って試料液を調製し、得られた試料液の光触媒性能を評価した。
Comparative Example 3
The sample solution was prepared according to the method of Example 3 except that the oxidized photocatalyst particles were not added to the test tube, and the photocatalytic performance of the obtained sample solution was evaluated.

<比較例4>
NaHCOを0.25Mの濃度で含有する電解質水溶液にメディエータを添加しなかったこと以外は実施例3の方法に従って試料液を調製し、得られた試料液の光触媒性能を評価した。
Comparative Example 4
A sample solution was prepared according to the method of Example 3 except that the mediator was not added to the aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.25 M, and the photocatalytic performance of the obtained sample solution was evaluated.

<参考例1>
光触媒性能の評価試験を行う際、試料液中に通気するガスとしてCOガスに代えてArガスを使用したこと以外は実施例1の評価試験に従って、実施例3で調製された試料液の光触媒性能を評価した。
Reference Example 1
When carrying out the evaluation test of the photocatalytic performance, the photocatalyst of the sample solution prepared in Example 3 was evaluated according to the evaluation test of Example 1, except that Ar gas was used instead of CO 2 gas as a gas to be ventilated in the sample solution. The performance was evaluated.

<参考例2>
光触媒性能の評価試験を行う際、光照射を行わずに暗室内で16時間反応を行ったこと以外は実施例1の評価試験に従って、実施例3で調製された試料液の光触媒性能を評価した。
Reference Example 2
When conducting the evaluation test of photocatalytic performance, the photocatalytic performance of the sample solution prepared in Example 3 was evaluated according to the evaluation test of Example 1 except that the reaction was carried out for 16 hours in the dark room without light irradiation. .

上記の各実施例、各比較例及び各参考例について、表1に光触媒系の組成を示し、表2に試験管法による光照射試験後の生成物分析結果を示す。表2には、実施例、比較例及び参考例において検出されたギ酸(HCOOH)、一酸化炭素(CO)及び水素(H)の生成量を示す。また、各光触媒系のギ酸、一酸化炭素及び水素の生成量からCO還元選択率を算出した。算出したCO還元選択率を表2に示す。CO還元選択率は、CO還元反応の選択性を評価する指標であり、全還元生成物(ギ酸、一酸化炭素及び水素)の生成量に対するCO還元生成物(ギ酸及び一酸化炭素)の生成量の比率として算出される。CO還元選択率が高いほど、その光触媒系は水の還元反応に対するCO還元反応の選択性が高いことを示す。 The composition of the photocatalyst system is shown in Table 1 for each of the above Examples, Comparative Examples and Referential Examples, and the results of product analysis after the light irradiation test by the test tube method are shown in Table 2. Table 2 shows the amounts of formic acid (HCOOH), carbon monoxide (CO) and hydrogen (H 2 ) detected in Examples, Comparative Examples and Reference Examples. In addition, CO 2 reduction selectivity was calculated from the amount of formic acid, carbon monoxide and hydrogen produced in each photocatalyst system. The calculated CO 2 reduction selectivity is shown in Table 2. The CO 2 reduction selectivity is an index for evaluating the selectivity of the CO 2 reduction reaction, and the CO 2 reduction products (formic acid and carbon monoxide) with respect to the amount of total reduction products (formic acid, carbon monoxide and hydrogen) formed It is calculated as the ratio of the amount of The higher the CO 2 reduction selectivity, the more the photocatalytic system shows the selectivity of the CO 2 reduction reaction to the reduction reaction of water.

さらに、金属錯体触媒を含む還元光触媒粒子を用いた実施例及び比較例について、ギ酸、一酸化炭素及び水素のターンオーバー数(TON)を表2に示す。ターンオーバー数は、各生成物について、金属錯体触媒が担持された還元光触媒を用いた場合の生成物モル数から、金属錯体触媒が担持されていない還元光触媒を用いた場合の生成物モル数を差し引いた値を、試料液に含まれる金属錯体触媒のモル数で除した値である。即ち、ターンオーバー数は、金属錯体触媒1分子から生成した各還元生成物の分子の個数を表すことから、金属錯体触媒の正味の活性を示す指標となる。   Further, the turnover numbers (TON) of formic acid, carbon monoxide and hydrogen are shown in Table 2 for Examples and Comparative Examples using the reduced photocatalyst particles containing the metal complex catalyst. The turnover number is, for each product, the number of moles of the product when using a reduction photocatalyst not supported with a metal complex catalyst from the number of moles of the product when a reduction photocatalyst with a metal complex catalyst supported is used. It is a value obtained by dividing the subtracted value by the number of moles of the metal complex catalyst contained in the sample solution. That is, since the turnover number represents the number of molecules of each reduction product generated from one metal complex catalyst molecule, the turnover number is an index indicating the net activity of the metal complex catalyst.

