JP2015001483A - Soundness confirmation method of building - Google Patents

Soundness confirmation method of building Download PDF

Info

Publication number
JP2015001483A
JP2015001483A JP2013127021A JP2013127021A JP2015001483A JP 2015001483 A JP2015001483 A JP 2015001483A JP 2013127021 A JP2013127021 A JP 2013127021A JP 2013127021 A JP2013127021 A JP 2013127021A JP 2015001483 A JP2015001483 A JP 2015001483A
Authority
JP
Japan
Prior art keywords
building
following equation
equation
likelihood
obtaining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013127021A
Other languages
Japanese (ja)
Other versions
JP6032493B2 (en
Inventor
知生 斎藤
Tomoo Saito
知生 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2013127021A priority Critical patent/JP6032493B2/en
Publication of JP2015001483A publication Critical patent/JP2015001483A/en
Application granted granted Critical
Publication of JP6032493B2 publication Critical patent/JP6032493B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a soundness confirmation method of a building, allowing high-accuracy and short-time acquisition of maximum likelihood estimation value of parameters for representing building properties from observation data by sensors.SOLUTION: In a soundness confirmation method of a building, observation data in time of an earthquake are obtained from sensors, a posterior distribution of θ is obtained by Bayes' theorem, and p(D|θ) of a likelihood function is obtained. The likelihood function is approximated by a similar figure of a normal distribution near an estimation value. Next, a logarithmic likelihood log p(D|θ) is calculated, and θ=θmaximizing it is selected. About each θ, parameters except it are fixed equally to θ, and a logarithmic likelihood log L(θ) corresponding to θ=-γ, 0, γ is represented by a quadratic, coefficients of the quadratic are obtained, and θ=θ(^ above it) maximizing the quadratic is obtained. About each θ, the above procedure is performed, and a maximum likelihood estimation value θ(^ above it) is obtained.

Description

本発明は、建物の健全性を確認するための方法に関する。   The present invention relates to a method for checking the health of a building.

建物にセンサを設置し、このセンサからの情報に基づいて建物の損傷、劣化の度合いを把握し、建物の損傷検知や健全性評価を行う構造ヘルスモニタリングが注目されている(例えば、特許文献1、特許文献2参照)。また、特に、オフィスビルやマンション等の多層構造の建物に対し、地震発生時の被災状況を早期に且つ精度よく確認(把握)、判定することが求められている。   Attention has been focused on structural health monitoring in which a sensor is installed in a building, the degree of damage and deterioration of the building is grasped based on information from the sensor, and damage detection and soundness evaluation of the building are performed (for example, Patent Document 1). , See Patent Document 2). In particular, it is required to confirm (understand) and determine the damage status at the time of an earthquake at an early stage and with high accuracy for a multi-layered building such as an office building or a condominium.

さらに、特に大地震が発生した後に、建物特性の変化から損傷、劣化の度合い、すなわち、建物の健全性を迅速に評価、判定することが求められており、このため、建物特性の評価に要する計算時間をできるだけ短くすることが必要とされている。   Furthermore, it is required to quickly evaluate and judge the degree of damage and deterioration from the change in building characteristics, that is, the soundness of the building, especially after the occurrence of a large earthquake. There is a need to make the calculation time as short as possible.

特開2011−132680号公報JP 2011-132680 A 特開2001−99760号公報JP 2001-99760 A

しかしながら、上記従来の建物の健全性確認方法(構造ヘルスモニタリング)では、建物特性を表現するパラメータがセンサによる観測データに基づく最尤推定値として得られ、一般にその推定に非線形最小二乗法等の繰り返し計算を行う最適化手法を用いている。さらに、各々の繰り返しステップにおいて建物の時刻歴応答解析を行うことになる。このため、上記従来の建物の健全性確認方法では、推定に要する計算時間がどうしても長くなってしまう。   However, in the conventional method for confirming building health (structural health monitoring), the parameter expressing the building characteristics is obtained as a maximum likelihood estimated value based on the observation data from the sensor, and the estimation is generally repeated using a nonlinear least square method or the like. It uses an optimization method that performs calculations. Furthermore, the time history response analysis of a building is performed in each repetition step. For this reason, in the conventional method for checking the soundness of a building, the calculation time required for estimation is inevitably long.

本発明は、上記事情に鑑み、センサによる観測データから建物特性を表すためのパラメータの最尤推定値を精度よく短時間で得られるようにすることを可能にした建物の健全性確認方法を提供することを目的とする。   In view of the above circumstances, the present invention provides a building soundness confirmation method that makes it possible to accurately obtain a maximum likelihood estimation value of a parameter for representing a building characteristic from observation data obtained by a sensor in a short time. The purpose is to do.

上記の目的を達するために、この発明は以下の手段を提供している。   In order to achieve the above object, the present invention provides the following means.

