JP2014516778A - 低エネルギーのサイクリックpsaプロセス - Google Patents

低エネルギーのサイクリックpsaプロセス Download PDF

Info

Publication number
JP2014516778A
JP2014516778A JP2014510738A JP2014510738A JP2014516778A JP 2014516778 A JP2014516778 A JP 2014516778A JP 2014510738 A JP2014510738 A JP 2014510738A JP 2014510738 A JP2014510738 A JP 2014510738A JP 2014516778 A JP2014516778 A JP 2014516778A
Authority
JP
Japan
Prior art keywords
stage
pressure
bed
adsorption
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014510738A
Other languages
English (en)
Inventor
リフラール,セバスチアン
ペイショット リベイロ,アナ,マファルダ アルメイダ
デ ファリア ドス サントス,ジョアノ,カルロス ゴディニョ
ロドリゲス,アリリオ エジディオ
Original Assignee
トタル ラフィナージュ シミ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トタル ラフィナージュ シミ filed Critical トタル ラフィナージュ シミ
Publication of JP2014516778A publication Critical patent/JP2014516778A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40028Depressurization
    • B01D2259/40033Depressurization with more than three sub-steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40064Five
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/406Further details for adsorption processes and devices using more than four beds
    • B01D2259/4062Further details for adsorption processes and devices using more than four beds using six beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

本発明は、高圧のオフガス流を低いエネルギー消費量で回収するためのサイクル圧力スイング吸着(PSA)プロセスに関する。このプロセスの各サイクルは吸着床の圧力をPhighからPlowへ下げるブローダウン段階を含み、このブローダウン段階は複数の部分的ブローダウン段階に分割され、部分的ブローダウン段階で排出されたガス流はそれぞれの排出タンク(T1−Tn)に導入される。
【選択図】図1

