JP2014507821A - アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること - Google Patents

アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること Download PDF

Info

Publication number
JP2014507821A
JP2014507821A JP2013538768A JP2013538768A JP2014507821A JP 2014507821 A JP2014507821 A JP 2014507821A JP 2013538768 A JP2013538768 A JP 2013538768A JP 2013538768 A JP2013538768 A JP 2013538768A JP 2014507821 A JP2014507821 A JP 2014507821A
Authority
JP
Japan
Prior art keywords
frequency hopping
precoding vectors
slots
operate
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013538768A
Other languages
English (en)
Other versions
JP5745082B2 (ja
Inventor
ガール、ピーター
チェン、ワンシ
ルオ、シリアン
モントジョ、ジュアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2014507821A publication Critical patent/JP2014507821A/ja
Application granted granted Critical
Publication of JP5745082B2 publication Critical patent/JP5745082B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/713Frequency hopping

Abstract

データ・チャネル送信のために送信ダイバーシティを提供することを含む方法および装置が提供される。対応する信号をプリコードするために、所与のサブフレームの異なるスロットで、異なるプリコーディング・ベクトルが使用されうる。一例において、これらプリコーディング・ベクトルは、直交しうる。さらに、異なるプリコーディング・ベクトルを用いることは、ユーザ機器が、スロットにわたり周波数ホッピングを使用するか否かを示すインジケータを、データ・チャネル送信を受信する基地局から受信することに基づいて決定されうる。さらに、データ・チャネル送信をプリコードするために使用されるプリコーディング・ベクトルは、さらに、あるいは、代替的に、サブフレームにわたって変動しうる。