本発明の建物の健全性確認方法は、建物の観測層に設置したセンサによる観測データから建物特性を表すためのパラメータとなる最尤推定値を求め、該最尤推定値を用いて建物の健全性を確認する方法であって、建物の設計モデルの質量行列M、減衰係数行列C、剛性行列Kから、下記の式(1)に示す一般固有値問題を解いてj次の固有角振動数wと刺激関数φを得る第1工程と、下記の式(2)に示す確率変数のモデルパラメータ(nはパラメータ数)を用い、剛性分布kを修正する関数△k(θ)を導入することにより、剛性分布をk’=k+△k(θ)に修正するとともに、剛性行列KをK’(θ)に修正する第2工程と、観測層の建物応答絶対角度y(θ)を下記の式(3)で表すとともに、建物応答絶対加速度の確率モデルを下記の式(4)で表す第3工程と、地震時に、下記の式(5)で表す観測データDをセンサから得るとともに、ベイズの定理によってθの事後分布を下記の式(6)で求める第4工程と、下記の式(7)から事前分布のp(θ)、下記の式(8)から尤度関数のp(D|θ)を求める第5工程と、尤度関数を推定値θ(上に^)近傍で下記の式(9)のような正規分布の相似形で近似するとともに、式(9)の両辺の対数をとって下記の式(10)を求める第6工程と、各θそれぞれに−γ,0,γを代入して対数尤度logp(D|θ)を計算し、それを最大化するθ=θを選ぶ第7工程と、各θについて、それ以外のパラメータをθに等しく固定した上で、θ=−γ,0,γに対応する対数尤度logL(θ)を下記の式(11)の2次式で表す第8工程と、式(11)の2次式の係数α=[αααを下記の式(12)、式(13)、式(14)によって求める第9工程と、式(11)を最大化するθ=θ(上に^)を、下記の式(15)と式(16)によって得る第10工程と、各θについて、第8工程から第10工程を行い、下記の式(17)によって、最尤推定値θ(上に^)を得る第11工程とを備えていることを特徴とする。 In the building health check method according to the present invention, a maximum likelihood estimation value, which is a parameter for representing building characteristics, is obtained from observation data obtained by sensors installed in the observation layer of the building, and the building health check is performed using the maximum likelihood estimation value. The general eigenvalue problem shown in the following equation (1) is solved from the mass matrix M, the damping coefficient matrix C, and the stiffness matrix K of the building design model to solve the j-th order natural angular frequency w. Introducing a function Δk (θ) for correcting the stiffness distribution k using the first step of obtaining j and the stimulation function φ j and the model parameter (n p is the number of parameters) of the random variable shown in the following equation (2) Thus, the second step of correcting the stiffness distribution to k ′ = θ + θ (θ) and the stiffness matrix K to K ′ (θ), and the building response absolute angle y p (θ) of the observation layer Is expressed by the following equation (3) and the probability model of building response absolute acceleration Is obtained from the sensor in the third step represented by the following formula (4) and the following formula (5) at the time of the earthquake, and the posterior distribution of θ is represented by the following formula (6) by Bayes' theorem. A fourth step to obtain; a fifth step to obtain p (θ) of a prior distribution from the following equation (7); a p (D | θ) of a likelihood function from the following equation (8); and a likelihood function to be estimated In the vicinity of the value θ L (above ^), a similar approximation of the normal distribution as in the following equation (9) is used, and the following equation (10) is obtained by taking the logarithm of both sides of the equation (9). a step,-gamma in each of theta j, 0, by substituting γ log likelihood logp | calculates the (D theta), it and a seventh step of selecting the theta = theta M that maximizes each theta j for, after equal fixed parameters other than it θ M, θ j = -γ, 0, logarithmic likelihood logL j corresponding to γ (θ j) the formula The coefficient α = [α 0 α 1 α 2 ] T of the eighth step represented by the quadratic formula of (11) and the quadratic formula of formula (11) is expressed by the following formula (12), formula (13), formula ( 14), the 10th step of obtaining θ j = θ j (^) above maximizing the equation (11) by the following equations (15) and (16), and each θ j The eighth step to the tenth step are carried out, and the eleventh step for obtaining the maximum likelihood estimated value θ L (^) is obtained by the following equation (17).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
は、建物に設置されたセンサの数(地動計測用のものを除く)、y(上に^(ハット))(θ)は、M、C、K’(θ)で規定される修正設計モデルに観測された地動uを入力したときの各時刻におけるセンサ設置階の応答絶対加速度であり、その値を期待値として等しい分散σ で独立に正規分布していることを示す。
Figure 2015001483
n s (except those for ground motion measurement) The number of sensors installed in a building, y p (^ (hat) on) (theta) is defined M, C, in K '(theta) This is the absolute response acceleration of the sensor installation floor at each time when the observed ground motion u is input to the modified design model, and indicates that the value is an expected value and independently distributed normally with the same variance σ y 2 .