Description

本発明は、ガス混合物の分離に関するものであり、特に、高圧のオフガス流を低エネルギー消費量で回収するための循環式(サイクックな)圧力スイング吸着(PSA)プロセスに関するものである。
シンガス(Syngas、合成ガス)は一酸化炭素COおよび水素H2を種々の比率で含むガス混合物である。一般に、シンガスはさらに水、窒素、アルゴン、炭化水素化合物残留物、例えばCH4、硫化水素H2Sおよび二酸化炭素CO2を含んでいる。これまではシンガスは石炭のガス化によって製造されてきており、基本的工業化学プロセス、例えばメタノール製造およびフィッシャー・トロプシュ反応で有用なものである。シンガスはほぼ純粋な水素の製造にも有用である。H2含有量を高めるためには水性ガスシフト反応で一酸化炭素を二酸化炭素に変換するのが好ましい:
CO+H2O→CO2+H2
水性ガスシフトユニットを使用することでCOの大部分を変換して水素の生産量を最大化することができる。一般に、CO2およびH2Sは下流の触媒と相互作用して下流での合成に悪影響を及ぼすことがあるためシンガスから除去される。CO2の除去には種々のタイプのプロセスが使用できる。酸性ガスは酸性ガス回収ユニットによってシンガスから除去できる。このタイプのユニット一般に液体溶剤を用いて酸性ガス、例えばCO2およびH2Sを除く(scrub)。しかし、溶剤の使用およびそれに続く再生にはコストがかかる。さらに、酸性ガス回収プロセスには従来、極めて低い温度、例えば−40℃の温度での段階を含み、高いエネルギーコストを必要とする。
CO2の除去に使用可能な別のタイプのプロセスは固相への吸着である。1980年代初めから、圧力スイング吸着(PSA)は、化学および石油化学工業で水素精製の最先端技術となっている。このプロセスは、純度が少なくとも99.99%の超高純度水素ガス流の連続製造に適用されている。CO2は、全ての他のガスおよび不純物と一緒に、非分離H2と一緒にPSAユニットのオフガス中に回収される。従って、PSAのオフガス中のCO2濃度は一般に低い、例えば約40%である。
従来技術、例えば特許文献1〜6には種々のタイプのPSAプロセスが開示されている。これらの文献には機能が改善された、すなわち、より迅速でよりコンパクトで、より適応性のある、回収率の増加または改善を可能にする、生成物の収率が改善されたまたは電力消費量が削減されたPSAプロセスが開示されている。
しかし、現在では新たな必要条件が生じた。すなわち、生態系への懸念からCO2の放出削減が重要な研究分野となり、二酸化炭素の回収と貯蔵がCO2の放出量を大幅に削減できる有望な選択肢となった。この点でシンガス処理場からCO2を回収することは有利である。
しかし、CO2流を貯蔵するためにはいくつかの基準を満たさなければならない。特に、CO2流の濃度は95%以上であることが好ましい。CO2流をその貯蔵場所まで運搬するためには一般に超臨界レベルまで圧縮されるが、圧縮段階のエネルギーコストは高い。
PSAプロセスのオフガスは一般に低圧のPSAユニットから回収される。しかし、この流れを下流ユニットまたはPSAプロセス自体の中で用いるときにはより高い圧力に達するまで圧縮する必要がある。圧縮段階は常にエネルギー的に要求が厳しい。
米国特許第4,512,780号明細書 米国特許第6,051,050号明細書 米国特許第5,753,010号明細書 米国特許第4,171,206号明細書 欧州特許出願第0,327,732号公報 国際特許出願第WO00/56424号公報
このような状況下では、低いエネルギー消費量で、オフガス流を高圧で回収するための新規な改善されたPSAプロセスを提供することが極めて望ましい。
本発明の対象は、各サイクルが吸着床の圧力をPhighからPlowへ下げるブローダウン段階を含み、このブローダウン段階は複数の部分的ブローダウン段階に分割され、部分的ブローダウン段階で排出されたガス流はそれぞれの排出タンクに導入され、タンクは直列に流体連結されて圧力が増加し、各連結タンクの間には圧縮手段が配置されるサイクリックPSAプロセスにある。
一つの吸着床での本発明プロセスのブローダウン段階の一つの好ましい実施例の概念図。 ブローダウン段階の圧力条件の一つの例を示す図。 4つの吸着床ユニット用に設計された本発明プロセスの好ましいサイクルプログラムを示す表。 本発明プロセスの一つの好ましいサイクルの概念図。 4つの吸着床ユニットを6つ有する設備用に設計された本発明プロセスの好ましいサイクルプログラムを示す表。 本発明プロセスの別の好ましいサイクルの概念図。 フィッシャー・トロプシュ法を用いた石炭から液体燃料を製造する設備の概念図。 石炭からメタノールを製造する設備の概念図。
特に説明の無い限り%は体積%である。
「〜」という記載は上限および下限を含む範囲を示すことは理解できよう。
PSAプロセスは吸着材料を用いてガス混合物からいくつかのガス種を分離するのに用いる周知の技術である。高圧で特定のガス種が吸着床に優先的に吸着される。次いで、プロセスを低圧にスイングして上記の特定のガス種を吸着材料から脱着させる。従って、PSAプロセスは少なくとも一つの高い圧力Phighと一つの低い圧力Plowとで規定される。この高い圧力および低い圧力の値は吸着床の種類と優先的に吸着されるガス種の種類に従って当業者が選択する。
本発明の低い圧力Plowは5バール以下、好ましくは3バール以下であるのが好ましい。この低圧Plowは大気圧、すなわち1気圧(これは約101.325kPaである)であるのがさらに好ましい。低圧として大気圧を選択することで真空ポンプの使用を必要としなくなり、プロセスの電力消費量の面で有利である。低圧は大気圧以上であるのが好ましい。
本発明プロセスの高い圧力Phighは10バール以上、好ましくは30バール以上であるのが好ましい。しかし、この高圧は一般に100バールを超えない。
