JP2019015572A - Method for detecting strength index of earthquake motion having highly relevant to functional damage of equipment system - Google Patents

Method for detecting strength index of earthquake motion having highly relevant to functional damage of equipment system Download PDF

Info

Publication number
JP2019015572A
JP2019015572A JP2017132107A JP2017132107A JP2019015572A JP 2019015572 A JP2019015572 A JP 2019015572A JP 2017132107 A JP2017132107 A JP 2017132107A JP 2017132107 A JP2017132107 A JP 2017132107A JP 2019015572 A JP2019015572 A JP 2019015572A
Authority
JP
Japan
Prior art keywords
damage
index
earthquake
seismic
probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017132107A
Other languages
Japanese (ja)
Other versions
JP6860437B2 (en
Inventor
さやか 五十嵐
Sayaka Igarashi
さやか 五十嵐
成弘 坂本
Shigehiro Sakamoto
成弘 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2017132107A priority Critical patent/JP6860437B2/en
Publication of JP2019015572A publication Critical patent/JP2019015572A/en
Application granted granted Critical
Publication of JP6860437B2 publication Critical patent/JP6860437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

To provide a method for detecting a strength index of an earthquake motion having highly relevant to a functional damage of an equipment system capable of carrying out an earthquake risk evaluation using actually executable analysis load on a building as an object in which an equipment system is installed.SOLUTION: The method for detecting a strength index of an earthquake motion having highly relevant to a functional damage of an equipment system comprises the steps of: setting multiple indexes having a relevance to a damage which is calculable using time-serial response waveforms on respective units constituting an equipment system (S1); and detecting an index from the multiple indexes, which well explains the functional damage of the building caused by the damage of the above equipment system (i.e. highly relevant to a damage on a building function) (S6).SELECTED DRAWING: Figure 1

Description

本発明は、建物に設置されている各種の機器システムの地震時における機能損傷と関連が高い地震動強さ指標の検出方法に関するものである。   The present invention relates to a method for detecting a seismic intensity indicator that is highly related to functional damage during earthquakes of various equipment systems installed in a building.

従来、原子力施設等の重要構造物の耐震設計や耐震安全性の評価を行うために、地震の発生確率と建物および当該建物に設置されている機器類の物理的・機能的損傷の程度を関連付けて、ハザード評価、フラジリティ評価等により地震リスクを定量的に評価する確率論的地震リスク評価が活用されている(特許文献1、2)。   Conventionally, in order to perform seismic design and seismic safety assessment of important structures such as nuclear facilities, the probability of earthquakes is related to the degree of physical and functional damage to the building and the equipment installed in the building. Thus, probabilistic seismic risk assessment that quantitatively assesses seismic risk by hazard assessment, fragility assessment, etc. is utilized (Patent Documents 1 and 2).

このような確率論的地震リスク評価のうち、簡易な評価方法として、ある一つの地震動強さ(最大加速度や最大速度)を指標としたハザード評価とフラジリティ評価を用いて、確率論的に地震リスクを評価する手法が知られている。ところが、上記簡易な評価手法によっては、地盤や建物・機器類が非線形的な応答を呈するなど、複雑な挙動を示す場合には、充分な地震リスクの評価精度や信頼性を得ることが難しい。   Among such probabilistic seismic risk assessments, as a simple assessment method, hazard assessment and fragility assessment using one earthquake motion intensity (maximum acceleration and maximum velocity) as indices, and probabilistic earthquake risk. A method for evaluating the above is known. However, depending on the simple evaluation method described above, it is difficult to obtain sufficient earthquake risk evaluation accuracy and reliability when the ground, buildings, and devices exhibit complex behavior such as a nonlinear response.

そこで、下記非特許文献1においては、対象敷地に発生し得る多数の時刻歴地震動群を、断層モデルを用いた詳細な地震動シミュレーションによって評価し、それらを入力とした地震動応答解析の結果に基づいて建物の機能損傷の確率を評価する方法が提案されている。   Therefore, in Non-Patent Document 1 below, a large number of time-history ground motion groups that can occur on the target site are evaluated by detailed ground motion simulation using a fault model, and based on the results of ground motion response analysis using them as inputs. Methods have been proposed to evaluate the probability of building functional damage.

上記確率論的地震リスク評価によれば、対象敷地に発生し得る地震動強さとその頻度の関係を示す地震ハザードに調和し、かつ断層の破壊性状や地震動の伝播特性に係るパラメータといった断層モデルに関する各種震源特性の不確実さを考慮した時刻歴地震波群を作成し、これを入力地震動として地震動応答解析に基づいて建物の機能損傷確率を評価しているために、より高い精度と信頼性に基づく地震リスクの評価が期待されている。   According to the above probabilistic seismic risk assessment, there are various types of fault models that are in harmony with the seismic hazard that indicates the relationship between seismic intensity and the frequency that can occur on the target site, and parameters related to fault destructive properties and seismic wave propagation characteristics. A time-history seismic wave group that takes into account the uncertainty of the epicenter characteristics is created, and this is used as the input seismic motion to evaluate the functional damage probability of the building based on the seismic response analysis. Therefore, an earthquake based on higher accuracy and reliability Risk assessment is expected.

ところで、このような時刻歴地震波群を地震リスク評価に用いるためには、それらが対象敷地の地震ハザードを表現する地震波の集合であること、すなわち対象敷地の地震ハザードに調和する地震波群であることが必要である。この結果、対象敷地に起こり得る全ての時刻歴地震波群を再現するために、対象敷地周りの複数の震源を対象とした多数の地震動シミュレーションが必要となって解析負荷が大きいという問題点がある。   By the way, in order to use such time-history seismic waves for earthquake risk assessment, they must be a set of seismic waves that express the seismic hazard at the target site, that is, seismic waves that harmonize with the seismic hazard at the target site. is necessary. As a result, in order to reproduce all time-history seismic waves that can occur in the target site, there is a problem that a large number of seismic ground motion simulations are required for a plurality of seismic sources around the target site, resulting in a large analysis load.