Description

関連出願に対する相互参照
本願は、本願の譲受人に譲渡された、2010年11月9日に出願された「アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること」(USING PRECODING VECTOR SWITCHING IN UPLINK SHARED CHANNEL)と題された米国仮出願61/411,912と、2011年10月26日に出願された「アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること」(USING PRECODING VECTOR SWITCHING IN UPLINK SHARED CHANNEL)と題された米国出願13/282,406との利益を主張する。これらの内容は、本明細書においてその全体が参照によって明確に組み込まれる。
本開示のある態様は、一般に、無線通信システムに関し、さらに詳しくは、アップリンク通信において送信ダイバーシティを提供することに関する。
無線通信ネットワークは、例えば音声、ビデオ、パケット・データ、メッセージング、ブロードキャスト等のようなさまざまな通信サービスを提供するために広く開発された。これら無線ネットワークは、利用可能なネットワーク・リソースを共有することにより、複数のユーザをサポートすることができる多元接続ネットワークでありうる。このような多元接続ネットワークの例は、符号分割多元接続(CDMA)ネットワーク、時分割多元接続(TDMA)ネットワーク、周波数分割多元接続(FDMA)ネットワーク、直交FDMA(OFDMA)ネットワーク、およびシングル・キャリアFDMA(SC−FDMA)ネットワークを含む。
無線通信ネットワークは、多くのユーザ機器(UE)のための通信をサポートしうる多くの基地局を含みうる。UEは、ダウンリンクおよびアップリンクによって基地局と通信しうる。ダウンリンク(すなわち順方向リンク)は、基地局からUEへの通信リンクを称し、アップリンク(すなわち逆方向リンク)は、UEから基地局への通信リンクを称する。例において、基地局は、多くのダウンリンク・リソースおよび/またはアップリンク・リソースをUEへ割り当てうる。さらに、基地局は、通信スループットを向上するために、UEが、複数の物理アンテナまたは仮想アンテナまたはその他のラジオ・リソースを用いて、ダウンリンクまたはアップリンクによって基地局を通信するため複数のキャリアを確立することを可能にしうる。
以下は、1または複数の態様の基本的な理解を与えるために、そのような態様の簡略化された概要を示す。この概要は、考えられるすべての態様の広範囲な概観ではなく、すべての態様の重要要素や決定的要素を特定することも、何れかまたは全ての態様のスコープを線引きすることも意図されていない。その唯一の目的は、後に示されるより詳細な記載に対する前置きとして、簡略化された形式で1または複数の態様のいくつかの概念を表すことである。
1または複数の態様および対応するその開示にしたがって、本開示は、複数の物理アンテナ・ポートまたは仮想アンテナ・ポートを介して基地局へ送信される通信に送信ダイバーシティ・スキームを適用することに関連するさまざまな態様を記述する。例えば、このようなデータ信号を受信する際における信頼性を向上させるために、1または複数のプリコーディング・ベクトルまたはプリコーディング行列にしたがって、複数のアンテナを介して送信されうる。例では、データ・チャネル送信は、スロットで送信される信号のための送信ダイバーシティを提供するために、サブフレームのスロットにわたって周波数ホッピングを利用しうる。例えば、これは、さらなる送信ダイバーシティを提供するために周波数ホッピングも利用される各スロットのために、異なるプリコーディング・ベクトルを利用することを含みうる。さらに、周波数ホッピングおよび/または異なるプリコーディング・ベクトルを使用することを決定することは、受信されたインジケータに基づきうる。
例によれば、受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定することと、周波数ホッピング・モードで動作するように決定されたか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、第1のサブフレームの1または複数のスロットによって送信することとを含む、無線データ通信のための方法が提供される。
別の例では、送信ダイバーシティを使用して無線送信するための装置が提供される。この装置は、受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定する手段と、この決定する手段が、周波数ホッピング・モードで動作するように決定したか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、第1のサブフレームの1または複数のスロットによって送信する手段とを含む。
さらに、例えば、少なくとも1つのコンピュータに対して、受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定させるためのコードを有する非一時的なコンピュータ読取可能な媒体を含む、送信ダイバーシティを用いて無線送信するためのコンピュータ・プログラム製品が提供される。このコンピュータ読取可能な媒体はさらに、少なくとも1つのコンピュータに対して決定させるためのコードが、周波数ホッピング・モードで動作するように決定したか否かに基づいて、少なくとも1つのコンピュータに対して、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、第1のサブフレームの1または複数のスロットによって送信させるためのコードを含む。
また別の例では、アップリンク送信ダイバーシティをサポートするユーザ機器(UE)が提供される。このUEは、少なくとも1つのプロセッサと、少なくとも1つのプロセッサに接続されたメモリとを含む。少なくとも1つのプロセッサは、受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定し、少なくとも1つのプロセッサが、周波数ホッピング・モードで動作するように決定したか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、第1のサブフレームの1または複数のスロットによって送信するように構成されうる。
前述した目的および関連する目的を達成するために、1または複数の実施形態は、後に十分に記載され、特許請求の範囲において特に指摘されている特徴を備える。以下の記載および添付図面は、1または複数の態様のある例示的な特徴を詳細に記載する。しかしながら、これらの特徴は、さまざまな態様の原理が適用されるさまざまな方式のうちの極く一部しか示しておらず、本説明は、このような態様およびこれらの均等物の全てを含むことが意図されている。
開示された態様は、以下において、同一符号が同一要素を示す添付図面と連携して説明され、開示された態様を、限定することなく例示するために提供される。
図1は、テレコミュニケーション・システムの例を概念的に例示するブロック図である。 図2は、テレコミュニケーション・システムにおけるダウンリンク・フレーム構造の例を概念的に例示するブロック図である。 図3は、本開示の1つの態様にしたがって構成された基地局/eNBとUEとの設計を概念的に例示するブロック図である。 図4Aは、連続的なキャリア・アグリゲーション・タイプを開示する。 図4Bは、不連続なキャリア・アグリゲーション・タイプを開示する。 図5は、MACレイヤ・データ・アグリゲーションを開示する。 図6は、マルチ・キャリア構成においてラジオ・リンクを制御する方法を例示するブロック図である。 図7は、リソース・ブロックの例のブロック図である。 図8は、無線通信の方法のフローチャート表示である。 図9は、無線通信の方法のフローチャート表示である。 図10は、無線通信装置の一部分のブロック図表示である。
添付図面とともに以下に説明する詳細説明は、さまざまな構成の説明として意図されており、本明細書に記載された概念が実現される唯一の構成を表すことは意図されていない。この詳細説明は、さまざまな概念の完全な理解を提供することを目的とした具体的な詳細を含んでいる。しかしながら、これらの概念は、これら具体的な詳細無しで実現されうることが当業者に明らかになるであろう。いくつかの事例では、周知の構成および構成要素が、このような概念を曖昧にすることを避けるために、ブロック図形式で示されている。
本明細書に記載された技術は、例えばCDMA、TDMA、FDMA、OFDMA、SC−FDMA、およびその他のネットワークのようなさまざまな無線通信ネットワークのために使用されうる。用語「ネットワーク」および「システム」は、しばしば置換可能に使用される。CDMAネットワークは、例えば、ユニバーサル地上ラジオ・アクセス(UTRA)、cdma2000等のようなラジオ技術を実現しうる。UTRAは、広帯域CDMA(WCDMA(登録商標))、およびCDMAのその他の変形を含んでいる。cdma2000は、IS−2000規格、IS−95規格、およびIS−856規格をカバーする。TDMAネットワークは、例えばグローバル移動体通信システム(GSM(登録商標))のようなラジオ技術を実現しうる。OFDMAネットワークは、例えば、イボルブドUTRA(E−UTRA)、ウルトラ・モバイル・ブロードバンド(UMB)、IEEE 802.11(Wi−Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash−OFDMA等のようなラジオ技術を実現する。UTRAおよびE−UTRAは、ユニバーサル・モバイル・テレコミュニケーション・システム(UMTS)の一部である。3GPPロング・ターム・イボリューション(LTE)およびLTE−アドバンスト(LTE−A)は、E−UTRAを使用するUMTSの新たなリリースである。UTRA、E−UTRA、UMTS、LTE、LTE−A、およびGSMは、「第3世代パートナシップ計画」(3GPP)と命名された団体からの文書に記載されている。cdma2000およびUMBは、「第3世代パートナシップ計画2」(3GPP2)と命名された団体からの文書に記載されている。本明細書において記載された技術は、他の無線ネットワークおよびラジオ技術と同様に、前述された無線ネットワークおよびラジオ技術のために使用されうる。明確化のために、これら技術のある態様は、以下において、LTEに関して記載されており、LTE用語が以下の説明の多くで使用される。
図1は、LTEネットワークでありうる無線通信ネットワーク100を示す。無線ネットワーク100は、多くのイボルブド・ノードB(eNB)110およびその他のネットワーク・エンティティを含みうる。eNBは、ユーザ機器(UE)と通信する局であり、基地局、ノードB、アクセス・ポイント等とも称されうる。おのおののeNB110は、特定の地理的エリアのために通信有効通信範囲エリアを提供しうる。3GPPでは、用語「セル」は、この用語が使用されるコンテキストに依存して、この有効通信範囲エリアにサービス提供しているeNBおよび/またはeNBサブシステムからなる有効通信範囲エリアを称しうる。
eNBは、マクロ・セル、ピコ・セル、フェムト・セル、および/または、その他のタイプのセルのために、通信有効通信範囲を提供しうる。マクロ・セルは、比較的大きな地理的エリア(例えば、半径数キロメータ)をカバーし、サービス加入を持つUEによる無制限のアクセスを許可しうる。ピコ・セルは、比較的小さな地理的エリアをカバーし、サービス加入を持つUEによる無制限のアクセスを許可しうる。フェムト・セルは、比較的小さな地理的エリア(例えば、住宅)をカバーし、フェムト・セルとの関連を持つUE(例えば、クローズド加入者グループ(CSG)におけるUE、住宅内のユーザのためのUE等)によって制限されたアクセスを許可しうる。マクロ・セルのためのeNBは、マクロeNBと称されうる。ピコ・セルのためのeNBは、ピコeNBと称されうる。フェムト・セルのためのeNBは、フェムトeNBまたはホームeNBと称されうる。図1に示す例では、eNB110a,110b,110cは、マクロ・セル102a,102b,102cそれぞれのためのマクロeNBでありうる。eNB110xは、ピコ・セル102xのためのピコeNBでありうる。そして、eNB110y,110zは、それぞれフェムト・セル102y,102zのためのフェムトeNBである。eNBは、1または複数(例えば3つ)のセルをサポートしうる。