PSAプロセスでは少なくとも一つの入口と一つの出口とを有する少なくとも一つの吸着床を使用する必要がある。吸着床は当業者に周知である。一般的な吸着材は活性炭、シリカゲル、アルミナおよびゼオライトである。このような吸着材の例は、Calgonの活性炭PBL、CECAの活性炭ACM 3mm、Noritの活性炭RB1またはR2030、UOPまたはLindeのゼオライト5A、UOPまたはSud Chemieのゼオライト13X、Kali Chemie、Metal Organic Framework MIL 101またはCu-BTCのシリカゲルKCである。吸着床は種々の吸着材の一つの層または複数の層で構成できる。本発明プロセスで用いる吸着床は活性炭、例えばNoritグループから商品名「活性炭R2030」で市販の活性炭の単一層に存するのが好ましい。
本発明のPSAサイクルは少なくとも一つのブローダウン(blowdown)段階を含む。このブローダウン段階は吸着床からガス流を抜き出すことによって吸着床の圧力を高圧Phighから低圧Plowへ下げることから成る。
本発明者は、ブローダウン段階を複数の部分的ブローダウン段階に分割し、各部分的ブローダウン段階で排出されたガス流をそれぞれの排出タンクに導入することによってプロセスのエネルギーコストを大幅に削減できるということを見出した。[図1]はこのブローダウン段階を概念的に示している。分かり易くするために[図1]は実際のプロセスユニットを正確に示していない。[図1]は一つのブローダウン段階の一連の異なる部分を示している。
[図1]では吸着床2にブローダウン段階Bが実施され、このブローダウン段階Bはn個の部分的ブローダウン段階B1〜Bnに分割される。[図1]では分かり易くするために吸着床2を複数回示してある。nは部分的ブローダウン段階の数を示し、少なくとも2の整数である。各部分的ブローダウン段階ではガス流をそれぞれの排出タンクT1〜Tn中に排出させる。第1の部分的ブローダウン段階B1の開始時の吸着床の圧力はPhighである。この圧力は下がりつづけ、部分的ブローダウン段Bnの終了時にはPlowに達する。各タンク内部の圧力は、ガスが排出される部分的ブローダウン段階の終了時の上記タンクに排出されるガス流の圧力に等しい。ブローダウン段階Bで圧力が下がるので、各タンクの圧力は徐々に低下する、すなわち、初めにガス流を受ける第1タンクT1は第2タンクT2より圧力が高く、低圧Plowにある最後のタンクTnまで同様である。nは排出タンクの数も示す。タンクの数はプロセスの全体寸法および供給ガスの流量に合わせる。nは2〜10であるのが好ましい。
タンクT1〜Tnは流体連結されている。各タンクは直列に流体連結され、圧力が増加するのが有利である。連結された各タンクの間には圧縮手段C1〜Cnが配置されている。最大圧力のタンクを除いて、各タンク内のガスを圧縮して、より高い圧力のタンク群の中で最も低い圧力を有する他のタンク中に導入する。タンクTn内のPlowのガス流を圧縮して、より高い圧力のタンクTn-1中に導入し、以下同様にする。また、タンクT1内のガス流は圧縮機C1で圧縮できる。出てくる高圧のガス流C1は例えばリンス段階で例えばPhighの吸着床に導入するか、貯蔵場所まで超臨界状態で運搬するためにさらに圧縮することができる。
各タンクは冷却手段、特に冷却用交換器E1〜Enを備えることができる。実際には、ガス流の温度が低ければ低いほどガス流の圧縮に必要なエネルギーは低くなる。冷却手段は本発明方法のエネルギー消費量の最少化に寄与するので有利である。
ブローダウンの圧力低下状態は各部分的ブローダウン段階で線形であるのが好ましい。[図2]は360秒のブローダウン段階の場合の圧力状況の例が示されている。低下状態は吸着床2の出口にある切換え弁3で制御できる。線形に低下させることでガス流の流量を平坦化できる。圧縮機の入口での流量の変動を避けるために質量流量調節器を使用することもできる。
本発明プロセスを実施することで高圧のオフガス流を低エネルギー消費量で有利に回収できる。既に説明したように、本発明プロセスはシンガス処理場からCO2流を回収し、貯蔵所へCO2流を超臨界状態で運搬するために実施できる。この場合、本発明プロセスによって高純度、好ましくは95%以上のCO2流を高収率、好ましくは90%以上の収率で回収でき、非常に望ましい。これに対して従来公知のPSAプロセスでは高純度のCO2流を回収することはできない。
好ましい実施例では、本発明プロセスはH2およびCO2を含む供給ガスからほぼ純粋なCO2流を回収するサイクリックPSAプロセスであり、このプロセスの各サイクルは下記(1)〜(5)の一連の段階から成る:
(1)吸着段階:この段階は上記供給ガスを高圧Phighの吸着床の入口に導入し、吸着床中を流してCO2を選択的に吸着し、吸着床中でCO2の第1吸着面(front)を形成し、且つ、吸着床の出口から未吸着物と一緒に流出物を一次排出タンクに排出することを含み、この一次排出タンクは高圧Phigh下にあり、この吸着段階は制御された時間Aだけ続ける、
(2)リンス段階:この段階はほぼ純粋なCO2流を高圧Phighの吸着床の入口に導入し、吸着床中を流して、吸着床中でCO2の第2吸着面(front)を形成し、且つ、吸着床の出口から流出物を一次排出タンクに排出することを含み、このリンス段階は制御された時間Rだけ続け、この時間はCO2の第2吸着面(front)が第1の吸着面(front)と一緒になり、吸着床の出口に到達するときに終了する、
(3)ブローダウン段階:この段階は吸着床からガス流を向流で抜き出して吸着床の圧力を下げ、吸着床の入口を介してガス流を二次排出タンクに排出することを含み、このブローダウン段階は制御された時間Bだけ続け、この時間は吸着床が低圧Plowになるときに終了する、
(4)向流パージ段階:この段階は一次排出タンクからくるガス流を吸着床の出口に導入し、その中を流し、吸着床の入口からほぼ純粋なCO2流をPlowの二次排出タンクに排出することを含み、この向流パージ段階は制御された時間PUだけ続ける、
(5)加圧段階:この段階は一次排出タンクからくるガス流を吸着床の出口に導入することを含み、この加圧段階は制御された時間PRだけ続け、吸着床が高圧Phighになるときに終了する。
本発明の「ほぼ純粋なCO2流」は、少なくとも90%、好ましくは少なくとも95%のCO2を含む流れを意味する。
本発明プロセスの上記実施例の供給ガスはH2およびCO2を含むガス混合物である。供給ガスの少なくとも50%、より好ましくは少なくとも60%、さらに好ましくは少なくとも70%、さらに好ましくは少なくとも80%がH2とCO2の混合物であるのが好ましい。上記成分の比率は変えることができる。H2/CO2の体積比は好ましくは0.8〜3、より好ましくは1〜2である。