また、一般的に上記特許文献1、2等に見られる従来の地震リスク評価では、地震動強さと建物の壊れやすさの関係を示すフラジリティ曲線において、上記地震動強さの指標として一般に最大加速度や最大速度を用いて評価を行う場合が多い。さらに、下記非特許文献2においても、原子力施設を対象とした地震リスク評価において、ハザード曲線の地震動強さ指標として、原子力施設の機器システムの損傷を良く説明できる指標であるとの理由から最大加速度が用いられている。   Further, in the conventional seismic risk assessment generally found in the above-mentioned Patent Documents 1 and 2, etc., in the fragility curve indicating the relationship between the seismic intensity and the fragility of the building, generally the maximum acceleration or the maximum is used as an index of the seismic intensity. In many cases, evaluation is performed using speed. Furthermore, even in the following Non-Patent Document 2, in the earthquake risk assessment for nuclear facilities, the maximum acceleration is given because it is an index that can well explain the damage of equipment systems of nuclear facilities as the seismic intensity index of the hazard curve. Is used.

特許第3708456号公報Japanese Patent No. 3708456 特開2011−118510号公報JP 2011-118510 A Nishida et al.: Hazard-consistent ground motions generated with a stochastic fault-rupture model, Journal of Nuclear Engineering, 2016Nishida et al .: Hazard-consistent ground motions generated with a stochastic fault-rupture model, Journal of Nuclear Engineering, 2016 亀田弘行,石川裕:ハザード適合マグニチュード・震央距離による地震危険度解析の拡張,土木学会論文集,1988Hiroyuki Kameda, Hiroshi Ishikawa: Hazard conformance magnitude and extension of seismic risk analysis by epicenter distance, Proceedings of Japan Society of Civil Engineers, 1988

しかしながら、一般的な建物に設置された設備等の機器システムは、通常固有振動数が異なる複数の機器類で構成されているため、最大加速度や最大速度といったこれまで慣用的に用いられてきた地震動強さ指標が必ずしも機器システム全体の損傷を良く表すとは限らない。例えば、機器システムの中に、短周期の指標で損傷し易い機器Aと長周期の指標で損傷し易い機器Bが混在している場合に、機器Bが相対的に壊れ易い場合には、長周期の指標のほうが機器システム全体の損傷を良く説明できる場合もある。   However, since equipment systems such as equipment installed in general buildings are usually composed of multiple devices with different natural frequencies, the seismic motion that has been conventionally used such as maximum acceleration and maximum speed has been used. The strength indicator does not always represent the damage of the entire device system. For example, when the device A includes a device A that is easily damaged by a short cycle index and a device B that is easily damaged by a long cycle index, and the device B is relatively easily broken, In some cases, the cycle index can better explain the damage of the entire device system.

また、どのような地震動強さ指標が機器システム全体の損傷を良く説明できるかについては,システムの機器構成や各機器類がその耐力に至る主たる要因、設置されている建物の応答性状等にも依存するため、これまでの慣用に従って安直に最大加速度や最大速度を地震動強さ指標として選定して地震リスク評価用の地震波群を作成すると、地震リスクに影響する震源数が増え、作成する地震波群が膨大となるとともに、それらを用いた地震応答解析に基づく地震リスク評価の解析負荷も大きくなるという問題が生じる。   In addition, what kind of seismic intensity index can well explain the damage of the entire equipment system depends on the equipment configuration of the system, the main factors leading to the strength of each equipment, the response characteristics of the installed buildings, etc. Therefore, if you create a seismic wave group for seismic risk assessment by selecting the maximum acceleration and maximum speed as the seismic intensity index according to conventional usage, the number of seismic sources that affect the seismic risk will increase, and the seismic wave group to be created There is a problem that the analysis load of earthquake risk evaluation based on the seismic response analysis using them becomes large.

本発明は、上記事情に鑑みてなされたものであり、複数の機器類で構成される機器システムが設置された建物を対象とした地震リスク評価を、現実的に実施可能な解析負荷によって実施することが可能になる機器システムの機能損傷と関連が高い地震動強さ指標の検出方法を提供することを課題とするものである。   The present invention has been made in view of the above circumstances, and performs an earthquake risk assessment for a building in which a device system composed of a plurality of devices is installed with an analysis load that can be practically implemented. It is an object of the present invention to provide a method for detecting a seismic intensity index that is highly related to functional damage of equipment systems.