無線ネットワーク100はさらに、中継局をも含みうる。中継局は、データおよび/またはその他の情報の送信を上流局(例えば、eNBまたはUE)から受信し、データおよび/またはその他の情報の送信を下流局(例えば、UEまたはeNB)へ送信する局である。中継局はまた、他のUEのための送信を中継するUEでもありうる。図1に示す例では、中継局110rは、eNB110aとUE120rとの間の通信を容易にするために、eNB110aおよびUE120rと通信しうる。中継局はまた、リレーeNB、リレー等とも称されうる。
無線ネットワーク100はまた、例えば、マクロeNB、ピコeNB、フェムトeNB、リレー等のような異なるタイプのeNBを含むヘテロジニアスなネットワークでもありうる。これら異なるタイプのeNBは、異なる送信電力レベル、異なる有効通信範囲エリア、および、無線ネットワーク100内の干渉に対する異なるインパクトを有しうる。例えば、マクロeNBは、高い送信電力レベル(例えば、20ワット)を有する一方、ピコeNB、フェムトeNB、およびリレーは、低い送信電力レベル(例えば、1ワット)を有しうる。
無線ネットワーク100は、同期動作または非同期動作をサポートしうる。同期動作の場合、eNBは、同じようなフレーム・タイミングを有し、異なるeNBからの送信は、時間的にほぼ同期しうる。非同期動作の場合、eNBは、異なるフレーム・タイミングを有し、異なるeNBからの送信は、時間的に同期しない場合がある。ここに記載された技術は、同期動作および非同期動作の両方のために使用されうる。
ネットワーク・コントローラ130は、eNBのセットに接続しており、これらeNBのための調整および制御を提供しうる。ネットワーク・コントローラ130は、バックホールを介してeNB110と通信しうる。eNB110はまた、例えば、ダイレクトに、または、無線または有線のバックホールを介して非ダイレクトに、互いに通信しうる。
無線ネットワーク100の全体にわたって、多くのUE120が分布しうる。そして、おのおののUEは、固定式または移動式でありうる。UEは、デバイス、端末、移動局、加入者ユニット、局等とも称されうる。UEは、セルラ電話、携帯情報端末(PDA)、無線モデム(または、その他のテザー・デバイス)、無線通信デバイス、ハンドヘルド・デバイス、ラップトップ・コンピュータ、タブレットまたはネットブック・コンピュータ、コードレス電話、無線ローカル・ループ(WLL)局等でありうる。UEは、マクロeNB、ピコeNB、フェムトeNB、リレー等と通信することができうる。図1では、両矢印を持つ実線が、UEと、ダウンリンクおよび/またはアップリンクでUEにサービス提供するように指定されたeNBであるサービス提供eNBとの間の所望の送信を示す。両矢印を持つ破線は、UEとeNBとの間の潜在的な干渉送信を示す。
LTEは、ダウンリンクで周波数分割多重(OFDM)を、アップリンクでシングル・キャリア周波数分割多重(SC−FDM)を利用する。OFDMおよびSC−FDMは、システム帯域幅を、一般にトーン、ビン等とも称される複数(K個)の直交サブキャリアに分割する。おのおののサブキャリアは、データとともに変調されうる。一般に、変調シンボルは、OFDMまたは類似の多重化スキームを用いて周波数領域で、SC−FDMまたは類似の多重化スキームを用いて時間領域で送信される。隣接するサブキャリア間の間隔は固定され、サブキャリアの総数(K個)は、システム帯域幅に依存しうる。例えば、Kは、1.25,2.5,5,10,20メガヘルツ(MHz)のシステム帯域幅についてそれぞれ128,256,512,1024,2048にそれぞれ等しい。システム帯域幅はまた、サブ帯域へ分割されうる。例えば、サブ帯域は、1.08MHzをカバーし、1.25,2.5,5,10,20MHzのシステム帯域幅についてそれぞれ1,2,4,8,16のサブ帯域が存在しうる。
図2は、LTEにおいて使用されるダウンリンク・フレーム構造200を示す。ダウンリンクの送信タイムラインは、例えばラジオ・フレーム202のようなラジオ・フレームの単位に分割されうる。おのおののラジオ・フレームは、(例えば10ミリ秒(ms)のような)予め定められた持続時間を有し、例えばサブフレーム0 204のような、0乃至9のインデクスを付された10個のサブフレームへ分割されうる。各サブフレームは、例えばスロット0 206およびスロット1 208のような2つのスロットを含みうる。したがって、おのおののラジオ・フレームは、0乃至19のインデクスを付された20のスロットを含みうる。おのおののスロットは、例えば、(図2に示すように)通常のサイクリック・プレフィクスの場合、7つのシンボル期間を、拡張されたサイクリック・プレフィクスの場合、6つのシンボル期間のように、L個のシンボル期間を含みうる。おのおののサブフレームでは、2L個のシンボル期間が、0乃至2L−1のインデクスを割り当てられうる。利用可能な時間周波数リソースが、リソース・ブロックへ分割されうる。おのおののリソース・ブロックは、1つのスロットにおいてN個のサブキャリア(例えば、12のサブキャリア)をカバーしうる。
LTEでは、eNBは、eNBにおける各セルについて、一次同期信号(PSS)と二次同期信号(SSS)とを送信しうる。図2に示すように、一次同期信号および二次同期信号は、通常のサイクリック・プレフィクスを持つ各ラジオ・フレームのサブフレーム0,5のおのおのにおいて、シンボル期間6およびシンボル期間5でそれぞれ送信されうる。これら同期信号は、セル検出および獲得のためにUEによって使用されうる。eNBはまた、サブフレーム0のスロット1におけるシンボル期間0乃至3で、物理ブロードキャスト・チャネル(PBCH)を送信しうる。PBCHは、あるシステム情報を伝送しうる。
図2では、最初のシンボル期間の全体が示されているが、eNBは、各サブフレームの最初のシンボル期間で、物理制御フォーマット・インジケータ・チャネル(PCFICH)を送信しうる。PCFICHは、制御チャネルのために使用されるシンボル期間の数(M)を伝えうる。ここで、Mは、1,2または3に等しく、サブフレーム毎に変化しうる。Mはまた、例えば、10未満のリソース・ブロックのように、小さなシステム帯域幅に対して4に等しくなりうる。図2に示す例では、M=3である。eNBは、おのおののサブフレームの最初のM個のシンボル期間(図2では、M=3)において、物理ハイブリッド自動反復/要求(HARQ)インジケータ・チャネル(PHICH)および物理ダウンリンク制御チャネル(PDCCH)を送信しうる。PHICHは、ハイブリッド自動再送信(HARQ)をサポートするための情報を伝送しうる。PDCCHは、UEのためのリソース割当に関する情報と、ダウンリンク・チャネルのための制御情報とを伝送しうる。図2における第1のシンボル期間には図示されていないが、PDCCHとPHICHも第1のシンボル期間に含まれることが理解される。同様に、PHICHとPDCCHは、図2には図示されていないが、第2のシンボル期間と第3のシンボル期間との両方にも存在する。eNBはまた、おのおののサブフレームの残りのシンボル期間で、物理ダウンリンク共有チャネル(PDSCH)を送信しうる。PDSCHは、ダウンリンクで、データ送信のためにスケジュールされたUEのためのデータを伝送しうる。さまざまな信号およびチャネルは、LTE構成に対応しうる。
eNBは、eNBによって使用されるシステム帯域幅の中央(例えば、中央の1.08メガヘルツ(MHz))でPSS、SSS、およびPBCHを送信しうる。eNBは、これらのチャネルが送信される各シンボル期間におけるシステム帯域幅全体でPCFICHおよびPHICHを送信しうる。eNBは、システム帯域幅のある部分において、UEのグループにPDCCHを送信しうる。eNBは、システム帯域幅の特定の部分で、特定のUEに、PDSCHを送信しうる。eNBは、すべてのUEへブロードキャスト方式でPSS、SSS、PBCH、PCFICH、およびPHICHを送信し、PDCCHを、ユニキャスト方式で、特定のUEへ送信しうる。さらに、特定のUEへユニキャスト方式でPDSCHをも送信しうる。
各シンボル期間において、多くのリソース要素が利用可能でありうる。おのおののリソース要素は、1つのシンボル期間において1つのサブキャリアをカバーしうる。そして、実数値または複素数値である1つの変調シンボルを送信するために使用されうる。おのおののシンボル期間において、基準信号のために使用されないリソース要素は、リソース要素グループ(REG)へ構成されうる。おのおののREGは、1つのシンボル期間内に、4つのリソース要素を含みうる。PCFICHは、シンボル期間0内に4つのREGを占有しうる。これらは、周波数にわたってほぼ均等に配置されうる。PHICHは、1または複数の設定可能なシンボル期間内に3つのREGを占有しうる。これらは、周波数にわたって分散されうる。例えば、PHICHのための3つのREGはすべて、シンボル期間0に属しうる。あるいは、シンボル期間0,1,2に分散されうる。PDCCHは、最初のM個のシンボル期間内に、9,18,36,または72のREGを占有しうる。これらは、利用可能なREGから選択されうる。複数のREGからなるある組み合わせが、PDCCHのために許容されうる。
UEは、PHICHとPCFICHとのために使用された特定のREGを認識しうる。UEは、PDCCHを求めて、REGの異なる組み合わせを探索しうる。探索する組み合わせの数は、一般に、PDCCHのために許可された組み合わせの数よりも少ない。eNBは、UEが探索する組み合わせのうちの何れかのUEにPDCCHを送信しうる。
UEは、複数のeNBの有効通信範囲内に存在しうる。これらのeNBのうちの1つが、UEにサービス提供するために選択されうる。サービス提供するeNBは、例えば受信電力、経路喪失、信号対雑音比(SNR)等のようなさまざまな基準に基づいて選択されうる。さらに、アップリンクでeNBと通信するために、UEが、同様のサブフレームおよびスロット構造を利用しうることが認識されるべきである。例えば、UEは、物理アップリンク制御チャネル(PUCCH)、物理アップリンク共有チャネル(PUSCH)、サウンディング基準信号(SRS)、またはその他の通信を、サブフレームの1または複数のスロットにおける1または複数のシンボル期間で送信しうる。
図3は、図1における基地局/eNBのうちの1つ、およびUEのうちの1つでありうる、基地局/eNB110とUE120との設計のブロック図を示す。制約された関連性のシナリオの場合、基地局110は、図1におけるマクロeNB110cでありうる。そして、UE120は、UE120yでありうる。基地局110はさらに、その他いくつかのタイプの基地局でもありうる。基地局110は、アンテナ334a乃至334tを備え、UE120は、アンテナ352a乃至352rを備えうる。
基地局110では、送信プロセッサ320が、データ・ソース312からデータを、コントローラ/プロセッサ340から制御情報を受信しうる。制御情報は、PBCH、PCFICH、PHICH、PDCCH等用でありうる。データは、PDSCH等用でありうる。プロセッサ320は、データ・シンボルおよび制御シンボルをそれぞれ取得するために、データ情報および制御情報を処理(例えば、符号化およびシンボル・マップ)しうる。プロセッサ320はさらに、例えばPSS、SSSのための基準シンボルや、セル特有の基準信号を生成しうる。送信(TX)複数入力複数出力(MIMO)プロセッサ330は、適用可能であれば、データ・シンボル、制御シンボル、および/または、基準シンボルに空間処理(例えば、プリコーディング)を実行し、出力シンボル・ストリームを変調器(MOD)332a乃至332tに提供しうる。おのおのの変調器332は、(例えば、OFDM等のために)それぞれの出力シンボル・ストリームを処理して、出力サンプル・ストリームを得る。おのおのの変調器332はさらに、出力サンプル・ストリームを処理(例えば、アナログ変換、増幅、フィルタ、およびアップコンバート)し、ダウンリンク信号を取得する。変調器332a乃至332tからのダウンリンク信号は、アンテナ334a乃至334tによってそれぞれ送信されうる。