供給ガスは水性ガスシフトプロセスで製造できる。供給ガス源によってH2およびCO2以外の化合物の存在が決まる。
供給ガスは一種以上の他の化合物、例えば水、窒素、アルゴン、炭化水素化合物のガス状残留物、例えばCH4、硫化水素H2Sおよび一酸化炭素COを含むことができる。第1実施例では、CO含有量は供給ガスの10%以下、好ましくは5%以下、より好ましくは3%以下である。第2実施例では、CO含有量は供給ガスの10〜30%、好ましくは20〜25%である。H2、CO2およびCOではない化合物の全含有量は10%以下、より好ましくは5%以下であるのが好ましい。供給ガスのその他の成分の一部、特にH2Oおよび/またはH2Sを除去するのが有利である。H2Sおよび/またはH2O除去ユニットは当業者に公知で、本発明プロセスを行う前に実行できる。
本発明プロセスの上記実施例の供給ガスは、−100℃以上の温度、好ましくは10〜75℃、より好ましくは20〜60℃にすることができる。供給ガスは、吸着床に導入する前に冷却段階を行わないのが有利である。供給ガスは室温であるのが有利である。
この好ましい実施例では、サイクリックPSAプロセスの各サイクルは5つの連続した段階すなわち(1)吸着段階A、(2)リンス段階R、(3)ブローダウン段階B、(4)向流パージ段階PUおよび(5)加圧段階PRから成る。
PSAサイクルは連続ではないので、一定の供給ガスで連続運転される設備では複数の吸着床を並列して配置してひとつのPSAユニットを形成する。本発明の好ましい実施例のPSAプロセスは4つの吸着床ユニットで運転するのが好ましい。
この4つの吸着床ユニットの実施に好ましいサイクルプログラムを設計した。このサイクルプログラムは[図3]の表に示した。このサイクルプログラムでは各時間間隔A、R、BおよびPUとPRの合計は同じである:
A=R=B=PU+PR
従って、全サイクルの時間間隔を4つの等しい部分に分割し、各部分のそれぞれで:
一つの吸着床は吸着段階にあり、
一つの吸着床はリンス段階にあり、
一つの吸着床はブローダウン段階にあり、
一つの吸着床は向流パージ段階または加圧段階にある。
このサイクルプログラムでは4つの吸着床PSAユニットを本発明プロセスの好ましい実施例に従って連続して運転できる。
本発明のこの好ましい実施例での一サイクルの5つの連続した段階は、吸着床1が吸着段階Aにある時の4つの吸着床ユニットの場合に対して[図4]に概念的に示してある。2つの段階(向流パージ段階PUおよび加圧段階PR)が一つの吸着段階Aで起こるので、便宜上、吸着床2は2回示されている。
吸着段階A
吸着段階は、高圧Phighの第1吸着床7の入口6に供給ガス5を導入することを含む。供給ガスが第1吸着床7に流されてCO2が選択的に吸着される。未吸着流出生成物8は第1吸着床7の出口9から一次排出タンク10へ排出される。一次排出タンク10は上記の高圧Phigh下にある。この吸着段階の時間をAで表す。
未吸着流出生成物はCO2を実質的に含まない。未吸着流出生成物中のCO2含有量は10%以下、好ましくは5%以下であるのが好ましい。CO2が吸着床に吸着されると、CO2は第1吸着面(front)を形成する。CO2の第1吸着面(front)がこの段階の終了時になおも十分に吸着床の範囲内にあるように上記の時間Aを制御する。
リンス段階R
第1吸着床7が上記吸着段階Aにある時、第4吸着床ではリンス段階Rを行う。ほぼ純粋なCO2流11を供給流と同時に第4吸着床13の入口12に導入する。この純粋なCO2流の圧力は供給ガスすなわち高圧Phighの圧力と同じである。このほぼ純粋なCO2流は第4吸着床13中を流れ、流出生成物14を第4吸着床13の出口15から一次排出タンク10へ排出する。リンス段階の時間はRで表す。
リンス段階では、CO2の吸着によって吸着床中に第2吸着面が形成され、この第2吸着面は第1吸着面と合体する。時間Rおよびリンス流量は合体した吸着面が吸着床の出口に達した時に正確に停止するように制御される。時間Rが過度に長い場合、CO2の合体面が吸着床を超え、CO2の一部が流出生成物と一緒に一次排出タンク中へ流れ、化合物の分離が不十分になり、CO2の一部が回収されない。時間Rが過度に短い場合は、CO2の連なった面が吸着床の出口に到達しない。その結果、吸着床が非CO2生成物の一部を含み、従って、回収されたCO2流の純度が損なわれる。
ブローダウン段階B
第1吸着床7が吸着段階Aにあり、第4吸着床13がリンス段階Rにある時に、第3吸着床ではブローダウン段階Bが行なわれる。このブローダウン段階は第3吸着床からガス流12を向流によって抜き出し、第3吸着床16の圧力をPhighからPlowへ下げ、第3吸着床16の入口17を通してガス流を排出することにある。本発明ではこのガス流18は二次排出タンク19中に排出される。このガス流18はほぼ純粋なCO2流である。ブローダウン段階の時間はBで表す。ブローダウン段階の終了時に吸着床の圧力は低圧値Plowに下がっている。
本発明プロセスではブローダウン段階は複数の部分的ブローダウン段階に分割され、各部分的ブローダウン段階で排出されたガス流18は圧力が次第に低下する複数の排出タンク中に導入される。
第1吸着床7で吸着段階Aが行われ、第4吸着床13でリンス段階Rが行われ、第3吸着床16でブローダウン段階Bが行われる時に、第2吸着床では最初に向流パージ段階PU、次いで加圧段階PRが行なわれる。
向流パージ段階PU
パージ段階は向流で実施する。一次排出タンク10からのガス流20を低圧Plowの第2吸着床22の出口21へ導入してその中を流す。このガス流を第2吸着床22の入口23からPlowの二次排出タンク19中に排出する。この向流パージ段階の時間はPUで表す。向流パージ段階の時間と流量は第2吸着床がこの段階の終了時にCO2を実質的に含まないように制御される。
加圧段階PR
本発明の好ましい方法のサイクル4の最後の段階は加圧段階である。この加圧段階は一次排出タンク10からのガス流20を第2吸着床22の出口21に導入することを含む。この加圧段階の時間はPRで表す。加圧段階の終了時に吸着床の圧力は高圧値Phighに上がっている。