上記課題を解決するため、請求項1に記載の発明は、建物に設置されている機器システムの地震時における機能損傷と関連が高い地震動強さ指標を決定する方法であって、上記機器システムを構成する各機器について各々の損傷を良く説明する指標および当該指標における耐力を設定するステップと、上記機器システム全体の損傷を良く説明する地震動強さ指標の候補として地震による時刻歴応答波形を用いて算出可能な複数の指標を設定する指標設定ステップと、予め地震動シミュレーションによって作成した上記建物の敷地に発生し得る複数の時刻歴地震波形を入力とした上記建物のモデルの地震応答解析を行って上記機器が設置されている階の時刻歴応答波形を算定する地震応答解析ステップと、上記階における上記時刻歴応答波形から算定された上記各機器の損傷を良く説明する指標に関する応答と上記各機器の上記耐力との対比により上記各機器の損傷確率を得て上記機器システム全体の損傷確率を各々の上記時刻歴応答波形について算定する損傷確率算定ステップと、各々の上記時刻歴地震波について上記候補として設定した上記地震動強さ指標の値を算出し、上記複数の時刻歴地震波形について算定された上記機器システム全体の損傷確率を大きさ順に整列させるとともに、各々の上記候補に挙げた上記地震動強さ指標における上記機器システム全体の損傷確率を当該地震動強さ指標の値の大きさ順に整列させ、同列位置にある上記損傷確率と上記地震動強さ指標における上記損傷確率との差分の絶対値を算出して、上記地震動強さ指標における上記損傷確率の分布のばらつきが最も小さい上記指標を上記機器システムの損傷を最も良く説明する上記地震動強さの指標として抽出する上記指標の検出ステップと、を備えてなることを特徴とするものである。   In order to solve the above-mentioned problem, the invention described in claim 1 is a method for determining an earthquake motion strength index highly related to functional damage of an equipment system installed in a building during an earthquake. Using the time history response waveform due to an earthquake as a candidate for an earthquake motion strength index that fully explains the damage of the entire device system, and a step for setting an index that explains each damage well for each component device An index setting step for setting a plurality of indexes that can be calculated, and an earthquake response analysis of the model of the building with the input of a plurality of time history earthquake waveforms that can occur on the site of the building previously created by a ground motion simulation Earthquake response analysis step to calculate the time history response waveform of the floor where the equipment is installed, and the time history response waveform on the floor The damage probability of each device is obtained by comparing the calculated response relating to the indicator that well explains the damage of each device and the proof stress of each device, and the damage probability of the entire device system is obtained for each time history response waveform. A damage probability calculation step for calculating the damage probability of the entire device system calculated for the plurality of time history earthquake waveforms, calculating a value of the seismic intensity index set as the candidate for each time history earthquake wave Are arranged in order of magnitude, and the damage probability of the entire device system in the earthquake motion intensity index listed in each of the candidates is aligned in order of magnitude of the value of the earthquake motion intensity index, and the damage probability in the same position And calculating the absolute value of the difference between the damage probability in the ground motion strength index and the distribution of the damage probability in the ground motion strength index Variation the smallest the index is to characterized in that it comprises a detection step of the index to be extracted as an indicator of the ground motion intensity to best explain the damage of the equipment system.

請求項1に記載の発明によれば、機器システムを構成する各機器について、当該機器の損傷と関連性を有し、かつ時刻歴応答波形を用いて算出可能な複数の指標を設定し、これら複数の指標の中から、上記機器システムの損傷に起因する建物の機能的損傷を最も良く説明する(すなわち、建物機能損傷と関連性が高い)指標を検出することができるために、これによって検出された上記指標を用いて、選定した機器システムの機能損傷に大きな影響を及ぼす震源を対象として地震動リスク評価用の地震波群を作成し、これを入力とした機器システムの機能損傷評価を実施することにより、現実的に実施可能な解析負荷によって、上記機器システムが設置された建物を対象とした地震リスク評価を実施することができる。   According to the first aspect of the present invention, for each device constituting the device system, a plurality of indexes that are related to the damage of the device and can be calculated using the time history response waveform are set. It is possible to detect the index that best describes the functional damage of the building due to the damage of the above equipment system (ie, is highly related to the functional damage of the building) from the multiple indicators. The seismic wave group for seismic motion risk assessment is created for seismic sources that have a large impact on the functional damage of the selected equipment system using the above-mentioned indicators, and the equipment system functional damage assessment is performed using this as an input. Thus, it is possible to perform an earthquake risk assessment for a building in which the device system is installed, with an analysis load that can be practically implemented.

本発明の一実施形態を説明するためのフローチャートである。It is a flowchart for demonstrating one Embodiment of this invention. (a)は建物と機器システムを構成する各機器の配置図、(b)は機器システムの接続状況を示すツリー図である。(A) is a layout diagram of each device constituting the building and the device system, (b) is a tree diagram showing the connection status of the device system. 建物のモデルと各機器の設置位置の対応を示す図である。It is a figure which shows a response | compatibility with the model of a building, and the installation position of each apparatus. 断層モデルによる地震動評価のイメージ図であって、(a)は断層モデルのパラメータを示す図、(b)は地震動リスク評価用地震波群の作成の概念図である。It is an image figure of earthquake motion evaluation by a fault model, (a) is a figure showing a parameter of a fault model, and (b) is a conceptual diagram of creation of a seismic wave group for earthquake motion risk evaluation. 図3の建物のモデルに対して地震応答解析を行って各機器の耐力と比較する状態を示す概念図である。It is a conceptual diagram which shows the state which performs an earthquake response analysis with respect to the model of the building of FIG. 3, and compares with the proof stress of each apparatus. 複数の時刻歴地震波の各々について算出された複数の指標における損傷確率の分布のばらつきを示すグラフである。It is a graph which shows the dispersion | variation in the distribution of the damage probability in the some parameter | index calculated about each of several time history seismic waves. 複数の地震動強さ指標から最適の指標を検出する方法を模式的に示すグラフである。It is a graph which shows typically the method of detecting the optimal index from a plurality of seismic intensity indicators.

以下、本発明に係る機器システムの機能損傷と関連が高い地震動強さ指標の検出方法を、図2に示す給水システム(機器システム)が設置された建物10の当該給水システムの損傷に伴う建物機能損傷を対象として、地震ハザード等に調和した地震波群を用いて地震リスクを評価する場合に適用した一実施形態について説明する。   Hereinafter, the detection method of the seismic intensity index that is highly related to the functional damage of the equipment system according to the present invention is the building function accompanying the damage of the water supply system of the building 10 in which the water supply system (equipment system) shown in FIG. 2 is installed. An embodiment applied to the case where an earthquake risk is evaluated using a seismic wave group in harmony with an earthquake hazard or the like for damage will be described.

先ず前提として、この地震動強さ指標の検出方法は、全体を統括制御するCPU(主制御部)に入出力制御部を介して、RAMや記憶装置、キーボードやマウス等の入力装置、および入出力データを表示するモニタが接続された汎用のコンピュータによって実行されるものである、   First, as a premise, this seismic intensity index detection method is based on a CPU (main control unit) that performs overall control via an input / output control unit, an input device such as a RAM, a storage device, a keyboard and a mouse, and an input / output. It is executed by a general-purpose computer connected to a monitor that displays data.

