JP2014512539A - ガラス繊維製品の硬化状態のオンライン決定方法 - Google Patents

ガラス繊維製品の硬化状態のオンライン決定方法 Download PDF

Info

Publication number
JP2014512539A
JP2014512539A JP2014506546A JP2014506546A JP2014512539A JP 2014512539 A JP2014512539 A JP 2014512539A JP 2014506546 A JP2014506546 A JP 2014506546A JP 2014506546 A JP2014506546 A JP 2014506546A JP 2014512539 A JP2014512539 A JP 2014512539A
Authority
JP
Japan
Prior art keywords
interest
light reflectance
color
regions
analyzing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014506546A
Other languages
English (en)
Other versions
JP6059709B2 (ja
Inventor
サマー ティー ユーセフ
マイケル ディー ピエトロ
ウェイ リ
エレイナ エム カルピノ
Original Assignee
オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47021038&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2014512539(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー filed Critical オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー
Publication of JP2014512539A publication Critical patent/JP2014512539A/ja
Application granted granted Critical
Publication of JP6059709B2 publication Critical patent/JP6059709B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

無機繊維及びバインダーで製造される繊維ブランケットの硬化状態を評価する方法を開示し、該方法は、オンライン光反射率測定値を硬化状態の評価として用いることを含む。光反射率測定値は、好適には、任意の表面から、具体的には切断面から、取り込まれたカラー画像であるのがよく、その後、画像は、多数の関心領域(ROI)に任意に分割され、硬化状態を代表する表色系変数のために分析される。或る実施形態では、表色系変数はB値である。他の例では、光反射率測定値は、切断面のUV又はIRの反射率であってもよい。2つ又はそれ以上の関心領域が切断面に構成されたとき、比較情報は、繊維製品の異なるレベル、層又は内部の位置での硬化を評価するのに有益である。
【選択図】図4