UE120では、アンテナ352a乃至352rが、基地局110からダウンリンク信号を受信し、受信した信号を、復調器(DEMOD)354a乃至354rへそれぞれ提供しうる。おのおのの復調器354は、受信したそれぞれの信号を調整(例えば、フィルタ、増幅、ダウンコンバート、およびデジタル化)して、入力サンプルを取得しうる。おのおのの復調器354はさらに、(例えば、OFDM等のため)これら入力サンプルを処理して、受信されたシンボルを取得しうる。MIMO検出器356は、すべての復調器354a乃至354rから受信したシンボルを取得し、適用可能である場合、これら受信されたシンボルに対してMIMO検出を実行し、検出されたシンボルを提供しうる。受信プロセッサ358は、検出されたシンボルを処理(例えば、復調、デインタリーブ、および復号)し、UE120のために復号されたデータをデータ・シンク360に提供し、復号された制御情報をコントローラ/プロセッサ380へ提供しうる。
アップリンクでは、UE120において、送信プロセッサ364が、データ・ソース362から(例えばPUSCHのための)データを、コントローラ/プロセッサ380から(例えばPUCCHのための)制御情報を、受信して処理しうる。プロセッサ364はさらに、基準信号のための基準シンボルを生成しうる。送信プロセッサ364からのシンボルは、適用可能であれば、TX MIMOプロセッサ366によってプリコードされ、さらに、(例えば、SC−FDM等のために)復調器354a乃至354rによって処理され、基地局110へ送信される。基地局110では、UE120からのアップリンク信号が、アンテナ334によって受信され、変調器332によって処理され、適用可能な場合にはMIMO検出器336によって検出され、さらに、受信プロセッサ338によって処理されて、UE120によって送信された復号されたデータおよび制御情報が取得される。プロセッサ338は、復号されたデータをデータ・シンク339に提供し、復号された制御情報をコントローラ/プロセッサ340へ提供しうる。
コントローラ/プロセッサ340,380は、基地局110およびUE120それぞれにおける動作を指示しうる。基地局110におけるプロセッサ340および/またはその他のプロセッサおよびモジュールは、本明細書で説明された技術のためのさまざまな処理の実行または指示を行いうる。UE120におけるプロセッサ380および/またはその他のプロセッサおよびモジュールは、図6,8,9に例示された機能ブロック、および/または、本明細書に記載された技術のためのその他の処理の実行または実行の指示を行いうる。さらに、例えば、プロセッサ380は、本明細書に記載された態様を実行するために、図10に例示されたモジュールを備えうるか、少なくとも、動作可能に接続されうる。メモリ342,382は、基地局110およびUE120それぞれのためのデータおよびプログラム・コードを格納しうる。これらは、図6,8,9における方法、図10におけるモジュール等を実行するための命令群を含みうる。スケジューラ344は、ダウンリンクおよび/またはアップリンクでのデータ送信のためにUEをスケジュールしうる。
(キャリア・アグリゲーション)
LTEアドバンストUEは、各方向における送信のために使用される、最大で合計100MHzのキャリア・アグリゲーション(5成分のキャリア)に割り当てられた最大20MHz帯域幅のスペクトルを用いうる。一般に、アップリンクではダウンリンクよりも少ないトラフィックしか送信されないので、アップリンク・スペクトル割当は、ダウンリンク・スペクトル割当よりも小さくなりうる。例えば、20MHzがアップリンクに割り当てられた場合、ダウンリンクは100MHzを割り当てられうる。これらの非対称なFDD割当は、スペクトルを節約し、ブロードバンド加入者による一般的に非対称な帯域幅利用のために良く適合しうるが、その他の割当も可能でありうる。
(キャリア・アグリゲーション・タイプ)
LTEアドバンスト・モバイル・システムの場合、2つのタイプのキャリア・アグリゲーション(CA)方法、すなわち連続的なCAと不連続なCAとが提案されている。これらの例は図4Aおよび図4Bに例示されている。利用可能な複数の成分キャリア410が、周波数帯域に沿って分離されている場合、不連続なCAが生じる(図4B)。一方、利用可能な複数の成分キャリア400が、互いに隣接している場合、連続的なCAが生じる(図4A)。図示されるように、例えば、連続的なCAでは、キャリア1 402、キャリア2 404、およびキャリア3 406が、周波数において隣接する。不連続なCAでは、キャリア1 412、キャリア2 414、およびキャリア3 416は、周波数において隣接しない。LTEアドバンストUEの1つのユニットにサービス提供するために、不連続なCAと連続的なCAとの両方が、複数のLTE/成分キャリアをアグリゲートする。
LTEアドバンストUEでは、不連続なCAを用いて、複数のRF受信ユニットおよび複数のFFTが配置されうる。なぜなら、これらキャリアは、周波数帯域に沿って分離されているからである。不連続なCAは、分離された複数のキャリアによるデータ送信を、広い周波数範囲にわたってサポートするので、伝搬経路喪失、ドップラ・シフト、およびその他のラジオ・チャネル特性が、異なる周波数帯域において大きく変動しうる。
したがって、不連続なCAアプローチにおけるブロードバンド・データ送信をサポートするために、異なる成分キャリアのための符号化、変調、および送信電力を適応的に調節する方法が使用されうる。例えば、エンハンスト・ノードB(eNB)が、各成分キャリアにおいて固定された送信電力を有するLTEアドバンスト・システムでは、各成分キャリアの有効な通信範囲またはサポート可能な変調および符号化は異なりうる。
(データ・アグリゲーション・スキーム)
図5は、インターナショナル・モバイル・テレコミュニケーション(IMT)アドバンスト・システムまたは類似のシステムのため、媒体アクセス制御(MAC)レイヤにおける異なる成分キャリア502,504,506からの送信ブロック(TB)(図5)をアグリゲートするデータ・アグリゲーション500を実行することを例示する。MACレイヤ・データ・アグリゲーションを用いて、各成分キャリアは、MACレイヤ内に、自己の独立したハイブリッド自動反復要求(HARQ)エンティティ508,510,512を、物理レイヤ内に、自己の送信設定パラメータ(例えば、送信電力、変調および復号スキーム、および複数アンテナ構成)を有する。同様に、物理レイヤでは、各成分キャリアのために、1つのHARQエンティティ514,516,518が提供されうる。
(制御シグナリング)
一般に、複数の成分キャリアのための制御チャネル・シグナリングを展開するために、3つの異なるアプローチが存在する。第1のアプローチは、LTEシステムにおける制御構造を若干修正することを含む。ここでは、各成分キャリアは、自身の符号化制御チャネルを与えられる。
第2の方法は、異なる成分キャリアの制御チャネルを統合的に符号化することと、これら制御チャネルを、専用の成分キャリア内に配置することと、を含む。複数の成分キャリアのための制御情報は、この専用の制御チャネルにおけるシグナリング・コンテンツとして統合されうる。この結果、CAにおけるシグナリング・オーバヘッドが低減されながら、LTEシステムにおける制御チャネル構造との後方互換性が維持される。
異なる成分キャリアのための複数の制御チャネルが、統合的に符号化され、その後、第3のCA方法によって生成された周波数帯域全体にわたって送信される。このアプローチは、UE側における高い電力消費を犠牲にして、制御チャネルにおける高い復号パフォーマンスおよび低いシグナリング・オーバヘッドを提供する。しかしながら、この方法は、LTEシステムと互換性をもたない。
(ハンドオーバ制御)
CAがIMTアドバンストUEのために使用される場合、複数のセルにわたるハンドオーバ手順中に、送信連続性をサポートすることが望ましい。しかしながら、到来するUEのため、特定のCA構成要件およびサービス品質(QoS)要件を持つ十分なシステム・リソース(例えば、良好な送信品質を持つ成分キャリア)を確保することは、次のeNBのために魅力的でありうる。この理由は、2つ(またはそれ以上)の隣接するセル(eNB)のチャネル条件が、特定のUEについて異なりうるからである。1つのアプローチでは、UEは、各隣接セルにおいて、1つの成分キャリアのパフォーマンスしか測定しない。これは、LTEシステムにおけるものと同様の測定遅れ、複雑さ、およびエネルギ使用量を与える。対応するセルにおけるその他の成分キャリアのパフォーマンスの推定値は、1つの成分キャリアの測定結果に基づきうる。この推定値に基づいて、ハンドオーバ決定および送信構成が決定されうる。
図6は、一例にしたがって、物理チャネルをグループ化することによって、マルチ・キャリア無線通信システムにおいてラジオ・リンクを制御するための方法600を例示する。図示するように、この方法は、602において、少なくとも2つのキャリアからの制御機能を、1つのキャリアにアグリゲートして、一次キャリアと、1または複数の関連付けられた二次キャリアとを生成することを含む。次に、ブロック604において、一次キャリアと、各二次キャリアとのための通信リンクが確立される。その後、通信は、ブロック606において、一次キャリアに基づいて制御される。
(マルチ・キャリア構成における送信ダイバーシティ)
送信ダイバーシティ・スキームは、マルチ・アンテナ無線通信システムにおけるデータ・チャネル送信のために定義されうる。送信ダイバーシティは例えば、フェージング、停電、および回路故障の影響を克服することを支援するために使用されうる。送信ダイバーシティは、ラジオ信号を用いる。このラジオ信号は、独立である2またはそれ以上のソースからの発信されており、かつ、通信するために、同一、または、少なくとも実質的に同一の情報ベアリング信号を用いて変調されている。さらに、ラジオ信号の送信特性が、所与の期間において変動しうる。ダイバーシティ送信を用いる場合における受信信号の向上は、例えば回路停電および故障のみならず、信号のフェージング特性の独立性に依存する。LTEでは、送信ダイバーシティは、2つおよび4つの送信アンテナ構成による送信のために、1つのデータ・ストリームについて定義されうる。例えば、1つの伝送ブロック巡回冗長検査(CRC)が各データ・ストリームのために使用される場合、データ・ストリームは、コードワードとも称されうる。LTEにおける1つのレイヤは、データの1つのストリームを称しうる。送信のランクは、送信されたレイヤの数に等しい。アンテナ・ポートの数は、レイヤの数以上であることができ、これは、コードワードの数以上でありうる。
伝送ブロックに対応する変調シンボルは、コードブック・ベースのプリコーディングを用いて、NL個のレイヤへマップされうる。ここでNは、送信アンテナの数であり、Lは、送信アンテナ毎に送信されるレイヤの数である。レイヤは、アンテナ・ポートへマップされうる。さらに、アンテナ・ポートは、物理アンテナ・ポートおよび/または仮想アンテナ・ポートに対応しうる。LTEでは、最大で4つのアンテナ・ポートと、最大で4つのレイヤとがある。これは、セル内に最大で4つのセル特有基準信号があるという事実と、コードブック・ベースのプリコーディングが、チャネル推定のために、セル特有の基準信号に依存することによる。
ある例において、データ・チャネル通信は、1または複数の送信ダイバーシティ・スキームを用いて送信されうる。例えば、LTEでは、PUSCH通信は、プリコーディング・ベクトル切換(PVS)を用いて送信されうる。例えば、UE120のようなUEは、所与の期間において、信号を送信するために、(例えば、プリコーディング行列における)複数のプリコーディング・ベクトルを利用しうる。一例において、複数のプリコーディング・ベクトルはおのおの、UE120の物理送信アンテナまたは仮想送信アンテナに対応しうる。