ここで、上記記憶装置には、建物において機能損傷評価の対象となる機器システムおよびこれを構成する各機器の配置および接続状況の情報と、上記建物に対する地震応答解析を行うためのモデルと、この地震応答解析時の入力となる時刻歴地震波形群と、この地震動強さ指標の検出方法を実行するための実行プログラム等が格納されている。   Here, in the storage device, a device system to be subjected to functional damage evaluation in the building, information on the arrangement and connection status of each device constituting the device system, a model for performing an earthquake response analysis on the building, and this A time-history seismic waveform group to be input at the time of earthquake response analysis, an execution program for executing this seismic intensity index detection method, and the like are stored.

図2は、本実施形態において上記記憶装置に格納されている、4階の建物10における機能損傷評価の対象となる給水システム(機器システム)、およびこれを構成する水槽1〜3、配管4およびポンプ5(各機器)の配置および接続状況を示すものであり、図2(b)に示すように、この給水システムは、水槽2、3が並列に、またこれらと他の水槽1およびポンプ5が配管4を介して直列に接続されており、この給水システムの損傷確率は、同図に示す系が損傷する確率として表される。   FIG. 2 shows a water supply system (equipment system) to be subjected to functional damage evaluation in the building 10 on the fourth floor, which is stored in the storage device in the present embodiment, and the water tanks 1 to 3, the pipe 4 and FIG. 2B shows the arrangement and connection status of the pump 5 (each device). As shown in FIG. 2B, this water supply system includes water tanks 2 and 3 in parallel, and these and other water tanks 1 and pumps 5. Are connected in series via the pipe 4, and the damage probability of this water supply system is expressed as the probability that the system shown in FIG.

また、上記記憶装置に格納されている上記建物10の地震応答解析を行うためのモデルとしては、図3に示すような質点系モデルが用いられている。なお、この建物モデルとして、他のフレームモデルやソリッドモデルを用いてもよい。   Further, as a model for performing an earthquake response analysis of the building 10 stored in the storage device, a mass point system model as shown in FIG. 3 is used. Note that another frame model or solid model may be used as the building model.

さらに、上記記憶装置には、上記地震応答解析時の入力となる時刻歴地震波形群として、上述した非特許文献1において開示されている、震源を断層モデルとして表現した地震動シミュレーションにより作成された、上記建物10の敷地に発生し得る複数の時刻歴地震波形1〜Nが格納されている。   Further, in the storage device, as a time history seismic waveform group to be input at the time of the seismic response analysis, it is disclosed in the above-mentioned Non-Patent Document 1, and created by a ground motion simulation expressing the epicenter as a fault model, A plurality of time-history earthquake waveforms 1 to N that can occur in the site of the building 10 are stored.

上記非特許文献1によれば、この時刻歴地震波群は、図4に示すように、震源を断層モデルとして表現するとともに、上記断層モデルにおけるマグニチュード、断層長さおよび断層面積を含む巨視的震源特性、並びに平均応力降下量、アスペリティ位置および面積、破壊開始点、媒質のQ値等を含む微視的震源特性に起因する不確実さを考慮した地震動シミュレーションを行うことによって作成することができる。この際に、上記時刻歴地震波形の作成対象となる震源は、ある地震動強さ指標の距離減衰式に基づく地震ハザード評価に基づき、評価地点に大きな地震動強さを及ぼす複数の震源が対象となる。   According to Non-Patent Document 1, this time-history seismic wave group expresses the epicenter as a fault model as shown in FIG. 4, and also shows macroscopic source characteristics including the magnitude, fault length, and fault area in the fault model. And an earthquake motion simulation that takes into account uncertainties due to micro-seismic source characteristics including average stress drop, asperity position and area, failure start point, medium Q value, and the like. At this time, the epicenters for which the time history seismic waveform is created are based on the seismic hazard evaluation based on the distance attenuation formula of a certain seismic intensity indicator, and multiple seismic sources that exert large seismic intensity on the evaluation point are targeted. .

また、上記非特許文献1による時刻歴地震波群は、上記巨視的震源特性についてロジックツリーのパスの重み付け設定により考慮されるとともに、上記微視的震源特性について各震源特性に関する既往研究に基づいて設定した各震源特性の分布、および中央値(平均値)、自然対数標準偏差(標準偏差)を用いたモンテカルロシミュレーションにより考慮された複数の断層モデルのサンプルを生成させ、各々の断層サンプルに対して、統計的グリーン関数法等を用いた地震動シミュレーションを行うことによって作成されている。   In addition, the time history seismic wave group according to Non-Patent Document 1 is considered by the weight setting of the logic tree path for the macroseismic source characteristics, and the microseismic source characteristics are set based on previous studies on each source characteristic. Multiple fault model samples considered by Monte Carlo simulation using the distribution of each seismic source characteristic, median (mean value), natural logarithmic standard deviation (standard deviation), and for each fault sample, It is created by performing a ground motion simulation using the statistical Green's function method.

次に、図1〜図7に基づいて、本実施形態の地震動強さ指標の検出方法を、上記記憶装置に格納されている実行プログラムの機能とともに具体的に説明する。
先ず、上記給水システム全体の損傷を良く説明する地震動強さ指標の候補として、下表1に示すように複数の地震動強さの指標1〜Mを設定しておく(指標設定ステップS1)。
Next, based on FIGS. 1-7, the detection method of the seismic intensity index of this embodiment is demonstrated concretely with the function of the execution program stored in the said memory | storage device.
First, as shown in Table 1 below, a plurality of ground motion intensity indices 1 to M are set as candidates for ground motion intensity indices that fully explain the damage of the entire water supply system (index setting step S1).