表1及び表2中、「N-Ta2O5」は、窒素ドープ酸化タンタルを表す。「[Co(tpy)2]3+/2+」は、ビス(2,2’:6’,2”−ターピリジン)コバルトイオンを表す。「[Fe(tpy)2]3+/2+」は、ビス(2,2’:6’,2”−ターピリジン)鉄イオンを表す。「[Cu(tpy)2]2+/1+」は、ビス(2,2’:6’,2”−ターピリジン)銅イオンを表す。「RGO」は、調製例D−4で得られた還元型酸化グラフェンを表す。「[Co(bpy)3]3+/2+」は、トリス(2,2’−ビピリジン)コバルトイオンを表す。 In Tables 1 and 2, “N—Ta 2 O 5 ” represents nitrogen-doped tantalum oxide. "[Co (tpy) 2 ] 3 + / 2 + " represents bis (2,2 ': 6', 2 "-terpyridine) cobalt ion." [Fe (tpy) 2 ] 3 + / 2 + " Represents a bis (2,2 ': 6', 2 "-terpyridine) iron ion." [Cu (tpy) 2 ] 2 + / 1 + "is a bis (2,2 ': 6', 2" -Terpyridine) represents a copper ion "RGO" represents a reduced graphene oxide obtained in Preparation Example D-4. "[Co (bpy) 3 ] 3 + / 2 + " represents tris (2,2'-bipyridine) cobalt ion.

実施例1〜21が示すように、酸化光触媒粒子、還元光触媒粒子及びメディエータを含み、メディエータが金属錯体化合物であるか、又は、還元光触媒粒子が還元半導体粒子と金属錯体触媒とを含む光触媒系では、水性媒体中でCOを還元し、ギ酸及びCOを生成することが分かった。また、実施例18を除き、副生成物として水素の生成が確認できた。各実施例の光触媒系は概ね高いCO還元選択率を有する。また、例えば実施例1〜10、13、19〜21の光触媒系では、より多くのCO還元生成物(ギ酸及び一酸化炭素)が生成された。 As shown in Examples 1 to 21, in a photocatalyst system containing an oxidized photocatalyst particle, a reduced photocatalyst particle and a mediator, and in which the mediator is a metal complex compound or the reduced photocatalyst particle contains a reduced semiconductor particle and a metal complex catalyst It has been found to reduce CO 2 in an aqueous medium to form formic acid and CO. In addition, except for Example 18, generation of hydrogen was confirmed as a by-product. The photocatalyst system of each example has approximately high CO 2 reduction selectivity. Further, for example, in the photocatalyst system of Example 1~10,13,19~21, more CO 2 reduction product (formic acid and carbon monoxide) is generated.

一方、メディエータが不存在であり、且つ、還元光触媒粒子が金属錯体触媒を含まない比較例1の光触媒系では、水素生成反応が優勢に進行し、CO還元生成物の生成量はわずか(合計0.01μmol)であり、CO還元選択率は0.05と著しく低い値であった。また、メディエータが金属錯体化合物ではなく、且つ、還元光触媒粒子が金属錯体触媒を含まない比較例2の光触媒系についても同様に、水素生成反応が優勢に進行し、CO還元生成物の生成量はわずか(合計0.02μmol)であり、CO還元選択率は0.04と著しく低い値であった。 On the other hand, in the photocatalyst system of Comparative Example 1 in which the mediator is absent and the reduced photocatalyst particles do not contain the metal complex catalyst, the hydrogen generation reaction predominantly proceeds, and the amount of CO 2 reduced product is small (total 0.01 μmol), and the CO 2 reduction selectivity was a remarkably low value of 0.05. In addition, the hydrogen generation reaction proceeds in the same manner in the photocatalyst system of Comparative Example 2 in which the mediator is not a metal complex compound and the reduced photocatalyst particle does not contain a metal complex catalyst, and the amount of CO 2 reduced product is similarly produced. (Total 0.02 μmol), and the CO 2 reduction selectivity was a remarkably low value of 0.04.

酸化光触媒を添加しない比較例3の光触媒系では、ある程度のギ酸及び一酸化炭素を生成した(ギ酸:0.45μmol、CO:1.41μmol)。しかしながら、後述の経時的評価から明らかなように、比較例3では、酸化光触媒粒子が不在のためメディエータが還元されず、やがてメディエータの還元体(還元光触媒粒子にとっての電子供与体)が完全に消費され、還元光触媒粒子が電子を受け取れなくなってしまう。よって、継続的なCO還元を進行させるためには、酸化光触媒粒子が必要不可欠と考えられる。 In the photocatalyst system of Comparative Example 3 to which no oxidation photocatalyst was added, a certain amount of formic acid and carbon monoxide were produced (formic acid: 0.45 μmol, CO: 1.41 μmol). However, as apparent from the temporal evaluation described later, in Comparative Example 3, the mediator is not reduced due to the absence of the oxidized photocatalyst particle, and the reductant of the mediator (the electron donor for the reduced photocatalyst particle) is consumed completely. As a result, the reduced photocatalyst particles can not receive electrons. Therefore, it is considered that oxidation photocatalyst particles are indispensable for promoting continuous CO 2 reduction.