UE120は、一例において、以下のようにPVSを使用しうる。UE120は、少なくとも、サブフレームにおける第1のスロット送信のために、第1の複数のプリコーディング・ベクトルを選択しうる一方、恐らくは、同じサブフレームにおける第2のスロット送信のために、第2の複数のプリコーディング・ベクトルを選択する。例えば、UE120が、周波数ホッピングを用いて動作する場合、UE120は、第1の複数のプリコーディング・ベクトルと異なるものとして、第2のスロットのために、第2の複数のプリコーディング・ベクトルを選択あるいは用いることによって、スロット境界を越えてプリコーディング・ベクトルをホップさせうる。UE120が周波数ホッピング無しで動作する場合、UE120は、サブフレーム内の両スロットのために、同じプリコーディング・ベクトルを使用しうる。一例において、送信をプリコードするために、第1および第2の複数のプリコーディング・ベクトルを用いることにより、送信が生じる有効な周波数チャネルは、スロットにわたって独立するようになりうるという意味において、直交化された送信という結果となりうる。この観点において、一例では、プリコーディング・ベクトルは、直交しうる。何れの場合も、一例では、さらなる送信ダイバーシティを提供するために、UE120は、その後のサブフレームにおいて、別の複数のプリコーディング・ベクトルを利用しうる。
周波数ホッピングは、信号を送信するための期間において、1つの周波数におけるキャリアで送信または受信する一方、その後の期間において、別の周波数におけるキャリアで送信または受信する等に対応しうる。本明細書に記載されているように、UE120によって周波数ホッピングのために利用される周波数は、少なくとも、所与のサブフレームにおけるスロット間で異なりうる。これら周波数は、一例において、これら周波数の一部分がオーバラップしないように完全に直交しているか、これら周波数の一部分がオーバラップするように少なくとも部分的に直交している。別の例では、これら周波数は、隣接しうる。
一例において、UE120は、周波数ホッピング・モードで動作するか、または、eNB110またはその他のネットワーク構成要素から非周波数ホッピング・モードで動作するかを示すインジケーションを受信しうる。このインジケーションは、例えばPDCCH、または、UE120によって受信されたその他のチャネル(例えば、システム情報を備えたブロードキャスト情報)のような制御チャネルにおいて、1または複数にビットを備える周波数ホッピング・ビットとして、eNB110によって送信されうる。周波数ホッピング・フィールドを伝送するために、その他のシグナリングもまた同様に(例えば、高次レイヤにおいて)使用されうることが認識されるべきである。一例において、このインジケーションを受信することに少なくとも部分的に基づいて、UE120は、周波数ホッピングを実行することを決定し、所与のサブフレーム内の各スロットのために、プリコーディング・ベクトルを選択しうる。その結果、さらなる送信ダイバーシティを提供するために、スロット境界を越えて異なるプリコーディングとなる。他の例において、このようなインジケーションは、設定、ハードコーディング等で受信されうる。
UE120は、本明細書で説明されているように、開ループ送信ダイバーシティを備えたPVSを使用しうる。開ループ動作の場合、ネットワークは、UE120からのフィードバックに基づいてプリコーダ行列を選択しない。さらに、受信しているeNB110は、プリコーダ構成に関するレポートを、UE120から受信しない。すなわち、所与のサブフレームの1または複数のスロットにおいてUE120によって使用されているプリコーディング・ベクトルは、データ・チャネル(例えばPUSCH)送信を受信しているeNB110に透過的である。したがって、eNB110は、受信したデータ・チャネルを復号および復調するために、2つのプリコーディング・ベクトルを知っている必要はない。その代わりに、UEは、(例えば、予め定義された、または、決定論的な設定にしたがって)前もってプリコーダ行列を選択しうる。
別の例では、UE120は、これを示すインジケーションを受信すると、周波数ホッピングを実行しない(例えば、非周波数ホッピング・モードで動作する)ことを決定しうる。この例において、UE120は、所与のサブフレームの複数のスロットにおいて、送信をプリコードするために、同様のプリコーディング・ベクトルを使用しうる。しかしながら、一例において、UE120は、サブフレーム間で周波数をホップさせうるか、および/または、サブフレームにおいて、異なるおよび/または直交したプリコーディング・ベクトルを使用しうる。その後のサブフレームで通信される送信は、前のサブフレーム送信の再送信でありうるが、異なるプリコーディング・ベクトルおよび/または周波数ホッピングを使用しうる。これは、(例えば、再送信の周波数が、さほど干渉を受けず)再送信の品質を向上しうる。
さらに、UE120は、チャネル相関の尺度(例えば、チャネル相関値)のような動作基準に基づいて、所与のスロットおよび/またはサブフレームのためのプリコーディング・ベクトルを選択しうる。例えば、相関チャネルの場合、UE120は、1つのスロットまたはサブフレームから次のスロットまたはサブフレームへと、使用されるプリコーディング・ベクトルを変更しうる。1つの態様では、前述したように、UE120におけるプリコーディング・ベクトルの選択は、受信しているeNB110に対して透過的でありうる。別の例では、UE120は、例えば固定または設定されたパターン、ランダムなパターン、1または複数の態様に基づく準ランダムなパターン(例えば、UE120の識別子)、等のように、期間にわたる1または複数のパターンにしたがって、プリコーディング・ベクトルを選択しうる。例えば、UE120は、例えば、[1、exp{ja},exp{jb},・・・]のようなプリコーディング・ベクトルを使用しうる。ここで、a,b,・・・は、期間にわたってホップしうるフェーズである。
1つの態様では、UE120がプリコーディング・ベクトルを選択するPVSスキームの結果、アンテナ仮想化となりうる。これによって、UE120は、複数の物理アンテナを介して、単一のアンテナ・ポート・モードで効率的に送信できるようになる。1つの態様では、UE120は、送信ダイバーシティ・ベースの送信のために、フル電力を使用できるようになりうる。1つの態様では、相互直交化によって、例えばフェージング、アンテナ利得不均衡(AGI)等のような、1つのアンテナのアンテナ特性は、他のアンテナからの送信の品質に悪影響を与えない。
図7に示すように、リソース・ブロック(RB)割当700は、(例えば、PDCCHにおける対応する周波数ホッピング・フィールドがゼロに設定されていることにより)PUSCH送信において周波数ホッピングが実行されない場合における例を示す。送信のために使用される周波数リソースは、時間を表す水平軸701と、周波数を表す垂直軸703とに沿ってプロットされている。
RB割当700について見られるように、スロット0 704において割り当てられた送信リソース708と、スロット1 706において割り当てられた送信リソース710とは、(例えば、周波数ホッピングがオフされた場合)同じ周波数を占有しうる。スロット0 704およびスロット1 706は、単一のサブフレームを占有しうる。いくつかの設計では、サブフレームにおけるスロット0 704とスロット1 706との両方におけるPUSCH送信のために、同じプリコーディング・ベクトル[a,b]が使用されうる。1つの態様では、同じプリコーディング・ベクトルを用いることは、改善された受信利得を得るために2スロットにわたってパイロット信号を平均化することを支援しうる。
RB割当720に示すように、PUSCHが周波数ホッピングで送信される場合、リソース・ブロック728は、スロット0 724においてPUSCH送信へ割り当てられ、別の周波数を占有するリソース・ブロック730は、スロット1 726においてPUSCHへ割り当てられる。いくつかの設計では、異なるスロットにおける送信は、スロット0 724では[a,b]、スロット1 726では[c,d]のように、互いに直交する、あるいは、少なくとも異なっているプリコーディング・ベクトルを用いて実行されうる。いくつかの設計では、入力a,b,c,dは、任意の実数または複素数を表しうる。前述したように、RB割当720では、このような周波数ホッピングを用いた結果、スロット0とスロット1との間の周波数リソースの割当が直交化され(オーバラップせず)、さらに、スロットにわたるプリコーディングのためのPVSを用いることが、別のレイヤの送信ダイバーシティを与えることが認識されるだろう。
図8−9は、サブフレームのスロットによるデータ通信を送信することに関連する方法の例を例示する。説明の単純性の目的のために、これら方法が一連の動作として図示および説明されるが、いくつかの動作は、1または複数の実施形態にしたがって、本明細書に図示および記載されたものとは異なる順序で、および/または、本明細書に図示および記載されたものとは異なる動作と同時に、引き起こりうるので、これら方法が、動作の順序によって制限されないことが理解および認識されるべきである。例えば、方法は代わりに、例えば状態図におけるように、一連の相互関連する状態またはイベントとして表されうることが認識されるべきである。さらに、1または複数の実施形態にしたがって方法を実現するために、必ずしも例示されたすべての動作が必要とされる訳ではない。
図8は、無線通信の方法800のフローチャート表示である。
ブロック802では、周波数ホッピング・モードで動作するか否かが決定されうる。例えば、これは、UE120が、周波数ホッピング・モードを使用するか否かを指定するインジケータを(例えば、PDCCH送信を介して、または、1または複数の通信レイヤにおけるその他のシグナリングを介して)eNB110から受信することを含みうる。例えば、これは、周波数ホッピング・モードで動作するか否かを指定する単一ビットを備える、チャネル内のフィールドでありうる。その他の例では、このフィールドは、複数のビットを備えうる。さらに、例えばプロセッサ380のようなプロセッサは、周波数ホッピング・モードで動作するか否かを決定することを実行しうる。この例では、対応するPDCCHにおける単一ビットの周波数ホッピング・フィールドが1に設定されている場合、周波数ホッピングは、PUSCH送信のためにイネーブルされうる。UE120は、その後、第1の周波数において、第1のスロットであるスロット0 724でPUSCHを送信し、その後、第1のスロットと、第2のスロットであるスロット1 726との間のスロット境界において、周波数を切り換え、第2の周波数において、第2のスロットであるスロット1 726でPUSCHを送信しうる。さらに、PUSCH送信のためのプリコーディング・ベクトルは、サブフレーム内でスロットからスロットへとホップしうる。対応するPDCCHにおける単一ビットの周波数ホッピング・フィールドが1に設定されてる場合、PUSCHを送信するために、スロット・レベルにおいて周波数を変更することに加えて、スロット・レベルにおいてPVSベクトルを変更することは、さらなる送信ダイバーシティを提供する。
ブロック804では、周波数ホッピング・モードで動作するか否かが決定されることに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1のサブフレームの1または複数のスロットによって、第1のサブフレームで、第1の複数のデータ送信がなされうる。例えば、UE102が、周波数ホッピング・モードで動作すると決定した場合、第1のサブフレームのスロットのうちの異なるスロットのために、異なるプリコーディング・ベクトルが選択されうる。さらに、この例において、PVSは、スロットを介してデータ送信を行う際に、異なるプリコーディング・ベクトルを適用するために使用されうる。これは、異なるプリコーディング・ベクトルを用いて、第1のサブフレームのスロットにおける異なる周波数による、例えばPUSCH送信のようなデータ送信という結果となりうる。第1のスロットでは、UE120は、第1のプリコーディング・ベクトルを用いて、第1の周波数でPUSCHを送信しうる。次に、第2のスロット切換を伴うスロット境界では、UE120が、第2の周波数にホップするか、および/または、第2のプリコーディング・ベクトルへホップしうる。そして、第2のプリコーディング・ベクトルを用いて、第2の周波数でPUSCHを送信しうる。一例では、プリコーディング・ベクトルは、直交しうるので、異なる周波数で、直交信号を送信するという結果となる。例えば、UE120が、非周波数ホッピング・モードで動作すると決定した場合、使用されるプリコーディング・ベクトルは、第1のサブフレームのスロットにわたって同じでありうる。