この際に、上記指標1〜Mとしては、地震による時刻歴応答波形を用いて算出可能な指標であれば、いかなる指標を用いてもよく、一般的な最大加速度、最大速度の他、スペクトル強度、応答スペクトルの特定の周波数での応答等、上記機器の特性に対応させて異なる指標を設定することが望ましい。   At this time, as the above indices 1 to M, any index can be used as long as it is an index that can be calculated using a time history response waveform due to an earthquake. In addition to general maximum acceleration and maximum speed, spectral intensity It is desirable to set a different index corresponding to the characteristics of the device, such as a response at a specific frequency of the response spectrum.

次いで、上記記憶装置に格納されている上記給水システムを構成する各機器(水槽1〜3、配管4およびポンプ5)について、下表2に示すように、各機器の損傷を良く説明する(損傷と相関が高い)地震動強さ指標と、当該指標における耐力を確定値または確率値によって設定する(各機器の耐力の設定ステップS2)。   Next, for each device (water tanks 1 to 3, piping 4 and pump 5) constituting the water supply system stored in the storage device, as shown in Table 2 below, the damage of each device will be well described (damage) The earthquake motion strength index and the yield strength in the index are set by a definite value or a probability value (strength setting step S2 of each device).

ちなみに、本実施形態においては、上記地震動強さ指標として、水槽1〜3およびポンプについては応答加速度を、配管については層間変形角を設定しており、また各々の地震動強さ指標における上記耐力については、中央値および対数正規分布による確率分布として設定している。   By the way, in this embodiment, as the above-mentioned seismic intensity index, response acceleration is set for the water tanks 1 to 3 and the pump, an interlayer deformation angle is set for the piping, and the above-mentioned proof stress in each seismic intensity index. Is set as a probability distribution with a median and lognormal distribution.

以上の条件の入力に基づき、上記実行プログラムは、以下の演算処理を実行する。
先ず、上述した記憶装置に格納されている地震動シミュレーションによって作成した上記建物10の敷地に発生し得る複数の時刻歴地震波1〜Nを入力として、図3に示した建物10の質点系モデルの地震応答解析を行って、水槽1〜3、配管4およびポンプ5が設置されている階の時刻歴応答波形を算定する(地震応答解析ステップS3)。
Based on the input of the above conditions, the execution program executes the following arithmetic processing.
First, the earthquake of the mass system model of the building 10 shown in FIG. 3 is input with a plurality of time history seismic waves 1 to N that can be generated on the site of the building 10 created by the earthquake motion simulation stored in the storage device described above. Response analysis is performed to calculate a time history response waveform of the floor where the water tanks 1 to 3, the pipe 4 and the pump 5 are installed (earthquake response analysis step S <b> 3).

そして、図5に示すように、各階における上記時刻歴応答波形から水槽1〜3、配管4およびポンプ5の損傷を良く説明する指標(応答加速度、最大層間変形角)に対応する応答を算出し、得られた応答の値と表1に示した水槽1〜3、配管4およびポンプ5の耐力とを比較して、上記各機器の損傷確率を得る(各機器の損傷確率算定ステップS4)。   Then, as shown in FIG. 5, a response corresponding to an index (response acceleration, maximum interlayer deformation angle) that well explains damage to the water tanks 1 to 3, the pipe 4, and the pump 5 is calculated from the time history response waveform at each floor. Then, the obtained response value is compared with the proof strengths of the water tanks 1 to 3, the piping 4 and the pump 5 shown in Table 1 to obtain the damage probability of each device (damage probability calculation step S4 of each device).

である。なお、fC(x)dxは、耐力Cの確率密度分布である。 It is. Note that f C (x) dx is a probability density distribution of the proof stress C.

そして次に、上記給水システム全体の損傷確率を、各々の上記時刻歴応答波形1〜Nについて算定する(機器システム全体の損傷確率算定ステップS5)。
上記給水システム全体の損傷確率は、図2(b)に示したシステムツリーに基づいてAND・ORの論理演算に基づき算定する。図2(b)においては、1Fの水槽2および水槽3が並列接続され、これらの1F並列水槽2、3、1Fポンプ5、1F〜4F直列配管4、RF水槽1が直列接続されたシステムであることから,下記(1)〜(3)式に基づき算定する。
Then, the damage probability of the entire water supply system is calculated for each of the time history response waveforms 1 to N (damage probability calculation step S5 of the entire device system).
The damage probability of the entire water supply system is calculated based on AND / OR logical operations based on the system tree shown in FIG. In FIG.2 (b), the 1F water tank 2 and the water tank 3 are connected in parallel, These 1F parallel water tanks 2, 3, 1F pump 5, 1F-4F serial piping 4, and RF water tank 1 are connected in series. Therefore, calculation is based on the following formulas (1) to (3).

さらに、上記時刻歴地震波1〜Nについて、上記候補として設定した地震動強さ指標1〜Mの値を算出する。
下表3は、このようにして得られた上記時刻歴地震波1〜Nにおける上記候補として設定した地震動強さ指標1〜Mの値、および各時刻歴地震波1〜Nについて算定された給水システム(機器システム)の損傷確率を示すものである。
Further, for the time history seismic waves 1 to N, the values of the seismic intensity indicators 1 to M set as the candidates are calculated.
Table 3 below shows the values of the seismic intensity indices 1 to M set as candidates for the time history seismic waves 1 to N obtained as described above, and the water supply system calculated for each time history seismic wave 1 to N ( It shows the damage probability of the equipment system.