メディエータを使用しない比較例4の光触媒系においても、ギ酸及び一酸化炭素が生成した。酸化光触媒粒子と還元光触媒粒子は溶液中で懸濁して混在しているため、酸化光触媒粒子と還元光触媒粒子との接触により粒子間の電子移動が起こり、反応が進行したものと考えられる。しかしながら、粒子間の電子移動効率はメディエータ使用の場合に比べて低く、メディエータの使用の有無のみが異なる実施例3に比較して、ギ酸生成量は約1/9以下、CO生成量は約1/23以下の低い値を示した。   Formic acid and carbon monoxide were also produced in the photocatalyst system of Comparative Example 4 in which no mediator was used. Since the oxidized photocatalyst particles and the reduced photocatalyst particles are suspended and mixed in the solution, it is considered that the contact between the oxidized photocatalyst particles and the reduced photocatalyst particles causes electron transfer between the particles and the reaction proceeds. However, the electron transfer efficiency between particles is lower compared to the case of using a mediator, and the amount of formic acid produced is about 1/9 or less, and the amount of CO produced is about 1 compared to Example 3 which differs only in the presence or absence of the use of a mediator. It showed a low value of / 23 or less.

なお、COの代わりにアルゴンを通気した参考例1では、ギ酸及び一酸化炭素の生成は検出されなかった。このことは、本実施形態に係る光触媒系において生成されたギ酸及び一酸化炭素は、通気されたCOの還元反応に由来することを示している。また、光を照射しない参考例2では全く生成物を検出できなかった。これにより、本触媒反応は光により進行することが分かった。 In Reference Example 1 in which argon was bubbled instead of CO 2 , the formation of formic acid and carbon monoxide was not detected. This indicates that the formic acid and carbon monoxide generated in the photocatalyst system according to this embodiment are derived from the reduction reaction of aerated CO 2 . Moreover, in the reference example 2 which does not irradiate light, a product was not able to be detected at all. From this, it was found that this catalytic reaction proceeds by light.

各実施例及び各比較例から明らかなように、水性溶媒、酸化光触媒粒子、還元光触媒粒子及びメディエータを備え、メディエータが金属錯体化合物であるか、又は、還元光触媒粒子が還元半導体粒子と金属錯体触媒とを含む光触媒系では、光エネルギーを利用したZスキーム型反応において、CO還元生成物の生成量が増加し、或いはCO還元反応の選択性が高まることから、CO還元性能が更に向上することが分かった。 As apparent from each example and each comparative example, it comprises an aqueous solvent, an oxidized photocatalyst particle, a reduced photocatalyst particle and a mediator, the mediator is a metal complex compound, or the reduced photocatalyst particle is a reduced semiconductor particle and a metal complex catalyst In the Z scheme type reaction using light energy, the generation amount of CO 2 reduction product increases or the selectivity of CO 2 reduction reaction increases, and the CO 2 reduction performance is further improved. It turned out to do.

また、本実施形態に係る粒子懸濁型の光触媒系では、水性溶媒中又は一方の半導体粒子と接合したメディエータが粒子間の電子移動をサポートし、触媒活性向上に大きな役割を果たしていることが分かった。特に、実施例3、7及び8と実施例9との比較、並びに、実施例10〜11と比較例2との比較から明らかなように、溶液系メディエータである金属錯体化合物を使用した光触媒系は、固体型メディエータであるRGOを使用した光触媒系に比較してより高いCO還元反応の選択性を有する傾向にあることが分かった。また、実施例1〜9及び18〜21と実施例10〜17及び比較例1〜2との比較から明らかなように、本実施形態に係る光触媒系は、還元光触媒粒子が還元半導体粒子と金属錯体触媒とを含むことにより、CO還元生成物の生成量、特にギ酸の生成量が顕著に増加することが分かった。 In addition, in the particle suspension type photocatalyst system according to the present embodiment, it has been found that the mediator in the aqueous solvent or in one of the semiconductor particles supports the electron transfer between the particles and plays a large role in improving the catalyst activity. The In particular, as is apparent from the comparison of Examples 3, 7 and 8 with Example 9, and the comparison of Examples 10-11 with Comparative Example 2, a photocatalyst system using a metal complex compound which is a solution type mediator. It turned out that it tends to have the selectivity of CO 2 reduction reaction higher than the photocatalyst system using RGO which is a solid type mediator. Further, as is clear from the comparison between Examples 1 to 9 and 18 to 21 and Examples 10 to 17 and Comparative Examples 1 and 2, in the photocatalyst system according to the present embodiment, the reduced photocatalyst particles are the reduced semiconductor particles and the metal It has been found that the inclusion of the complex catalyst significantly increases the amount of CO 2 reduction product, particularly the amount of formic acid.