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
c、c’はスケーリング係数、Cは推定値近傍でのθの誤差共分散行列である。
Figure 2015001483
c and c ′ are scaling coefficients, and CL is an error covariance matrix of θ near the estimated value.

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

本発明の建物の健全性確認方法においては、従来の最適化手法による場合と同程度の精度を保ちながら、極めて短い計算時間で最尤推定値の推定が可能になる。よって、建物特性の変化を地震直後に迅速に推定でき、特に大地震後に、建物特性の変化から損傷、劣化の度合い、すなわち、建物の健全性を迅速に評価、判定することができ、有効に利用することが可能になる。   In the building soundness confirmation method of the present invention, the maximum likelihood estimated value can be estimated in a very short calculation time while maintaining the same level of accuracy as in the conventional optimization method. Therefore, it is possible to quickly estimate changes in building characteristics immediately after an earthquake.Especially after a large earthquake, it is possible to quickly evaluate and judge the degree of damage and deterioration from the changes in building characteristics, that is, the soundness of buildings. It becomes possible to use.

本発明の一実施形態に係る建物の健全性確認方法において、対象の建物を示す図である。It is a figure which shows the target building in the soundness confirmation method of the building which concerns on one Embodiment of this invention. 本発明の一実施形態に係る建物の健全性確認方法において、示す図である。シミュレーション結果を示す図である。It is a figure shown in the soundness confirmation method of the building which concerns on one Embodiment of this invention. It is a figure which shows a simulation result. 本発明の一実施形態に係る建物の健全性確認方法と従来手法によって求めた最尤推定値を比較した図である。It is the figure which compared the maximum likelihood estimated value calculated | required with the soundness confirmation method of the building which concerns on one Embodiment of this invention by the conventional method. 本発明の一実施形態に係る建物の健全性確認方法と従来手法によって最尤推定値を計算する時間を比較した図である。It is the figure which compared the time which calculates the maximum likelihood estimated value by the soundness confirmation method of the building which concerns on one Embodiment of this invention, and the conventional method.

以下、図1から図4を参照し、本発明の一実施形態に係る建物の健全性確認方法について説明する。   Hereinafter, a soundness confirmation method for a building according to an embodiment of the present invention will be described with reference to FIGS. 1 to 4.

ここで、本実施形態の建物の健全性確認方法は、構造ヘルスモニタリングシステムを用いてオフィスビルやマンション等の多層構造の建物の健全性を確認、把握するための方法に関するものである。   Here, the soundness confirmation method for a building according to the present embodiment relates to a method for confirming and grasping the soundness of a multi-layered building such as an office building or an apartment using a structural health monitoring system.

そして、本実施形態に係る建物1は、図1に示すように、複数の振動センサ2、3、4・・・nが異なる階(観測層)に設けられ、これらセンサ2〜nによって地震に伴う振動が検知される。また、各センサの2〜nの検知データ(観測データ)がインターフェイス部5を介してヘルスモニタリングシステムに送信され、ヘルスモニタリングシステム側で、この検知データが地震時の建物の応答としてログデータの形で記憶される。   And the building 1 which concerns on this embodiment is provided in the floor (observation layer) from which several vibration sensors 2, 3, 4, ... n differ as shown in FIG. The accompanying vibration is detected. In addition, detection data (observation data) 2 to n of each sensor is transmitted to the health monitoring system via the interface unit 5, and this detection data is converted into a log data form as a response of the building at the time of the earthquake. Is memorized.

また、センサ2〜n、インターフェイス部5とともに構造ヘルスモニタリング装置を構成するヘルスモニタリングシステムは、例えば、図2に示すように、システムバス6、CPU(Central Processing Unit)7、RAM(Random Access Memory)8、ROM(Read Only Memory)9、外部情報機器との送受信を行うための通信制御部10、キーボードコントローラなどの入力制御部11、ディスプレイコントローラなどの出力制御部12、外部記憶装置制御部13、キーボード、ポインティングデバイス、マウスなどの入力機器からなる入力部14、LCDディスプレイなどの表示装置や印刷装置からなる出力部15、HDD(Hard Disk Drive)等の外部記憶装置16を備えて構成されている。   The health monitoring system that constitutes the structural health monitoring apparatus together with the sensors 2 to n and the interface unit 5 includes, for example, a system bus 6, a CPU (Central Processing Unit) 7, a RAM (Random Access Memory) as shown in FIG. 8, ROM (Read Only Memory) 9, communication control unit 10 for performing transmission / reception with an external information device, input control unit 11 such as a keyboard controller, output control unit 12 such as a display controller, external storage device control unit 13, An input unit 14 including input devices such as a keyboard, a pointing device, and a mouse, an output unit 15 including a display device such as an LCD display and a printing device, and an external storage device 1 such as an HDD (Hard Disk Drive) It is configured to include a.