次に、複数の時刻歴地震波形1〜Nについて、算定された上記給水システム全体の損傷確率を、図6中に●で示すように、小さいものから順に整列させる。さらに、上記候補に挙げた地震動強さ指標1〜Mにおける上記給水システム全体の損傷確率を、図中○で示すように、各々地震動強さ指標1〜Mの値の小さいものから順に整列させる。なお、図中の○は、上記地震動強さ指標1〜Mのうちの1つを示している。   Next, the calculated damage probabilities of the entire water supply system for a plurality of time history earthquake waveforms 1 to N are aligned in order from the smallest, as indicated by ● in FIG. Furthermore, the damage probability of the entire water supply system in the earthquake motion strength indices 1 to M listed as candidates is aligned in order from the smallest value of the earthquake motion strength indices 1 to M, as indicated by ◯ in the figure. In addition, (circle) in a figure has shown one of the said earthquake motion intensity | strength indices 1-M.

そして、複数の時刻歴地震波形1〜Nについて算定された給水システム全体の損傷確率(●)と、候補に挙げた地震動強さ指標1〜Mにおける給水システム全体の損傷確率(○)との差分の絶対値ε〜εを算定する。 And the difference between the damage probability (●) of the entire water supply system calculated for a plurality of time history earthquake waveforms 1 to N and the damage probability (◯) of the entire water supply system in the earthquake motion intensity indices 1 to M listed as candidates Absolute values ε 1 to ε N are calculated.

次いで、地震動強さ指標k(k=1〜M)に対する給水システムの損傷確率の分布のばらつきσを、下記(4)式で評価し、候補とした複数の地震動強さ指標1〜Mの中で最もσが小さい指標を、下記(5)式によって給水システムの損傷を最も良く説明できる最適な地震動強さ指標Iとして検出する(指標の検出ステップS6)。 Next, the dispersion σ k of the distribution of damage probability of the water supply system with respect to the seismic intensity index k (k = 1 to M) is evaluated by the following equation (4), and a plurality of candidate seismic intensity indices 1 to M are selected. The index with the smallest σ is detected as the optimum seismic intensity index I that can best explain the damage of the water supply system by the following equation (5) (index detection step S6).

なお、上記指標の検出ステップS6において、給水システムの損傷を最も良く説明できる最適な地震動強さ指標Iを算定するために必要な時刻歴地震波形の数が充分に得られていない場合には、上記地震応答解析ステップS3に用いる時刻歴地震波形をさらに作成する。   In addition, in the index detection step S6, when the number of time-history earthquake waveforms necessary for calculating the optimal earthquake motion intensity index I that can best explain the damage to the water supply system is not sufficiently obtained, A time history earthquake waveform used in the earthquake response analysis step S3 is further created.

また、上記地震動強さ指標Iは算出されたものの、時刻歴地震波形が作成された各震源において同じ指標Iが得られていない場合には、再度指標設定ステップS1に戻って、候補となる上記地震動強さ指標を追加し、同様の実行プログラムによる演算を実施する。   If the earthquake intensity index I is calculated, but the same index I is not obtained at each epicenter where the time-history seismic waveform is created, the process returns to the index setting step S1 again and becomes a candidate. Add the seismic intensity index and perform the calculation by the same execution program.

さらに、上記指標の検出ステップS6において最終的に選定された指標が、断層モデル地震波群の作成対象とする震源を決定する際に用いた地震動強さ指標と同じであることを確認する。そして、両者が同じである場合には、指標の検出ステップS6において検出された指標Iが、給水システムの損傷を最も良く説明できる最適な地震動強さ指標Iであるとして上記実行プログラムによる処理が終了する。これに対して、両者が異なる場合には、対象震源の範囲が変わる可能性があるため、選定指標の距離減衰式に基づきハザードを再評価し、対象震源の構成を確認する。   Furthermore, it is confirmed that the index finally selected in the index detection step S6 is the same as the seismic intensity index used when determining the epicenter to be created as the fault model seismic wave group. And when both are the same, the process by the said execution program is complete | finished as the parameter | index I detected in index detection step S6 is the optimal earthquake motion intensity | strength parameter | index I which can explain the damage of a water supply system best. To do. On the other hand, if the two are different, the scope of the target seismic source may change, so the hazard is re-evaluated based on the distance attenuation formula of the selection index and the configuration of the target seismic source is confirmed.

以上説明したように、上記構成からなる機器システムの機能損傷と関連が高い地震動強さ指標の検出方法によれば、給水システムを構成する水槽1〜3、配管4およびポンプ5について、これらの機器類の損傷と関連性を有し、かつ時刻歴応答波形を用いて算出可能な複数の指標1〜Mを候補として設定し、これら複数の指標1〜Mの中から、上記給水システムの損傷に起因する建物10の機能的損傷を最も良く説明する(すなわち、建物機能損傷と関連性が高い)指標Iを検出することができるために、これによって検出された上記指標Iを用いて、選定した機器システムの機能損傷に影響を及ぼす震源を対象として地震動リスク用地震波群を作成し、これを入力とした上記給水システムの機能損傷評価を実施することにより、下表4に示すように、建物10の機能損傷と関連性が高い指標Iを検出せずに地震波群を作成した(a)比較手法よりも大幅に少ない解析負荷によって、上記給水システムが設置された建物を対象とした地震リスク評価を実施することができる。   As explained above, according to the detection method of the seismic intensity indicator that is highly related to the functional damage of the device system having the above-described configuration, these devices are used for the water tanks 1 to 3, the pipe 4, and the pump 5 that constitute the water supply system. A plurality of indices 1 to M that are related to the damage of the class and that can be calculated using the time history response waveform are set as candidates, and the damage to the water supply system is selected from the plurality of indices 1 to M. In order to be able to detect the index I that best describes the resulting functional damage of the building 10 (ie, highly related to the building functional damage), it was selected using the index I detected thereby Table 4 below shows the results of the seismic wave group for seismic motion risk for seismic sources that affect the functional damage of the equipment system, and the functional damage evaluation of the water supply system using this as an input. As described above, the seismic wave group was created without detecting the index I that is highly related to the functional damage of the building 10 (a) For the building where the water supply system was installed with a significantly smaller analysis load than the comparative method Earthquake risk assessment can be carried out.