〔試験管法による光触媒反応の経時的評価〕
(実施例22及び23、比較例5)
実施例1で得られた試料液に対して、光照射時間を1時間、2時間、4時間、8時間及び16時間とした光照射試験を行い、各生成物を分析及び定量したこと以外は、実施例1の方法に従って、光触媒性能を評価した(実施例22)。また、実施例23及び比較例5として、それぞれ実施例3及び比較例3で得られた試料液を使用したこと以外は、実施例22の方法に従って、光触媒性能を評価した。
[Temporal evaluation of photocatalytic reaction by test tube method]
(Examples 22 and 23, Comparative Example 5)
The sample solution obtained in Example 1 was subjected to a light irradiation test in which the light irradiation time was 1 hour, 2 hours, 4 hours, 8 hours and 16 hours, and each product was analyzed and quantified. The photocatalytic performance was evaluated according to the method of Example 1 (Example 22). Further, the photocatalytic performance was evaluated according to the method of Example 22 except that the sample solutions obtained in Example 3 and Comparative Example 3 were used as Example 23 and Comparative Example 5, respectively.

図3に、各光触媒系での可視光CO還元反応によるギ酸生成量の経時変化を示す。横軸には光照射時間を示し、縦軸にはギ酸の生成量(μmol)を示す。本実施形態に係る実施例22及び23の光触媒系ではギ酸生成量は経時的に増加した。一方、酸化光触媒粒子を使用しない比較例5の光触媒系では、光照射4時間まではギ酸が順調に生成するものの、それ以降のギ酸の生成量は停滞した。これは、反応初期はCo2+メディエータが電子供与剤として働くものの、酸化光触媒粒子が不在のため、電子を供与したCo3+メディエータが電子を受け取ることができず、Co3+メディエータが蓄積された状態になる。図3に示すグラフは、比較例5では、Co2+メディエータが完全消費された後は還元反応が進行しないことを示している。以上の結果より、水性溶媒中での継続的な可視光CO還元反応の実現にはレドックスメディエータが必要不可欠であることが確認された。 Figure 3 shows the time course of formic acid production amount by visible light CO 2 reduction in each photocatalyst systems. The horizontal axis shows the light irradiation time, and the vertical axis shows the amount (μmol) of formic acid produced. The photocatalyst system of Example 22 and 23 according to the present embodiment, formic acid production amount increased with time. On the other hand, in the photocatalyst system of Comparative Example 5 in which the oxidation photocatalyst particles are not used, although formic acid is generated smoothly until 4 hours of light irradiation, the amount of generated formic acid stagnated after that. This is because, although the Co 2+ mediator functions as an electron donor at the initial stage of the reaction, the electron-donating Co 3+ mediator can not receive electrons because the oxidized photocatalyst particle is absent, and the Co 3+ mediator is accumulated. Become. The graph shown in FIG. 3 indicates that in Comparative Example 5, the reduction reaction does not proceed after the Co 2+ mediator is completely consumed. From the above results, it has been confirmed that the redox mediator is essential for realizing the continuous visible light CO 2 reduction reaction in an aqueous solvent.

〔流通式反応装置を用いた光触媒反応の評価〕
Zスキーム型反応のうち酸化反応に伴う酸素(O)の生成量を分析及び定量するため、以下に示す流通式反応装置を用いた光触媒反応評価を行った。
[Evaluation of photocatalytic reaction using flow reactor]
In order to analyze and quantify the generation amount of oxygen (O 2 ) associated with the oxidation reaction among the Z scheme type reactions, photocatalytic reaction evaluation was performed using a flow reaction apparatus shown below.

<実施例24>
NaHCOを0.25Mの濃度で含有する電解質水溶液に、調製例D−1で得られたメディエータを0.02mMの濃度となるように添加して水性媒体を調製し、得られた水性媒体150mLを容量170mLのガラス製の容器に入れた。次いで、調製例B−1で得られた還元光触媒粒子0.4g、調製例C−1で得られた酸化光触媒粒子0.2gを容器に添加し、本実施形態に係る光触媒系である試料液を調製した。容器中の試料液に、COガスを毎分15mLの流量で通気しながら、可視光(λ>420nm)を照射した。照射時間が所定時間を経過する毎に、容器内の気相成分に含まれるガス成分をガスクロマトグラフ(株式会社島津製作所製「GC−8A」)を用いて分析及び定量した。
Example 24
The mediator obtained in Preparation Example D-1 was added to an aqueous electrolyte solution containing NaHCO 3 at a concentration of 0.25 M to a concentration of 0.02 mM to prepare an aqueous medium, and 150 mL of the obtained aqueous medium Was placed in a 170 mL glass container. Next, 0.4 g of the reduced photocatalyst particles obtained in Preparation Example B-1 and 0.2 g of the oxidized photocatalyst particles obtained in Preparation Example C-1 are added to the container, and a sample solution which is a photocatalyst system according to the present embodiment Was prepared. The sample solution in the container was irradiated with visible light (λ> 420 nm) while aerating CO 2 gas at a flow rate of 15 mL per minute. The gas component contained in the gas phase component in the container was analyzed and quantified using a gas chromatograph ("GC-8A" manufactured by Shimadzu Corporation) each time the irradiation time passed a predetermined time.