一方の段階から他方の段階への切り替えは複数の切り替え弁の開閉によって達成できる。[図4]には排気弁24と25のみしか示していない
本発明プロセスの好ましい実施例を実行すると、供給ガス5からほぼ純粋なCO2ガス流26を有利に回収できる。CO2回収率は少なくとも85%、より好ましくは少なくとも90%、さらに好ましくは少なくとも95%に達することができる。
本発明の好ましい実施例では、リンス段階で吸着床に導入されるほぼ純粋なCO2流11は二次排出タンク19から供給される。このCO2流11は高圧値Phighとなるようにガス圧縮機27で圧縮された後に吸着床に導入される。
本発明の別の好ましい実施例では、ほぼ純粋なCO2流の全部または一部を排出して、CO2貯蔵ユニット中に貯蔵する。このCO2流26はその貯蔵場所まで運搬するのに適した圧力、好ましくは臨界圧より高い圧力に有利に圧縮することができる。
種々の流量の供給ガスを処理するために、PSAの複数のユニットを並列に運転することができる。供給ガスはユニットの数と同じ数の留分に分割できる。供給ガスのこれらの留分は等しいのが好ましく、複数のユニットは同一であるのが好ましい。本発明のPSAプロセスは複数の4床ユニットで同時運転するのが好ましい。4床ユニットの各々は[図3]の表に示すサイクルプログラムに従って運転するのが好ましい。
部分的ブローダウン段階の数nは、同時運転するPSAユニットの数と等しいのが好ましい。例えば、供給ガスがn個のPSAユニットに分割された本発明の好ましい実施例のサイクリックPSAプロセスでは、n個の二次排出タンクを用い、n個のブローダウン段階で運転するのが好ましい。二次排出タンクは全てのユニットによって共有されるのが好ましい。
nが6である好ましいサイクルプログラムをこのタイプの設備で設計した。そのサイクルプログラムは[図5]の表に示した。
このサイクルプログラムでは時間Bを6つの等しい部分的ブローダウン段階B1〜B6に分割する。時間PUはB1とB2の合計に等しく、時間PRはB3、B4、B5およびB6の合計に等しい。各ユニットのサイクルプログラムは一つの部分的ブローダウン段階の時間に等しい時間で互いにシフトする。このサイクルプログラムを用いることで、3つのカラム(2つのカラムはパージ段階、一つはブローダウン段階B6にある)によって絶えず供給される最小圧力のタンクTnは除いて、一つのカラムから各二次排出タンクに常に供給できる。この好ましいサイクルプログラムでは、各二次排出タンクで比較的フラットな流量が得られる。
[図6]では第1床7が吸着段階Aにあり、第4床13がリンス段階Rにある時の4床ユニットが示してある。便宜上、第2床22は一つの吸着段階Aで2つの段階(向流パージ段階PUと加圧段階PR)が起こるので2回示してあり、第3床16は一つの吸着段階Aの間に6つの部分的ブローダウン段階B1〜B6に分割されたブローダウン段階Bが起こるので6回示してある。
本発明プロセスの好ましい実施例は、CO2を実質的に含まない流出生成物8および14が有利に回収できる。この流出生成物は一次排出タンク10へ回収され、この一次排出タンク10はPSAプロセスの高圧Phighにある。この流出生成物の少なくとも一部は向流パージ段階および加圧段階で使用される。このタンク中の残った部分の流れ28は下流の種々の用途で使用できる。
本発明の第1実施例では、上記のサイクリックPSAプロセスはフィッシャー・トロプシュ法のシンガス調整系の段階である。フィッシャー・トロプシュ法は一酸化炭素と水素の混合物を液体炭化水素に変換する周知の化学プロセスである。
[図7]にはこの第1実施例の一例が示されている。この実施例では、全プロセス30によって石炭31から液体炭化水素45を製造できる。石炭31を酸素流32と一緒にガス化反応器33に導入し、基本的にH2とCOを含むシンガス34を作る。このシンガス流34を水性ガスシフトユニット35に水36と一緒に通す。水性ガスシフト反応器の流出物37に対してPSA設備41で本発明のサイクリックPSAプロセスを実施する。ほぼ純粋なCO2流42が回収できる。CO2を実質的に含まない流出生成物43をフィッシャー・トロプシュ反応器44に供給する。下記の反応はフィッシャー・トロプシュ反応器内での触媒反応である:
(2x+1)H2+xCO → Cx(2x+2)+xH2
(ここで、xは正の整数である)
フィッシャー・トロプシュ反応器への流入流は、理論混合比H2/COが2.0〜2.4を満足するのが好ましい。さらに、この流入流は5%以下の不活性化合物を含むのが好ましい。従って、本発明のPSAプロセスの性能がこれらの仕様を満たすように当業者は適合できる。
フィッシャー・トロプシュ法にはH2S除去段階を含むのが好ましい。この段階は石炭のガス化後で水性ガスシフト反応器の前に実施でき、シンガスからH2Sを除去するのが有利である。[図7]に示すように、この段階は水性ガスシフト反応器35の後且つPSAプロセス41の前に配置したH2S除去ユニット38で実施でき、PSAプロセスの供給ガスからH2S 39を除去する。
本発明の第2実施例では、上記のサイクリックPSAプロセスが石炭からメタノールを合成するプロセスのシンガス調整系の一つの段階である。[図8]はこの第2実施例の一例を示している。この実施例では、全プロセス46によって石炭47からメタノール流63を製造できる。
この実施例では、石炭47を酸素流48と一緒にガス化反応器49に導入し、基本的にH2とCOを含むシンガス50を生成する。このシンガス流50を2つのシンガス流53および54に分割する。シンガス流の第1留分53を水55と混合し、水性ガスシフト反応器56に通す。水性ガスシフト反応器の流出物57に、PSA設備58で本発明のサイクリックPSAプロセスを実施する。ほぼ純粋なCO2流59が回収できる。CO2を実質的に含まない流出生成物60をシンガス流の第2留分54と混合し、メタノール反応器62に供給する。一般的なメタノール反応器62では、下記の反応が起こる:
CO+2H2 → CH3OH
CO2+3H2 → CH3OH+H2
メタノール反応器への流入流61は、理論混合比(H2−CO2/CO+CO2)=2.1を満足するのが好ましい。従って、シンガス流の分割および本発明のPSAプロセスの性能はこの理論混合比を満たすように当業者によって適合される。