オプションとして、ブロック806では、周波数ホッピング・モードで動作すると決定されたか否かに基づいて、第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2のサブフレームの1または複数のスロットを介して、第2の複数のデータ送信が、第2のサブフレームで送信されうる。説明されているように、UE120が周波数ホッピング・モードまたは非周波数ホッピング・モードで動作するかを決定することに基づいて、異なるプリコーディング・ベクトル、直交するプリコーディング・ベクトル、または同じプリコーディング・ベクトルが、第2のサブフレームにおけるスロットにわたって使用されうる。さらに、例えば、サブフレームにわたって使用されるプリコーディング・ベクトルもまた同様に、異なりうるか、および/または、直交しうる。送信することは、例えば、1または複数の送信機によって、あるいは、例えば送信プロセッサ364、TX MIMOプロセッサ366、アンテナ352a等のようなUE120の関連する構成要素によって実行されうる。
図9は、無線通信の方法900のフローチャート表示である。
ブロック902では、周波数ホッピング・モードで動作するか否かが決定されうる。例えば、これは、説明されているように、UE120がeNB110から(例えば、制御チャネル送信を介したビットまたは他のフィールドで)インジケータを受信することに基づきうる。この決定を行うために、プロセッサ380のようなプロセッサが使用されうる。
周波数ホッピング・モードで動作すると決定された場合、オプションとして、ブロック904において、サブフレームのスロットにわたって、信号をプリコードするための複数の異なるプリコーディング・ベクトルが選択されうる。例えば、説明されているように、PVS、(例えば、相関付けられたチャネルのために同様のプリコーディング・ベクトルを用いた)チャネル相関値、1または複数のパターン等を用いることのうちの少なくとも1つによって、部分的に、複数の異なるプリコーディング・ベクトルが選択されうる。何れの場合であれ、所与のスロットのプリコーディング・ベクトルは、サブフレーム内の別のスロットのプリコーディング・ベクトルと直交しうる。説明されているように、これは、送信ダイバーシティを提供しうる。さらに、例えばプロセッサ380のようなプロセッサは、一例において、この選択を実行しうる。
ブロック906では、サブフレームの1または複数のスロットを周波数ホッピングすること、および、1または複数のスロットのおのおのについて複数の異なるプリコーディング・ベクトルを使用することによって、複数のデータ送信が、サブフレームで実施されうる。例えば、複数の異なるプリコーディング・ベクトルは、オプションのブロック904において選択されたものでありうるか、そうでなければ、周波数ホッピングのために取得されたものでありうる。複数の異なるプリコーディング・ベクトルは、おのおののスロットについて変動しうる。そして、一例では、サブフレーム内の他のスロットのプリコーディング・ベクトルと直交しうる。
周波数ホッピング・モードで動作しないと決定された場合、908において、複数のデータ送信が、サブフレームにおける1または複数のスロットにおいて、同じ複数のプリコーディング・ベクトルを用いて、サブフレームで送信されうる。前述されたように、同じ複数のプリコーディング・ベクトルが受信されうるか、そうでない場合には決定されうる。さらに、何れの場合であれ、プリコーディング・ベクトルは、その後のサブフレームにおいて変動しうる。送信することは、例えば、1または複数の送信機によって、あるいは、例えば送信プロセッサ364、TX MIMOプロセッサ366、アンテナ352a等のようなUE120の関連する構成要素によって実行されうる。
図10は、周波数ホッピング・モードで動作すべきか否かを決定するためのモジュール1002と、周波数ホッピング・モードで動作するように決定されたか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、第1のサブフレームの1または複数のスロットを介して送信するためのモジュール1004と、を備える無線通信装置1000の一部のブロック図表示である。装置1000はまた、オプションとして、周波数ホッピング・モードで動作するように決定されたか否かに基づいて、第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2の複数のデータ送信を、第2のサブフレームにおいて、第2のサブフレームの1または複数のスロットを介して送信するためのモジュール1006を含む。この装置1000はさらに、第1の複数のプリコーディング・ベクトルおよび/または第2の複数のプリコーディング・ベクトルを選択するためのオプションのモジュール1008を含む。例えば、モジュール1008は、PVS、チャネル相関値、パターン等に部分的に基づいて選択しうる。さらに、モジュール1008は、説明されているように、周波数ホッピング・モードで動作している場合、第1のサブフレームにおける異なるスロットのために、異なるおよび/または直交する第1の複数のプリコーディング・ベクトルを選択しうる。他の例において、モジュール1004は、1または複数の設定、ハードコーディング等から、このような特性を有する第1の複数のプリコーディング・ベクトルを取得、あるいは、生成しうる。
装置1000はまた、モジュール1002,1004,1006,1008が実現されうるメモリ1010を含んでいる。さらに、または、その代わりに、メモリ1010は、モジュール1002,1004,1006,1008を実行するための命令群、モジュール1002,1004,1006,1008に関連するパラメータ等を含みうる。この装置1000はさらに、本明細書に記載されたさまざまな技術を実施しうる。一例において、装置1000は、本明細書に記載された技術を実行するためのさらなる構成要素(例えば、送信またはその他の通信等を実行するための、関連付けられた命令群を実行するためのプロセッサ380、送信プロセッサ364、TX MIMOプロセッサ366、アンテナ352a等)を備えたUE120を含みうる。
当業者であれば、情報および信号は、さまざまな異なる技術および技法のうちの何れかを用いて表されうることを理解するであろう。例えば、前述された説明を通じて参照されうるデータ、命令群、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場または磁性粒子、光学場または光学粒子、あるいはこれらの任意の組み合わせによって表現されうる。
当業者であればさらに、本明細書の開示に関連して記載されたさまざまな例示的な論理ブロック、モジュール、回路、およびアルゴリズム・ステップが、電子工学ハードウェア、コンピュータ・ソフトウェア、あるいはこれらの組み合わせとして実現されることを理解するであろう。ハードウェアとソフトウェアとの相互置換性を明確に説明するために、さまざまな例示的な構成要素、ブロック、モジュール、回路、およびステップが、これらの機能の観点から一般的に記載された。これら機能がハードウェアとしてまたはソフトウェアとして実現されるかは、特定の用途およびシステム全体に課せられている設計制約に依存する。当業者であれば、特定の用途のおのおのに応じて変化する方式で、前述した機能を実現しうる。しかしながら、この適用判断は、本発明の範囲からの逸脱をもたらすものと解釈されるべきではない。
本明細書の開示に関連して記述されたさまざまな例示的な論理ブロック、モジュール、および回路は、汎用プロセッサ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールド・プログラマブル・ゲート・アレイ(FPGA)あるいはその他のプログラマブル論理デバイス、ディスクリート・ゲートあるいはトランジスタ・ロジック、ディスクリート・ハードウェア構成要素、または前述された機能を実現するために設計された上記何れかの組み合わせを用いて実現または実施されうる。汎用プロセッサは、マイクロ・プロセッサでありうるが、代替例では、このプロセッサは、従来のプロセッサ、コントローラ、マイクロ・コントローラ、またはステート・マシンでありうる。プロセッサは、例えばDSPとマイクロ・プロセッサとの組み合わせ、複数のマイクロ・プロセッサ、DSPコアと連携する1または複数のマイクロ・プロセッサ、またはその他任意のこのような構成であるコンピューティング・デバイスの組み合わせとして実現されうる。
本明細書の開示に関連して説明された方法またはアルゴリズムのステップは、ハードウェアで直接に、プロセッサによって実行されるソフトウェア・モジュールで、またはこの2つの組合せで実施することができる。ソフトウェア・モジュールは、RAMメモリ、フラッシュ・メモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハード・ディスク、リムーバブル・ディスク、CD−ROM、あるいは当該技術分野で知られているその他の型式の記憶媒体に存在しうる。典型的な記憶媒体は、プロセッサが記憶媒体から情報を読み取り、また記憶媒体に情報を書き込むことができるようにプロセッサに結合される。あるいは、この記憶媒体は、プロセッサに統合されうる。このプロセッサと記憶媒体とは、ASIC内に存在しうる。ASICは、ユーザ端末内に存在しうる。あるいは、プロセッサおよび記憶媒体は、ユーザ端末内のディスクリートな構成要素として存在しうる。
1または複数の典型的な設計では、記載された機能は、ハードウェア、ソフトウェア、ファームウェア、あるいはそれらの任意の組み合わせによって実現されうる。ソフトウェアで実現される場合、これら機能は、コンピュータ読取可能な媒体上に格納されるか、あるいは、コンピュータ読取可能な媒体上の1または複数の命令群またはコードとして送信されうる。コンピュータ読取可能な媒体は、コンピュータ記憶媒体と通信媒体との両方を含む。これらは、コンピュータ・プログラムのある場所から別の場所への転送を容易にする任意の媒体を含む。記憶媒体は、汎用コンピュータまたは特別目的コンピュータによってアクセスされうる任意の利用可能な媒体でありうる。限定ではなく、一例として、このようなコンピュータ読取可能な媒体は、RAM、ROM、EEPROM、CD−ROMまたはその他の光ディスク記憶装置、磁気ディスク記憶装置またはその他の磁気記憶装置、あるいは、命令群またはデータ構造の形式で所望のプログラム・コード手段を伝送または格納するために使用され、かつ、汎用コンピュータまたは特別目的コンピュータ、あるいは、汎用プロセッサまたは特別目的プロセッサによってアクセスされうるその他任意の媒体を備えうる。さらに、いかなる接続も、コンピュータ読取可能な媒体として適切に称される。同軸ケーブル、光ファイバ・ケーブル、ツイスト・ペア、デジタル加入者線(DSL)、あるいは、例えば赤外線、無線およびマイクロ波のような無線技術を使用して、ウェブサイト、サーバ、あるいはその他の遠隔ソースからソフトウェアが送信される場合、同軸ケーブル、光ファイバ・ケーブル、ツイスト・ペア、DSL、あるいは、例えば赤外線、無線およびマイクロ波のような無線技術が、媒体の定義に含まれる。本明細書で使用されるディスク(diskおよびdisc)は、コンパクト・ディスク(disc)(CD)、レーザ・ディスク(disc)、光ディスク(disc)、デジタル多用途ディスク(disc)(DVD)、フロッピー(登録商標)ディスク(disk)、およびブルー・レイ・ディスク(disc)を含む。これらdiscは、レーザを用いてデータを光学的に再生する。それに対して、diskは、通常、データを磁気的に再生する。前述した組み合わせもまた、コンピュータ読取可能な媒体の範囲内に含まれるべきである。
本開示の上記記載は、当業者をして、本開示の製造または利用を可能とするように提供される。本開示に対するさまざまな変形は、当業者に容易に明らかであって、本明細書で定義された一般原理は、本開示の精神または範囲から逸脱することなく、他のバリエーションに適用されうる。このように、本開示は、本明細書で示された例および設計に限定されることは意図されておらず、本明細書で開示された原理および新規な特徴に一致した最も広い範囲に相当するとされている。