<実施例25>
調製例B−1で得られた還元光触媒粒子に代えて、調製例A−2で得られた還元半導体粒子を使用すること以外は実施例24の方法に従って、本実施形態に係る光触媒系である試料液を調製し、試料液への可視光の照射時間が所定時間を経過する毎に容器内の気相成分に含まれるガス成分の分析及び定量を行った。
Example 25
It is a photocatalyst system according to the present embodiment according to the method of Example 24 except that the reduced semiconductor particles obtained in Preparation Example A-2 are used instead of the reduced photocatalyst particles obtained in Preparation Example B-1 A sample solution was prepared, and analysis and quantification of the gas component contained in the gas phase component in the container were performed each time the irradiation time of visible light to the sample solution passed a predetermined time.

図4に、実施例24のZスキーム型光触媒系からのCO及びO生成量の経時変化を示す。また、図5に、実施例25のZスキーム型光触媒系からのCO、H及びO生成量の経時変化を示す。可視光照射に伴い、CO還元生成物であるCO、副生成物であるH(実施例25のみ)及び水の酸化生成物であるOが経時的に増加することが確認された。即ち、実施例24及び25の光触媒系では、可視光CO還元反応は水を電子源として進行していることが示唆される。なお、実施例25の光触媒系では、光照射開始から6時間経過後のCO還元選択率は0.72と高い値を示した。 Figure 4 shows the time course of CO and O 2 generation amount from the Z scheme photocatalyst system of Example 24. Further, FIG. 5 shows time-dependent changes in CO, H 2 and O 2 production amounts from the Z scheme type photocatalyst system of Example 25. It was confirmed that, with visible light irradiation, CO as a CO 2 reduction product, H 2 as a by- product (only in Example 25), and O 2 as an oxidation product of water increase with time. That is, in the photocatalyst systems of Examples 24 and 25, it is suggested that the visible light CO 2 reduction reaction proceeds using water as an electron source. In the photocatalyst system of Example 25, the CO 2 reduction selectivity after 6 hours from the start of light irradiation showed a high value of 0.72.

1 光触媒系(Zスキーム型光触媒系)、2 酸化光触媒粒子、3 還元光触媒粒子、3a 還元半導体粒子(半導体粒子)、3b 金属錯体触媒、4 メディエータ(レドックスメディエータ)、5 可視光。   1 photocatalyst system (Z scheme type photocatalyst system), 2 oxidation photocatalyst particle, 3 reduction photocatalyst particle, 3a reduction semiconductor particle (semiconductor particle), 3b metal complex catalyst, 4 mediator (redox mediator), 5 visible light.

Claims (14)