Description

本発明は、概略的には、ガラスのような繊維状無機物で作られる断熱製品に関し、より詳細には、硬化状態を、即ち製品が仕様及び工程管理制限の範囲内で硬化不足であるか、過硬化であるか、或いは適切に硬化されたかを、決定するための品質管理方法に関する。
ガラス繊維断熱製品は、一般的に、硬化した熱硬化性高分子物質で結合された、ランダムに配向したガラス繊維を有する。溶融ガラス流は、吸い込まれてランダムな長さの繊維に延伸され、成形チャンバー又はフード内に吹き込まれ、そこで、繊維は多孔性の移動コンベヤー又はチェーン上にパック(pack)としてランダムに堆積される。繊維が、成形チャンバー内での移動中の間に、且つ延伸作業からまだ熱い間に、バインダーの水性分散液又は溶液が繊維に吹き付けられる。成形作業中の気流に加えて、ガラス繊維及び燃焼ガスからの残留熱は、多くの吹き付け水を蒸発させて除去するのに十分であり、それにより、繊維のバインダー分散液を濃縮して、バインダーを、高い固形分を含む粘性液体として繊維に堆積させる。換気ブロワーが、コンベヤーの下に負圧を生じさせ、空気並びにパック内で結合されなかった粒状物をコンベヤーを通して吸い込み、ついには、それを大気に排出する。未硬化繊維パックは、乾燥且つ硬化用のオーブンに移され、そこで、ガス、例えば熱風などがパックに吹き込まれて、パックを乾燥させ、バインダーを硬化させ、通常「ブランケット(blanket)」と呼ばれるランダムな3次元構造内でガラス繊維を互いにしっかり結合させる。十分なバインダーが付与されて硬化され、その結果、繊維パックを梱包、貯蔵及び輸送のために圧縮することができるけれども、圧縮が取り除かれたときに繊維パックが厚さを取り戻す(「厚さ回復」として知られる工程)。
製造業者は厳重な工程管理に努力しているが、パック全体にわたるバインダー硬化度が種々の理由から常に均一にならないことがある。なかんずく、未硬化パックの水分の不規則性、ガラスの不均一な横重量分布、硬化オーブン内の乾燥ガスの流れ又は対流の不規則性、コンベヤーのような隣接した設備からの不均一な熱伝導、及びバインダーの不均一な付与が、全て、過不足硬化バインダーの領域に寄与することがある。したがって、品質を保証するために、最終製品でこれらの領域について検査することが望まれている。
特許文献1乃至3は全て、ガラス繊維マット製品内のバインダー量又はバインダーの硬化度をモニターするために、多数の波長の赤外線(「IR」)放射を用いる方法を教示している。一般的には、これらは全て、バインダー化学反応物(カルボン酸基及びアルコール基)と硬化バインダー生成物(エステル基)との間のIRの吸収/透過の差に依存している。特許文献4及び5は、それらが異なる波長のIR及び/又は反応物/生成物の異なる比率に依存していること以外は同様である。
特許文献6は、ガラス繊維製品をダイで形成してスキャンし、硬化度を決定するために、赤ピクセル比率の色分析を行う、破壊オフライン方法を開示している。
米国特許第4,363,968号 米国特許第4,582,520号 米国特許第4,609,628号 米国特許第4,769,544号 米国特許第7,435,600号 米国特許第7,520,188号
これらの方法の各々は利点があったが、欠点もある。今までのIR方法論は、一方向における繊維パックの赤外線透過に依存しており、そのため、パックの種々の深さでの硬化に関する情報を提供することができない。
本発明は、一般的には、無機繊維及びバインダーで製造された繊維ブランケットの硬化状態を評価する方法に関する。第1の重要な側面では、本発明は、任意の表面のカラーデジタル画像を取り込んで画像を分析することに依存する、無機繊維製品の硬化状態を決定する方法を含む。方法は、カラーデジタルカメラを用いて、繊維製品の表面からカラーデジタル画像を取り込むことと、カラーデジタル画像から、少なくとも1つの関心領域を分析して、関心領域に対する表色系変数を取得することと、関心領域からの表色系変数に基づいて、繊維製品の硬化度を評価することと、を含む。
この側面では、カラーデジタル画像は、繊維製品の切断されていない外面である表面から、又は繊維製品の切断面から取り込まれるのがよい。表面が切断面である場合、それは、長手方向に切断されてもよいし、スリットされてもよいし、横に細断されてもよいし、或いは水平に分離されてもよい。それは、検査のために製品を製造ラインから取り出さずに、連続的にオンラインで実行されてもよいが、そうしなくてもよい。他の例を以下に記載する。
第2の重要な実施形態では、本発明は、カラー画像を必要としないが、繊維製品の切断面又は内面からの光反射率に依存することがある、無機繊維製品の硬化状態を決定する方法を含む。この側面では、方法は、切断された繊維製品の面から、光反射率測定値を取り込むことと、切断面の少なくとも1つの関心領域からの光反射率測定値を分析することと、関心領域での光反射率測定値に基づいて、繊維製品の硬化度を評価することと、を含む。
第2の側面に係る方法は、硬化を決定するために、繊維製品内部を観察するときに得られた、改良した結果に依存する。光反射率測定値は、カラーデジタル画像であってもよいが、UV又はIRの反射率のような他の分光測定値を含んでいてもよい。この側面では、測定値は、1つの関心領域からであってもよいし、或いは多数の関心領域からであってもよい。それは、検査のために製品を製造ラインから取り出さずに、連続的にオンラインで実行してもよいが、そうしなくてもよい。他の例を以下に記載する。
第3の重要な側面では、方法は、任意の表面の、好適には切断内面の、少なくとも2つの異なる関心領域の光学反射特性を分析することで、無機繊維製品の硬化状態を決定することを含む。この第3の側面は、繊維製品の表面から、光反射率測定値を取り込むことと、表面の少なくとも2つの関心領域からの光反射率測定値を分析することと、少なくとも2つの関心領域での光反射率測定値に基づいて、繊維製品の硬化度を評価することと、を含む。
この第3の側面では、少なくとも2つの関心領域は、Y方向、X方向又は両方向の異なる位置であってもよく、また、多数の方向の多数の関心領域を含んでいてもよい。光反射率測定値は、カラーデジタル画像であってもよいが、UV又はIRの反射率のような他の分光測定値を含んでいてもよい。それは、検査のために製品を製造ラインから取り出さずに、連続的にオンラインで実行してもよいが、そうしなくてもよい。他の例は以下に記載する。
上記した3つの側面のいずれかについての幾つかの例がある。反射率測定値又はカラー画像が切断面又は内面から取り込まれるとき、長手方向に切断して又はスリットして、反射率のためのX−Z平面を生成してもよいし、横に細断して、反射率のためのY−Z平面を生成してもよいし、或いは、水平に切断して、反射率のためのX−Y平面を生成してもよい。方法は、任意の方向の少なくとも3つの関心領域を分析することをさらに含んでもよい。
或る側面又は実施形態では、多数の関心領域が分析される。これが起こるとき、少なくとも2つの異なる関心領域は、例えば、X方向の少なくとも2つの領域、Y方向の少なくとも2つの領域、Z方向の少なくとも2つの領域など、X,Y又はZの少なくとも1次元に沿った位置が異なることが特定される。任意の与えられた次元の多数の領域の数は、2、3、4、5、6、又はN=100以下でもっと大きくてもよい。また、同時に2次元に多数の領域があってもよく、それにより、細断された面のZ方向とY方向の両方の多数の領域など、2次元によって定義される平面内の多数の領域のグリッドを作り出す。このようなグリッドは、各次元に同じ数又は異なる数の領域を有してもよく、例えば、2×2、2×3、2×4、2×N、3×3、3×4、3×5、3×N、4×4、4×5、4×6、4×Nなど、必要に応じてN×Nの大きさ以下にされてもよい。
或る側面又は実施形態では、光反射率測定値は、デジタルカラー画像である。これが起こるとき、関心領域の分析は、各関心領域の表色系変数の少なくとも1つの変数のための値を取得することを含んでもよい。多くの異なる表色系変数が用いられてもよく、それらはここに記載されるが、1つの実施形態は、LAB表色系を用い、方法は、LAB表色系における、(a)A−値、(b)B−値、及び/又は(c)L値のうちの少なくとも1つを取得することを含む。
行われる工程管理決定は、工程を所定の工程管理制限の範囲内に戻すために、工程管理を調整することを含み、これは、オーブンか成形フード領域のいずれかで達成されてもよい。例えば、工程調整は、硬化オーブンの少なくとも1つのゾーンで、オーブンゾーンの温度及び気流から選択されたオーブンパラメータを調整することを意味してもよい。他の例では、工程調整は、冷却液流れ、バインダー流れ、気流、及び重量分布変数(又はラッピングシステム変数)から選択された、少なくとも1つの成形エリアパラメータを調整することを意味してもよい。
本発明の種々の側面は、添付の図面に照らして、好適な実施形態についての以下の詳細な説明から、当業者に明らかになるだろう。
繊維製品を製造するための製造ラインの成形フード構成部分の部分断面側面図である。 硬化オーブン及び幾つかのゾーンを表した概略図である。 切断面を示す、繊維製品の斜視図である。 図4Aは、製造ラインの上に設置されたカメラシステムの正面図であり、図4Bは、このシステムの側面図である。 本発明に係る1つの実施形態の工程のステップを表すブロック図である。 実施例に記載された試運転から生成された、表色系変数、即ち時間の経過に伴うB−値のグラフである。
別段の定めがない限り、ここで用いられる全ての技術及び科学用語は、本発明が属する技術分野で通常の技術を有する者によって広く理解されているものと同じ意味を有する。ここに記載されたものと類似又は同等のどの方法及び材料も、本発明の実施又は検査に用いることができるが、ここでは好適な方法及び材料を記載する。本、雑誌論文、公開された米国又は外国の特許出願、交付済みの米国又は外国の特許、及びその他の参考文献を含む、ここで引用した全ての参考文献は、引用文献内に存在する全てのデータ、テーブル、図、及び文章を含めて、それらの全体をそれぞれ援用する。
図面では、線、層及び領域の厚さは、明瞭にするために誇張されている。
別段の指示がない限り、明細書及び特許請求の範囲に用いられる、角度又はシート速度のような大きさ、成分の量、分子量のような特性、反応条件などの、範囲を表現する全ての数字は、全ての例で「約」の用語によって変更されるものと理解されるべきである。よって、別段の指示がない限り、明細書及び特許請求の範囲に記載の数値的性質は、本発明の実施形態で得ようとしている所望の特性によって変化することがある近似値である。本発明の広い範囲を示す数値範囲及びパラメーターは近似値であるものの、具体例に記載する数値はできるだけ正確に報告する。しかしながら、どんな数値も、それらの各々の測定値に見られる誤差から必然的に生ずる、或る誤差を本質的に含む。全ての数値範囲は、該範囲の外側境界内の、全ての可能な増分の小範囲を含むことが理解される。したがって、30〜90度の範囲は、例えば、35〜50度、45〜85度、及び40〜80度などを示す。