CPU7は、ROM8内のプログラム用ROM、あるいは大容量の外部記憶装置16に記憶されたプログラム等に応じ、外部機器との通信を行ってデータの検索や取得、また、図形、イメージ、文字、表等が混在した出力データの処理を実行したり、外部記憶装置16に予め格納されたデータベースの管理を実行するなど、演算処理を行う。また、CPU7は、システムバス10に接続される各デバイスを統括的に制御する。   The CPU 7 communicates with an external device in accordance with a program ROM stored in the ROM 8 or a program stored in the large-capacity external storage device 16 to search and acquire data, and to display graphics, images, characters, and tables. The arithmetic processing is performed, such as processing of output data in which etc. are mixed, or management of a database stored in advance in the external storage device 16. Further, the CPU 7 comprehensively controls each device connected to the system bus 10.

さらに、本実施形態のヘルスモニタリングシステムでは、建物の健全性を評価するにあたり、建物の観測層に設置したセンサ2〜nによる観測データから建物特性を表すためのパラメータとなる最尤推定値を求めるための推定アルゴリズムがCPU7に搭載されている。   Furthermore, in the health monitoring system of the present embodiment, when evaluating the soundness of a building, a maximum likelihood estimated value that is a parameter for expressing the building characteristics is obtained from observation data obtained by the sensors 2 to n installed in the observation layer of the building. An estimation algorithm is mounted on the CPU 7.

ちなみに、ROM9内のプログラム用ROM、あるいは外部記憶装置16には、CPU7の制御用の基本プログラムであるオペレーティングシステムプログラム(以下OS)等が記憶されている。また、ROM9、あるいは外部記憶装置16には出力データ処理等を行う際に使用される各種データが記憶されている。RAM8は、CPU7の主メモリ、ワークエリア等として機能する。   Incidentally, the program ROM in the ROM 9 or the external storage device 16 stores an operating system program (hereinafter referred to as OS) which is a basic program for controlling the CPU 7. The ROM 9 or the external storage device 16 stores various data used when performing output data processing or the like. The RAM 8 functions as a main memory and work area for the CPU 7.

また、入力制御部11は、キーボードや不図示のポインティングデバイスからの入力部14を制御する。出力制御部12は、LCDディスプレイ等の表示装置やプリンタなどの印刷装置の出力部15の出力制御を行う。   The input control unit 11 controls the input unit 14 from a keyboard or a pointing device (not shown). The output control unit 12 performs output control of the output unit 15 of a display device such as an LCD display or a printing device such as a printer.

外部記憶装置制御部13は、例えば、ブートプログラム、各種のアプリケーション、フォントデータ、ユーザーファイル、編集ファイル、プリンタドライバ等を記憶するHDD(Hard Disk Drive)等の外部記憶装置16へのアクセスを制御する。   The external storage device control unit 13 controls access to the external storage device 16 such as an HDD (Hard Disk Drive) that stores a boot program, various applications, font data, user files, edit files, printer drivers, and the like. .

また、通信制御部10は、ネットワークを介して外部機器との通信を制御するものであり、これにより、システムが必要とするデータを適宜インターネットやイントラネット上の外部機器が保有するデータベースから取得したり、外部機器に情報を送信したりすることができる。   In addition, the communication control unit 10 controls communication with an external device via a network, whereby data necessary for the system can be appropriately acquired from a database held by an external device on the Internet or an intranet. Information can be transmitted to an external device.

そして、本実施形態の建物の健全性確認方法において、まず、建物1の設計モデルの質量行列M、減衰係数行列C、剛性行列Kが与えられており、式(18)に示す一般固有値問題を解いてj次の固有角振動数wと刺激関数φを得る(第1工程)。 In the building soundness confirmation method of the present embodiment, first, the mass matrix M, the attenuation coefficient matrix C, and the stiffness matrix K of the design model of the building 1 are given, and the general eigenvalue problem shown in Equation (18) is solved. The j-th order natural angular frequency w j and the stimulation function φ j are obtained by solving (first step).

Figure 2015001483
Figure 2015001483

ここで、剛性分布kを修正する関数△k(θ)を導入する。これにより、剛性分布がk’=k+△k(θ)に修正され、これに対応して剛性行列KがK’(θ)に修正される(第2工程)。このとき、モデルパラメータは、式(19)に示すように確率変数である(nはパラメータ数)。 Here, a function Δk (θ) for correcting the stiffness distribution k is introduced. As a result, the stiffness distribution is corrected to k ′ = k + Δk (θ), and the stiffness matrix K is corrected to K ′ (θ) correspondingly (second step). At this time, the model parameter is a random variable as shown in Expression (19) (n p is the number of parameters).