石炭からメタノールを合成する上記方法はH2S除去段階を含むのが好ましい。[図8]に示すように、この段階はガス化反応器49の後、シンガスの分割の前に配置されたH2S除去ユニット51で実施でき、シンガスからH2S52を除去するのが有利である。
非等温、非希釈、多成分吸着床の動的挙動を表す物質収支、エネルギー収支、運動量収支を用いた数学モデルを用いて、圧力スイング吸着プロセスをシミュレートした。下記の仮定に基づいてモデルを開発した:
(1)カラムを通じて理想的ガス挙動である;
(2)半径方向への質量勾配、熱勾配または速度勾配はない;
(3)吸着床に沿って多孔度は一定である;
(4)軸線方向に分布したプラグフロー;各粒子内部での温度勾配はない
さらに、このモデルは、外部物質および熱移動抵抗(フィルムモデルで表す)であり、吸着粒子はマクロ孔およびミクロ孔物質移動抵抗で二分散される(いずれも線形駆動力(LDF)モデルで表す)。運動量収支はエルガン(Ergun)方程式で示される。
断熱圧縮、同じ圧力比を有し且つ段階と段階との間の5psi圧力降下を示す複数の段階、各段階間のガスを50℃の流入温度に冷却することおよび85%の効率を考慮して圧縮機所要電力を計算した。
実施例1
6つのユニットを有するサイクリックPSAプロセスは、各ユニットが4つの吸着床を有するもので、数学的にモデル化した。プロセスサイクルは[図4]の概念図に従った。各ユニットのサイクルプログラムは[図3]の表に従った。
吸着床はNoritグループから商品名「活性炭R2030」で市販の活性炭の単一層からなる。
PSAプロセスユニットのその他のパラメータは[表1]にまとめて示す。
Figure 2014516778
供給ガスは下記の組成を有する:
55.00% H2
39.00% CO2
2.20% CH4
3.00% CO
0.80% N2
流入温度は50℃にした。
1.a.単一ブローダウン段階を有するプロセス
結果は[表2]にまとめて示した。
Figure 2014516778
電力消費量には、貯蔵のためにCO2を110バールに圧縮することも含まれる。全電力消費量は181.5MWであった。これはリンス段階で用いるガス流を65バールに圧縮することによる108.6MWと、運搬のためにCO2生成物を110バールに圧縮するのに必要な72.9MWとによる。
1.b.分割ブローダウン段階を有するプロセス
ブローダウン段階を、[図1]の概念図(ここで、nは6である)に従って6つの等しい部分的ブローダウン段階に分割した。6つのユニットのサイクルプログラムは[図6]の図に従った。6つの排出タンクをシミュレートした。各排出タンクは下位ブローダウン段階の一つを収集した。タンク圧力は下記のように設定した:
1:44.08バール
2:28.04バール
3:16.66バール
4:8.97バール
5:4.14バール
6:1バール。
得られた生成物の組成およびPSAプロセスの生産性はブローダウン段階の分割の影響を受けなかったことがわかる。
この構成を用いると、全エネルギー消費量は、CO2のリンスおよび運搬のための圧縮を含めて、わずか77.3MWであった。
2つのプロセス1.aおよび1.bによって、95%以上のCO2を含むほぼ純粋なCO2流を回収できる。回収率は90%以上である。
同時に、2つのプロセス1.aおよび1.bによって、90%以上のH2および5%以下のCO2を含む流出生成物を回収できる。この流出生成物は別のシンガス流と混合してメタノール反応器に供給できるのが有利である。
プロセス1.aおよびプロセス1.bで得られた結果を比較する。プロセスの性能は実質的に損なわれず、回収されたCO2流および流出生成物は同等の仕様を有していた。電力消費量の大幅な削減が達成された(57%以上)。
実施例2
8つのユニットを有するサイクリックPSAプロセスは、各ユニットが4つの床を有するもので、数学的にモデル化されている。プロセスサイクルは[図3]の概念図に従った。各ユニットのサイクルプログラムは[図5]の表に従った。
吸着床はNoritグループから商品名Activated Carbon R2030で市販の活性炭の単一層にある。
PSAプロセスユニットのその他のパラメータは[表3]にまとめてある。
Figure 2014516778
供給ガスは下記の組成を有する:
47.07% H2
30.11% CO2
0.03% CH4
22.26% CO
0.53% N2
流入温度は50℃にした。
2.a.単一ブローダウン段階を有するプロセス
結果は[表4]にまとめてある。
Figure 2014516778
電力消費量には、貯蔵のためにCO2を110バールに圧縮することも含まれる。全電力消費量は206.7MWであった。これはリンス段階で用いるガス流を33バールに圧縮することによる127.9MWおよび運搬のためにCO2生成物を110バールに圧縮するのに必要な78.8MWである。
2.b.分割ブローダウン段階を有するプロセス
ブローダウン段階を、[図1]の概念図(ここで、nは8である)に従って8つの等しい部分的ブローダウン段階に分割した。8つの排出タンクをシミュレートした。各排出タンクは下位ブローダウン段階の一つを収集した。タンク圧力は下記のように設定した:
1:25.00バール
2:18.60バール
3:13.60バール
4:9.54バール
5:6.42バール
6:4.06バール。
7:2.35バール
8:1.00バール。
得られた生成物の組成およびPSAプロセスの生産性はブローダウン段階の分割の影響を受けなかったことがわかる。
得られた電力消費量は、CO2を貯蔵のために110バールへ圧縮することを含めて、90.6MWであった。
2つのプロセス2.aおよび2.bによって、95%以上のCO2を含むほぼ純粋なCO2流を回収できる。回収率は90%以上である。
同時に、2つのプロセス2.aおよび2.bによって、約66%のH2および30%のCOを含む流出生成物を回収できる。H2/CO比は約2.2である。不活性化合物の含有量は5%以下である。この流出生成物はフィッシャー・トロプシュ法反応器に有利に導入できる。
プロセス2.aおよびプロセス2.bで得られた結果を比較する。プロセスの性能は実質的に損なわれず、回収されたCO2流および流出生成物は同等の仕様を有していた。電力消費量の大幅な削減が達成された(56%以上)。