水性媒体と、
水を酸化する酸化光触媒粒子と、
二酸化炭素を還元する還元光触媒粒子と、
前記酸化光触媒粒子と前記還元光触媒粒子との間で電子を伝達するレドックスメディエータと、を備え、
前記レドックスメディエータが金属錯体化合物であるか、又は、前記還元光触媒粒子が半導体粒子と金属錯体触媒とを含む、
Zスキーム型光触媒系。
An aqueous medium,
Oxidation photocatalyst particles that oxidize water,
Reduced photocatalyst particles for reducing carbon dioxide,
A redox mediator for transferring electrons between the oxidized photocatalyst particle and the reduced photocatalyst particle;
The redox mediator is a metal complex compound, or the reduced photocatalyst particles include semiconductor particles and a metal complex catalyst.
Z scheme type photocatalyst system.
前記レドックスメディエータが金属錯体化合物である、請求項1に記載のZスキーム型光触媒系。   The Z scheme photocatalytic system according to claim 1, wherein the redox mediator is a metal complex compound. 前記金属錯体化合物が、周期表の第6族から第12族のいずれかに属する金属から選択される少なくとも1つの金属の錯体である、請求項2に記載のZスキーム型光触媒系。   The Z scheme photocatalytic system according to claim 2, wherein the metal complex compound is a complex of at least one metal selected from metals belonging to any of Groups 6 to 12 of the periodic table. 前記金属錯体化合物が、コバルト、鉄及び銅からなる群から選択される少なくとも1つの金属の錯体である、請求項2に記載のZスキーム型光触媒系。   The Z scheme photocatalytic system according to claim 2, wherein the metal complex compound is a complex of at least one metal selected from the group consisting of cobalt, iron and copper. 前記還元光触媒粒子が半導体粒子と金属錯体触媒とを含む、請求項1〜4のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme type photocatalyst system according to any one of claims 1 to 4, wherein the reduced photocatalyst particle comprises a semiconductor particle and a metal complex catalyst. 前記金属錯体触媒が、周期表の第6族から第10族までのいずれかに属する金属から選択される少なくとも1つの金属の錯体である、請求項5に記載のZスキーム型光触媒系。   The Z-scheme type photocatalyst system according to claim 5, wherein the metal complex catalyst is a complex of at least one metal selected from metals belonging to any of Groups 6 to 10 of the periodic table. 前記半導体粒子の伝導帯下端の準位が、前記金属錯体触媒の最低空軌道の準位よりも卑である、請求項5又は6に記載のZスキーム型光触媒系。   The Z scheme type photocatalyst system according to claim 5 or 6, wherein the level of the lower end of the conduction band of the semiconductor particle is more negative than the level of the lowest unoccupied orbital of the metal complex catalyst. 前記還元光触媒粒子に含まれる半導体粒子の伝導帯下端の電位が、pH0における標準水素電極の電位に対して−0.3V以下である、請求項1〜7のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme according to any one of claims 1 to 7, wherein the potential of the lower end of the conduction band of the semiconductor particles contained in the reduced photocatalyst particles is -0.3 V or less with respect to the potential of a standard hydrogen electrode at pH 0. Type photocatalyst system. 前記還元光触媒粒子に含まれる半導体粒子が硫化物半導体で構成されている、請求項1〜7のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme type photocatalyst system according to any one of claims 1 to 7, wherein the semiconductor particles contained in the reduced photocatalyst particles are made of a sulfide semiconductor. 前記硫化物半導体が亜鉛を含有する、請求項9に記載のZスキーム型光触媒系。   The Z scheme photocatalytic system according to claim 9, wherein the sulfide semiconductor contains zinc. 前記水性媒体が電解質の水溶液である、請求項1〜10のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme type photocatalyst system according to any one of claims 1 to 10, wherein the aqueous medium is an aqueous solution of electrolyte. 前記電解質が、炭酸塩、重炭酸塩及びリン酸塩からなる群より選択される少なくとも1つである、請求項11に記載のZスキーム型光触媒系。   The Z scheme photocatalytic system according to claim 11, wherein the electrolyte is at least one selected from the group consisting of carbonate, bicarbonate and phosphate. 前記酸化光触媒粒子の伝導帯下端の電位が、前記還元光触媒粒子に含まれる半導体粒子の価電子帯上端の電位よりも卑である、請求項1〜12のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme type according to any one of claims 1 to 12, wherein the potential at the lower end of the conduction band of the oxidized photocatalyst particle is lower than the potential at the upper end of the valence band of the semiconductor particles contained in the reduced photocatalyst particle. Photocatalyst system. 前記酸化光触媒粒子がバナジン酸ビスマス半導体を含む、請求項1〜13のいずれか一項に記載のZスキーム型光触媒系。   The Z scheme type photocatalyst system according to any one of claims 1 to 13, wherein the oxidation photocatalyst particle comprises a bismuth vanadate semiconductor.
JP2018142779A 2017-11-01 2018-07-30 Z scheme type photocatalytic system Active JP6829229B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017211685 2017-11-01
JP2017211685 2017-11-01

Publications (2)

Publication Number Publication Date
JP2019084527A true JP2019084527A (en) 2019-06-06
JP6829229B2 JP6829229B2 (en) 2021-02-10

Family

ID=66763746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018142779A Active JP6829229B2 (en) 2017-11-01 2018-07-30 Z scheme type photocatalytic system

Country Status (1)