Figure 2015001483
Figure 2015001483

一方、センサ設置階(観測層)の建物応答絶対角度y(θ)は式(20)で表され、この建物応答絶対加速度の確率モデルは式(21)で表せる(第3工程)。 On the other hand, the building response absolute angle y p (θ) of the sensor installation floor (observation layer) is expressed by equation (20), and the probability model of this building response absolute acceleration can be expressed by equation (21) (third step).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

は、建物に設置されたセンサの数(地動計測用のものを除く)、y(上に^(ハット))(θ)は、M、C、K’(θ)で規定される修正設計モデルに観測された地動uを入力したときの各時刻におけるセンサ設置階の応答絶対加速度であり、その値を期待値として等しい分散σ で独立に正規分布していることを示している。 n s (except those for ground motion measurement) The number of sensors installed in a building, y p (^ (hat) on) (theta) is defined M, C, in K '(theta) This is the absolute response acceleration of the sensor installation floor at each time when the observed ground motion u is input to the modified design model, and shows that it is normally distributed independently with the same variance σ y 2 as the expected value. Yes.

そして、地震時に、式(22)で表す観測データDが得られると、ベイズの定理によってθの事後分布が式(23)で求められる(第4工程)。   Then, when the observation data D represented by the equation (22) is obtained at the time of the earthquake, the posterior distribution of θ is obtained by the equation (23) by Bayes' theorem (fourth step).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

ここで、従来、p(θ)は、事前分布で、式(24)のような互いに独立で平均が0の正規分布である。また、p(D|θ)は、尤度関数で、式(25)で求められる(第5工程)。   Here, heretofore, p (θ) is a prior distribution, and is a normal distribution that is independent of each other and has an average of 0 as shown in Equation (24). Further, p (D | θ) is a likelihood function, and is obtained by Expression (25) (fifth step).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

一方、本実施形態の建物の健全性確認方法においては、CPU7の推定アルゴリズムによって、尤度関数を推定値θ(上に^)近傍で次の式(26)のような正規分布の相似形で近似する。ここで、c、c’はスケーリング係数、Cは推定値近傍でのθの誤差共分散行列である。なお、この式(26)のような正規分布の相似形は確率分布ではない。 On the other hand, in the building health check method according to the present embodiment, the likelihood function is approximated by the estimation algorithm of the CPU 7 in the vicinity of the estimated value θ L (upward ^) and the normal distribution is similar to the following equation (26). Approximate. Here, c and c ′ are scaling coefficients, and CL is an error covariance matrix of θ near the estimated value. Note that the normal distribution similar to equation (26) is not a probability distribution.

Figure 2015001483
Figure 2015001483

そして、式(26)の両辺の対数をとって式(27)が得られ(第6工程)、本実施形態の建物の健全性確認方法では、この式(27)が各θの2次式になっていることに注意し、下記の手順1)〜手順6)(第7工程〜第11工程)の手順にて最尤推定値θ(上に^)を繰り返し計算なしで推定する。 Then, the logarithm of both sides of the formula (26) is taken to obtain the formula (27) (sixth step). In the building soundness confirmation method of this embodiment, this formula (27) is a quadratic of each θ j . Paying attention to the equation, the maximum likelihood estimated value θ L (upper ^) is estimated without repeated calculation in the following procedure 1) to procedure 6) (step 7 to step 11). .

Figure 2015001483
Figure 2015001483

手順1):各θそれぞれに−γ,0,γを代入して対数尤度logp(D|θ)を計算し、それを最大化するθ=θを選ぶ(第7工程)。 Procedure 1): Substituting -γ, 0, γ for each θ j to calculate the log likelihood logp (D | θ), and selects θ = θ M that maximizes it (seventh step).

手順2):各θについて、それ以外のパラメータをθに等しく固定した上で、θ=−γ,0,γに対応する対数尤度logL(θ)を次の式(28)の2次式で表す(第8工程)。 Procedure 2): For each θ j , other parameters are fixed equal to θ M, and log likelihood logL jj ) corresponding to θ j = −γ, 0, γ is expressed by the following equation (28): ) (Second step).

Figure 2015001483
Figure 2015001483

手順3):上記の式(28)の2次式の係数α=[αααを次の式(29)、式(30)、式(31)によって求める(第9工程)。 Procedure 3): The coefficient α = [α 0 α 1 α 2 ] T of the quadratic formula of the above formula (28) is obtained by the following formula (29), formula (30), formula (31) (9th step) ).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

手順4):上記の式(28)を最大化するθ=θ(上に^)を、次の式(32)を考慮し式(33)によって得る(第10工程)。 Procedure 4): θ j = θ j (^) is maximized by the equation (33) taking the following equation (32) into consideration (10th step).

Figure 2015001483
Figure 2015001483

Figure 2015001483
Figure 2015001483

手順5):各θについて、上記の手順2)〜手順4)(第8工程〜第10工程)を行う。 Procedure 5): For each θ j , the above procedure 2) to procedure 4) (eighth process to tenth process) are performed.

手順6):そして、次の式(34)によって、最尤推定値θ(上に^)を得る(第11工程)。 Procedure 6): Then, the maximum likelihood estimated value θ L (^) is obtained by the following equation (34) (11th step).

Figure 2015001483
Figure 2015001483

このように、本実施形態の建物の健全性確認方法においては、上記の手順1)から手順4)によって、繰り返し計算を用いることなく、非常に少ない計算量でθの最尤推定値θ(上に^)を推定することができる。 As described above, in the building soundness confirmation method according to the present embodiment, the maximum likelihood estimation value θ LL ) with a very small calculation amount without using repetitive calculation according to the above procedure 1) to procedure 4). We can estimate ^) above.

ここで、図3、図4は、実際に本実施形態の手法を用い、θの最尤推定値を推定し、通常の最適化手法と比べ、どの程度の精度を保持しているか、また、計算に要する時間がどの程度短縮されるかを確認した結果を示している。   Here, FIG. 3 and FIG. 4 actually estimate the maximum likelihood estimation value of θ using the method of the present embodiment, and how much accuracy is maintained compared to the normal optimization method. The result of confirming how much the time required for calculation is shortened is shown.

なお、このシミュレーションでは、モデルパラメータ数をn=2、建物階数を24階、センサ数を3、時刻歴波形長さを4000ステップとしている。また、計算機の仕様は、OS:Windows(登録商標) XP Professional SP3、CPU:Intel Prntium D 3.20GHzである。 In this simulation, the number of model parameters is n p = 2, the number of building floors is 24th, the number of sensors is 3, and the time history waveform length is 4000 steps. The specifications of the computer are OS: Windows (registered trademark) XP Professional SP3, CPU: Intel Prnium D 3.20 GHz.

実際に本実施形態の手法を用いてθの最尤推定値を推定し、通常の最適化手法と比べた図3では、対数尤度の相対値も等高線表示している。そして、この結果から、本実施形態の手法による推定値は、従来の最適化手法による推定値をよく近似していることが分かる。   Actually, the maximum likelihood estimation value of θ is estimated using the method of the present embodiment, and the relative value of the logarithmic likelihood is also displayed in contour lines in FIG. 3 compared with the normal optimization method. From this result, it can be seen that the estimated value by the method of the present embodiment closely approximates the estimated value by the conventional optimization method.

次に、計算所要時間の比較結果を示した図4から、従来の手法では推定値を求めるために20秒以上を要するのに対し、本実施形態の手法を用いる約0.4秒しかかからないことが分かる。   Next, from FIG. 4 showing the comparison results of the calculation time, it takes 20 seconds or more to obtain the estimated value in the conventional method, but only about 0.4 seconds using the method of this embodiment is required. I understand.

したがって、本実施形態の建物の健全性確認方法においては、従来の最適化手法による場合と同程度の精度を保ちながら、極めて短い計算時間で最尤推定値の推定が可能になる。よって、建物特性の変化を地震直後に迅速に推定でき、特に大地震後に、建物特性の変化から損傷、劣化の度合い、すなわち、建物の健全性を迅速に評価、判定することができ、有効に利用することが可能になる。   Therefore, in the building health check method of the present embodiment, it is possible to estimate the maximum likelihood estimated value in a very short calculation time while maintaining the same level of accuracy as in the conventional optimization method. Therefore, it is possible to quickly estimate changes in building characteristics immediately after an earthquake.Especially after a large earthquake, it is possible to quickly evaluate and judge the degree of damage and deterioration from the changes in building characteristics, that is, the soundness of buildings. It becomes possible to use.

以上、本発明に係る建物の健全性確認方法の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。   As mentioned above, although one Embodiment of the soundness confirmation method of the building which concerns on this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.

1 建物
2 センサ(振動センサ)
3 センサ(振動センサ)
4 センサ(振動センサ)
n センサ(振動センサ)
5 インターフェイス部
6 システムバス
7 CPU
8 RAM
9 ROM
10 通信制御部
11 入力制御部
12 出力制御部
13 外部記憶装置制御部
14 入力部
15 出力部
16 外部記憶装置
1 Building 2 Sensor (vibration sensor)
3 Sensor (vibration sensor)
4 sensor (vibration sensor)
n Sensor (vibration sensor)
5 Interface section 6 System bus 7 CPU
8 RAM
9 ROM
DESCRIPTION OF SYMBOLS 10 Communication control part 11 Input control part 12 Output control part 13 External storage device control part 14 Input part 15 Output part 16 External storage device

Claims (1)

建物の観測層に設置したセンサによる観測データから建物特性を表すためのパラメータとなる最尤推定値を求め、該最尤推定値を用いて建物の健全性を確認する方法であって、
建物の設計モデルの質量行列M、減衰係数行列C、剛性行列Kから、下記の式(1)に示す一般固有値問題を解いてj次の固有角振動数wと刺激関数φを得る第1工程と、
下記の式(2)に示す確率変数のモデルパラメータ(nはパラメータ数)を用い、剛性分布kを修正する関数△k(θ)を導入することにより、剛性分布をk’=k+△k(θ)に修正するとともに、剛性行列KをK’(θ)に修正する第2工程と、
観測層の建物応答絶対角度y(θ)を下記の式(3)で表すとともに、建物応答絶対加速度の確率モデルを下記の式(4)で表す第3工程と、
地震時に、下記の式(5)で表す観測データDをセンサから得るとともに、ベイズの定理によってθの事後分布を下記の式(6)で求める第4工程と、
下記の式(7)から事前分布のp(θ)、下記の式(8)から尤度関数のp(D|θ)を求める第5工程と、
尤度関数を推定値θ(上に^)近傍で下記の式(9)のような正規分布の相似形で近似するとともに、式(9)の両辺の対数をとって下記の式(10)を求める第6工程と、
各θそれぞれに−γ,0,γを代入して対数尤度logp(D|θ)を計算し、それを最大化するθ=θを選ぶ第7工程と、
各θについて、それ以外のパラメータをθに等しく固定した上で、θ=−γ,0,γに対応する対数尤度logL(θ)を下記の式(11)の2次式で表す第8工程と、
式(11)の2次式の係数α=[αααを下記の式(12)、式(13)、式(14)によって求める第9工程と、
式(11)を最大化するθ=θ(上に^)を、下記の式(15)と式(16)によって得る第10工程と、
各θについて、第8工程から第10工程を行い、下記の式(17)によって、最尤推定値θ(上に^)を得る第11工程とを備えていることを特徴とする建物の健全性確認方法。
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
は、建物に設置されたセンサの数(地動計測用のものを除く)、y(上に^(ハット))(θ)は、M、C、K’(θ)で規定される修正設計モデルに観測された地動uを入力したときの各時刻におけるセンサ設置階の応答絶対加速度であり、その値を期待値として等しい分散σ で独立に正規分布していることを示す。
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
c、c’はスケーリング係数、Cは推定値近傍でのθの誤差共分散行列である。
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
A method for obtaining a maximum likelihood estimate that is a parameter for representing building characteristics from observation data obtained by sensors installed in an observation layer of the building, and confirming the soundness of the building using the maximum likelihood estimate,
From the mass matrix M, the damping coefficient matrix C, and the stiffness matrix K of the building design model, the general eigenvalue problem shown in the following equation (1) is solved to obtain the j-th order natural angular frequency w j and the stimulation function φ j . 1 process,
By using a model parameter (n p is the number of parameters) of a random variable shown in the following equation (2) and introducing a function Δk (θ) for correcting the stiffness distribution k, the stiffness distribution is expressed as k ′ = k + Δk. A second step of correcting to (θ) and correcting the stiffness matrix K to K ′ (θ);
A third step of expressing the building response absolute angle y p (θ) of the observation layer by the following equation (3) and a probability model of the building response absolute acceleration by the following equation (4):
The fourth step of obtaining observation data D represented by the following equation (5) from the sensor at the time of the earthquake and obtaining the posterior distribution of θ by the following equation (6) by Bayes' theorem:
A fifth step of obtaining p (θ) of the prior distribution from the following equation (7) and p (D | θ) of the likelihood function from the following equation (8);
The likelihood function is approximated in the vicinity of the estimated value θ L (upward ^) with a normal distribution similar to the following equation (9), and the logarithm of both sides of equation (9) is taken to obtain the following equation (10 ) For the sixth step,
A seventh step of calculating logarithmic likelihood logp (D | θ) by substituting −γ, 0, γ for each θ j and selecting θ = θ M to maximize it;
For each θ j , the other parameters are fixed to be equal to θ M , and then the log likelihood logL jj ) corresponding to θ j = −γ, 0, γ is the second order of the following equation (11). An eighth step represented by the formula;
A ninth step of obtaining a coefficient α = [α 0 α 1 α 2 ] T of the quadratic equation of Equation (11) by the following Equation (12), Equation (13), and Equation (14);
A tenth step of obtaining θ j = θ j (^) on the equation (11) by the following equation (15) and equation (16);
For each θ j , the building is provided with an eleventh step that performs the eighth step to the tenth step and obtains a maximum likelihood estimated value θ L (upward ^) by the following equation (17): How to check the soundness of
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
n s (except those for ground motion measurement) The number of sensors installed in a building, y p (^ (hat) on) (theta) is defined M, C, in K '(theta) This is the absolute response acceleration of the sensor installation floor at each time when the observed ground motion u is input to the modified design model, and indicates that the value is an expected value and independently distributed normally with the same variance σ y 2 .
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
c and c ′ are scaling coefficients, and CL is an error covariance matrix of θ near the estimated value.
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
Figure 2015001483
JP2013127021A 2013-06-17 2013-06-17 Building health check method Active JP6032493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127021A JP6032493B2 (en) 2013-06-17 2013-06-17 Building health check method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127021A JP6032493B2 (en) 2013-06-17 2013-06-17 Building health check method