「バインダー」は、圧縮でき、しかも圧縮が取り除かれたときに厚さを取り戻す3次元構造で、ガラス繊維を互いに接着するのに用いられる、熱硬化性の有機剤又は化学物質(たいてい高分子樹脂)を指すことが産業界でよく知られている。「バインダー送出」は、ガラス繊維に送出される大量の「バインダー化学物質」、例えば「バインダー固形物」を指す。これは、典型的には、産業界では強熱減量によって測定され、この強熱減量は繊維状無機物を焼き払うであろう有機物質の量である。繊維パックを計量し、次いで、繊維パックは高熱にさらされて有機バインダー化学物質を焼き払い、繊維パックを再び計量する。重量差を最初の重さで割って100を掛けたものが、強熱減量(%)である。
固体のときには、バインダー送出量は、質量/時間の単位、例えばグラム/分で考えられる。しかしながら、バインダーは、典型的には、水に溶ける又は溶けない、バインダー化学物質の水性分散液として送出される。かくして、「バインダー分散液」は、媒体又はビヒクル中のバインダー化学物質の混合物を指し、また、実際には、バインダー「分散液」の送出量は、体積/時間の流量、例えば分散液のリットル/分又はLPMで与えられる。2つの送出量の表現は、単位体積当たりのバインダーの質量によって、即ちバインダー分散液の濃度によって関連付けられる。したがって、毎分Zリットルの送出速度で流れている、リットル当たりXグラムのバインダー化学物質を有するバインダー分散液は、X×Zグラム/分のバインダー化学物質を送出する。分散液は、コロイド、エマルション又は懸濁液だけでなく、真溶液も含む。
「酸性バインダー」又は「低pHバインダー」の言及は、水性分散液ではpHが7未満になるように、一般的には約6未満、より典型的には約4未満になるように、解離定数(Ka)を有するバインダーを意味する。
「無機繊維」は、引き伸ばされて又は細められて繊維となり得る溶融無機物を形成するように、溶かすことができる任意の無機物質を指す。ガラスは、繊維断熱材の目的で最も一般的に使用される無機繊維であり、次の説明は主としてガラス繊維に言及するが、他の有用な無機繊維は岩、スラグ及び玄武岩を含む。
「製品特性」は、断熱バット(batt)が有する、一連の検査可能な物理的特性を指す。これらは、少なくとも以下の一般的な特性を含むとよい。
・「回復」…梱包中又は貯蔵中の圧縮からの解放に続いて、元の又は設計厚さを回復する、バット又はブランケットの能力である。それは、既知の又は所望の呼称厚さの製品の圧縮後の高さを測定することによって、又は他の適切な方法によって、検査されるのがよい。
・「剛性」又は「たるみ」…剛性を保ち、且つ直線形状を保持する、バット又はブランケットの能力を指す。それは、一定長さの部分を支点に掛けて、曲げたわみ又はたるみの角度範囲を計測することによって、測定される。より低い値は、より堅く、且つより望ましい製品特性を示す。他の方法を用いてもよい。
・「横重量分布」(LWD又は「横重量」)…幅全体にわたる製品の相対的な均一性又は均質性である。それは、製品の密度の均一性とも考えてよく、製品を等しい幅(及びサイズ)のバンドに長手方向に分割して、バンドの重さを量ることによって、又は核密度計によって、或いはその他の適切な方法によって、測定されてもよい。
・「垂直重量分布」(VWD)…厚さ全体にわたる製品の相対的な均一性又は均質性である。それは、製品の密度の均一性とも考えてよく、製品を等しい厚さ(及びサイズ)の層に水平に分割して、層の重さを量ることによって、又は核密度計によって、或いはその他の適切な方法によって、測定されてもよい。
もちろん、他の製品特性も最終製品の評価に用いてもよいが、上記の製品特性は、断熱製品の消費者にとって重要と思われているものである。
図1は、前炉10、成形フード構成部分又はセクション12、ランプ(ramp)コンベヤーセクション14及び硬化オーブン16を含む、ガラス繊維断熱製品の製造ラインを示している。炉(図示せず)からの溶融ガラスは、流路18を通して、図1の矢印19で指示するような長手方向に連続的に配置された複数の繊維化ステーション又はユニット20に導かれる。各繊維化ステーションでは、流路18の孔22によって、溶融ガラス24流がスピナー26に流入するようになり、スピナー26はバーナー(図示せず)によって任意に加熱されるのがよい。繊維化スピナー26は、モーター30によってシャフト28を中心に高速で回転させられ、それにより、溶融ガラスをスピナー26の外周側壁の小さな孔を強制的に通過させて、一次繊維を形成する。ブロワー32が、ガス流(典型的には空気)を実質的に下向きの方向に向けて繊維に当て、繊維を下向きに変えて細くして二次繊維にし、二次繊維は下方に押されるベール60を形成する。繊維は、機械式又は空気圧式「ラッパー」(図示せず)によって横方向に分配され、ついには、多孔性コンベヤー64上に繊維層62を形成する。層62は、連続の繊維化ユニットからの追加繊維の堆積で、質量(及び典型的には厚さ)を得る、こうして、成形領域46の中を長手方向19に移動するにつれて、繊維「パック」66になる。
1つ又はそれ以上の冷却リング34が、水などの冷却液をベール60に噴霧し、ベール内の繊維を冷却する。もちろん、他の冷却液噴霧器構成も可能であるが、リングは、冷却液を多数の方向及び角度からベール60全体にわたって繊維に送出する利点を有する。バインダー分配システムは、バインダーをベール60の繊維に噴霧するためのバインダー噴霧器36を含む。例示的な冷却液噴霧リング及びバインダー噴霧リングは、米国特許公報第2008−0156041号に開示されている。このように、各繊維化ユニット20は、スピナー26と、ブロワー32と、1つ又はそれ以上の冷却液噴霧器34と、1つ又はそれ以上のバインダー噴霧器36と、を有する。図1は、このような3つの繊維化ユニット20を描いているが、どのような数を用いてもよい。断熱製品のために、典型的には、2ないし約15のユニットを、1つのラインについて1つの成形フード構成部分に用いられるのがよい。
さらに、成形領域46は、成形フードを取り囲むための側壁40及び端壁48(1つ示す)によって構成される。側壁40及び端壁48の各々は、ローラー44又は50、80のそれぞれのまわりを回転する連続ベルトによって適切に形成される。「成形フード壁」及び「フード壁」の用語は、ここでは区別しないで用いることがある。バインダー及び繊維は、必然的に、フード壁に局所的な塊で堆積し、それらの塊は、時々、パック内に落ち込んで、硬化しにくい、異常に密な領域又は「ウェット領域」を引き起こすかもしれない。
コンベヤーチェーン64は、気流を通過させる多数の小さな開口部を有し、リンクが大きくなる繊維パックを支持する。ダクト72を介してファン又はブロワー(図示せず)に連結された吸引ボックス70が、コンベヤーチェーン64の下に配置された追加の生産構成部分であり、負圧を生じさせ、成形領域に吹き込まれた空気を除去する。コンベヤーチェーン64がローラー68のまわりを回転するとき、未硬化パック66が出口ローラー80の下から成形セクション12を出て、そこでは、下方に向けられた気流及び負圧がないことによって(図示しないパックリフトファンによって任意に補助される)、パックが、自然な圧縮されていない高さ又は厚さを取り戻す。後続の支持コンベヤー又は「ランプ」82が、繊維パックを、オーブン16に向けて、他の一組の多孔性圧縮コンベヤー84の間に導き、パックをオーブン16内で硬化するのに望ましい厚さに成形する。
図2は、4つの異なるゾーンZ1、Z2、Z3及びZ4を典型的に含む、オーブン16を表した概略図である。ゾーンは、多数の工程を実行するように設計されている。ゾーン1及び2では、ファン90、91が温風流をパック66に上向きに吹き通し、一方で、ゾーン3及び4では、ファン92、93が温風流をパック66に下向きに吹き通す。上流対下流の選択は好まれるが、しばしば、上向きが、成形フード内に存在する下向きの吸引力を打ち消すのを助けるために最初に用いられる。空気は、各ゾーンと関連したガスバーナー(図示せず)のような任意の適切な手段によって、華氏約400度(摂氏204度)ないし華氏約600度(摂氏315度)の範囲の温度に加熱される。或る実施形態では、ゾーン1及び2は、一般的には、華氏約400度(摂氏204度)ないし華氏約450度(摂氏232度)の温度に加熱され、一方で、ゾーン3及び4は、華氏約430度(摂氏221度)ないし華氏約550度(摂氏288度)の温度に加熱される。一般的には、最初のゾーンは、成形工程からのパックに残留する水分の大半を取り去るために用いられ、一方で、後のゾーンは、バインダーの硬化を決定的にするために用いられる。
工程管理は、各オーブンゾーンの温度を独立して上昇又は低下させるのに適当な制御バルブ(図示せず)を含む。オーブンの温度をモニターするために、熱電対を設置するのがよい。或る実施形態では、無線の熱電対94が、オーブンに入れる前に、断熱パックに直接挿入されてもよい。このような移動する熱電対94は、モル(mole)と呼ばれ、一箇所だけで、或いはパックがオーブン内にある間だけで、実際のパック温度の最良な推定を提供する。他の例では、熱電対95A〜98Aが、パック66より上でオーブン内に設置されるのがよい、及び/又は、熱電対95B〜98Bが、パック66より下に設置されるのがよい。図2では、3つ又は4つの熱電対が各ゾーンのパック66よりも上及び下に示されているが、その数は、ゾーンの断面積及び/又は長さによって、各位置で1から約15まで変化してもよい。熱電対は、X方向に直線状に配置されるのがよいが、そうしなくてもよい。熱電対を組みにして、即ち、パックの上Aに幾つか、パックの下Bに幾つか設置することで、例えば2つの示度を平均することにより、パック自体の温度の代理推定値を得ることができる。また、パックから水分を蒸発させるとき、又は硬化反応を行うとき、どれだけのエネルギーがパックに吸収されたかを理解することができる。これは、リアルタイムのパック温度データが連続的に利用できる点で、モル熱電対よりも有利である。