Country Link
JP (1) JP6829229B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068715A (en) * 2019-12-26 2020-04-28 西安理工大学 Ag/Bi2O3/CuBi2O4Preparation method of nanofiber composite photocatalyst
CN111185245A (en) * 2020-02-25 2020-05-22 李艳华 Graphene oxide loaded bismuth vanadate nanocomposite and preparation method thereof
CN111939956A (en) * 2020-08-14 2020-11-17 广州大学 Honeycomb FeV2O4Preparation method and application of composite carbon nitride loaded stainless steel wire mesh composite material
CN112495366A (en) * 2020-12-14 2021-03-16 四川轻化工大学 Bi4V2O11/BiVO4Preparation method and application of heterojunction photocatalyst
CN113231099A (en) * 2021-05-21 2021-08-10 吉林大学 Preparation and application of Z-type polypyrrole-bismuth tungstate photocatalyst
CN113275023A (en) * 2021-05-28 2021-08-20 南开大学 Bi3O4Br/CuBi2O4Preparation method and application of bimetallic heterojunction catalyst
CN113289645A (en) * 2021-06-09 2021-08-24 淮北师范大学 One-dimensional self-assembly composite photocatalyst and preparation method and application thereof
CN113522310A (en) * 2021-07-23 2021-10-22 福州大学 Preparation and application of silver ferrite/silver vanadate composite photocatalyst
CN113731430A (en) * 2021-09-26 2021-12-03 辽宁大学 Double Z type CuO/CuBi2O4/Bi2O3Composite photocatalyst and preparation method and application thereof
CN114054028A (en) * 2021-12-09 2022-02-18 重庆化工职业学院 Cu2O/CoFe2O4Preparation method and application of magnetic composite catalyst
CN114289036A (en) * 2022-01-14 2022-04-08 福州大学 Sulfide photocatalyst containing rare earth elements and preparation method and application thereof
CN114289035A (en) * 2021-12-28 2022-04-08 中南大学 Silver-doped copper vanadate composite photocatalytic material, preparation method thereof and application of silver-doped copper vanadate composite photocatalytic material as reduction carbon dioxide photocatalyst
JP2022077351A (en) * 2020-11-11 2022-05-23 株式会社豊田中央研究所 Redox mediator, and photocatalyst system
CN114762829A (en) * 2021-01-14 2022-07-19 天津理工大学 Simple preparation method of Z-type heterojunction photocatalytic material
CN114797856A (en) * 2022-05-11 2022-07-29 福州大学 Preparation method and application of floating type hydrogel photocatalyst
CN115364873A (en) * 2022-08-22 2022-11-22 电子科技大学长三角研究院(湖州) Hollow tubular ultrathin photocatalyst and preparation method thereof
CN115888759A (en) * 2022-11-15 2023-04-04 南昌大学 Synthesis method of alternately bridged cadmium sulfide-zinc oxide heterojunction periodic macroporous photocatalytic hydrogen evolution material
JP7459154B2 (en) 2022-03-04 2024-04-01 株式会社豊田中央研究所 photocatalyst system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224715A (en) * 2003-01-21 2004-08-12 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
JP2010064066A (en) * 2008-08-11 2010-03-25 Toyota Central R&D Labs Inc Photocatalyst and catalyst body for reduction using the same
JP2015003840A (en) * 2013-06-20 2015-01-08 Toto株式会社 BiVO4 PARTICLE AND PRODUCTION METHOD THEREOF

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004224715A (en) * 2003-01-21 2004-08-12 National Institute Of Advanced Industrial & Technology Method for producing formic acid from carbon dioxide and hydrogen and method for fixing carbon dioxide and method for accelerating the reactions by irradiation of light
JP2010064066A (en) * 2008-08-11 2010-03-25 Toyota Central R&D Labs Inc Photocatalyst and catalyst body for reduction using the same
JP2015003840A (en) * 2013-06-20 2015-01-08 Toto株式会社 BiVO4 PARTICLE AND PRODUCTION METHOD THEREOF

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 138, JPN6020031530, pages 10260 - 10264, ISSN: 0004332024 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068715A (en) * 2019-12-26 2020-04-28 西安理工大学 Ag/Bi2O3/CuBi2O4Preparation method of nanofiber composite photocatalyst
CN111068715B (en) * 2019-12-26 2022-12-20 西安理工大学 Ag/Bi 2 O 3 /CuBi 2 O 4 Preparation method of nanofiber composite photocatalyst
CN111185245A (en) * 2020-02-25 2020-05-22 李艳华 Graphene oxide loaded bismuth vanadate nanocomposite and preparation method thereof
CN111939956B (en) * 2020-08-14 2022-11-29 广东鼎诚电子科技有限公司 Honeycomb FeV 2 O 4 Preparation method and application of composite carbon nitride loaded stainless steel wire mesh composite material
CN111939956A (en) * 2020-08-14 2020-11-17 广州大学 Honeycomb FeV2O4Preparation method and application of composite carbon nitride loaded stainless steel wire mesh composite material
JP7320486B2 (en) 2020-11-11 2023-08-03 株式会社豊田中央研究所 Redox mediator and photocatalyst system
JP2022077351A (en) * 2020-11-11 2022-05-23 株式会社豊田中央研究所 Redox mediator, and photocatalyst system
CN112495366A (en) * 2020-12-14 2021-03-16 四川轻化工大学 Bi4V2O11/BiVO4Preparation method and application of heterojunction photocatalyst
CN112495366B (en) * 2020-12-14 2022-05-03 四川轻化工大学 Bi4V2O11/BiVO4Preparation method and application of heterojunction photocatalyst
CN114762829A (en) * 2021-01-14 2022-07-19 天津理工大学 Simple preparation method of Z-type heterojunction photocatalytic material
CN113231099A (en) * 2021-05-21 2021-08-10 吉林大学 Preparation and application of Z-type polypyrrole-bismuth tungstate photocatalyst
CN113231099B (en) * 2021-05-21 2022-05-17 吉林大学 Preparation and application of Z-type polypyrrole-bismuth tungstate photocatalyst
CN113275023A (en) * 2021-05-28 2021-08-20 南开大学 Bi3O4Br/CuBi2O4Preparation method and application of bimetallic heterojunction catalyst
CN113289645A (en) * 2021-06-09 2021-08-24 淮北师范大学 One-dimensional self-assembly composite photocatalyst and preparation method and application thereof
CN113522310A (en) * 2021-07-23 2021-10-22 福州大学 Preparation and application of silver ferrite/silver vanadate composite photocatalyst
CN113522310B (en) * 2021-07-23 2022-09-20 福州大学 Preparation and application of silver ferrite/silver vanadate composite photocatalyst
CN113731430A (en) * 2021-09-26 2021-12-03 辽宁大学 Double Z type CuO/CuBi2O4/Bi2O3Composite photocatalyst and preparation method and application thereof
CN113731430B (en) * 2021-09-26 2023-11-10 辽宁大学 Double Z-type CuO/CuBi 2 O 4 /Bi 2 O 3 Composite photocatalyst, preparation method and application thereof
CN114054028A (en) * 2021-12-09 2022-02-18 重庆化工职业学院 Cu2O/CoFe2O4Preparation method and application of magnetic composite catalyst
CN114054028B (en) * 2021-12-09 2024-03-08 重庆化工职业学院 Cu (copper) alloy 2 O/CoFe 2 O 4 Preparation method and application of magnetic composite catalyst
CN114289035A (en) * 2021-12-28 2022-04-08 中南大学 Silver-doped copper vanadate composite photocatalytic material, preparation method thereof and application of silver-doped copper vanadate composite photocatalytic material as reduction carbon dioxide photocatalyst
CN114289036A (en) * 2022-01-14 2022-04-08 福州大学 Sulfide photocatalyst containing rare earth elements and preparation method and application thereof
CN114289036B (en) * 2022-01-14 2023-05-16 福州大学 Sulfide photocatalyst containing rare earth elements and preparation method and application thereof
JP7459154B2 (en) 2022-03-04 2024-04-01 株式会社豊田中央研究所 photocatalyst system
CN114797856A (en) * 2022-05-11 2022-07-29 福州大学 Preparation method and application of floating type hydrogel photocatalyst
CN115364873A (en) * 2022-08-22 2022-11-22 电子科技大学长三角研究院(湖州) Hollow tubular ultrathin photocatalyst and preparation method thereof
CN115888759A (en) * 2022-11-15 2023-04-04 南昌大学 Synthesis method of alternately bridged cadmium sulfide-zinc oxide heterojunction periodic macroporous photocatalytic hydrogen evolution material

Also Published As

Publication number Publication date
JP6829229B2 (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP6829229B2 (en) Z scheme type photocatalytic system
Miyoshi et al. Water splitting on rutile TiO2‐based photocatalysts
Maeda et al. Development of novel photocatalyst and cocatalyst materials for water splitting under visible light
Yoshino et al. CO2 reduction using water as an electron donor over heterogeneous photocatalysts aiming at artificial photosynthesis
Maeda Metal‐complex/semiconductor hybrid photocatalysts and photoelectrodes for CO2 reduction driven by visible light
JP2020179346A (en) Z-scheme type photocatalytic system
Wu et al. CO2 reduction: from the electrochemical to photochemical approach
Suzuki et al. Z-scheme water splitting under visible light irradiation over powdered metal-complex/semiconductor hybrid photocatalysts mediated by reduced graphene oxide
JP6342225B2 (en) Photocatalyst composite material and method for producing the same
Miseki et al. Photocatalytic water splitting under visible light utilizing I 3−/I− and IO 3−/I− redox mediators by Z-scheme system using surface treated PtO x/WO 3 as O 2 evolution photocatalyst
Fernández-Domene et al. A simple method to fabricate high-performance nanostructured WO3 photocatalysts with adjusted morphology in the presence of complexing agents
Maeda et al. Preparation of BaZrO3–BaTaO2N solid solutions and the photocatalytic activities for water reduction and oxidation under visible light
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
WO2012091045A1 (en) Photochemical reaction device
JP2014046236A (en) Semiconductor hetero particle
Yang et al. Synergetic effects by Co2+ and PO43-on Mo-doped BiVO4 for an improved photoanodic H2O2 evolution
Kudo et al. Z-scheme photocatalyst systems employing Rh-and Ir-doped metal oxide materials for water splitting under visible light irradiation
Miseki et al. Photocatalytic water splitting employing a [Fe (CN) 6] 3−/4− redox mediator under visible light
Pham et al. Inhibition of charge recombination of NiTiO3 photocatalyst by the combination of Mo-doped impurity state and Z-scheme charge transfer
Miseki et al. High-efficiency water oxidation and energy storage utilizing various reversible redox mediators under visible light over surface-modified WO 3
Miyoshi et al. Recent progress in mixed‐anion materials for solar fuel production
Kida et al. Photocatalytic hydrogen production from water over a LaMnO 3/CdS nanocomposite prepared by the reverse micelle method
Iwase et al. Molybdenum-substituted polyoxometalate as stable shuttle redox mediator for visible light driven Z-scheme water splitting system
Giannakoudakis et al. Ultrasound-assisted decoration of CuOx nanoclusters on TiO2 nanoparticles for additives free photocatalytic hydrogen production and biomass valorization by selective oxidation
Takashima et al. Visible-light-induced water splitting on a hierarchically constructed Z-scheme photocatalyst composed of zinc rhodium oxide and bismuth vanadate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6829229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250