Publications (2)

Publication Number Publication Date
JP2015001483A true JP2015001483A (en) 2015-01-05
JP6032493B2 JP6032493B2 (en) 2016-11-30

Family

ID=52296082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127021A Active JP6032493B2 (en) 2013-06-17 2013-06-17 Building health check method

Country Status (1)

Country Link
JP (1) JP6032493B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117521202A (en) * 2023-11-03 2024-02-06 东南大学 Super high-rise building construction simulation method and system combining Bayesian correction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200645A (en) * 2000-01-18 2001-07-27 Taisei Corp Maintenance and management device for concrete structure
JP2004264235A (en) * 2003-03-04 2004-09-24 Shimizu Corp Sensing device for damaged part of structures and its sensing method
JP2012014605A (en) * 2010-07-05 2012-01-19 Shimizu Corp Parameter selection method and parameter selection system
JP2012173001A (en) * 2011-02-17 2012-09-10 Taisei Corp Estimation method of damaged part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200645A (en) * 2000-01-18 2001-07-27 Taisei Corp Maintenance and management device for concrete structure
JP2004264235A (en) * 2003-03-04 2004-09-24 Shimizu Corp Sensing device for damaged part of structures and its sensing method
JP2012014605A (en) * 2010-07-05 2012-01-19 Shimizu Corp Parameter selection method and parameter selection system
JP2012173001A (en) * 2011-02-17 2012-09-10 Taisei Corp Estimation method of damaged part

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015030677; M. W. Vanik et al: 'Bayesian Probabilistic Approach to Structural Health Monitoring' Journal of Engineering Mechanics Vol.126,No.7, 200007, 738-745 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117521202A (en) * 2023-11-03 2024-02-06 东南大学 Super high-rise building construction simulation method and system combining Bayesian correction

Also Published As

Publication number Publication date
JP6032493B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
Shrestha et al. Low velocity impact localization on composite wing structure using error outlier based algorithm and FBG sensors
Chen et al. Evaluation of peak resultant response for wind-excited tall buildings
US11125634B2 (en) Residual stress estimation method and residual stress estimation device
CN108876207A (en) Operating risk appraisal procedure, device, computer equipment and storage medium
US11715049B2 (en) Information processing device and method
CN104537268B (en) A kind of battery maximum discharge power evaluation method and device
KR101653116B1 (en) Strain estimation system, global and local safety evaluation system, and method for structure through impact hammer test
JP2019105927A (en) Failure probability calculation device, failure probability calculation method and program
JP2018081100A5 (en)
Bradley et al. Ground-motion prediction equation for SI based on spectral acceleration equations
Akkas et al. A hand speed–duty cycle equation for estimating the ACGIH hand activity level rating
EP4270277A1 (en) Work behavior recognition system and work behavior recognition method
JP6032493B2 (en) Building health check method
JP2019008637A (en) Parameter estimating device, device-failure predicting device, optimal measures searching device, method, and program
JP2021012078A (en) Temperature distribution estimation device and temperature distribution estimation method
JP6409550B2 (en) Part impact level estimation method, damage assessment method, and part impact level estimation device
JP5458389B2 (en) Parameter selection method and parameter selection system
Almosnino et al. Minimizing low back cumulative loading during design of manual material handling tasks: An optimization approach
CN106779354A (en) Bayes data fusion evaluation methods based on power prior distribation
JP6689002B2 (en) Mass / rigidity distribution setting method for building soundness determination and mass / rigidity distribution setting system for building soundness determination
JP2019158730A (en) Earthquake resistance determination method of structure, and earthquake resistance determination system of structure
Chen Estimation of wind load effects with various mean recurrence intervals with a closed-form formulation
JP2016161463A (en) Liquefaction strength curve generation method and program
JP2020112445A (en) Earthquake information processing device
JP5904651B1 (en) Maintenance index calculation device and maintenance index calculation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161012

R150 Certificate of patent or registration of utility model

Ref document number: 6032493

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150