なお、上記実施形態においては、本発明に係る機器システムの機能損傷と関連が高い地震動強さ指標の検出方法を、図2に示す建物10の給水システムの損傷に伴う建物機能損傷を対象として地震リスクを評価する場合に適用した例についてのみ説明したが、いうまでもなく本発明はこれに限るものでは無く、様々な規模の建物における各種の機器システムの損傷評価に用いる最適な地震動強さの検出に適用することが可能である。   In the above embodiment, the seismic intensity index detection method highly related to the functional damage of the equipment system according to the present invention is applied to the building functional damage accompanying the damage of the water supply system of the building 10 shown in FIG. Although only the example applied in the case of risk assessment has been described, it goes without saying that the present invention is not limited to this, and the optimum seismic intensity used for damage assessment of various equipment systems in buildings of various scales. It can be applied to detection.

1〜3 水槽(機器)
4 配管(機器)
5 ポンプ(機器)
10 建物
S1 指標設定ステップ
S2 各機器の耐力の設定ステップ
S3 地震応答解析ステップ
S4 各機器の損傷確率算定ステップ
S5 機器システム全体の損傷確率算定ステップ
S6 指標の検出ステップ
1-3 Water tank (equipment)
4 Piping (equipment)
5 Pump (equipment)
10 Building S1 Index setting step S2 Strength setting step for each device S3 Earthquake response analysis step S4 Damage probability calculation step for each device S5 Damage probability calculation step for the entire device system S6 Index detection step

Claims (1)

建物に設置されている機器システムの地震時における機能損傷と関連が高い地震動強さ指標を決定する方法であって、
上記機器システムを構成する各機器について各々の損傷を良く説明する指標および当該指標における耐力を設定するステップと、
上記機器システム全体の損傷を良く説明する地震動強さ指標の候補として地震による時刻歴応答波形を用いて算出可能な複数の指標を設定する指標設定ステップと、
予め地震動シミュレーションによって作成した上記建物の敷地に発生し得る複数の時刻歴地震波形を入力とした上記建物のモデルの地震応答解析を行って上記機器が設置されている階の時刻歴応答波形を算定する地震応答解析ステップと、
上記階における上記時刻歴応答波形から算定された上記各機器の損傷を良く説明する指標に関する応答と上記各機器の上記耐力との対比により上記各機器の損傷確率を得て上記機器システム全体の損傷確率を各々の上記時刻歴応答波形について算定する損傷確率算定ステップと、
各々の上記時刻歴地震波について上記候補として設定した上記地震動強さ指標の値を算出し、上記複数の時刻歴地震波形について算定された上記機器システム全体の損傷確率を大きさ順に整列させるとともに、各々の上記候補に挙げた上記地震動強さ指標における上記機器システム全体の損傷確率を当該地震動強さ指標の値の大きさ順に整列させ、同列位置にある上記損傷確率と上記地震動強さ指標における上記損傷確率との差分の絶対値を算出して、上記地震動強さ指標における上記損傷確率の分布のばらつきが最も小さい上記指標を上記機器システムの損傷を最も良く説明する上記地震動強さの指標として抽出する上記指標の検出ステップと、
を備えてなることを特徴とする機器システムの機能損傷と関連が高い地震動強さ指標の検出方法。
A method for determining a seismic intensity index that is highly related to functional damage of an equipment system installed in a building during an earthquake,
A step of setting an index for well explaining each damage for each device constituting the device system and a proof stress in the index;
An index setting step for setting a plurality of indices that can be calculated using a time history response waveform due to an earthquake as a candidate of an earthquake motion intensity index that well explains the damage of the entire device system;
Calculates the time history response waveform of the floor where the equipment is installed by performing an earthquake response analysis of the model of the building using multiple time history earthquake waveforms that can occur on the site of the building previously created by earthquake motion simulation. An earthquake response analysis step to perform,
Damage to the entire device system is obtained by obtaining the damage probability of each device by comparing the response relating to the index that well explains the damage of each device calculated from the time history response waveform on the floor and the proof stress of each device. A damage probability calculating step for calculating a probability for each of the above time history response waveforms;
Calculate the value of the seismic intensity index set as the candidate for each time history seismic wave, align the damage probability of the entire device system calculated for the plurality of time history seismic waveforms in order of magnitude, and The damage probability of the entire device system in the seismic intensity indicator listed in the candidates is arranged in order of the magnitude of the value of the seismic intensity indicator, and the damage probability in the same position and the damage in the seismic intensity indicator The absolute value of the difference from the probability is calculated, and the index with the smallest variation in the distribution of the damage probability in the earthquake motion intensity index is extracted as the index of the earthquake motion intensity that best explains the damage of the equipment system. A step of detecting the above-mentioned index;
A method for detecting a seismic intensity indicator that is highly related to functional damage of an equipment system.
JP2017132107A 2017-07-05 2017-07-05 How to detect seismic intensity indicators that are highly related to functional damage to equipment systems Active JP6860437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017132107A JP6860437B2 (en) 2017-07-05 2017-07-05 How to detect seismic intensity indicators that are highly related to functional damage to equipment systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017132107A JP6860437B2 (en) 2017-07-05 2017-07-05 How to detect seismic intensity indicators that are highly related to functional damage to equipment systems

Publications (2)

Publication Number Publication Date
JP2019015572A true JP2019015572A (en) 2019-01-31
JP6860437B2 JP6860437B2 (en) 2021-04-14

Family

ID=65357300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017132107A Active JP6860437B2 (en) 2017-07-05 2017-07-05 How to detect seismic intensity indicators that are highly related to functional damage to equipment systems

Country Status (1)

Country Link
JP (1) JP6860437B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119531A (en) * 2019-04-03 2019-08-13 青岛理工大学 Full-probabilistic performance evaluation method based on performance level
CN111210120A (en) * 2019-12-25 2020-05-29 北京邮电大学 Method, device, equipment and storage medium for determining polar region and influence field direction
CN114624015A (en) * 2022-05-11 2022-06-14 岚图汽车科技有限公司 Method, device, equipment and storage medium for testing strength of vehicle part