Claims (16)

  1. サイクリックPSAプロセスの各サイクルが吸着床の圧力をPhighからPlowへ下げるブローダウン段階を含み、このブローダウン段階は複数の部分的ブローダウン段階に分割され、この部分的ブローダウン段階で排出されたガス流はそれぞれの排出タンクに導入され、この排出タンクは直列に流体連結されて圧力が増加し、連結された各タンクの間には圧縮手段が配置されていることを特徴とするサイクリックPSAプロセス。
  2. 低い圧力Plowが5バール以下、好ましくは3バール以下であり、より好ましくは低い圧力Plowが大気圧である請求項1に記載のプロセス。
  3. 高い圧力Phighが10バール以上、好ましくは30バール以上である請求項1または2に記載のプロセス。
  4. 部分的ブローダウン段階の数nが2〜10である請求項1〜3のいずれか一項に記載のプロセス。
  5. 最大圧力のタンクを除いて、各タンク内のガスを圧縮し、高い圧力のタンクの中で最も低い圧力を有する他のタンクへ導入する請求項1〜4のいずれか一項に記載のプロセス。
  6. 各タンクが冷却手段を備える請求項1〜5のいずれか一項に記載のプロセス。
  7. 各部分的ブローダウン段階で、ブローダウン圧力低下状態が線形である請求項1〜6のいずれか一項に記載のプロセス。
  8. 上記プロセスがH2およびCO2を含む供給ガスからほぼ純粋なCO2流を回収するプロセスであり、このプロセスの各サイクルが下記(1)〜(5)の連続的な段階から成る請求項1〜7のいずれか一項に記載のプロセス:
    (1)吸着段階:この吸着段階は上記供給ガスを高圧Phighの吸着床の入口に導入し、吸着床に流してCO2を選択的に吸着し、上記吸着床中でCO2の第1吸着面(front)を形成し、且つ、吸着床の出口から未吸着物と一緒に流出物を一次排出タンクに排出することを含み、この一次排出タンクは高圧Phigh下にあり、この吸着段階は制御された時間Aだけ続ける、
    (2)リンス段階:このリンス段階はほぼ純粋なCO2流を高圧Phighの吸着床の入口に導入して吸着床中を通過させ、上記吸着床中でCO2の第2吸着面(front)を形成し、且つ、吸着床の出口から流出生成物を一次排出タンクに排出することを含み、このリンス段階は制御された時間Rだけ続け、この時間はCO2の第2吸着面(front)が第1の吸着面(front)と一緒になり、吸着床の出口に到達するときに終了する、
    (3)ブローダウン段階:このブローダウン段階は吸着床からガス流を向流で抜き出して吸着床の圧力を下げ、吸着床の入口を介してガス流を二次排出タンクに排出することを含み、このブローダウン段階は制御された時間Bだけ続け、この時間は吸着床が低圧Plowになるときに終了する、
    (4)向流パージ段階:この向流パージ段階は一次排出タンクからくるガス流を吸着床の出口に導入してその中を通過させ、吸着床の入口からほぼ純粋なCO2流をPlowの二次排出タンクに排出することを含み、この向流パージ段階は制御された時間PUだけ続ける、
    (5)加圧段階:この加圧段階は一次排出タンクから来るガス流を吸着床の出口に導入することを含み、この加圧段階は制御された時間PRだけ続け、吸着床が高圧Phighになるときに終了する。
  9. リンス段階で吸着床に導入されるほぼ純粋なCO2流を二次排出タンクから供給する請求項8に記載のプロセス。
  10. 回収したほぼ純粋なCO2流の全部または一部を、貯蔵場所まで運搬するのに適した圧力、好ましくは臨界圧より高い圧力に圧縮する請求項8または9に記載のプロセス。
  11. サイクルA、R、Bの段階の各時間およびPUとPRとの合計時間が等しい請求項8〜10のいずれか一項に記載のプロセス。
  12. 上記プロセスを4つの吸着ベットユニットで運転し、全サイクルの継続時間を4つの等しい部分に分割し、各部分のそれぞれで:
    一つの吸着ベットは吸着段階にあり、
    一つの吸着ベットはリンス段階にあり、
    一つの吸着ベットはブローダウン段階にあり、
    一つの吸着ベットは向流パージ段階または加圧段階にある、
    請求項11に記載のプロセス。
  13. 複数の4つの吸着ベットユニットを同時に運転し、部分的ブローダウン段階の数nは同時に運転されるPSAユニットの数に等しい請求項12に記載のプロセス。
  14. 一つの部分的ブローダウン段階の継続時間に等しい時間の間、3つのカラム(2つのカラムはパージ段階にあり、一つはブローダウン段階にある)によって絶えず供給される最小圧力のタンクを除いて、各ユニットのサイクルプログラムを互いにシフトさせて各二次排出タンクには一つのカラムから絶えず供給させる請求項13に記載のプロセス。
  15. フィッシャー・トロプシュ法のシンガス調整系列の一つのステップである請求項1〜14のいずれか一項に記載のプロセス。
  16. 石炭からメタノールを合成するプロセスのシンガス調整系列の一つのステップである請求項1〜14のいずれか一項に記載のプロセス。
JP2014510738A 2011-05-18 2012-05-10 低エネルギーのサイクリックpsaプロセス Pending JP2014516778A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11305596.6 2011-05-18
EP20110305596 EP2524726A1 (en) 2011-05-18 2011-05-18 Low energy cyclic PSA process
PCT/EP2012/058598 WO2012156259A1 (en) 2011-05-18 2012-05-10 Low energy cyclic psa process