パックの両側に二重の熱電対(A−B)を設置すると、及び各ゾーンの気流の上昇気流又は下降気流の性質を考慮すると、空気がパックに入るときに下側の熱電対95B及び96Bが空気の温度をモニターするから、それらを「上流」又は「入口」の熱電対とみなすのが有用であり、また、空気がパックを出るときに上側の熱電対95A及び96Aが空気の温度をモニターするから、それらを「下流」又は「出口」の熱電対とみなすのが有用である。反対に、流れはゾーン3及び4で逆転するので、下側の熱電対97B及び98Bは、「下流」又は「出口」の熱電対とみなすことができ、上側の熱電対97A及び98Aは、「上流」又は「入口」の熱電対とみなすことができる。実験では、モルを定置熱電対と一緒に用いることで、出願人は、ゾーン1の出口熱電対とゾーン2の出口熱電対との差(ΔT)は、パック内の水分乾燥速度を推測するのに用いるのができ、一方で、最後の2つのオーブンゾーンの出口熱電対は、一旦パックが乾燥したら、パック温度を推定するのに用いることができることを発見した。
オーブン16から出ると、硬化パック又は「ブランケット」67は切断及び梱包のステップのために下流に運ばれる。多くの製品のために、ブランケットは、標準幅寸法の多数のピース又はレーンに長手方向に切断される又は「スリットされる」、例えば、幅14.5インチ(37センチメートル)及び22.5インチ(57センチメートル)が、それぞれ、中心16インチ又は24インチに配置された2×4の間柱間の間隔に嵌り込むように、標準化されている。他の標準幅も用いてよい。ブランケットは、幅が4ないし8フィート(1.2ないし2.4メートル)で、このような標準幅ピースを多数作り出すのがよい。
ブランケットは、典型的には、梱包のために、縦方向と直交する方向にも切断される又は「細断される」。横細断は、ブランケットレーンを、長さが約4フィート(1.2メートル)から約12フィート(3.6メートル)までの「バット」として知られている短いセグメントに、或いは、長さが約20フィート(6.1メートル)から約175フィート(53メートル)又はそれ以上までの長い巻取りセグメントに、分割する。これらのバット又はロールは、最終的には、梱包のために束ねられるのがよい。高速運転巻き取りコンベヤーは、切断されたバットの端間に空間を作り出すためにバットが細断された後に、一方のバットを別のバットから分離する。長手方向「レーン」が望まれる場合には、それらは、短い長さへと細断される前に全体的にスリットされる。
図3を参照すると、オーブンから出た後のブランケット67の一部分が示されている。X、Y、Z座標系を用いて3次元面を説明することは有用であり、軸描写104に示すように、X次元を縦方向102と指定し、Y次元を横方向と指定し、及びZ次元を高さ又は厚さ方向と指定することが産業界で普通である。ここで用いられるように、「切断」の用語は、ブランケット内部への任意の切断であり、多くの場合、真っすぐな又は平面的な切断である。しかしながら、「切断」(及び「切断された」又は「切断している」のような派生語)の用語は、直交軸平面に平行する切断及び直交軸平面に平行しない切断を含めて、いかなる方向の切断も含む。ほぼX−Z平面内にある切断面は、長手方向「スリット」としても知られており、一般的には、特定幅の「レーン」を構成する。反対に、ほぼY−Z平面内にある断面は、「細断された」断面としても知られている。図3は、ブランケットの端面100を明らかにした「細断された」断面を示しているが、「端面」の用語は、細断されたブランケットの前か後ろの面のいずれかを包含する。「細断された」切断部分は、矢印102で指示する縦方向と直交する。最後に、切断は、X−Y平面での切断、又はXYZ軸と整合しない平面での切断を含んでもよい。
下記のように、1つ又はそれ以上のカメラが、この端面100の画像を取り込み、また、或る実施形態では、処理ソフトウェアが、少なくとも2つの関心領域(「ROI」)有するグリッドに、好適には複数のROI有するグリッドに、例えば垂直方向又はZ方向に少なくとも3つのROIを有するグリッドに、画像を分割する。図3では、このような9つのROIが描かれており、3つの行が上部、中間部及び下部についてT、M及びBで指示され、3つの「レーン」がL1、L2及びL3で指示されている。ROIレーンは、上記したような標準幅レーンへの広いブランケットの長手方向切断に相当するのがよいが、そうでなくてもよい。このように、各ROIは、スプレッドシートによく似た、行/列の座標を用いて記述するのがよい。図3の9つのROIに加えて、左にS1で指示され、右にS2で指示された2つの側領域がある。一般的には、このような側端を切り取って再利用するのが望ましい。
図4A及び4Bは、上記した画像を取り込むための画像取込システム110を示している。オーブン16から出ると、硬化されたブランケット67は、この画像取込システム110に導かれ、典型的にはその下に導かれる。上記したように、長手方向のスリットは、ブランケットを、レーン108A、108B及び108Cで表された如き多数のレーンに分割するのがよい。取り付けブラケット112が、製造ラインの上に延びる水平レール113からつるされている。ブラケット112は、2つの端部を有する。第1の端部(図4Bの右)は、カメラアーム114を含み、照明ライト116及び少なくとも1つのカメラ118がカメラアーム114に固定されている。取り付けブラケット112の第2の端部は、校正アーム120を含み、カメラ118に面する校正面123を有する校正プレート122が校正アーム120に取り付けられている。カメラアーム114及び校正プレート122の一方又は両方は、枢動可能に取り付けられ、それにより、上向き/下向きに揺動させて、カメラ118を校正するために校正プレート122をカメラ118の視野内に配置する。図4Bでは、ピボットブラケット125が、カメラアーム114に枢動可能に取り付けられ、ピボットピン127を中心に枢動し、それにより、カメラ118が、校正プレート面123から校正画像を取り込むように上向きに揺動することができる。モーター106及びギヤボックス107は、ピボットシャフト127に連結され、カメラ118を枢動させる回転を生じさせる。各カメラの画角は、カメラレンズから延びる線121によって表され、線121は、ブランケット67の厚さに応じて、図示のように重なり合ってもよい。
1つのカメラを図4Bに示して説明したが、画像取込システム110は、図4Aに示すように、Y方向に並んで配置された一連の多数のカメラを含むのがよく、それにより、Z方向のブランケット67の全体の高さだけでなく、Y方向のブランケット67の全体の幅を横切る切断面100の画像を取り込む。例えば、幅4〜6フィートのブランケットは、適切な画像を取り込むのに十分なライト116と一緒に、3〜6台のカメラを用いるのがよい。支持タワー128は、画像システム100を必要に応じて製造ラインよりも上に持ち上げ、コントロールパネル129は、一方の側又は他方の側に設置されるのがよい。付加的なブラケット、アーム及び校正プレートが、カメラ及びライトを支持するために必要に応じて追加されてもよい。
ブラケット112には(支持支柱の切り取り内部図の後ろに示す)、レーザー高さセンサー124が取り付けられている。これは、所望のR値に応じて変化することがある、ブランケットの高さを検出し、2値信号(オン/オフ)をプロセッサ(図示せず)に送る。ブランケットの高さが予め設定された閾値を超えているとき、センサー124は「オン」信号を送るが、高さが閾値を下回っているとき(例えば、細断されたバット間の間隔に出くわしたときのように、高さがコンベヤーに対してゼロまで下がったとき)、センサー124は「オフ」信号をプロセッサに送る。いずれの変化も(オフからオン、又はオンからオフ)、カメラの構成に応じて、画像を取り込むためにカメラ118を作動させるのに用いてもよい。端面100は、図3に描かれているように、既に通過したバットの後ろの端であってもよく、オンからオフへのセンサー信号変化がカメラを作動させる。他の例では、端面100は、図4Bのように、通過しようとしているバットの前の端であってもよく、オフからオンへの信号変化がカメラを作動させる。いずれの場合にも、カメラ118の角度、及びブランケットからの高さセンサー124の距離は、カメラが切断端面100の画像を確実に取り込むように調整される。任意の適当な間隔、又は高さ、若しくは遮断センサーを、レーザーセンサー124の代わりに用いてもよい。
照明ライト116は、白熱灯、蛍光灯及び発光ダイオード(LED)などの任意の照明手段を含んでよいが、それらに限定されない。これらは、常にオンであるように構成されてもよいし、或いは、これらは、カメラの作動に合わせて閃光を発するように構成されてもよい。「白色」ライトの色は非常に主観的であるので、カメラの「ホワイトバランス」又は色校正が必要である。しかしながら、長い期間できるだけ一定のままでいる照明、及び再校正を最小限に抑える温度が望ましい。色又は輝度がシフトするほど、カメラはより高頻度で校正されなければならない。適切な照明は、「Smart Vision Lights, Muskegon, MI」より利用できる「Model L300 Linear Connect-a-Light」から、又は「CCS America, Burlington, MA」製の「HBR-LW16, white LED light」のモデル番号から得られた。或る場合には、1つ又は2つのライトバーが利用された。或るの実施形態では、ライトはカメラと一緒に枢動し、他の実施形態では、ライトは静止している。
或る実施形態でのカメラ118は、電荷結合素子(CCD)のデジタルカラーカメラである。解像度は重要ではなく、良好な作用は、1024×760、1296×966、及び1392×1040だけでなく、480×640の解像度でも達成された。適切なカメラの製造業者は、ソニー、日立、Basler、東芝、Teledyne Dalsa、JAIを含む。
種々の画像処理ソフトウェアパッケージが商業的に利用でき、多くが本発明での使用に適していると考えられる。例示的な画像処理ソフトウェアは、Cognex、Matrox、National Instrument、及びKeyenceのものを含む。ソフトウェアが実行する一般化されたステップは、図5のブロック図の一部分に記述される。上記したように、及びブロック130に示すように、ブランケット又はその長手方向スライスは、前及び後ろの端面を作り出すために横に切断される。ブランケット高さのずれは、ブロック132で、端面の画像を取り込むためにカメラを作動させる。この画像は、ブロック134に示されるプロセッサに供給され、そこでは、ソフトウェアが画像の適切な分析を行う。必要ならば、プロセッサは、多数の画像を組み合わせて、1つのパノラマ写真にする(ブロック136)。長手方向断面がブランケットへと既に切断されている場合、プロセッサは、長手方向断面の端を特定して、長手方向レーンに対応する画像の境界を作り出すのがよい。また、プロセッサは、ブロック138で、画像上に関心領域(ROI)のグリッドを重ねる。比較のために少なくとも2つの垂直ROIがあるべきである、好適には垂直方向又はZ方向に少なくとも3つのROIがあるべきである。水平には(即ちY方向)、1つ又はそれ以上のROIがあるのがよい。ROIのY方向境界は切断されたレーンに正確に一致してもよく、或いは、画像のレーンごとに複数の水平ROIがあってもよい。上記したように、図3は、水平方向に3つ及び垂直方向に3つの、合計9つのROIを示している。
そして、プロセッサは、ブロック140で、少なくとも1つの表色系変数のための値を取得するべく、各ROIを分析する。幅広い種類の表色系変数が有用であり、幾つかを以下に記載する。B−値は、繊維断熱製品の硬化状態を測定するのに適すると見出された1つの表色系変数であり、ここでは一例として記載するが、種々の表色系変数も用いてよい。少なくとも1つの表色系変数が、各ROIに対して得られる。必要に応じて、各ROIからの表色系変数値は、ブロック142で、大きな領域に対して平均値、差分値又は混合値を見つけるために、数学的に組み合わされるのがよい。例えば、或る実施形態では、表色系変数値は、全ての水平ROIに対してグループとして計算され、上部の平均色値、中間部の平均色値及び下部の平均色値を生成する。これら間の引き算による差分を調べることで、ブランケットが上部から下部まで均一に硬化しているかどうかを評価するのに役立つ。同様に、1つのレーンの全ての垂直ROIは、右レーンないし左レーンの硬化の均一性を評価するために平均化するのがよい。最後に、或る実施形態では、端面全体の平均硬化を評価するために、全てのROIを組み合わせるのは有用であるかもしれない。
また、多くのソフトウェアパッケージが、最小値、最大値、範囲、平均、中央値、標準偏差などの、収集されたデータのばらつきの統計的量も提供することであろう。議論のために、1つの表色系変数のみを測定することを仮定する。それで十分かもしれないが、或る実施形態では、各ROIから、多数の表色系変数(例えば以下に示すL、A及びBであるが、それに限定はされない)、及び各値に対して統計的情報を測定することが望まれるかもしれない。
全てのデータは、ブロック144で、硬化不足(又は過硬化)かもしれない領域の存在及び位置を報告することができるプロセッサによって調べられる。その後、オペレーターが、ブロック146で、硬化状態を改善するために工程管理を手動で調整するのがよい。他の例では、プロセッサが、自動工程管理調整を行うようにプログラミングされるのがよい。例えば、硬化の左右又は横の変化(横方向又はY方向)によって、空気動力式ラッピング機の調整が、より一様な重量分布を達成させるかもしれない。時々、下の層は、例えば、オーブンのゾーン1及び2内の高温空気の上昇対流、及びパックがオーブンを横切るときのコンベヤーチェーン64からの付加熱の対流など、種々の可能性のある理由によって、より大きく硬化される。硬化不足の上部の領域(中間部又は下部と比較して)は、ゾーン3及び4(下降気流を有する)のより高い温度又はより速いファン速度を勧めるのがよい、逆に言うと、ゾーン1及び2の温度又は気流を低下させることを勧めるのがよい。中間部ROIの硬化不足(上部及び下部と比較して)は、中間部の成形ユニットでの水分を減らすことを勧めるのがよい。
取り付けブラケット及びアームは、必要な設備をつり下げるための、ステンレス鋼又はアルミニウムなど、どのような適当な材料でもよい。
本発明の重要な特徴は、パック内の硬化状態を調べるために、パックの内側の「切断」面又は内部の面まで連続的に見る能力である。これは、単に外面を見るだけの既存のオンラインシステムとは大きく異なると共に、連続的に行うことができない既存のオフライン視覚又は色システムとは大きく異なる。
多くの異なる表色系変数が、本発明での使用に適している。眼の生理的特異性により(感受性は全ての波長にわたって一様ではない)、人間が色を知覚するときの色を定量化するための多くの異なる試みがあったが、それらの詳細は本発明にとって本質的ではない。しかしながら、幾つかの有用な色空間系、及びそれらが利用する表色系変数を、以下のテーブルAに記載する。
Figure 2014512539
CIEは「Commission Internationale de I'eclairage」又は「International Commission on Illumination」の略である。
上記の系の表色系変数の全てではないが、その多くは、他の系の値から数学的に導くことができる。これは、一組の値のみ(例えばRGB)を測定する必要があり、他の表色系変数の多くは計算することができるので、測定を容易にする。上記したように、或る実施形態では、単一の表色系変数を測定する必要があるだけであるが、他の実施形態では、多数の表色系変数が測定される。多数の測定は、システムの全ての表色系変数又は全ての値の一部を考慮に入れるのがよい。LAB系は、特に有用であることが見出されており、3つの値の全てを測定して用いるとよい、即ち、L(知覚される明度)、A(赤色/マゼンタと緑色の間の色位置)、及びB(黄色と青色の間の色位置)であり、L、A又はB値のような1つの値のみ、或いは2つの値の組み合わせ、を測定して用いるとよい。
本発明は、切断端面の少なくとも2つのROIで測定された表色系変数の好適な光学的測定値を用いて説明されたが、当然ながら、本発明は、2つの領域における他のより広い実施形態も包含する。最初の広い観点では、本発明は、製品を破壊せずに、繊維製品の任意の表面からのカラー画像を定期的に取り込んで分析するオンライン方法を含む。「オンライン」は、製造ラインから繊維製品の試料を取り出すことなく、測定値を取ることを意味する。オンライン測定値は、取り込まれた画像の各々がスチール写真又はスナップ写真のままであるが、全てのバットが、ライン速度の破壊又は損失なしに、必要に応じてサンプリングされ得る点で、本質的に連続的である。切断端は、製品の内部の観察を可能にするため有利であるが、切断端は本観点では必要不可欠ではなく、カラー画像は、本発明に係るオンライン工程で、他の表面で取り込まれてもよい。
さらに広い観点では、本発明は、切断面から取り込まれたカラー画像以外に、光反射率測定値の使用を含む。デジタルカラー画像は、好適であり、電磁スペクトルの可視範囲での反射率の使用を含む。しかしながら、本発明は、電磁スペクトルの赤外線(IR)及び紫外線(UV)の領域を含む、他の電磁放射線の反射率の使用も考えている。したがって、切断面の少なくとも一部分における、分光のようなIR又はUVの反射率は、本発明に応じた硬化状態の分析に有用なデータを生成することができる。他の実施形態では、反射率測定値は、切断されていない表面から取得されてもよい。
さらに広い観点では、本発明は、ブランケットの任意の面で取得された多数の光学反射率測定値の使用を含む。オンライン分光のような反射率は、上面の1つの位置でこれまでに用いられていたが、我々の知っている限りでは、これは、多数の反射率測定値に対しての、側面、底面、又はそれらの組み合わせにまで及んでいなかった。例えば、本発明に応じた硬化状態の分析に有用なデータは、Y方向に並んだ2つの位置から、上面及び底面から、及び/又は側面に沿ったZ方向の多数の位置から、分光反射率測定値によって取得されてもよい。
本硬化評価の少なくとも1つの光反射率測定値により、パック又はバットの硬化状態は、もし硬化不足又は過硬化であれば、硬化不足又は過硬化の程度又は大きさについての情報を含む、より高い精度でわかる。これは、製造業者に、必要に応じて工程管理を調整する、貴重且つ実用的なデータを提供する。例えば、製造業者は、所定の製品仕様書、及び、その範囲に入っておらず、「仕様外」といわれ、且つ一般的に廃棄又は再利用しなければならない製品を有する。さらに、大抵の製造業者は、工程管理を有し、工程のばらつきに対して所定の制限を設定する。これらのパラメーターは、1つの種類の製品用の例示的な値と一緒に、以下のテーブルBにまとめられている。
Figure 2014512539
* 記載されたB−値は、付加されたピンク染料を含む中密度の断熱材に光を当てたものである。ピンク染料がなくても、又はより高密度の製品のためであっても、概念は同じであるが、実際の値がシフトするかもしれない。
これらの制限に関して硬化状態を定量的に知ることは、製造業者に重大な影響を与える。上記したように、「仕様外」である製品は、一般的に廃棄又は再利用される。しかし、製造業者が利用できる唯一の情報が、製品が硬化不足であることである場合には、製造業者は、それが低いがLSLよりもまだ上だったとしても、製品を不必要に廃棄するかもしれない。より詳しくは、USL及びLSLの外で検査する製品は、やはり廃棄しなければならないが、USLとUCLの間又はLCL又はLSLの間で検査する製品は、まだ使用してもよく、廃棄しなくてもよい。これは、製造業者が良製品を間違ってほとんど廃棄しないため、有益な情報である。
おそらくより重要なのは、製造業者は、今、製品が上記した制限のいずれかからどれだけ離れているかについての定量的な情報を得ている。以前は、製品が仕様範囲内であった場合、製品が保有され、工程が許容できると考えられて、必ずしも調整されなかった。管理制限の外(即ちUCLより大きいか、LCLより小さい)であるが、まだ仕様範囲内(即ちLSLより大きく、且つUSLより小さい)で検査する製品は、製造業者に、工程をより厳しい管理下に戻そうとするように、工程管理を調整する機会を与える。また、検査結果を定量的に知ることによって、工程管理をどれくらい調整するかについての情報が提供される。言い換えると、定量的な結果は、工程変化の方向の情報だけでなく、そのような工程変化の大きさの情報も提供する。これのいずれも、簡易な質的検査手順では可能でない。
試験をEdmontonの工場内で実施し、そこでは、R−20光密度のピンクの住宅用断熱材が用意された。製造ラインにわたって、図4Aによく似た構成のBaslerのCCDカメラを設置した。Cognexが、カメラ及びVision Proの処理ソフトウェアを提供した。試運転を行い、ブランケットを横に細断して端面を生成し、端面の画像をカメラで取り込んだ。処理ソフトウェアは、ブランケット端面の上部、中間部及び下部のROIのための3つの垂直領域を特定するようにプログラミングされた。Vision Proが、時間に対してプロットされた、各ROIに対するB−値を計算した。図6は、特定の製品のブランケット端面に対する、上部(波形T)、中間部(波形N)、下部(波形B)、及び全平均(破線波形)についての、約30分の典型的なB−値の波形を示す。横軸は時間であり、各小幅な増加は1分であり、縦軸は−2から15のB−値のためのスケールである。
本発明の作用の原理及び態様を、好適な実施形態で説明及び図示した。しかしながら、当然のことながら、本発明は、その精神及び範囲から逸脱せずに、具体的に説明及び図示されたもの以外にて実施されてもよい。

Claims (30)

  1. 無機繊維製品の硬化状態を決定する方法であって、
    カラーデジタルカメラを用いて、繊維製品の表面からカラーデジタル画像を取り込むことと、
    前記カラーデジタル画像から、少なくとも1つの関心領域を分析して、前記関心領域に対する表色系変数を取得することと、
    前記関心領域からの前記表色系変数に基づいて、前記繊維製品の硬化度を評価することと、
    を含むことを特徴とする方法。
  2. 前記カラーデジタル画像は、前記繊維製品の切断されていない外面である表面から取り込まれる、請求項1に記載の方法。
  3. 前記カラーデジタル画像は、前記繊維製品の切断面である表面から取り込まれる、請求項1に記載の方法。
  4. 前記切断面は、縦方向と直交する、請求項3に記載の方法。
  5. 前記切断面のZ方向の異なる位置から、少なくとも2つの異なる関心領域を分析することをさらに含む、請求項3に記載の方法。
  6. 前記Z方向の少なくとも3つの関心領域を分析することをさらに含む、請求項5に記載の方法。
  7. 前記切断面のY方向の異なる位置から、少なくとも2つの異なる関心領域を分析することをさらに含む、請求項3に記載の方法。
  8. 前記少なくとも1つの関心領域を分析するステップは、LAB表色系における、(a)A−値、(b)B−値、及び(c)L値のうちの少なくとも1つを取得することを含む、請求項1に記載の方法。
  9. 前記カラーデジタル画像は、前記繊維製品を製造ラインから取り出さずに、オンラインで取り込まれる、請求項1に記載の方法。
  10. 無機繊維製品の硬化状態を決定する方法であって、
    切断された繊維製品の面から、光反射率測定値を取り込むことと、
    切断面の少なくとも1つの関心領域からの前記光反射率測定値を分析することと、
    前記関心領域での前記光反射率測定値に基づいて、前記繊維製品の硬化度を評価することと、
    を含むことを特徴とする方法。
  11. 前記切断面の少なくとも2つの関心領域からの前記光反射率測定値を分析することをさらに含む、請求項10に記載の方法。
  12. 前記少なくとも2つの異なる関心領域は、前記切断面のZ方向の異なる位置から得られる、請求項11に記載の方法。
  13. 前記少なくとも2つの異なる関心領域は、前記切断面のY方向の異なる位置から得られる、請求項11に記載の方法。
  14. 前記光反射率測定値は、デジタルカラー画像である、請求項10に記載の方法。
  15. 前記関心領域を分析するステップは、前記画像の少なくとも1つの表色系変数を取得することを含む、請求項14に記載の方法。
  16. 前記表色系変数を取得するステップは、LAB表色系における、(a)A−値、(b)B−値、及び(c)L値のうちの少なくとも1つを取得することを含む、請求項15に記載の方法。
  17. 前記光反射率測定値は、分光測定値である、請求項10に記載の方法。
  18. 前記光反射率測定値を取り込むステップは、前記繊維製品を製造ラインから取り出さずに、オンラインで実行される、請求項10に記載の方法。
  19. 前記光反射率測定値を取り込むステップは、細断された端面で実行される、請求項18に記載の方法。
  20. 無機繊維製品の硬化状態を決定する方法であって、
    繊維製品の表面から、光反射率測定値を取り込むことと、
    前記表面の少なくとも2つの関心領域からの前記光反射率測定値を分析することと、
    前記少なくとも2つの関心領域での前記光反射率測定値に基づいて、前記繊維製品の硬化度を評価することと、
    を含むことを特徴とする方法。
  21. 前記少なくとも2つの異なる関心領域は、前記表面のZ方向の異なる位置から得られる、請求項20に記載の方法。
  22. 前記少なくとも2つの異なる関心領域は、前記表面のY方向の異なる位置から得られる、請求項20に記載の方法。
  23. 任意の方向の少なくとも3つの関心領域を分析することをさらに含む、請求項20に記載の方法。
  24. 前記光反射率測定値を取り込むステップは、切断された内面で実行される、請求項20に記載の方法。
  25. 前記切断された内面は、細断された端面である、請求項24に記載の方法。
  26. 前記光反射率測定値は、デジタルカラー画像である、請求項20に記載の方法。
  27. 前記関心領域を分析するステップは、各関心領域ごとに少なくとも1つの表色系変数を取得することを含む、請求項26に記載の方法。
  28. 前記表色系変数を取得するステップは、LAB表色系における、(a)A−値、(b)B−値、及び(c)L値のうちの少なくとも1つを取得することを含む、請求項27に記載の方法。
  29. 前記光反射率測定値は、分光測定値である、請求項20に記載の方法。
  30. 前記光反射率測定値を取り込むステップは、前記繊維製品を製造ラインから取り出さずに、オンラインで実行される、請求項20に記載の方法。
JP2014506546A 2011-04-19 2012-04-19 ガラス繊維製品の硬化状態のオンライン決定方法 Active JP6059709B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/089,457 US9128048B2 (en) 2010-12-09 2011-04-19 Method for online determination of cure status of glass fiber products
US13/089,457 2011-04-19
PCT/US2012/034230 WO2012145498A1 (en) 2011-04-19 2012-04-19 Method for online determination of cure status of glass fiber products

Publications (2)

Publication Number Publication Date
JP2014512539A true JP2014512539A (ja) 2014-05-22
JP6059709B2 JP6059709B2 (ja) 2017-01-11

Family

ID=47021038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014506546A Active JP6059709B2 (ja) 2011-04-19 2012-04-19 ガラス繊維製品の硬化状態のオンライン決定方法

Country Status (10)

Country Link
US (1) US9128048B2 (ja)
EP (1) EP2699902B1 (ja)
JP (1) JP6059709B2 (ja)
KR (1) KR101943127B1 (ja)
CN (1) CN103502812B (ja)
AU (1) AU2012245482B2 (ja)
CA (1) CA2833638C (ja)
ES (1) ES2823576T3 (ja)
NZ (1) NZ616726A (ja)
WO (1) WO2012145498A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031775A (ja) * 2016-08-01 2018-03-01 ザ・ボーイング・カンパニーThe Boeing Company 表面及び表面下のfod及び欠陥を高速で検出するためのシステム及び方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9128048B2 (en) 2010-12-09 2015-09-08 Owens Corning Intellectual Capital, Llc Method for online determination of cure status of glass fiber products
US8718969B2 (en) 2011-04-19 2014-05-06 Owens Corning Intellectual Capital, Llc Apparatus and method for continuous thermal monitoring of cure status of glass fiber products
US9067436B2 (en) * 2012-06-29 2015-06-30 Xerox Corporation Method and apparatus for determining a degree of cure in an ultraviolet printing system
EP2947117B2 (en) 2014-05-19 2022-10-26 Rockwool International A/S Analytical binder for mineral wool products
CN106622902B (zh) * 2016-09-30 2020-09-18 鸿利智汇集团股份有限公司 一种紫外led固化方法及固化装置
CN107675354B (zh) * 2017-09-30 2024-01-09 武汉每时工业发展有限公司 静电纺-熔喷-干法成网制备三组分吸音棉的方法及装置
DE102020102800B4 (de) * 2020-02-04 2021-10-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zum Ermitteln einer Applikationseigenschaft und Verfahren zur Herstellung einer Faserpreform
CN112285003B (zh) * 2020-12-28 2021-04-13 浙江可康医疗科技有限公司 一种口罩熔喷布加工质检一体化系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158216A (ja) * 1986-12-22 1988-07-01 Hitachi Chem Co Ltd 積層板の製造法
JPH0641312A (ja) * 1991-07-04 1994-02-15 Railway Technical Res Inst 熱硬化性樹脂の硬化度判定方法
JPH11198139A (ja) * 1998-01-16 1999-07-27 Takuma Co Ltd プリプレグの製造装置及びその製造方法
JP2004069440A (ja) * 2002-08-05 2004-03-04 National Food Research Institute 材料の保持、分析、選別装置、方法および選別物
JP2008506045A (ja) * 2004-07-09 2008-02-28 ジョーンズ マンビル ホルムアルデヒドを含まないガラス繊維製品用の硬化オーブン中における製品の制御
JP2008157634A (ja) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd 樹脂シート材の硬化度測定方法及び樹脂シート材の硬化度測定装置

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2535830A (en) 1948-03-03 1950-12-26 Continental Can Co Cure tester for plastics
US3524983A (en) 1966-09-28 1970-08-18 Sinclair Research Inc Process and apparatus for determining the cure characteristics of materials
US3539316A (en) 1967-07-25 1970-11-10 Owens Corning Fiberglass Corp Method and apparatus for manufacturing fibrous structures
US3791792A (en) 1972-03-29 1974-02-12 Northrop Corp Polymer cure determination method
US4203155A (en) 1977-05-19 1980-05-13 Owens-Corning Fiberglas Corporation Apparatus and method for changing products on a continuous fibrous glass production line
US4363968A (en) 1979-07-19 1982-12-14 Owens-Corning Fiberglas Corporation Method and apparatus for determining the binder content in a fibrous mat
US4399100A (en) 1980-12-29 1983-08-16 Lockheed Corporation Automatic process control system and method for curing polymeric materials
US4609628A (en) 1982-05-03 1986-09-02 Owens-Corning Fiberglas Corporation Method for determining binder content and degree of cure in a fibrous mat
US4582520A (en) 1982-09-30 1986-04-15 Owens-Corning Fiberglas Corporation Methods and apparatus for measuring and controlling curing of polymeric materials
WO1984001430A1 (en) 1982-09-30 1984-04-12 Accuray Corp Methods and apparatus for measuring and controlling curing of polymeric materials
US4554437A (en) 1984-05-17 1985-11-19 Pet Incorporated Tunnel oven
US4769544A (en) 1984-06-01 1988-09-06 Measurex Corporation System and process for measuring fiberglass
US5158720A (en) 1985-12-09 1992-10-27 Mcdonnell Douglas Corporation Method and system for continuous in situ monitoring of viscosity
US5142151A (en) * 1989-11-17 1992-08-25 Allied-Signal Inc. Method for measuring degree of cure of resin in a composite material and process for making the same
US5206918A (en) 1991-04-03 1993-04-27 Kraft General Foods, Inc. Color analysis based upon transformation to spherical coordinates
US5635845A (en) 1992-09-22 1997-06-03 Brigham Young University Detection of cross-linking in pre-cure stage polymeric materials by measuring their resistance
US5432435A (en) 1992-09-22 1995-07-11 Brigham Young University Detection of cross-linking in pre-cure stage polymeric materials by measuring their impedance
US5457319A (en) 1993-06-02 1995-10-10 Alliedsignal Inc. Process for measurement of the degree of cure and percent resin of glass-fiber reinforced epoxy resin prepreg
JPH07156151A (ja) * 1993-12-07 1995-06-20 Hitachi Ltd 成形用金型
US5556578A (en) 1993-12-23 1996-09-17 W. R. Grace & Co.-Conn. Aggregate containing hydration water in spray applied fireproofing
US5633313A (en) 1995-04-24 1997-05-27 Board Of Trustees Operating Michigan State University Method and apparatus for in situ, non-invasive polymer cure determination
US5932665A (en) 1997-02-06 1999-08-03 Johns Manville International, Inc. Polycarboxy polymer acid binders having reduced cure temperatures
US5971249A (en) 1997-02-24 1999-10-26 Quad Systems Corporation Method and apparatus for controlling a time/temperature profile inside of a reflow oven
AU7330898A (en) 1997-05-02 1998-11-27 Rockwool International A/S Preparation of a mineral fibre product
US6501542B2 (en) * 1998-06-30 2002-12-31 Lj Laboratories, Llc Apparatus and method for measuring optical characteristics of an object
US6099162A (en) 1997-10-24 2000-08-08 Hydril Company Resin cure monitor
US6331350B1 (en) 1998-10-02 2001-12-18 Johns Manville International, Inc. Polycarboxy/polyol fiberglass binder of low pH
US6867421B1 (en) * 1998-12-29 2005-03-15 Bayer Materialscience Llc In-line process for monitoring binder dosage and distribution on a surface and apparatus useful therefor
WO2001041993A2 (en) 1999-12-07 2001-06-14 The Boeing Company Double bag vacuum infusion process and system for low cost, advanced composite fabrication
DE19960726C1 (de) 1999-12-16 2001-05-31 Eads Airbus Gmbh Verfahren zur Regelung des Aushärtungsprozesses von einem oder mehreren Faserverbundwerkstoffen
JP4456303B2 (ja) 2000-09-06 2010-04-28 株式会社堀場製作所 pHセンサ
US6533577B2 (en) 2001-02-02 2003-03-18 Cvd Equipment Corporation Compartmentalized oven
US20020119244A1 (en) 2001-02-28 2002-08-29 Rodenbaugh David R. Method and apparatus for monitoring granule coloration on an asphalt-coated sheet
US7063983B2 (en) 2002-05-31 2006-06-20 Owens Corning Fiberglas Technology, Inc. Method for determining cure in a polycarboxylic acid bindered material
FR2842189B1 (fr) 2002-07-12 2005-03-04 Saint Gobain Isover Produit d'isolation notamment thermique et son procede de fabrication
US6699945B1 (en) 2002-12-03 2004-03-02 Owens Corning Fiberglas Technology, Inc. Polycarboxylic acid based co-binder
GB0230043D0 (en) 2002-12-23 2003-01-29 Bae Systems Plc An apparatus for curing a composite laminate
US6884849B2 (en) 2003-02-21 2005-04-26 Owens-Corning Fiberglas Technology, Inc. Poly alcohol-based binder composition
JP2005208046A (ja) * 2003-12-25 2005-08-04 Canon Inc 反応性硬化樹脂の硬化状態測定装置及び方法
US7313270B2 (en) 2004-05-19 2007-12-25 Applied Vision Company, Llc Vision system and method for process monitoring
US7435600B2 (en) * 2004-06-23 2008-10-14 Johns Manville Infrared methods of measuring the extent of cure of a binder in fibrous products
US7642306B2 (en) 2004-06-25 2010-01-05 Johns Manville Control of pH in formaldehyde-free binder systems
US7435444B2 (en) 2004-07-23 2008-10-14 Johns Manville Control of pre-cured product moisture for formaldehyde-free fiberglass products
ES2255860B1 (es) 2004-12-22 2007-05-01 Gamesa Desarrollos Aeronauticos, S.A. Sistema y metodo de monitorizacion del curado de materiales compuestos.
DE102005004903A1 (de) 2005-02-02 2006-08-03 Basf Ag Termisch härtbare Bindemittel, enthaltend einen optischen Aufheller
US20070287018A1 (en) 2006-06-09 2007-12-13 Georgia-Pacific Resins, Inc. Fibrous mats having reduced formaldehyde emissions
US7718214B2 (en) 2006-11-01 2010-05-18 Johns Manville Method for producing fiberglass materials and compositions resulting from the same
US7803309B2 (en) 2006-12-20 2010-09-28 The Boeing Company Infusion monitoring system and method
US8091388B2 (en) 2006-12-28 2012-01-10 Owens Corning Intellectual Capital, Llc Cooling ring for use in manufacturing of fiberglass wool
US7520188B2 (en) 2007-05-24 2009-04-21 Ocv Intellectual Capital, Llc Method for controlling quality of a fiberglass mat
US7991504B2 (en) 2008-07-07 2011-08-02 Johns Manville Method of measuring extent of cure of binder in products
US8864893B2 (en) 2009-10-09 2014-10-21 Owens Corning Intellectual Capital, Llc Bio-based binders for insulation and non-woven mats
US8821625B2 (en) 2010-12-09 2014-09-02 Owens Corning Intellectual Capital, Llc Apparatus and method for re-circulating wash water used in manufacturing glass fiber products
US9128048B2 (en) 2010-12-09 2015-09-08 Owens Corning Intellectual Capital, Llc Method for online determination of cure status of glass fiber products
CN103260773B (zh) 2010-12-09 2016-06-22 欧文斯科宁知识产权资产有限公司 用于控制玻璃纤维绝缘体的制造中的水分的装置和方法
CA2820250A1 (en) 2010-12-09 2012-06-14 Owens Corning Intellectual Capital, Llc Control method for determining cure status of glass fiber products
US20120144870A1 (en) 2010-12-09 2012-06-14 Owens Corning Intellectual Capital, Llc Apparatus and method for controlling moisture in the manufacture of glass fiber insulation
US8718969B2 (en) 2011-04-19 2014-05-06 Owens Corning Intellectual Capital, Llc Apparatus and method for continuous thermal monitoring of cure status of glass fiber products
US20120271445A1 (en) 2011-04-19 2012-10-25 Owens Corning Intellectual Capital, Llc Multivariable predictive control optimizer for glass fiber forming operation
US9211695B2 (en) 2012-05-15 2015-12-15 Palo Alto Research Center Incorporated Low-cost measurement system for photopolymer film polymerization monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63158216A (ja) * 1986-12-22 1988-07-01 Hitachi Chem Co Ltd 積層板の製造法
JPH0641312A (ja) * 1991-07-04 1994-02-15 Railway Technical Res Inst 熱硬化性樹脂の硬化度判定方法
JPH11198139A (ja) * 1998-01-16 1999-07-27 Takuma Co Ltd プリプレグの製造装置及びその製造方法
JP2004069440A (ja) * 2002-08-05 2004-03-04 National Food Research Institute 材料の保持、分析、選別装置、方法および選別物
JP2008506045A (ja) * 2004-07-09 2008-02-28 ジョーンズ マンビル ホルムアルデヒドを含まないガラス繊維製品用の硬化オーブン中における製品の制御
JP2008157634A (ja) * 2006-12-20 2008-07-10 Matsushita Electric Works Ltd 樹脂シート材の硬化度測定方法及び樹脂シート材の硬化度測定装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018031775A (ja) * 2016-08-01 2018-03-01 ザ・ボーイング・カンパニーThe Boeing Company 表面及び表面下のfod及び欠陥を高速で検出するためのシステム及び方法
JP2022058782A (ja) * 2016-08-01 2022-04-12 ザ・ボーイング・カンパニー 表面及び表面下のfod及び欠陥を高速で検出するためのシステム及び方法

Also Published As

Publication number Publication date
ES2823576T3 (es) 2021-05-07
EP2699902B1 (en) 2020-08-05
US9128048B2 (en) 2015-09-08
CA2833638C (en) 2019-05-14
KR101943127B1 (ko) 2019-01-28
AU2012245482A1 (en) 2013-11-07
EP2699902A4 (en) 2016-02-24
US20120268586A1 (en) 2012-10-25
EP2699902A1 (en) 2014-02-26
CA2833638A1 (en) 2012-10-26
NZ616726A (en) 2015-08-28
CN103502812B (zh) 2015-07-15
JP6059709B2 (ja) 2017-01-11
CN103502812A (zh) 2014-01-08
WO2012145498A1 (en) 2012-10-26
KR20140022902A (ko) 2014-02-25
AU2012245482B2 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6059709B2 (ja) ガラス繊維製品の硬化状態のオンライン決定方法
JP6059710B2 (ja) 硬化をモニターするための装置及び方法、並びにガラス繊維成形作業の工程管理
EP1525469B1 (en) Analytical system and method for measuring and controlling a production process
US7354538B2 (en) Container manufacturing inspection and control system
EP1348932B1 (en) Method and apparatus for monitoring wall thickness of blow-molded plastic containers
JP5907573B2 (ja) ガラス繊維製品の硬化状態を判定する管理方法
JP7464689B2 (ja) 複数のガラス容器の壁の厚さを測定するための設備及び方法
JP4772266B2 (ja) 冷却生成物用オンライン測色システム
NZ616917B2 (en) Apparatus and method for cure monitoring and process control in glass fiber forming operation
EP1526377A1 (en) Method for detecting defects in substantially wood-like products, particularly panels and the like, and associated apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160201

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250