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027626A (en) * 2001-07-18 2003-01-29 Ntt Power & Building Facilities Inc Earthquake risk diagonosis system, method of diagnosing earthquake risk, earthquake risk diagonosis program and recording medium stored with earthquake risk diagonosis program
JP2004239614A (en) * 2003-02-03 2004-08-26 Shimizu Corp Earthquake resistance diagnosis system of building equipment and furniture
JP2011064555A (en) * 2009-09-16 2011-03-31 Nagano Science Kk Earthquake risk evaluation system
JP2012189470A (en) * 2011-03-11 2012-10-04 Mitsubishi Heavy Ind Ltd Earthquake resistance evaluation/failure diagnosis apparatus
US20140324356A1 (en) * 2013-04-30 2014-10-30 Republic Of Korea (National Disaster Management Institute) Apparatus for evaluating safety of building using earthquake acceleration measurement
JP2016076113A (en) * 2014-10-07 2016-05-12 日本電信電話株式会社 Effect evaluation device, effect evaluation method, and effect evaluation program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027626A (en) * 2001-07-18 2003-01-29 Ntt Power & Building Facilities Inc Earthquake risk diagonosis system, method of diagnosing earthquake risk, earthquake risk diagonosis program and recording medium stored with earthquake risk diagonosis program
JP2004239614A (en) * 2003-02-03 2004-08-26 Shimizu Corp Earthquake resistance diagnosis system of building equipment and furniture
JP2011064555A (en) * 2009-09-16 2011-03-31 Nagano Science Kk Earthquake risk evaluation system
JP2012189470A (en) * 2011-03-11 2012-10-04 Mitsubishi Heavy Ind Ltd Earthquake resistance evaluation/failure diagnosis apparatus
US20140324356A1 (en) * 2013-04-30 2014-10-30 Republic Of Korea (National Disaster Management Institute) Apparatus for evaluating safety of building using earthquake acceleration measurement
JP2016076113A (en) * 2014-10-07 2016-05-12 日本電信電話株式会社 Effect evaluation device, effect evaluation method, and effect evaluation program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
五十嵐 さやか 他: "震源特性のばらつきを考慮した地震波群による地震リスク評価に関する基礎的検討", 大成建設技術センター報, vol. 第49号, JPN6021009068, 2016, JP, pages 06 - 1, ISSN: 0004463720 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119531A (en) * 2019-04-03 2019-08-13 青岛理工大学 Full-probabilistic performance evaluation method based on performance level
CN110119531B (en) * 2019-04-03 2022-10-21 青岛理工大学 Full-probabilistic performance evaluation method based on performance level
CN111210120A (en) * 2019-12-25 2020-05-29 北京邮电大学 Method, device, equipment and storage medium for determining polar region and influence field direction
CN111210120B (en) * 2019-12-25 2023-03-10 北京邮电大学 Method, device, equipment and storage medium for determining polar region and influence field direction
CN114624015A (en) * 2022-05-11 2022-06-14 岚图汽车科技有限公司 Method, device, equipment and storage medium for testing strength of vehicle part

Also Published As

Publication number Publication date
JP6860437B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
Khatir et al. Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis
Du et al. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function
Kita et al. Rapid post-earthquake damage localization and quantification in masonry structures through multidimensional non-linear seismic IDA
Hadianfard et al. Reliability analysis of H-section steel columns under blast loading
Zhang et al. Efficient Bayesian FFT method for damage detection using ambient vibration data with consideration of uncertainty
Nanda et al. Vibration based structural damage detection technique using particle swarm optimization with incremental swarm size
Park et al. Model updating method for damage detection of building structures under ambient excitation using modal participation ratio
Yazgan et al. The use of post-earthquake residual displacements as a performance indicator in seismic assessment
Zhou et al. Strain gauge placement optimization for structural performance assessment
Mukherjee et al. Global sensitivity analysis of unreinforced masonry structure using high dimensional model representation
JP6860437B2 (en) How to detect seismic intensity indicators that are highly related to functional damage to equipment systems
Li et al. A combined method of cross-correlation and PCA-based outlier algorithm for detecting structural damages on a jacket oil platform under random wave excitations
Yang et al. Damage detection of structures with parametric uncertainties based on fusion of statistical moments
Siyam et al. Collapse fragility evaluation of ductile reinforced concrete block wall systems for seismic risk assessment
Nguyen-Thoi et al. A combination of damage locating vector method (DLV) and differential evolution algorithm (DE) for structural damage assessment
Zare Hosseinzadeh et al. An iterated IRS technique for cross-sectional damage modelling and identification in beams using limited sensors measurement
Iliopoulos et al. Continuous fatigue assessment of offshore wind turbines using a stress prediction technique
Bao et al. Time-dependent risk assessment of a containment building subjected to mainshock-aftershock seismic sequences
Ghorbani et al. Time‐varying reliability analysis based on hybrid Kalman filtering and probability density evolution
Oh et al. Artificial intelligence-based damage localization method for building structures using correlation of measured structural responses
Muin et al. Human–Machine Collaboration Framework for Bridge Health Monitoring
Baker et al. Benchmarking FEMA P-58 performance predictions against observed earthquake data–A preliminary evaluation for the Canterbury earthquake sequence
Wang et al. Seismic fragility assessment of storage tanks considering different sources of uncertainty
JP2003296396A (en) Expected life cycle cost evaluation system of building and recording medium in which expected life cycle cost evaluation program is recorded
Dastan Diznab et al. Seismic performance assessment of fixed offshore structures by endurance time method

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20180124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200623

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210326

R150 Certificate of patent or registration of utility model

Ref document number: 6860437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150