Claims (48)

  1. 無線データ通信のための方法であって、
    受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定することと、
    前記周波数ホッピング・モードで動作するように決定されたか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、前記第1のサブフレームの1または複数のスロットを介して送信することと、
    を備える方法。
  2. 前記決定することは、前記周波数ホッピング・モードで動作すると決定することを備え、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで異なる、請求項1に記載の方法。
  3. 少なくとも、前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで直交している、請求項2に記載の方法。
  4. 前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換えることをさらに備える、請求項2に記載の方法。
  5. 前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換えることは、前記1または複数のスロットにおける第1のスロットから、前記1または複数のスロットにおける第2のスロットへプリコーディング・ベクトルをホップさせることを備え、
    前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項4に記載の方法。
  6. 少なくともチャネル相関値に基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択すること、をさらに備える請求項2に記載の方法。
  7. 少なくとも1または複数のパターンに基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択すること、をさらに備える請求項2に記載の方法。
  8. 前記決定することは、前記周波数ホッピング・モードで動作しないと決定することを備え、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットにわたって同じである、請求項1に記載の方法。
  9. 前記周波数ホッピング・モードで動作するように決定されたか否かに基づいて、前記第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2の複数のデータ送信を、第2のサブフレームにおいて、前記第2のサブフレームの1または複数のスロットを介して送信すること、をさらに備える請求項1に記載の方法。
  10. 前記第1の複数のデータ送信を実施することと、前記第2の複数のデータ送信を実施することとは、物理アップリンク共有チャネル(PUSCH)を送信することを備える、請求項9に記載の方法。
  11. 前記第1の複数のデータ送信を実施することと、前記第2の複数のデータ送信を実施することとは、前記第2の複数のプリコーディング・ベクトルに直交する前記第1の複数のプリコーディング・ベクトルに基づく直交送信を備える、請求項9に記載の方法。
  12. 前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項1に記載の方法。
  13. 送信ダイバーシティを用いて無線で送信するための装置であって、
    受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定する手段と、
    前記決定する手段が、周波数ホッピング・モードで動作するように決定したか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、前記第1のサブフレームの1または複数のスロットを介して送信する手段と
    を備える装置。
  14. 前記決定する手段は、前記周波数ホッピング・モードで動作すると決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで異なる、請求項13に記載の装置。
  15. 少なくとも、前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで直交している、請求項14に記載の装置。
  16. 前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換える手段、をさらに備える請求項14に記載の装置。
  17. 前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換える手段は、前記1または複数のスロットにおける第1のスロットから、前記1または複数のスロットにおける第2のスロットへプリコーディング・ベクトルをホップさせ、
    前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項16に記載の装置。
  18. 少なくともチャネル相関値に基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択する手段、をさらに備える請求項14に記載の装置。
  19. 少なくとも1または複数のパターンに基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択する手段、をさらに備える請求項14に記載の装置。
  20. 前記決定する手段は、前記周波数ホッピング・モードで動作しないと決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットにわたって同じである、請求項13に記載の装置。
  21. 前記決定する手段が、前記周波数ホッピング・モードで動作するように決定したか否かに基づいて、前記第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2の複数のデータ送信を、第2のサブフレームにおいて、前記第2のサブフレームの1または複数のスロットを介して送信する手段、をさらに備える請求項13に記載の装置。
  22. 前記第1の複数のデータ送信を実施することと、前記第2の複数のデータ送信を実施することとは、物理アップリンク共有チャネル(PUSCH)送信を備える、請求項21に記載の装置。
  23. 前記第1の複数のデータ送信を実施することと、前記第2の複数のデータ送信を実施することとは、前記第2の複数のプリコーディング・ベクトルに直交する前記第1の複数のプリコーディング・ベクトルに基づく直交送信を備える、請求項21に記載の装置。
  24. 前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項13に記載の装置。
  25. 送信ダイバーシティを用いて無線で送信するためのコンピュータ・プログラム製品であって、
    少なくとも1つのコンピュータに対して、受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定させるためのコードと、
    前記少なくとも1つのコンピュータに対して決定させるためのコードが、前記周波数ホッピング・モードで動作するように決定したか否かに基づいて、前記少なくとも1つのコンピュータに対して、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、前記第1のサブフレームの1または複数のスロットを介して送信させるためのコードと、
    を備える非一時的なコンピュータ読取可能な媒体を備える、コンピュータ・プログラム製品。
  26. 前記少なくとも1つのコンピュータに対して決定させるためのコードは、前記周波数ホッピング・モードで動作することを決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで異なる、請求項25に記載のコンピュータ・プログラム製品。
  27. 少なくとも、前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで直交している、請求項26に記載のコンピュータ・プログラム製品。
  28. 前記コンピュータ読取可能な媒体はさらに、前記少なくとも1つのコンピュータに対して、前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換えさせるためのコードを備える、請求項26に記載のコンピュータ・プログラム製品。
  29. 前記少なくとも1つのコンピュータに対して、前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換えさせるためのコードは、前記1または複数のスロットにおける第1のスロットから、前記1または複数のスロットにおける第2のスロットへプリコーディング・ベクトルをホップさせ、
    前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項28に記載のコンピュータ・プログラム製品。
  30. 前記コンピュータ読取可能な媒体はさらに、前記少なくとも1つのコンピュータに対して、少なくともチャネル相関値に基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択させるためのコードを備える、請求項26に記載のコンピュータ・プログラム製品。
  31. 前記コンピュータ読取可能な媒体はさらに、前記少なくとも1つのコンピュータに対して、少なくとも1または複数のパターンに基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択させるためのコードを備える、請求項26に記載のコンピュータ・プログラム製品。
  32. 前記少なくとも1つのコンピュータに対して決定させるためのコードは、前記周波数ホッピング・モードで動作しないことを決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットにわたって同じである、請求項25に記載のコンピュータ・プログラム製品。
  33. 前記コンピュータ読取可能な媒体はさらに、前記少なくとも1つのコンピュータに対して決定させるためのコードが、前記周波数ホッピング・モードで動作するように決定したか否かに基づいて、前記少なくとも1つのコンピュータに対して、前記第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2の複数のデータ送信を、第2のサブフレームにおいて、前記第2のサブフレームの1または複数のスロットを介して送信させるためのコードを備える、請求項25に記載のコンピュータ・プログラム製品。
  34. 前記第1の複数のデータ送信と、前記第2の複数のデータ送信とは、物理アップリンク共有チャネル(PUSCH)送信を備える、請求項33に記載のコンピュータ・プログラム製品。
  35. 前記第1の複数のデータ送信と、前記第2の複数のデータ送信とは、前記第2の複数のプリコーディング・ベクトルに直交する前記第1の複数のプリコーディング・ベクトルに基づく直交送信を備える、請求項33に記載のコンピュータ・プログラム製品。
  36. 前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項25に記載のコンピュータ・プログラム製品。
  37. アップリンク送信ダイバーシティをサポートするユーザ機器(UE)であって、
    少なくとも1つのプロセッサと、
    前記少なくとも1つのプロセッサに接続されたメモリとを備え、
    前記少なくとも1つのプロセッサは、
    受信された周波数ホッピング値に基づいて、周波数ホッピング・モードで動作するか否かを決定し、
    前記少なくとも1つのプロセッサが、前記周波数ホッピング・モードで動作するように決定したか否かに基づいて、第1の複数のプリコーディング・ベクトルを用いて、第1の複数のデータ送信を、第1のサブフレームにおいて、前記第1のサブフレームの1または複数のスロットを介して送信する
    ように構成された、ユーザ機器。
  38. 前記少なくとも1つのプロセッサは、前記周波数ホッピング・モードで動作すると決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで異なる、請求項37に記載のユーザ機器。
  39. 少なくとも、前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットで直交している、請求項38に記載のユーザ機器。
  40. 前記少なくとも1つのプロセッサはさらに、前記1または複数のスロットにおいて、前記第1の複数のプリコーディング・ベクトル間を切り換えるように構成された、請求項38に記載のユーザ機器。
  41. 前記少なくとも1つのプロセッサは、前記1または複数のスロットにおける第1のスロットから、前記1または複数のスロットにおける第2のスロットへプリコーディング・ベクトルをホップさせることによって、前記1または複数のスロットで、前記第1の複数のプリコーディング・ベクトル間を切り換え、
    前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項40に記載のユーザ機器。
  42. 前記少なくとも1つのプロセッサはさらに、少なくともチャネル相関値に基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択するように構成された、請求項38に記載のユーザ機器。
  43. 前記少なくとも1つのプロセッサはさらに、少なくとも1または複数のパターンに基づいて、少なくとも前記第1の複数のプリコーディング・ベクトルを選択するように構成された、請求項38に記載のユーザ機器。
  44. 前記少なくとも1つのプロセッサは、前記周波数ホッピング・モードで動作しないと決定し、
    前記第1の複数のプリコーディング・ベクトルは、前記1または複数のスロットにわたって同じである、請求項37に記載のユーザ機器。
  45. 前記少なくとも1つのプロセッサはさらに、前記少なくとも1つのプロセッサが、前記周波数ホッピング・モードで動作すると決定したか否かに基づいて、前記第1の複数のプリコーディング・ベクトルとは異なる第2の複数のプリコーディング・ベクトルを用いて、第2の複数のデータ送信を、第2のサブフレームにおいて、前記第2のサブフレームの1または複数のスロットを介して送信するように構成された、請求項37に記載のユーザ機器。
  46. 前記第1の複数のデータ送信と、前記第2の複数のデータ送信とは、物理アップリンク共有チャネル(PUSCH)送信を備える、請求項45に記載のユーザ機器。
  47. 前記第1の複数のデータ送信と、前記第2の複数のデータ送信とは、前記第2の複数のプリコーディング・ベクトルに直交する前記第1の複数のプリコーディング・ベクトルに基づく直交送信を備える、請求項45に記載のユーザ機器。
  48. 前記受信された周波数ホッピング値は、対応する物理ダウンリンク制御チャネル(PDCCH)における周波数ホッピング・フィールド内に少なくとも1ビットを備える、請求項37に記載のユーザ機器。
JP2013538768A 2010-11-09 2011-10-27 アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること Expired - Fee Related JP5745082B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US41191210P 2010-11-09 2010-11-09
US61/411,912 2010-11-09
PCT/US2011/058175 WO2012064517A2 (en) 2010-11-09 2011-10-27 Using precoding vector switching in uplink shared channel