Publications (1)

Publication Number Publication Date
JP2014516778A true JP2014516778A (ja) 2014-07-17

Family

ID=46046229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014510738A Pending JP2014516778A (ja) 2011-05-18 2012-05-10 低エネルギーのサイクリックpsaプロセス

Country Status (10)

Country Link
US (1) US20140069275A1 (ja)
EP (2) EP2524726A1 (ja)
JP (1) JP2014516778A (ja)
KR (1) KR20140034236A (ja)
CN (1) CN103687660A (ja)
AU (1) AU2012257892A1 (ja)
CA (1) CA2834188A1 (ja)
EA (1) EA201370228A1 (ja)
WO (1) WO2012156259A1 (ja)
ZA (1) ZA201307904B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197407A (ja) * 2016-04-27 2017-11-02 株式会社神戸製鋼所 水素ガス製造方法及び水素ガス製造装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9211494B2 (en) * 2013-02-14 2015-12-15 Uop Llc Process for floating liquified natural gas pretreatment
DK2851555T3 (en) * 2013-09-18 2018-05-22 Siemens Ag Wind turbine rotor blade with thanks to extension
CN103933825B (zh) * 2014-04-03 2016-04-20 湖北宜化化工股份有限公司 一种psa净化段逆放气回收到提纯段再回收装置及回收工艺
US9808755B2 (en) 2015-07-24 2017-11-07 Air Products And Chemicals, Inc. Sour pressure swing adsorption process
EP3733264A1 (en) 2019-05-02 2020-11-04 Casale Sa A pressure swing adsorption process for producing hydrogen and carbon dioxide

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4171206A (en) * 1978-08-21 1979-10-16 Air Products And Chemicals, Inc. Separation of multicomponent gas mixtures
US4512780A (en) * 1983-11-08 1985-04-23 Union Carbide Corporation Pressure swing adsorption with intermediate product recovery
US4892565A (en) * 1987-12-29 1990-01-09 Air Products And Chemicals, Inc. Adsorptive separation utilizing multiple adsorption beds
US5753010A (en) * 1996-10-28 1998-05-19 Air Products And Chemicals, Inc. Hydrogen recovery by pressure swing adsorption integrated with adsorbent membranes
US6051050A (en) * 1997-12-22 2000-04-18 Questor Industries Inc. Modular pressure swing adsorption with energy recovery
US6197092B1 (en) * 1999-03-22 2001-03-06 Engelhard Corporation Selective removal of nitrogen from natural gas by pressure swing adsorption
US6210466B1 (en) * 1999-08-10 2001-04-03 Uop Llc Very large-scale pressure swing adsorption processes
US6322612B1 (en) * 1999-12-23 2001-11-27 Air Products And Chemicals, Inc. PSA process for removal of bulk carbon dioxide from a wet high-temperature gas
AU2007223118B2 (en) * 2006-03-06 2011-11-03 Lummus Technology Inc. PSA pressure measurement and control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197407A (ja) * 2016-04-27 2017-11-02 株式会社神戸製鋼所 水素ガス製造方法及び水素ガス製造装置

Also Published As

Publication number Publication date
WO2012156259A1 (en) 2012-11-22
EP2709746A1 (en) 2014-03-26
AU2012257892A1 (en) 2013-11-07
EP2524726A1 (en) 2012-11-21
US20140069275A1 (en) 2014-03-13
KR20140034236A (ko) 2014-03-19
ZA201307904B (en) 2014-07-25
EA201370228A1 (ru) 2014-02-28
CN103687660A (zh) 2014-03-26
CA2834188A1 (en) 2012-11-22

Similar Documents

Publication Publication Date Title
CN100434140C (zh) 变压吸附系统的设计和操作方法
CA2656692C (en) Vpsa process and enhanced oxygen recovery
JP4579983B2 (ja) 二段全回収変圧吸着によるガス分離方法
EP2647597B1 (en) Adsorption process
KR102481433B1 (ko) 암모니아의 분해 혼합가스로부터 수소의 분리 및 정제방법
JPH11239710A (ja) 圧力変動式吸着法及び装置系
Sircar et al. Simultaneous production of hydrogen and carbon dioxide from steam reformer off-gas by pressure swing adsorption
JP2014516778A (ja) 低エネルギーのサイクリックpsaプロセス
JPS6362522A (ja) ガス混合物の吸着分離方法
KR20090075700A (ko) 이산화탄소 회수를 위한 방법
KR20090006152A (ko) 중순도 이산화탄소 회수 방법
CN101249370B (zh) 循环有价值气体的变压吸附方法
TWI725506B (zh) 多床體快速循環動力學變壓吸附
CN113350968A (zh) 一种用于合成氢回收尾气成分的提氢装置及工艺
EP4192601A1 (en) High recovery process for purification of multicomponent gases by pressure swing adsorption
CN108236829B (zh) 从含co2原料气中分离高纯度co2的方法及装置
JP5748272B2 (ja) ヘリウムガスの精製方法および精製装置
AU2016201267B2 (en) A plant and process for simutaneous recovering multiple gas products from petrochemical offgas
CN116390797A (zh) 用于从低品级氢气生产超高纯氢气的工艺和设备
JPH10225609A (ja) パラメトリックガスクロマトグラフィーによる気体のバルク分離方法
CN110813023A (zh) 改进的碳分子筛吸附剂
KR102439733B1 (ko) 중수소와 질소의 혼합가스로부터 중수소의 분리 및 정제방법
CN1186111C (zh) 一种实用的变压吸附方法
CN213101492U (zh) 从石化排放尾气中同时回收氢气和甲烷气的装置
JP5761751B2 (ja) アルゴンガスの精製方法および精製装置