Publications (2)

Publication Number Publication Date
JP2014507821A true JP2014507821A (ja) 2014-03-27
JP5745082B2 JP5745082B2 (ja) 2015-07-08

Family

ID=46019601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013538768A Expired - Fee Related JP5745082B2 (ja) 2010-11-09 2011-10-27 アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること

Country Status (6)

Country Link
US (1) US9059756B2 (ja)
EP (1) EP2638641B1 (ja)
JP (1) JP5745082B2 (ja)
KR (1) KR101508116B1 (ja)
CN (1) CN103384966B (ja)
WO (1) WO2012064517A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018128183A1 (ja) * 2017-01-06 2019-11-07 株式会社Nttドコモ ユーザ端末及び無線通信方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113898A1 (en) * 2010-11-09 2012-05-10 Qualcomm Incorporated Using precoding vector switching in uplink control channel
US9008225B2 (en) * 2011-04-19 2015-04-14 Panasonic Intellectual Property Corporation Of America Pre-coding method and pre-coding device
EP3451559B1 (en) * 2011-04-19 2021-07-21 Sun Patent Trust Communication method and device
US8913683B2 (en) * 2011-07-11 2014-12-16 Telefonaktiebolaget L M Ericsson (Publ) Methods of providing channel state information using different pluralities of codewords and related devices and systems
US9585125B2 (en) * 2012-05-03 2017-02-28 Samsung Electronics Co., Ltd Reference signals and common search space for enhanced control channels
CN104144030B (zh) * 2013-05-09 2019-05-10 中兴通讯股份有限公司 数据发送、接收方法、数据发送及接收端
US9642140B2 (en) 2013-06-18 2017-05-02 Samsung Electronics Co., Ltd. Methods of UL TDM for inter-enodeb carrier aggregation
CN104704898B (zh) * 2013-09-27 2018-11-13 华为技术有限公司 通信的方法、用户设备和基站
US9717094B2 (en) * 2013-10-01 2017-07-25 Samsung Electronics Co., Ltd. Method and apparatus for device-to-device communication
EP3176974B1 (en) * 2014-07-31 2022-04-20 LG Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
CN105992221A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 跳频方法及装置
US10624119B2 (en) * 2015-04-08 2020-04-14 Qualcomm Incorporated Transmission scheduling for contention based carrier
WO2018107068A1 (en) 2016-12-09 2018-06-14 Qualcomm Incorporated Uplink transmit diversity and precoding
CN110036574B (zh) * 2016-12-09 2022-04-05 高通股份有限公司 上行链路发射分集和预编码
CN110574411A (zh) * 2017-05-02 2019-12-13 株式会社Ntt都科摩 用户装置及通信方法
CN110582976B (zh) 2017-05-03 2022-05-27 Lg 电子株式会社 无线通信系统中终端和基站发送/接收信号的方法和支持其的设备
US10659207B2 (en) * 2017-05-15 2020-05-19 Qualcomm Incorporated Uplink power control in new radio (NR)
EP4228179A1 (en) * 2017-08-21 2023-08-16 QUALCOMM Incorporated Rate-matching techniques for polar codes
US11451272B2 (en) * 2018-03-21 2022-09-20 Qualcomm Incorporated Precoding patterns for shared channel transmission repetition
US11375501B2 (en) * 2018-11-13 2022-06-28 Qualcomm Incorporated Configuration of sidelink radio resources
WO2024036604A1 (en) * 2022-08-19 2024-02-22 Lenovo (Beijing) Limited Methods and apparatuses for transform precoding on a pusch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法
WO2010016273A1 (ja) * 2008-08-08 2010-02-11 パナソニック株式会社 基地局、及び、端末

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007270227B2 (en) * 2006-07-06 2010-07-29 Lg Electronics, Inc. Method and apparatus for correcting errors in a multiple subcarriers communication system using multiple antennas
KR20080076683A (ko) * 2007-02-14 2008-08-20 엘지전자 주식회사 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기
KR101448653B1 (ko) 2007-10-01 2014-10-15 엘지전자 주식회사 주파수 호핑 패턴 및 이를 이용한 상향링크 신호 전송 방법
US8630240B2 (en) 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
EP2262307A1 (en) * 2008-04-04 2010-12-15 Panasonic Corporation Wireless communication mobile station device and method for using precoding matrix
CN101605375B (zh) * 2008-06-11 2011-02-09 大唐移动通信设备有限公司 一种下行控制信道上的信令发送方法
JP2011525321A (ja) 2008-06-12 2011-09-15 ノーテル・ネットワークス・リミテッド Sc−fdma伝送ダイバーシティのためのシステム及び方法
KR101567078B1 (ko) * 2008-06-26 2015-11-09 엘지전자 주식회사 다중안테나를 이용한 데이터 전송장치 및 방법
KR101417084B1 (ko) * 2008-07-02 2014-08-07 엘지전자 주식회사 상향링크 전송을 위한 기준신호 전송 방법
WO2010013959A2 (en) 2008-07-30 2010-02-04 Lg Electronics Inc. Method and apparatus of receiving data in wireless communication system
KR101589600B1 (ko) * 2008-08-05 2016-01-28 삼성전자주식회사 직교 주파수 분할 다중 접속 방식의 이동통신 시스템에서 하향링크 데이터 채널에 대한 상향링크 응답 채널 송수신 방법 및 장치
WO2010016272A1 (ja) 2008-08-08 2010-02-11 パナソニック株式会社 基地局、及び、端末
KR101603338B1 (ko) 2008-08-11 2016-03-15 엘지전자 주식회사 무선 통신 시스템에서 정보 전송 방법 및 장치
US8213293B2 (en) * 2008-08-13 2012-07-03 Lg Electronics Inc. Method for implementing transmit diversity at a wireless mobile communication system adopting SC-FDMA scheme
KR101565558B1 (ko) * 2008-09-01 2015-11-03 한국전자통신연구원 코드북 생성 장치, 생성 방법 및 데이터 송신 방법
US8483149B2 (en) 2008-12-05 2013-07-09 Nokia Siemens Networks Oy Resource allocation technique for physical uplink control channel blanking
KR101534169B1 (ko) 2008-12-23 2015-07-07 삼성전자 주식회사 주파수 도약 모드로 동작 중인 무선 통신 시스템의 주파수 할당 방법 및 이를 위한 장치
EP2386146A1 (en) 2009-01-06 2011-11-16 Nokia Siemens Networks Oy Single user multiple input multiple output user equipment
US8830918B2 (en) * 2009-03-16 2014-09-09 Interdigital Patent Holdings, Inc. Method and apparatus for performing uplink transmit diversity
EP2755346B1 (en) * 2010-01-11 2016-04-20 Electronics and Telecommunications Research Institute Carrier aggregation in wireless communication system
US8611449B2 (en) * 2010-11-15 2013-12-17 FutureWei Technologes, Inc. Method and apparatus for demodulation of a reference signal
US20120179541A1 (en) * 2011-01-12 2012-07-12 Scentara Oy Ab System and method for providing advertisement in web sites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016183A1 (ja) * 2008-08-05 2010-02-11 パナソニック株式会社 無線通信装置及び無線通信方法
WO2010016273A1 (ja) * 2008-08-08 2010-02-11 パナソニック株式会社 基地局、及び、端末

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"LTE-Advanced SU-MIMO UE Transmission in LTE Release 8 Network", 3GPP TSG RAN WG1 MEETING #57 R1-091773, JPN6014034143, 28 April 2009 (2009-04-28), pages 1 - 2, ISSN: 0002875752 *
"Precoder switching for UL Tx", 3GPP TSG-RAN WG1 #63 R1-106365, JPN6014034144, 10 November 2010 (2010-11-10), pages 1 - 9, ISSN: 0003041746 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018128183A1 (ja) * 2017-01-06 2019-11-07 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7078549B2 (ja) 2017-01-06 2022-05-31 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム

Also Published As

Publication number Publication date
EP2638641A2 (en) 2013-09-18
US20120114014A1 (en) 2012-05-10
WO2012064517A2 (en) 2012-05-18
KR20130086064A (ko) 2013-07-30
KR101508116B1 (ko) 2015-04-07
US9059756B2 (en) 2015-06-16
EP2638641B1 (en) 2018-10-10
JP5745082B2 (ja) 2015-07-08
CN103384966A (zh) 2013-11-06
CN103384966B (zh) 2017-02-15
WO2012064517A3 (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5745082B2 (ja) アップリンク共有チャネルにおいてプリコーディング・ベクトル切換を用いること
US11637603B2 (en) CSI feedback overhead reduction for FD-MIMO
US11395168B2 (en) Dynamic multi-beam transmission for new radio technology multiple-input multiple-output communications
JP6017503B2 (ja) 通知された送信アンテナ数を維持した省エネルギ・モード
KR101845184B1 (ko) 채널 상태 피드백 및 송신 포인트 선택을 위한 csi-rs 의 공동 송신
JP6651532B2 (ja) マシン型通信(mtc)のための空間的および周波数ダイバーシティ設計
KR101775810B1 (ko) Lte 에 있어서 새로운 캐리어 타입 (nct) 에서의 컴팩트한 다운링크 제어 정보 (dci) 포맷에 의한 pdsch 송신 방식들
KR101574481B1 (ko) 채널 상태 정보 피드백을 위한 무효 기준 서브프레임들을 관리하기 위한 시스템 및 방법
KR101602242B1 (ko) 롱 텀 에벌루션에서 강화된 물리적 다운링크 제어 채널의 구조
JP5714730B2 (ja) イボルブド・マルチメディア・ブロードキャスト・マルチキャスト・サービスのための単一キャリア最適化のためのシステムおよび方法
CN112740737B (zh) 探测参考信号(srs)引导的下行链路信道状态信息参考信号(csi-rs)扫描
EP2982159B1 (en) Virtual cell management for interference suppression and interference cancellation in lte
WO2012061410A2 (en) Fdd and tdd carrier aggregation
JP2013537732A (ja) オープン・ループ・ビームフォーミングのための物理リソース・ブロック(prb)バンドリング
WO2012109262A1 (en) Insertion loss improvement in a multi-band device
US20120113898A1 (en) Using precoding vector switching in uplink control channel
JP2015523835A (ja) チャネル品質インジケータ(cqi)を報告するための方法および装置
WO2014172093A1 (en) Enhanced antenna management for uplink operation under carrier aggresgation in lte
TW202215891A (zh) 上行鏈路傳輸分集和預編碼

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150430

R150 Certificate of patent or registration of utility model

Ref document number: 5745082

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees