JP2014239625A - 系統連系電力制御装置および系統連系電力制御方法 - Google Patents

系統連系電力制御装置および系統連系電力制御方法 Download PDF

Info

Publication number
JP2014239625A
JP2014239625A JP2013121902A JP2013121902A JP2014239625A JP 2014239625 A JP2014239625 A JP 2014239625A JP 2013121902 A JP2013121902 A JP 2013121902A JP 2013121902 A JP2013121902 A JP 2013121902A JP 2014239625 A JP2014239625 A JP 2014239625A
Authority
JP
Japan
Prior art keywords
power
voltage
connection point
switch
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121902A
Other languages
English (en)
Other versions
JP6102538B2 (ja
Inventor
俊明 奥村
Toshiaki Okumura
俊明 奥村
綾井 直樹
Naoki Ayai
直樹 綾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013121902A priority Critical patent/JP6102538B2/ja
Publication of JP2014239625A publication Critical patent/JP2014239625A/ja
Application granted granted Critical
Publication of JP6102538B2 publication Critical patent/JP6102538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】ユーザによる操作が不要となり、かつ低コストおよび省スペースで、発電装置からの電力を負荷および電力系統へ供給する。
【解決手段】系統連系PCS101は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力する電力変換部20と、電力変換部20および電力系統の間に接続され、負荷Zとの接続点を含み、電力変換部20によって変換された電力および電力系統から受けた電力の少なくとも一方を接続点を介して負荷Zへ供給する分電部22と、接続点および電力系統を接続するか否かを切替える接続切替部23と、電圧計Mv1,Mv2,Mv3,Mv4と、電流計Ma1,Ma2と、上記電圧計により測定された電圧および上記電流計により測定された電流に基づいて電力変換部20を制御するとともに停電を検知し、停電を検知した場合、接続切替部23を制御して接続点および電力系統を非接続とする制御部151とを備える。
【選択図】図3

Description

本発明は、系統連系電力制御装置および系統連系電力制御方法に関し、特に、発電装置から受ける電力を利用する系統連系電力制御装置および系統連系電力制御方法に関する。
“太陽光発電の賢い使い方”、[online]、[平成25年3月25日検索]、インターネット〈URL:http://www.env.go.jp/earth/info/pv_pamph/full.pdf〉(非特許文献1)には、太陽光発電の賢い使い方として、停電時および災害時の自立運転コンセントの活用方法が記載されている。
たとえば、室内用パワーコンディショナには自立運転コンセントが設置されている。停電時において、ユーザは、主電源ブレーカおよび太陽光発電ブレーカをオフにする。そして、ユーザによる操作によりパワーコンディショナが自立運転モードへ切替えられると、太陽電池からの電力が自立運転コンセントへ供給される。ユーザは、接続機器を自立コンセントへ繋ぐことにより、接続機器を使用することができる。
特許第4524840号公報
"太陽光発電の賢い使い方"、[online]、[平成25年3月25日検索]、インターネット〈URL:http://www.env.go.jp/earth/info/pv_pamph/full.pdf〉
たとえば、このようなパワーコンディショナすなわち電力変換装置では、停電時に電力系統へ電力を供給することが系統連系規程により禁じられている。このため、電力変換装置は、停電時において単独運転を検出すると、たとえば分電装置経由で電力系統へ電力を供給することを停止する。
このため、ユーザは、停電時において、分電装置経由で電力変換装置から電力供給を受けることができず、自立運転コンセント経由で電力を利用することになる。この場合、ユーザは、停電時において電力変換装置から電力供給を受けるために、電力変換装置を自立運転モードへ切替えた後、接続機器を自立運転コンセントへ繋がなければならない。すなわち、ユーザによる「操作」が必要となる。
また、電力変換装置および分電装置において機能的に重複した部品が存在する場合、余分なスペースが必要となる場合がある。
この発明は、上述の課題を解決するためになされたもので、その目的は、ユーザによる操作が不要となり、かつ低コストおよび省スペースで、発電装置からの電力を負荷および電力系統へ供給することが可能な系統連系電力制御装置および系統連系電力制御方法を提供することである。
(1)上記課題を解決するために、この発明のある局面に係わる系統連系電力制御装置は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための接続切替部と、上記発電装置および上記電力変換部間における電流を測定するための第1の電流計と、上記発電装置および上記電力変換部間における電圧を測定するための第1の電圧計と、上記電力変換部および上記接続点間における電流を測定するための第2の電流計と、上記電力変換部および上記接続点間における電圧を測定するための第2の電圧計と、上記電力変換部における電圧を測定するための第3の電圧計と、上記接続切替部に対して上記電力系統側の電圧を測定するための第4の電圧計と、上記第1の電圧計、上記第2の電圧計および上記第3の電圧計により測定された電圧、ならびに上記第1の電流計および上記第2の電流計により測定された電流に基づいて上記電力変換部を制御するとともに、上記第2の電圧計または上記第4の電圧計により測定された電圧に基づいて停電を検知し、停電を検知した場合、上記接続切替部を制御して上記接続点および上記電力系統を非接続とするための制御部とを備える。
(16)上記課題を解決するために、この発明のある局面に係わる系統連系電力制御方法は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、上記第1のスイッチは上記第2のスイッチと比べて高速に開閉可能である接続切替部と、上記電力変換部を制御するとともに、上記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、上記制御部が、停電を検知した場合、上記電力変換部および上記接続点間における電圧、または上記接続切替部に対して上記電力系統側の電圧の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出するステップと、上記制御部が、オン状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記停電時ゼロクロスタイミングで上記第1のスイッチをオフするステップとを含む。
(17)上記課題を解決するために、この発明の他の局面に係わる系統連系電力制御方法は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、上記第1のスイッチは上記第2のスイッチと比べて高速に開閉可能である接続切替部と、上記電力変換部を制御するとともに、上記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、上記制御部が、上記接続切替部に対して上記電力系統側の電圧に基づいて復電を検知し、復電を検知した場合、上記接続切替部に対して上記電力系統側の電圧の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出するステップと、上記制御部が、オフ状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記復電時ゼロクロスタイミングで上記第1のスイッチをオンするステップとを含む。
本発明によれば、ユーザによる操作が不要となり、かつ低コストおよび省スペースで、発電装置からの電力を負荷および電力系統へ供給することができる。
図1は、本発明の第1の実施の形態に係る系統連系システムの構成を示す図である。 図2は、本発明の第1の実施の形態に係る系統連系PCSの比較例としての電力変換装置および分電装置の構成を示す図である。 図3は、本発明の第1の実施の形態に係る系統連系PCSの構成を示す図である。 図4は、本発明の第1の実施の形態に係る電力変換部の構成を示す図である。 図5は、本発明の第1の実施の形態に係る分電部の構成を示す図である。 図6は、本発明の第2の実施の形態に係る系統連系PCSの構成を示す図である。 図7は、本発明の第2の実施の形態に係る系統連系PCSにおける制御部が系統停電時において無瞬断で電気的な接続を切替える際の動作手順を定めたフローチャートである。 図8は、本発明の第2の実施の形態に係る系統連系PCSにおける制御部が系統復電時において無瞬断で電気的な接続を切替える際の動作手順を定めたフローチャートである。 図9は、本発明の第3の実施の形態に係る系統連系PCSの構成を示す図である。 図10は、本発明の第4の実施の形態に係る系統連系PCSの比較例としての分電装置の構成を示す図である。 図11は、本発明の第4の実施の形態に係る系統連系PCSの構成を示す図である。 図12は、本発明の第4の実施の形態に係る分電部の構成を示す図である。 図13は、本発明の第5の実施の形態に係る系統連系システムの構成を示す図である。 図14は、本発明の第5の実施の形態に係る系統連系PCSの構成を示す図である。 図15は、本発明の第6の実施の形態に係る系統連系システムの構成を示す図である。 図16は、本発明の第6の実施の形態に係る系統連系PCSの構成を示す図である。 図17は、本発明の第6の実施の形態に係る電力変換部の構成を示す図である。 図18は、本発明の第7の実施の形態に係る系統連系システムの構成を示す図である。 図19は、本発明の第7の実施の形態に係る系統連系PCSの構成を示す図である。
最初に、本発明の実施形態の内容を列記して説明する。
(1)上記課題を解決するために、この発明のある局面に係わる系統連系電力制御装置は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための接続切替部と、上記発電装置および上記電力変換部間における電流を測定するための第1の電流計と、上記発電装置および上記電力変換部間における電圧を測定するための第1の電圧計と、上記電力変換部および上記接続点間における電流を測定するための第2の電流計と、上記電力変換部および上記接続点間における電圧を測定するための第2の電圧計と、上記電力変換部における電圧を測定するための第3の電圧計と、上記接続切替部に対して上記電力系統側の電圧を測定するための第4の電圧計と、上記第1の電圧計、上記第2の電圧計および上記第3の電圧計により測定された電圧、ならびに上記第1の電流計および上記第2の電流計により測定された電流に基づいて上記電力変換部を制御するとともに、上記第2の電圧計または上記第4の電圧計により測定された電圧に基づいて停電を検知し、停電を検知した場合、上記接続切替部を制御して上記接続点および上記電力系統を非接続とするための制御部とを備える。
このように、1つの系統連系電力制御装置が電力変換装置と分電装置とを備える構成により、電力変換装置および分電装置で用いる部品を削減しやすくなるので、低コストおよび省スペースで発電装置からの電力を負荷および電力系統へ供給することができる。
また、系統連系電力変換装置では、系統停電時においても、発電装置からの発電電力を負荷に対して継続して供給することができるので、ユーザによる電力プラグの繋ぎ変え等のユーザによる操作を不要とすることができる。
(2)好ましくは、上記接続切替部は、第1のスイッチと第2のスイッチとを含み、上記第1のスイッチは上記第2のスイッチと比べて高速に開閉可能である。
このような構成により、系統連系電力変換装置では、たとえば信頼性を高めるために応答速度が遅い機械式接点のリレーを設ける必要がある状況においても、接続切替部の応答速度を速くすることができる。これにより、接続点と電力系統との接続および非接続を所望のタイミングでより確実に切替えることができる。
(3)より好ましくは、上記制御部は、停電を検知した場合、上記第2の電圧計または上記第4の電圧計により測定された電圧の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出し、上記制御部は、上記接続切替部において、オン状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記停電時ゼロクロスタイミングで上記第1のスイッチをオフする。
このように、停電時ゼロクロスタイミングで接続点および電力系統を非接続とする構成により、系統停電時において、電圧の瞬断および電圧の位相の急激な変化等により歪みを有する電力が負荷に供給されることを防止することができる。これにより、負荷へ与える悪影響を抑えることができる。
(4)より好ましくは、上記電力変換部は、第1の電圧および第2の電圧がそれぞれ出力される第1出力端子および第2出力端子を有し、上記分電部は、上記接続点として、上記第1の電圧が供給される第1接続点と、上記第2の電圧が供給される第2接続点と、上記第1の電圧および上記第2の電圧の中間電圧が供給される中間接続点とを含み、上記負荷は、上記第2接続点および上記中間接続点の間に接続され、上記系統連系電力制御装置は、さらに、上記第2の電流計および上記第2の電圧計と上記第1接続点および上記中間接続点との間に接続され、上記第2のスイッチと比べて高速に切替え可能であり、上記第1出力端子と上記第1接続点とが接続された状態から上記第1出力端子と上記中間接続点とが接続された状態へ切替えるための出力切替部を備える。
このような構成により、系統連系電力変換装置では、出力切替部の応答速度を速くすることができるので、第1出力端子と第1接続点とが接続された状態から第1出力端子と中間接続点とが接続された状態へ切替える動作を所望のタイミングで確実に行うことができる。
これにより、第2接続点および中間接続点の間に接続された負荷において、電力変換部から直接電圧を受ける状態へ短時間で遷移させることができる。
(5)より好ましくは、上記出力切替部は、上記第1出力端子と上記中間接続点とが接続された状態から上記第1出力端子と上記第1接続点とが接続された状態へ切替える。
このような構成により、系統連系電力変換装置では、出力切替部の応答速度を速くすることができるので、第1出力端子と中間接続点とが接続された状態から第1出力端子と第1接続点とが接続された状態へ切替える動作を所望のタイミングで確実に行うことができる。
これにより、第2接続点および中間接続点の間に接続された負荷において、電力変換部から直接電圧を受けない状態へ短時間で遷移させることができる。
(6)より好ましくは、上記制御部は、上記接続切替部における上記第1のスイッチをオフするタイミングで、上記出力切替部を制御して上記第1出力端子と上記第1接続点とが接続された状態から上記第1出力端子と上記中間接続点とが接続された状態へ切り替えるとともに、上記電力変換部を制御して、上記第1出力端子から出力される電圧を上記第1の電圧から上記中間電圧へ切り替える。
このような構成により、第1のスイッチが接続点および電力系統を非接続とするタイミングの前後において、無瞬断かつ自動で中間接続点へ中間電圧を継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
(7)より好ましくは、上記制御部は、上記第4の電圧計により測定された電圧に基づいて復電を検知し、復電を検知した場合、上記第4の電圧計により測定された電圧の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出し、上記制御部は、上記接続切替部において、オフ状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記復電時ゼロクロスタイミングで上記第1のスイッチをオンする。
このように、復電時ゼロクロスタイミングで接続点および電力系統を接続する構成により、系統復電時において、電圧の瞬断および電圧の位相の急激な変化等により歪みを有する電力が負荷に供給されることを防止することができる。これにより、負荷へ与える悪影響を抑えることができる。
(8)より好ましくは、上記制御部は、上記接続切替部における上記第1のスイッチをオンするタイミングで、上記出力切替部を制御して上記第1出力端子と上記中間接続点とが接続された状態から上記第1出力端子と上記第1接続点とが接続された状態へ切り替えるとともに、上記電力変換部を制御して、上記第1出力端子から出力される電圧を上記中間電圧から上記第1の電圧へ切り替える。
このような構成により、第1のスイッチが接続点および電力系統を接続するタイミングの前後において、無瞬断かつ自動で中間接続点へ中間電圧を継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
(9)より好ましくは、上記制御部は、復電を検知した場合、上記第2のスイッチをオンし、上記制御部は、上記第2のスイッチをオンした後、検出した上記復電時ゼロクロスタイミングで上記第1のスイッチをオンする。
このように、第2のスイッチをオンしてから第1のスイッチをオンする構成により、接続点および電力系統を復電時ゼロクロスタイミングで確実に接続することができる。
(10)好ましくは、上記電力変換部は、第1の電圧および第2の電圧がそれぞれ出力される第1出力端子および第2出力端子を有し、上記分電部は、上記接続点として、上記第1の電圧が供給される第1接続点と、上記第2の電圧が供給される第2接続点と、上記第1の電圧および上記第2の電圧の中間電圧が供給される中間接続点とを含み、上記負荷は、上記第2接続点および上記中間接続点の間に接続され、上記系統連系電力制御装置は、さらに、上記第2の電流計および上記第2の電圧計と上記第1接続点および上記中間接続点との間に接続され、上記第1出力端子と上記第1接続点とが接続された状態から上記第1出力端子と上記中間接続点とが接続された状態へ切替えるための出力切替部を備え、上記制御部は、停電を検知した場合、上記出力切替部を制御して上記第1出力端子と上記第1接続点とが接続された状態から上記第1出力端子と上記中間接続点とが接続された状態へ切り替えるとともに、上記電力変換部を制御して、上記第1出力端子から出力される電圧を上記第1の電圧から上記中間電圧へ切り替える。
このような構成により、接続切替部が接続点および電力系統を非接続とするタイミングの前後において、中間接続点へ中間電圧を継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
(11)好ましくは、上記系統連系電力制御装置は、さらに、上記接続点に対して上記電力系統側の電流を測定するための第3の電流計と、上記接続点に対して上記負荷側の電流を測定するための1または複数の負荷電流計とを備え、上記制御部は、上記第2の電圧計または上記第4の電圧計により測定された電圧、ならびに上記第2の電流計、上記第3の電流計および上記1または複数の負荷電流計により測定された電流に基づいて、上記電力変換部が上記接続点側へ供給する供給電力、自己の上記系統連系電力制御装置が上記電力系統へ供給する売電電力および上記負荷が消費する消費電力をそれぞれ演算する。
このような構成により、供給電力、売電電力および消費電力の演算処理を系統連系電力変換装置において行うことができるので、たとえば系統連系電力変換装置が設置された家庭または事業所において入出力されるエネルギーの収支に関する情報を一元的に管理することができ、また当該情報をユーザに対して提示することができる。
(12)より好ましくは、上記系統連系電力制御装置は、さらに、上記接続点および上記負荷を接続するか否かを切替えるための負荷接続切替部を備え、上記制御部は、演算した上記供給電力、上記売電電力および上記消費電力に基づいて、上記負荷接続切替部を制御して上記接続点と上記負荷との接続および非接続を切替える。
このような構成により、供給電力、売電電力および消費電力を総合的に判断し、判断結果に基づいて接続点と負荷との接続および非接続を切替えることができるので、発電装置における発電電力の変動に基づく供給電力の変化に応じて消費電力を調整することができる。
(13)より好ましくは、上記負荷接続切替部は、複数の負荷にそれぞれ対応して設けられ、各上記負荷接続切替部には優先度が付与されており、上記制御部は、演算した上記供給電力、上記売電電力および上記消費電力の大小関係、ならびに上記優先度に基づいて上記各負荷接続切替部の接続状態および切断状態を切替える。
このような構成により、供給電力、売電電力および消費電力の大小関係、ならびに優先度を総合的に判断し、判断結果に基づいて各負荷接続切替部の接続状態を切替えることができるので、消費電力をきめ細かく調整することができる。
(14)好ましくは、上記電力変換部は、上記発電装置から受けた電力を変換し、変換した電力の一部または全部をエネルギーとして蓄電装置に蓄電し、上記電力変換部は、上記蓄電装置に蓄電したエネルギーに基づく電力を上記電力系統へ出力し、上記系統連系電力制御装置は、さらに、上記接続点に対して上記電力系統側の電流を測定するための第3の電流計と、上記電力変換部における電流を測定するための第6の電流計と、上記電力変換部および上記蓄電装置間における電流を測定するための第7の電流計と、上記電力変換部および上記蓄電装置間における電圧を測定するための第5の電圧計とを備え、上記制御部は、上記第1の電圧計、上記第2の電圧計、上記第3の電圧計、上記第4の電圧計および上記第5の電圧計により測定された電圧、ならびに上記第1の電流計、上記第2の電流計、上記第3の電流計、上記第6の電流計および上記第7の電流計により測定された電流に基づいて上記電力変換部を制御する。
このような構成により、蓄電装置をエネルギーのバッファとして使用することができるので、発電装置における発電電力の変動に基づく供給電力の変化を平滑化することができる。これにより、停電時においても、負荷に対して電力を安定して供給することができる。
(15)好ましくは、上記系統連系電力制御装置は、さらに、上記接続点に対して上記電力系統側の電流を測定するための第3の電流計と、他の装置へ情報を送信するための送信部とを備え、上記制御部は、上記第2の電圧計または上記第4の電圧計により測定された電圧、および上記第3の電流計により測定された電流に基づいて、自己の上記系統連系電力制御装置が上記電力系統へ供給する売電電力を演算し、上記制御部は、演算した上記売電電力を上記送信部経由で他の装置へ送信する。
これにより、系統連系電力変換装置において売買電力を積算することができるので、売電電力を測定するための装置を不要とすることができる。また、たとえば、送信部経由で売電電力を電力事業者へ通知することができるので、各家庭または各事業所へ個別に訪問して売電電力を検針する手間を省くことができる。
(16)上記課題を解決するために、この発明のある局面に係わる系統連系電力制御方法は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、上記第1のスイッチは上記第2のスイッチと比べて高速に開閉可能である接続切替部と、上記電力変換部を制御するとともに、上記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、上記制御部が、停電を検知した場合、上記電力変換部および上記接続点間における電圧、または上記接続切替部に対して上記電力系統側の電圧の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出するステップと、上記制御部が、オン状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記停電時ゼロクロスタイミングで上記第1のスイッチをオフするステップとを含む。
このように、1つの系統連系電力制御装置が電力変換装置と分電装置とを備える構成により、電力変換装置および分電装置で用いる部品を削減しやすくなるので、低コストおよび省スペースで発電装置からの電力を負荷および電力系統へ供給することができる。
また、系統連系電力変換装置では、系統停電時においても、発電装置からの発電電力を負荷に対して継続して供給することができるので、ユーザによる電力プラグの繋ぎ変え等のユーザによる操作を不要とすることができる。
また、このように、停電時ゼロクロスタイミングで接続点および電力系統を非接続とする構成により、系統停電時において、電圧の瞬断および電圧の位相の急激な変化等により歪みを有する電力が負荷に供給されることを防止することができる。これにより、負荷へ与える悪影響を抑えることができる。
(17)上記課題を解決するために、この発明の他の局面に係わる系統連系電力制御方法は、発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、上記電力変換部および上記電力系統の間に接続され、負荷との接続点を含み、上記電力変換部によって変換された電力および上記電力系統から受けた電力の少なくとも一方を上記接続点を介して上記負荷へ供給するための分電部と、上記接続点および上記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、上記第1のスイッチは上記第2のスイッチと比べて高速に開閉可能である接続切替部と、上記電力変換部を制御するとともに、上記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、上記制御部が、上記接続切替部に対して上記電力系統側の電圧に基づいて復電を検知し、復電を検知した場合、上記接続切替部に対して上記電力系統側の電圧の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出するステップと、上記制御部が、オフ状態にある上記第1のスイッチおよびオン状態にある上記第2のスイッチのうち、検出した上記復電時ゼロクロスタイミングで上記第1のスイッチをオンするステップとを含む。
このように、1つの系統連系電力制御装置が電力変換装置と分電装置とを備える構成により、電力変換装置および分電装置で用いる部品を削減しやすくなるので、低コストおよび省スペースで発電装置からの電力を負荷および電力系統へ供給することができる。
また、系統連系電力変換装置では、系統停電時においても、発電装置からの発電電力を負荷に対して継続して供給することができるので、ユーザによる電力プラグの繋ぎ変え等のユーザによる操作を不要とすることができる。
また、このように、復電時ゼロクロスタイミングで接続点および電力系統を接続する構成により、系統復電時において、電圧の瞬断および電圧の位相の急激な変化等により歪みを有する電力が負荷に供給されることを防止することができる。これにより、負荷へ与える悪影響を抑えることができる。
以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第1の実施の形態>
[構成および基本動作]
図1は、本発明の第1の実施の形態に係る系統連系システムの構成を示す図である。
図1を参照して、系統連系システム201は、家屋内および事業所等に構築され、発電装置11と、系統連系PCS(系統連系電力制御装置)101と、101V重要負荷ZAと、101V負荷ZBと、202V負荷ZCと、売電電力計12と、買電電力計13と、トランスT1とを備える。トランスT1は、1次側コイルL1と2次側コイルL2とを含む。
系統連系PCS101は、発電装置11から受けた電力を変換し、変換した電力および電力系統からトランスT1経由で受ける電力を101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCへ分電することが可能である。
より詳細には、発電装置11は、ここでは、太陽電池モジュール14と、接続箱15とを含む。発電装置11は、風力発電装置等の他の発電可能な装置であってもよい。
太陽電池モジュール14は、たとえば、複数組の太陽電池パネルにより構成される。各組の太陽電池パネルは、たとえば、太陽光を受けると、受けた太陽光のエネルギーを直流電力に変換し、変換した直流電力を接続箱15へ出力する。
接続箱15は、太陽電池モジュール14から受けた直流電力を電力線PL1,PL2を介して系統連系PCS101へ出力する。この際、接続箱15は、たとえば、太陽電池パネルから直流電力を組ごとに受ける。そして、接続箱15は、太陽電池パネルの組間で電流が逆流してしまうことを防止する。
より詳細には、各組の太陽電池パネルの配置方向、各組に含まれる太陽電池パネルの枚数および日照条件等に応じて、各組の太陽電池パネルから出力される電圧は一般に異なる。接続箱15は、高い電圧を発生する組の太陽電池パネルから低い電圧を発生する組の太陽電池パネルへ電流が逆流してしまうことを、たとえばダイオードを用いて防止する。
また、接続箱15は、たとえば昇圧回路を用いて、低い電圧を発生する組の太陽電池パネルの出力電圧を昇圧することにより、太陽電池パネルの組間で電流が逆流してしまうことを防止してもよい。
また、接続箱15は、たとえば断路機を含む。これにより、太陽電池モジュール14と接続箱15とを電気的に切り離すことができるので、接続箱および系統連系PCS101のメンテナンス時における感電の発生を防ぐことができる。
系統連系PCS101は、接続箱15から受けた直流電力を電力系統へ供給可能な電力、具体的には電圧202ボルトおよび周波数60ヘルツの交流電力へ変換し、変換した交流電力を101V重要負荷ZA、101V負荷ZB、202V負荷ZCおよびトランスT1へ出力する。
なお、系統連系PCS101は、たとえば東日本地域に設置する場合、電圧202ボルトおよび周波数50ヘルツの交流電力へ変換してもよい。以下では、交流電力、交流電圧および交流電流の周波数が60ヘルツである場合について説明する。
101V重要負荷ZAは、具体的には、コンピュータおよび録画装置等の常時給電が要求される装置であって、電圧101ボルトの交流電力を用いて動作する装置である。また、図1では、1つの101V重要負荷ZAを代表的に示しているが、さらに多数の101V重要負荷ZAが設けられてもよい。
101V負荷ZBは、電圧101ボルトの交流電力を用いて動作する装置であり、停電時には、動作停止が許容される装置である。また、図1では、1つの101V負荷ZBを代表的に示しているが、さらに多数の101V負荷ZBが設けられてもよい。
202V負荷ZCは、エアコン等の電圧202ボルトの交流電力を用いて動作する装置であり、停電時には、動作停止が許容される装置である。また、図1では、1つの202V負荷ZCを代表的に示しているが、さらに多数の202V負荷ZCが設けられてもよい。以下、101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCの各々を負荷Zと称する場合がある。
なお、電圧101ボルトは、電気事業法施工規則により規定された標準電圧であり、維持すべき値として101±6ボルトが規定される。また、電圧202ボルトは、電気事業法施工規則により規定された標準電圧であり、維持すべき値として202±20ボルトが規定される。
より詳細には、系統連系PCS101は、接続箱15から受けた直流電力を電圧202ボルトの交流電力へ変換し、当該交流電力を電力線PL14,PL15経由で202V負荷ZCへ出力し、かつ電力線PL3,PL4経由でトランスT1へ出力する。
トランスT1は、たとえば、系統連系PCS101から1次側コイルL1において受けた電圧202ボルトの交流電力を2次側コイルL2において電圧6.6キロボルトの交流電力へ変換し、変換した交流電力を電力系統へ供給する。
また、トランスT1は、たとえば、1次側コイルL1の中間点に接続された電力線である中性線PLnにおいて、電力線PL3,PL4の電圧を二分する。すなわち、電力線PL3および中性線PLn間の電圧を示す(vA−vN)は、101Vとなる。また、中性線PLnおよび電力線PL4間の電圧を示す(vN−vB)は、101Vとなる。
系統連系PCS101は、たとえば、中性線PLおよび電力線PL4間の電圧101ボルトの交流電力を101V重要負荷ZAへ出力する。また、系統連系PCS101は、たとえば、PL3および中性線PLn間の電圧101ボルトの交流電力を101負荷ZBへ出力する。
すなわち、この場合、系統連系PCS101は、発電装置11により発電された電力の一部を負荷Zへ供給し、かつ残りの電力を電力線PL3,PL4経由で電力系統へ売電していることになる。
また、系統連系PCS101は、電力系統から電力を買電し、買電した電力を負荷Zへ供給することも可能である。
より詳細には、トランスT1は、たとえば、電力系統から受けた電圧6.6キロボルトの交流電力を電圧202ボルトの交流電力および電圧101ボルトの交流電力へ変換し、変換した交流電力を系統連系PCS101へ出力する。
系統連系PCS101は、トランスT1から受けた電圧202ボルトの交流電力を202V負荷ZCへ供給する。また、系統連系PCS101は、トランスT1から受けた電圧101ボルトの交流電力を101V重要負荷ZAおよび101V負荷ZBへ供給する。
売電電力計12および買電電力計13は、たとえば、系統連系PCS101とトランスT1との間に配置される。また、売電電力計12および買電電力計13は、たとえば、電力事業者により設置される。
売電電力計12は、売電した電力、すなわち系統連系PCS101が電力系統へ供給した電力を測定する。
買電電力計13は、買電した電力、すなわち系統連系PCS101が電力系統から供給を受けた電力を測定する。
電力事業者は、売電電力計12および買電電力計13により測定された電力を用いて系統連系PCS101が設置された家屋または事業所の電気料金を算出する。
以下、系統連系PCS101が電力系統と電力を売買電する動作を系統連系モードと称する場合がある。
また、電力系統において停電が発生すると、系統連系PCS101は、電力系統へ電力を供給してはならないことが系統連系規程により定められている。以下、系統連系PCS101が電力系統と電力を売買電せずに、発電装置11から受けた電力を負荷Zへ供給する動作を自立運転モードと称する場合がある。
[比較例としての電力変換装置および分電装置]
図2は、本発明の第1の実施の形態に係る系統連系PCSの比較例としての電力変換装置および分電装置の構成を示す図である。
図2を参照して、電力変換装置920は、コンバータ931と、キャパシタ932と、インバータ933と、系統側リレー923と、電圧計Mv901,Mv902,Mv903,Mv906と、電流計Ma901,Ma902と、制御部935と、切替えスイッチ936と、コンセント付き自立用リレー937とを備える。
分電装置922は、接続点C901,C902,C903,C904,C905,C906を含み、太陽光発電側ブレーカ921と、分岐ブレーカ951A,951B,951Cと、電圧計Mv904,Mv907と、電流計Ma903,Ma904,Ma905,Ma908,Ma909と、系統側ブレーカ939と、制御部938とを備える。
電力変換装置920における制御部935は、具体的には、PCS用MCU(Micro Controller Unit)である。制御部935は、コンバータ931およびインバータ933を制御する。
コンバータ931およびインバータ933は、系統連系モードでは、制御部935による制御で発電装置から受ける直流電力を交流電力へ変換し、変換した交流電力を分電装置922へ出力する。
電力変換装置920における電圧計Mv906は、系統連系規程に基づいて設置される。たとえば、系統連系規程には、電力系統において停電が発生すると、電力変換装置920から電力系統へ電力を供給してはならないことが定められている。
制御部935は、電圧計Mv906により測定された電圧に基づいて電力系統における停電の発生を検知した場合、系統側リレー923をオフする。
このため、ユーザは、系統停電時において、分電盤922から電力の供給を受けることができなくなる。この際、ユーザは、たとえば、切替えスイッチ936を手動により操作することで電力変換装置920を系統連系モードから自立運転モードへ切り替える。
また、ユーザは、系統停電時において、GUI(Graphical User Interface)を介して電力変換装置920を系統連系モードから自立運転モードを切り替える場合もある。
制御部935は、ユーザによる自立運転モードへの切り替え命令を受けると、インバータ933の交流電力の出力先を分電装置922からコンセント付き自立用リレー937へ切替える。また、制御部935は、コンセント付き自立用リレー937をオンすることでコンセントから交流電力を取り出せるようにする。
すなわち、ユーザは、系統停電時において、電力変換装置920の動作モードを系統連系モードから自立運転モードへ手動で切り替えることにより、コンセントにおいて交流電力を利用することが可能となる。たとえば、ユーザは、分電装置922に繋いでいた装置の電力プラグを当該コンセントへ繋ぎ変えることにより、当該装置へ交流電力を供給できる。
分電装置922における制御部938は、具体的には、計測用MCUである。制御部938は、たとえば、電圧計Mv904,Mv907によって測定された電圧値および電流計Ma903,Ma904,Ma905,Ma908,Ma909によって測定された電流値を収集し、入力電力、出力電力および消費電力等を演算する。
図2に示す比較例では、MCUが電力変換装置920および分電装置922において必要となり、製造コストが上がってしまうという問題がある。また、電力変換装置920および分電装置922用に別個の筐体が必要となるので、設置スペースが大きくなるという問題がある。
また、系統停電時において、ユーザが発電電力に基づく交流電力を利用するためには、ユーザが電力変換装置920を系統連系モードから自立運転モードへ手動で切り替える必要があり、ユーザによる「操作」が必要となり手間がかかるという問題がある。
さらに、ユーザは、分電装置922に繋いでいた装置に交流電力を供給するためには、当該装置を電力変換装置920へ繋ぎ変える必要があり、手間がかかるという問題がある。
これに対して、本発明の第1の実施の形態に係る系統連系システムでは、以下のような構成および動作により、上記問題を解決する。
[系統連系PCSの基本構成]
図3は、本発明の第1の実施の形態に係る系統連系PCSの構成を示す図である。
図4は、本発明の第1の実施の形態に係る電力変換部の構成を示す図である。
図5は、本発明の第1の実施の形態に係る分電部の構成を示す図である。
図3から図5を参照して、系統連系PCS101は、電力変換部20と、太陽光発電側ブレーカ21と、分電部22と、系統側リレー(接続切替部)23と、制御部151と、電圧計Mv1,Mv2,Mv3,Mv4と、電流計Ma1,Ma2とを備える。電力変換部20は、コンバータ31と、キャパシタ32と、インバータ33とを含む。太陽光発電側ブレーカ21は、スイッチ41,42,43を含む。分電部22は、分岐ブレーカ51A,51B,51Cを含む。分岐ブレーカ51Aは、スイッチ52A,53Aを含む。分岐ブレーカ51Bは、スイッチ52B,53Bを含む。分岐ブレーカ51Cは、スイッチ52C,53Cを含む。系統側リレー23は、スイッチ44,45,46(第2のスイッチ)を含む。
電力変換部20におけるコンバータ31は、電力線PL1を介して接続箱15と接続された第1端と、電力線PL2を介して接続箱15と接続された第2端とを有する。
電圧計Mv1は、たとえば、発電装置11および電力変換部20間における電圧を測定する。より詳細には、電圧計Mv1は、電力線PL1,PL2間の電圧であるPCS入力電圧V1を測定し、測定したPCS入力電圧V1の測定値を制御部151へ出力する。
電流計Ma1は、たとえば、発電装置11および電力変換部20間における電流を測定する。より詳細には、電流計Ma1は、たとえば、電力線PL1を通して流れる電流であるPCS入力電流I1を測定し、測定したPCS入力電流I1の測定値を制御部151へ出力する。なお、電流計Ma1は、電力線PL2を通して流れる電流をPCS入力電流I1として測定してもよい。
コンバータ31は、たとえば、制御部151から受ける制御信号S1に基づいて、接続箱15から受ける直流電力すなわち直流電圧を昇圧または降圧する。そして、コンバータ31は、たとえば、昇圧または降圧した直流電圧のうち、高電圧側の電圧Vhおよび低電圧側の電圧Vlをそれぞれ第3端および第4端からキャパシタ32へ出力する。
キャパシタ32は、コンバータ31およびインバータ33の間に接続されている。また、キャパシタ32は、インバータ33と並列に接続される。
具体的には、キャパシタ32は、電力線PL7を介してコンバータ31の第3端と接続された第1端と、電力線PL8を介してコンバータ31の第4端と接続された第2端とを有する。
キャパシタ32の第1端および第2端は、それぞれ電圧Vhおよび電圧Vlをコンバータ31から受ける。そして、キャパシタ32は、電圧Vhおよび電圧Vl間に含まれる高周波成分すなわち脈動成分であるリプルを減衰させ、リプルを減衰させた直流電圧をインバータ33へ出力する。
また、キャパシタ32は、コンバータ31から受ける直流電力を電気エネルギーとして蓄え、蓄えたエネルギーを用いてコンバータ31およびインバータ33が入出力する電力の変動を抑制する。
電圧計Mv3は、たとえば、電力変換部20における電圧を測定する。具体的には、電圧計Mv3は、コンバータ31およびインバータ33の間に設けられ、キャパシタ32の第1端および第2端間の電圧である中間段電圧V3=(Vh−Vl)を測定し、測定した中間段電圧V3の測定値を制御部151へ出力する。なお、図4では、電圧計Mv3は、コンバータ31およびキャパシタ32の間に設けられているが、キャパシタ32およびインバータ33の間に設けられてもよい。
インバータ33は、キャパシタ32および太陽光発電側ブレーカ21の間に接続されている。インバータ33は、電力線PL7を介してキャパシタ32の第1端と接続された第1端と、電力線PL8を介してキャパシタ32の第2端と接続された第2端とを有する。
インバータ33は、たとえば、複数のスイッチ素子を含み、制御部151から受ける制御信号S2に基づいて、複数のスイッチ素子をスイッチングすることにより、コンバータ31からキャパシタ32を介して受ける中間段電圧V3を単相の交流電圧vA,vBすなわち交流電力に変換する。
インバータ33は、変換した交流電圧vA,vBを、それぞれ第3端および第4端から太陽光発電側ブレーカ21、分電部22および系統側リレー23経由でトランスT1へ出力する。
トランスT1は、1次側コイルL1および2次側コイルL2を有する。1次側コイルL1は、電力線PL3を介してインバータ33の第3端と接続された第1端と、電力線PL4を介してインバータ33の第4端と接続された第2端と、中性線PLnと接続された中間点とを有する。
また、1次側コイルL1と相互インダクタンスにより結合する2次側コイルL2は、電力線PL5を介して電力系統と接続された第1端と、電力線PL6を介して電力系統と接続された第2端とを有する。
トランスT1では、1次側コイルL1が単相の交流電圧(vA−vB)をインバータ33から受けると、昇圧した単相の交流電圧(va−vb)が2次側コイルL2において生成される。
電力線PL3,PL4および中性線PLn上に、太陽光発電側ブレーカ21、分電部22および系統側リレー23が接続されている。
より詳細には、太陽光発電側ブレーカ21は、インバータ33および分電部22の間に接続されている。太陽光発電側ブレーカ21において、スイッチ41は、電力線PL3を介してインバータ33の第3端と接続された第1端と、第2端とを有する。スイッチ42は、第1端と、第2端とを有する。スイッチ43は、電力線PL4を介してインバータ33の第4端と接続された第1端と、第2端とを有する。
太陽光発電側ブレーカ21は、たとえば、スイッチ41,42,43をユーザが手動により操作することで、インバータ33および分電部22間を電気的に接続するか否かを切り替える。太陽光発電側ブレーカ21は、たとえば、系統連系PCS101のメンテナンス時における感電の発生を防ぐために用いられる。
分電部22は、太陽光発電側ブレーカ21および系統側リレー23の間に接続されており、中性線PLnを介したスイッチ42の第2端と電力線PL10との接続点C1と、電力線PL4を介したスイッチ43の第2端と電力線PL11との接続点C2と、電力線PL3を介したスイッチ41の第2端と電力線PL12との接続点C3と、中性線PLnを介したスイッチ42の第2端と電力線PL13との接続点C4と、電力線PL3を介したスイッチ41の第2端と電力線PL14との接続点C5と、電力線PL4を介したスイッチ43の第2端と電力線PL15との接続点C6と含む。
以下、接続点C1,C2,C3,C4,C5,C6の各々を接続点Cと称する場合がある。また、接続点C1,C4には、接続点C3,C5に供給される電圧と接続点C2,C6に供給される電圧との中間電圧が供給されるので、接続点C1,C4を中間接続点と称する場合がある。
分電部22は、インバータ33から受ける交流電力およびトランスT1から受ける交流電力の少なくとも一方を接続点C経由で負荷Zへ供給することが可能である。
101V重要負荷ZAは、電力線PL10を介して接続点C1と接続された第1端と、電力線PL11を介して接続点C2と接続された第2端とを有する。101V負荷ZBは、電力線PL12を介して接続点C3と接続された第1端と、電力線PL13を介して接続点C4と接続された第2端とを有する。202V負荷ZCは、電力線PL14を介して接続点C5と接続された第1端と、電力線PL15を介して接続点C6と接続された第2端とを有する。
分岐ブレーカ51A,51B,51Cは、それぞれ101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCに対応して設けられる。図1では、各1つの分岐ブレーカ51A,51B,51Cを代表的に示しているが、さらに多数の分岐ブレーカ51A,51B,51Cが設けられてもよい。以下、分岐ブレーカ51A,51B,51Cを分岐ブレーカ51と称する場合がある。
電力線PL10,PL11には、分岐ブレーカ51Aが接続されている。分岐ブレーカ51Aにおいて、スイッチ52Aは、接続点C1と接続された第1端と、101V重要負荷ZAの第1端と接続された第2端とを有する。スイッチ53Aは、接続点C2と接続された第1端と、101V重要負荷ZAの第2端と接続された第2端とを有する。
分岐ブレーカ51Aは、たとえば、スイッチ52A,53Aをユーザが手動により操作することで、インバータ33および電力系統と101V重要負荷ZAとを電気的に接続するか否かを切り替える。
電力線PL12,PL13には、分岐ブレーカ51Bが接続されている。分岐ブレーカ51Bにおいて、スイッチ52Bは、接続点C3と接続された第1端と、101V負荷ZBの第1端と接続された第2端とを有する。スイッチ53Bは、接続点C4と接続された第1端と、101V負荷ZBの第2端と接続された第2端とを有する。
分岐ブレーカ51Bは、たとえば、スイッチ52B,53Bをユーザが手動により操作することで、インバータ33および電力系統と101V負荷ZBとを電気的に接続するか否かを切り替える。
電力線PL14,PL15には、分岐ブレーカ51Cが接続されている。分岐ブレーカ51Cにおいて、スイッチ52Cは、接続点C5と接続された第1端と、202V負荷ZCの第1端と接続された第2端とを有する。スイッチ53Cは、接続点C6と接続された第1端と、202V負荷ZCの第2端と接続された第2端とを有する。
分岐ブレーカ51Cは、たとえば、スイッチ52C,53Cをユーザが手動により操作することで、インバータ33および電力系統と202V負荷ZCとを電気的に接続するか否かを切り替える。
電圧計Mv2は、たとえば、電力変換部20および接続点C間における電圧を測定する。より詳細には、電圧計Mv2は、たとえば、電力変換部20および太陽光発電側ブレーカ21間に設けられる。なお、電圧計Mv2は、たとえば、太陽光発電側ブレーカ21および分電部22間に設けられてもよい。
電圧計Mv2は、電力線PL3,PL4間の電圧であるPCS出力電圧v2を測定し、測定したPCS出力電圧v2の測定値を制御部151へ出力する。
電流計Ma2は、たとえば、電力変換部20および接続点C間における電流を測定する。より詳細には、電流計Ma2は、たとえば、電力変換部20および太陽光発電側ブレーカ21間に設けられる。なお、電流計Ma2は、たとえば、太陽光発電側ブレーカ21および分電部22間に設けられてもよい。
電流計Ma2は、たとえば、電力線PL3を通して流れる電流であるPCS出力電流i2を測定し、測定したPCS出力電流i2の測定値を制御部151へ出力する。なお、電流計Ma2は、電力線PL4を通して流れる電流をPCS出力電流i2として測定してもよい。
系統側リレー23は、分電部22およびトランスT1の間に接続されている。系統側リレー23において、スイッチ44は、電力線PL3を介して分電部22における接続点C3,C5と接続された第1端と、電力線PL3を介してトランスT1における1次側コイルL1の第1端と接続された第2端とを有する。スイッチ45は、中性線PLnを介して接続点C1,C4と接続された第1端と、中性線PLnを介して1次側コイルL1の中間点と接続された第2端とを有する。スイッチ46は、電力線PL4を介して接続点C2,C6と接続された第1端と、電力線PL4を介して1次側コイルL1の第2端と接続された第2端とを有する。
系統側リレー23は、たとえば、制御部151から受ける制御信号S3に基づいて、接続点Cおよび電力系統を電気的に接続するか否かを切替える。より詳細には、系統側リレー23は、たとえば、制御部151から制御信号S3を受け、インバータ33および負荷Zと電力系統とを電気的に接続するか否かを切替える。
電圧計Mv4は、たとえば、系統側リレー23に対して電力系統側の電圧を測定する。より詳細には、電圧計Mv4は、たとえば、系統側リレー23およびトランスT1間に設けられる。
電圧計Mv4は、電力線PL3,PL4間の電圧である系統側電圧v4を測定し、測定した系統側電圧v4の測定値を制御部151へ出力する。
なお、系統連系規程では、系統連系PCS101は、電力系統の電圧を測定する必要がある。これに対して、電圧計Mv4は、系統側リレー23およびトランスT1間に設けられることにより、系統側リレー23のスイッチ44,45,46の開閉状態に関わらず、電力系統の電圧を測定することができる。
制御部151は、具体的には、統合MCUである。制御部151は、たとえば、電圧計Mv1から通知されるPCS入力電圧V1、電圧計Mv2から通知されるPCS出力電圧v2、電圧計Mv3から通知される中間段電圧V3、電流計Ma1から通知されるPCS入力電流I1および電流計Ma2から通知されるPCS出力電流i2に基づいて電力変換部20を制御する。
具体的には、制御部151は、たとえば、PCS入力電圧V1、中間段電圧V3およびPCS入力電流I1に基づいて、PCS入力電圧V1を昇圧または降圧することにより目標とする直流電圧を生成するための制御信号S1をコンバータ31へ出力する。コンバータ31は、制御部151から受ける制御信号S1に基づいて、目標とする直流電圧にPCS入力電圧V1を昇圧または降圧する。
また、制御部151は、たとえば、中間段電圧V3、PCS出力電圧v2およびPCS出力電流i2に基づいて、中間段電圧V3の直流電圧から単相202ボルトの交流電圧を生成するためのPWM(Pulse Width Modulation)制御信号S2をインバータ33へ出力する。インバータ33は、制御部151から受けるPWM制御信号S2に基づいて中間段電圧V3の直流電圧から単相202ボルトの交流電圧を生成する。
また、系統連系規程には、電力系統において停電が発生すると、系統連系PCS101は、発電装置11において発電した電力を電力系統へ出力してはならないことが定められている。
これに対して、制御部151は、以下の処理を行う。すなわち、制御部151は、たとえば、電圧計Mv2から通知されるPCS出力電圧v2または電圧計Mv4から通知される系統側電圧v4に基づいて電力系統における停電を検知する。具体的には、電力系統において停電が発生すると、系統側電圧v4は変化する。
より詳細には、たとえば、負荷Zの負荷容量が大きいときに電力系統において停電が発生すると、電力変換部20は負荷Zに対して十分な電力を供給することができなくなり、系統側電圧v4が下がる場合、または系統側電圧v4の波形が乱れる場合がある。
また、たとえば、負荷Zの負荷容量が小さいときに電力系統において停電が発生すると、電力変換部20は負荷Zに対して過剰な電力を供給してしまい、系統側電圧v4が上がる場合、または系統側電圧v4の波形が乱れる場合がある。
また、制御部151は、たとえば、電流計Ma2から通知されるPCS出力電流i2が急激に変化することに基づいて電力系統における停電を検知してもよい。
制御部151は、たとえば、系統側電圧v4の変化を検出すると、電力系統において停電が発生したと判断する。そして、制御部151は、たとえば、電力系統における停電を検知した場合、スイッチ44,45,46をオフする命令を示す制御信号S3を系統側リレー23へ出力する。
系統側リレー23は、制御部151から上記制御信号S3を受けると、スイッチ44,45,46をオフし、接続点CおよびトランスT1を非接続とする。これにより、電力系統における停電時に系統連系PCS101を電力系統から電気的に切り離すことができる。そして、系統連系PCS101は、系統連系モードから自立運転モードへ遷移する。
このように、制御部151として統合MCUを用いる構成により、系統連系PCS101では、図2に示す電力変換装置920および分電装置922と比較して、1つの制御部を削減することができる。また、系統連系PCS101では、系統側ブレーカを削減することができる。
すなわち、系統連系PCS101では、電力変換装置920および分電装置922と比較して、系統側ブレーカおよび1つの制御部を削減することができ、部品点数を減らすことができるので、製造コストを下げることができる。
また、制御部151は、たとえば、電圧計Mv4から通知される系統側電圧v4に基づいて電力系統における復電を検知する。具体的には、電力系統が復電すると、系統側電圧v4は電力系統における電圧を示す。
制御部151は、たとえば、電力系統における復電を検知した場合、スイッチ44,45,46をオンする命令を示す制御信号S3を系統側リレー23へ出力する。
系統側リレー23は、制御部151から上記制御信号S3を受けると、スイッチ44,45,46をオンし、接続点CおよびトランスT1を電気的に接続する。これにより、電力系統が復電した場合に系統連系PCS101および電力系統を電気的に接続することができる。そして、系統連系PCS101は、自立運転モードから系統連系モードへ遷移する。
また、系統連系PCS101では、系統復電時において、制御部151が自動で自立運転モードから系統連系モードへ切り替えるので、図2に示す比較例において、ユーザがたとえば電力変換装置920における切替えスイッチ936を操作するような手間を省くことができる。
ところで、図2に示す電力変換装置920は、停電時に電力系統へ電力を供給することが系統連系規程により禁じられている。このため、電力変換装置920は、停電時において単独運転を検出すると、たとえば分電装置922経由で電力系統へ電力を供給することを停止する。
このため、ユーザは、停電時において、分電装置922経由で電力変換装置920から電力供給を受けることができず、自立運転コンセント経由で電力を利用することができる。この際、ユーザは、停電時において電力変換装置920から電力供給を受けるためには、電力変換装置920を自立運転モードへ切替えた後、接続機器を自立運転コンセントへ繋がなければならない。すなわち、ユーザによる「操作」が必要となる。
また、電力変換装置920および分電装置922において機能的に重複した部品が存在する場合、余分なスペースが必要となる場合がある。
これに対して、本発明の第1の実施の形態に係る系統連系電力変換装置では、電力変換部20は、発電装置11から受けた電力を変換し、変換した電力を電力系統へ出力する。分電部22は、電力変換部20および電力系統の間に接続され、負荷Zとの接続点Cを含み、電力変換部20によって変換された電力および電力系統から受けた電力の少なくとも一方を接続点Cを介して負荷Zへ供給する。系統側リレー23は、接続点Cおよび電力系統を接続するか否かを切替える。電流計Ma1は、発電装置11および電力変換部20間におけるPCS入力電流I1を測定する。電圧計Mv1は、発電装置11および電力変換部20間におけるPCS入力電圧V1を測定する。電流計Ma2は、電力変換部20および接続点C間におけるPCS出力電流i2を測定する。電圧計Mv2は、電力変換部20および接続点C間におけるPCS出力電圧v2を測定する。電圧計Mv3は、電力変換部20における中間段電圧V3を測定する。電圧計Mv4は、系統側リレー23に対して電力系統側の系統側電圧v4を測定する。制御部151は、電圧計Mv1,Mv2,Mv3によりそれぞれ測定されたPCS入力電圧V1、PCS出力電圧v2および中間段電圧V3、ならびに電流計Ma1,Ma2によりそれぞれ測定されたPCS入力電流I1およびPCS出力電流i2に基づいて電力変換部20を制御するとともに、電圧計Mv2またはMv4によりそれぞれ測定されたPCS出力電圧v2または系統側電圧v4に基づいて停電を検知し、停電を検知した場合、系統側リレー23を制御して接続点Cおよび電力系統を非接続とする。
このように、1つの系統連系PCS101が電力変換装置920と分電装置922とを備える構成により、電力変換装置920および分電装置922で用いる部品を削減しやすくなるので、低コストおよび省スペースで発電装置11からの電力を負荷および電力系統へ供給することができる。
たとえば、系統連系PCS101では、電力変換装置920および分電装置922と比較して、系統側ブレーカ939および1つの制御部を削減することができ、部品点数を減らすことができるので、製造コストを下げることができる。
また、系統連系PCS101では、1つの筐体内にまとめることにより形状を小さくすることができるので、設置スペースを小さくすることができる。
また、系統連系PCS101では、系統停電時において、制御部151が自動で系統連系モードから自立運転モードへ切り替えるので、図2に示す比較例において、ユーザがたとえば電力変換装置920における切替えスイッチ936を操作するような手間を省くことができる。
また、系統連系PCS101では、系統停電時においても、発電装置11から受ける発電電力に基づく交流電力を202V負荷ZCに対して継続して供給することができるので、切替えスイッチ936の操作およびユーザによる電力プラグの繋ぎ変え等のユーザによる操作を不要とすることができる。
また、系統連系PCS101には分電機能が含まれるので、今後普及すると考えられる一般家庭における自然エネルギーシステムに適用することができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第2の実施の形態>
本実施の形態は、第1の実施の形態に係る系統連系PCSと比べて無瞬断で電力系統との接続を切替え可能な系統連系電力制御装置に関する。以下で説明する内容以外は第1の実施の形態に係る系統連系システムと同様である。
[系統停電時の無瞬断自立運転自動切替え]
特許第4524840号公報(特許文献1)には、系統連系インバータが開示されている。系統連系インバータは、系統停電時において、フルブリッジインバータの出力を、自立運転用コンセントに予め接続している負荷へ自動で出力する。
しかしながら、電力系統が正常なとき、自立運転用コンセントへは電力が供給されないため、負荷には、系統停電時のみ電力が供給される。このため、系統連系インバータは、系統停電時および系統正常時の両方において負荷に対して電力を供給すること、ができないという問題がある。
また、負荷へ印加される交流電圧は、系統の電圧と同じであるため、系統連系インバータでは、系統の電圧が202ボルトである場合、電圧101ボルトの交流電力を要求する負荷に対して系統停電時に交流電力を供給できないという問題がある。
また、系統連系インバータは、系統停電時において、系統切替リレーを開き、系統リレーおよび自立リレーを閉じる。一般に、リレーは機械式接点を用いるため動作速度が遅く、接続のオンおよびオフに時間がかかる。このため、交流電圧の瞬断および交流電圧の位相の急激な変化等により歪みを有する交流電力を負荷に供給してしまい、当該負荷に対して悪影響を与える場合があり好ましくない。
また、系統連系インバータには、分電機能が含まれていないため、今後普及すると考えられる一般家庭における自然エネルギーシステムには適用できない。
これに対して、本発明の第2の実施の形態に係る系統連系システムでは、以下のような構成および動作により、上記問題を解決する。
[系統連系PCS102の構成]
第1の実施の形態に係る系統連系PCS101では、電力系統において停電が発生すると、制御部151は、系統側リレー23におけるスイッチ44,45,46をオフすることにより、系統連系PCS101を電力系統から電気的に切り離す。
この際、系統連系PCS101は、系統連系モードから自立運転モードへ遷移し、自己の電力変換部20において生成した202ボルトの交流電圧を202V負荷ZCへ供給することが可能である。
しかしながら、一般に、常時給電が要求される装置は、エアコン等の電圧202ボルトの交流電力を用いて動作する装置ではなく、コンピュータおよび録画装置等の電圧101ボルトの交流電力を用いて動作する装置である場合が多い。
図6は、本発明の第2の実施の形態に係る系統連系PCSの構成を示す図である。
図6を参照して、系統連系PCS(系統連系電力制御装置)102は、第1の実施の形態に係る系統連系PCS101と比べて、制御部151の代わりに制御部152を備え、さらに、出力切替部25と、系統側半導体スイッチ部(接続切替部)26とを備える。出力切替部25は、スイッチ71,72を含む。系統側半導体スイッチ部26は、スイッチ73,74,75(第1のスイッチ)を含む。
出力切替部25は、たとえば、電圧計Mv2および電流計Ma2と太陽光発電側ブレーカ21との間に接続されている。出力切替部25において、スイッチ71は、たとえば、電力線PL3を介してインバータ33の第3端と接続された第1端と、太陽光発電側ブレーカ21におけるスイッチ41の第1端と接続された第2端とを有する。スイッチ72は、スイッチ71の第1端と接続された第1端と、中性線PLnを介してスイッチ42の第1端と接続された第2端とを有する。
なお、出力切替部25は、たとえば、太陽光発電側ブレーカ21と接続点Cとの間に接続されてもよい。また、出力切替部25において、スイッチ71は、たとえば接続点C3,C5の間に接続されてもよい。より詳細には、この場合、スイッチ71は、たとえば、接続点C3を介して太陽光発電側ブレーカ21におけるスイッチ41の第2端と接続された第1端と、接続点C5を介して系統側半導体スイッチ部26におけるスイッチ73の第1端と接続された第2端とを有する。スイッチ72は、スイッチ71の第1端と接続された第1端と、中性線PLnを介して中間接続点C1,C4と接続された第2端とを有する。
具体的には、スイッチ71,72は、トライアック(Triac)、逆方向2直列に接続されたMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、および逆方向2並列に接続されたIGBT(Insulated Gate Bipolar Transistor)等の電流双方向の半導体スイッチである。スイッチ71,72は、スイッチ44,45,46と比べて高速に切替え可能である。
出力切替部25は、たとえば、制御部152から受ける制御信号S4に基づいて、インバータ33の第3端および太陽光発電側ブレーカ21におけるスイッチ41の第1端を電気的に接続するか、またはインバータ33の第3端およびスイッチ42の第1端を電気的に接続するかを高速で切替える。
より詳細には、出力切替部25は、たとえば、制御部152から制御信号S4を受け、スイッチ71をオンし、かつスイッチ72をオフした状態とスイッチ71をオフし、かつスイッチ72をオンした状態とを高速で切り替える。
系統側半導体スイッチ部26は、たとえば、分電部22および系統側リレー23の間に接続されている。系統側半導体スイッチ部26において、スイッチ73は、電力線PL3を介して分電部22における接続点C3,C5と接続された第1端と、系統側リレー23におけるスイッチ44の第1端と接続された第2端とを有する。スイッチ74は、中性線PLnを介して接続点C1,C4と接続された第1端と、スイッチ45の第1端と接続された第2端とを有する。スイッチ75は、電力線PL4を介して接続点C2,C6と接続された第1端と、スイッチ46の第1端と接続された第2端とを有する。なお、系統側半導体スイッチ部26は、たとえば、系統側リレー23およびトランスT1の間に設けられてもよい。
具体的には、スイッチ73,74,75は、FET(Field Effect Transistor)等の電流双方向の半導体スイッチである。スイッチ73,74,75は、オン抵抗が低いスイッチ素子である。また、スイッチ73,74,75は、スイッチ44,45,46と比べて高速に開閉可能である。
系統側半導体スイッチ部26は、たとえば、制御部152から受ける制御信号S5に基づいて、接続点Cおよび系統側リレー23を電気的に接続するか否かを切替える。より詳細には、系統側半導体スイッチ部26は、たとえば、制御部152から制御信号S5を受け、インバータ33および負荷Zと系統側リレー23とを電気的に接続するか否かを切替える。
制御部152は、系統停電時および系統復電時において、出力切替部25、系統側半導体スイッチ部26および系統側リレー23を制御する。
また、制御部152は、たとえばゼロクロスタイミングを検出することが可能である。より詳細には、制御部152は、たとえば、電力系統における停電を検知した場合、電圧計Mv2またはMv4から通知される電圧値に基づいて、交流電圧であるPCS出力電圧v2または系統側電圧v4がゼロボルトを示す停電時ゼロクロスタイミングを検出する。
より詳細には、制御部152は、電力系統における停電を検知した場合、電圧計Mv2またはMv4から通知される電圧値を監視し、当該電圧値の絶対値が所定のしきい値以下となるタイミングを停電時ゼロクロスタイミングとして検出する。なお、所定のしきい値は、たとえば系統電力の電圧の振幅より十分小さい値に設定される。
また、制御部152は、系統における復電を検知した場合、電圧計Mv4から通知される電圧値に基づいて、交流電圧である系統側電圧v4がゼロボルトを示す復電時ゼロクロスタイミングを検出する。
より詳細には、制御部152は、系統における復電を検知した場合、電圧計Mv4から通知される電圧値を監視し、当該電圧値の絶対値が所定のしきい値以下となるタイミングを復電時ゼロクロスタイミングとして検出する。なお、所定のしきい値は、たとえば系統電力の電圧の振幅より十分小さい値に設定される。
なお、系統連系PCS102は、出力切替部25および系統側半導体スイッチ部26を備える構成であるとしたが、これに限定するものではない。系統連系PCS102は、たとえば、出力切替部25および系統側半導体スイッチ部26のいずれか一方を備える構成であってもよい。
[系統停電時における制御部152の動作]
図7は、本発明の第2の実施の形態に係る系統連系PCSにおける制御部が系統停電時において無瞬断で電気的な接続を切替える際の動作手順を定めたフローチャートである。
図7を参照して、まず、制御部152は、たとえば電力系統が正常な場合において、電圧計Mv2から通知されるPCS出力電圧v2または電圧計Mv4から通知される系統側電圧v4に基づいて電力系統における停電を検知するまで(ステップS102でYES)、系統連系モードで自己の系統連系PCS102を制御する。
次に、制御部152は、電力系統における停電を検知した場合(ステップS102でNO)、自己の系統連系PCS102が単独運転していることを検出する(ステップS104)。
次に、制御部152は、たとえば、停電時ゼロクロスタイミングまで待機し(ステップS106でNO)、停電時ゼロクロスタイミングにおいて(ステップS106でYES)、系統側リレー23および系統側半導体スイッチ部26をオン状態からオフ状態へ切り替える(ステップS108)。
次に、制御部152は、出力切替部25において、スイッチ71をオンしかつスイッチ72をオフした状態から、スイッチ71をオフしかつスイッチ72をオンした状態へ切り替えるとともに、PWM制御信号S2を切替えることにより、インバータ33の出力電圧を202ボルトから101ボルトへ下げる(ステップS110)。
なお、制御部152は、上記ステップS108において、系統側リレー23および系統側半導体スイッチ部26をオン状態からオフ状態へ切り替える動作と、上記ステップS110において、スイッチ71,72を切替える動作およびインバータ制御を切替える動作とを同じ停電時ゼロクロスタイミングで行う。
また、制御部152は、上記ステップS106において、PCS出力電圧v2または系統側電圧v4の値を監視し、上記ステップS108において、PCS出力電圧v2または系統側電圧v4の値がゼロボルトとなる停電時ゼロクロスタイミングにおいて、系統側リレー23および系統側半導体スイッチ部26をオン状態からオフ状態へ切り替える。
たとえば、系統側リレー23におけるスイッチ44,45,46が機械式の接点を含むスイッチである場合、切替えに要する時間は、数十から百ミリ秒程度である。交流電圧の周波数が60ヘルツすなわち周期が16ミリ秒であるため、系統側リレーの動作速度では、停電時ゼロクロスタイミングで系統連系PCS102と電力系統との電気的な接続を切断することが困難である。
一方、たとえば、系統側半導体スイッチ部26におけるスイッチ73,74,75は半導体スイッチであるので、切替えに要する時間は、数百マイクロ秒以下にすることが可能である。
このように、動作速度の速い系統側半導体スイッチ部26を用いる構成により、制御部152が系統側半導体スイッチ部26へ制御信号S5を出力してから系統側半導体スイッチ部26が実際に動作するまでの時間を短くすることができる。
制御部152は、オフにすべき旨の制御信号S5を停電時ゼロクロスタイミングで系統側半導体スイッチ部26へ出力することにより、停電時ゼロクロスタイミングで系統連系PCS102と電力系統とを電気的に非接続とすることできる。
また、制御部152は、上記ステップS108において、たとえば、系統側半導体スイッチ部26をオフした後、系統側リレー23をオフする。
このように、動作の速い系統側半導体スイッチ部26をオフした後、動作の遅い系統側リレー23をオフする構成により、停電時ゼロクロスタイミングで系統連系PCS102と電力系統との電気的な接続を確実に切断することできる。
系統側半導体スイッチ部26は、オフ時に漏れ電流が流れてしまう場合がある。また、系統側半導体スイッチ部26は、故障時に導通状態で故障する場合が多い。一方、系統側リレー23は、漏れ電流の発生がないので、系統側半導体スイッチ部26と比べて信頼性が高いと考えられる。
このように、動作の速い系統側半導体スイッチ部26をオフした後、動作は遅いが信頼性の高い系統側リレー23をオフする構成により、停電時ゼロクロスタイミングで系統連系PCS102と電力系統との電気的な接続を切断するとともに、装置の信頼性を高めることができる。
また、制御部152は、上記ステップS110において、停電時ゼロクロスタイミングで動作の速い出力切替部25を切替えることによりインバータ33の第3端と接続点C3,C5とが接続された状態から当該第3端と中間接続点C1,C4とが接続された状態へ切替え、かつインバータ33の出力電圧である|vA-vB|を202ボルトから101ボルトへ下げる。
このように、停電時ゼロクロスタイミングで出力切替部25およびインバータ33の切替えが行われる構成により、停電の前後において、振幅および位相を急激に変化させることなく交流電圧を101V重要負荷ZAへ継続して供給することができる。
また、動作の速い出力切替部25および系統側半導体スイッチ部26を用いる構成により、系統連系PCS102は、系統停電時において、101V重要負荷ZAに対する101Vの交流電力の供給を電力系統経由からインバータ33へ無瞬断かつ自動で切り替えることができる。
これにより、101V重要負荷ZAは品質の良い交流電力を継続して受けることができるので、101V重要負荷ZAにおける回路の保護および突入電流の防止を行い、故障の発生を抑制することができる。
また、制御部152は、上記ステップS110において、たとえば出力切替部25およびインバータ33の切替を行わなくてもよい。
このように、停電時ゼロクロスタイミングで系統側半導体スイッチ部26の切替えが行われる構成により、停電の前後において、振幅および位相を急激に変化させることなく交流電圧を202V負荷ZCへ継続して供給することができる。
[系統復電時における制御部152の動作]
図8は、本発明の第2の実施の形態に係る系統連系PCSにおける制御部が系統復電時において無瞬断で電気的な接続を切替える際の動作手順を定めたフローチャートである。
図8を参照して、まず、制御部152は、たとえば系統停電時において、電圧計Mv4から通知される系統側電圧v4に基づいて電力系統における復電を検知するまで(ステップS202でNO)、自立運転モードで自己の系統連系PCS102を制御する。
次に、制御部152は、電力系統における復電を検知した場合(ステップS202でYES)、系統側リレー23をオフからオンへ切り替える(ステップS204)。
次に、制御部152は、たとえば、系統側リレー23の接続が確認されるまで、または所定時間が経過するまで待機し(ステップS206でNO)、系統側リレー23の接続が確認されるか、または所定時間が経過すると(ステップS206でYES)、系統側リレー23の再投入完了が確認される(ステップS208)。
次に、制御部152は、たとえば、復電時ゼロクロスタイミングまで待機し(ステップS210でNO)、復電時ゼロクロスタイミングにおいて(ステップS210でYES)、系統側半導体スイッチ部26をオフからオンへ切り替える(ステップS212)。
次に、制御部152は、出力切替部25において、スイッチ71をオフしかつスイッチ72をオンした状態から、スイッチ71をオンしかつスイッチ72をオフした状態へ切り替えるとともに、PWM制御信号S2を切替えることにより、インバータ33の出力電圧を101ボルトから202ボルトへ上げる(ステップS214)。
なお、制御部152は、上記ステップS212において、系統側半導体スイッチ部26をオンする動作と、上記ステップS214において、スイッチ71,72を切替える動作およびインバータ制御を切替える動作とを同じ復電時ゼロクロスタイミングで行う。
系統側リレー23は、上記ステップS208において、オン状態となる。これにより、動作速度の遅い系統側リレー23のオン動作が完了した後、動作速度の速い出力切替部25および系統側半導体スイッチ部26を動作させることができるので、復電時において、制御部152が出力切替部25および系統側半導体スイッチ部26へ制御信号を出力してから実際に動作するまでの時間を短くすることができる。
制御部152は、上記ステップS210において系統側電圧v4の値を監視し、上記ステップS212において、系統側電圧v4の値がゼロボルトとなる復電時ゼロクロスタイミング(ステップS210でYES)で系統側半導体スイッチ部26をオンする(ステップS212)。
このように、動作速度の速い系統側半導体スイッチ部26を用いる構成により、復電時ゼロクロスタイミングで系統連系PCS102と電力系統とを電気的に接続することできる。
また、制御部152は、上記ステップS214において、復電時ゼロクロスタイミングで動作の速い出力切替部25を切替えることによりインバータ33の第3端と中間接続点C1,C4とが接続された状態から当該第3端と接続点C3,C5とが接続された状態へ切替え、かつインバータ33の出力電圧である|vA-vB|を101ボルトから202ボルトへ上げる。
このように、復電時ゼロクロスタイミングで出力切替部25およびインバータ33の切替えが行われる構成により、復電の前後において、振幅および位相を急激に変化させることなく交流電圧を101V重要負荷ZAへ継続して供給することができる。
また、動作の速い出力切替部25および系統側半導体スイッチ部26を用いる構成により、系統連系PCS102は、系統復電時において、101V重要負荷ZAに対する101Vの交流電力の供給をインバータ33から電力系統経由へ無瞬断かつ自動で切り替えることができる。
これにより、101V重要負荷ZAは品質の良い交流電力を継続して受けることができるので、101V重要負荷ZAにおける回路の保護および突入電流の防止を行い、故障の発生を抑制することができる。
すなわち、系統連系PCS102では、系統連系モードおよび自立運転モードの両方において、分岐ブレーカ51A経由で101V重要負荷ZAへ電力を供給するので、系統連系モードおよび自立運転モードに関わらず、ユーザによる操作を受けることなくかつ無瞬断で101V重要負荷ZAへの電力供給を継続することができる。
また、制御部152は、上記ステップS214において、たとえば復電前に202V負荷ZCが202ボルトの交流電圧の供給を受けている場合、出力切替部25およびインバータ33の切替を行わなくてもよい。
このように、復電時ゼロクロスタイミングで系統側半導体スイッチ部26の切替えが行われる構成により、復電の前後において、振幅および位相を急激に変化させることなく交流電圧を202V負荷ZCへ継続して供給することができる。
その他の構成および動作は第1の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
以上のように、本発明の第2の実施の形態に係る系統連系電力制御装置では、系統側半導体スイッチ部26は、系統側リレー23と比べて高速に開閉可能である。
このような構成により、系統連系PCS102では、たとえば信頼性を高めるために応答速度が遅い機械式接点の系統側リレー23を設ける必要がある状況においても、系統側半導体スイッチ部26および系統側リレー23により構成される機能ブロックの応答速度を速くすることができる。これにより、接続点Cと電力系統との接続および非接続を所望のタイミングでより確実に切替えることができる。
これにより、系統連系PCS102では、たとえば、系統切替リレー、系統リレーおよび自立リレー等の機械式接点のリレーのみが用いられる特許文献1の系統連系インバータと比べて、接続点Cと電力系統とを接続するか否かをより高速に切替えることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、制御部152は、停電を検知した場合、電圧計Mv2または電圧計Mv4によりそれぞれ測定されたPCS出力電圧v2または系統側電圧v4の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出する。そして、制御部152は、オン状態にある系統側半導体スイッチ部26およびオン状態にある系統側リレー23のうち、検出した停電時ゼロクロスタイミングで系統側半導体スイッチ部26をオフする。
このように、停電時ゼロクロスタイミングで接続点Cおよび電力系統を非接続とする構成により、系統停電時において、交流電圧の瞬断および交流電圧の位相の急激な変化等により歪みを有する交流電力が負荷Zに供給されることを防止することができる。これにより、負荷Zへ与える悪影響を抑えることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、電力変換部20におけるインバータ33は、電圧vAおよび電圧vBがそれぞれ出力される第3端および第4端を有する。分電部22は、接続点Cとして、電圧vAが供給される接続点C3,C5と、電圧vBが供給される接続点C2,C6と、電圧vAおよび電圧vBの中間電圧vNが供給される中間接続点C1,C4とを含む。101V重要負荷ZAは、接続点C2および中間接続点C1の間に接続される。出力切替部25は、電流計Ma2および電圧計Mv2と接続点C3,C5および中間接続点C1,C4との間に接続され、系統側リレー23と比べて高速に切替え可能であり、第3端と接続点C3,C5とが接続された状態から第3端と中間接続点C1,C4とが接続された状態へ切替える。
このような構成により、系統連系PCS102では、出力切替部25の応答速度を速くすることができるので、インバータ33の第3端と接続点C3,C5とが接続された状態から第3端と中間接続点C1,C4とが接続された状態へ切替える動作を所望のタイミングで確実に行うことができる。
これにより、101V重要負荷ZAにおいて、インバータ33から直接電圧を受ける状態へ短時間で遷移させることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、出力切替部25は、第3端と中間接続点C1,C4とが接続された状態から第3端と接続点C3,C5とが接続された状態へ切替える。
このような構成により、系統連系PCS102では、出力切替部25の応答速度を速くすることができるので、インバータ33の第3端と中間接続点C1,C4とが接続された状態から第3端と接続点C3,C5とが接続された状態へ切替える動作を所望のタイミングで確実に行うことができる。
これにより、101V重要負荷ZAにおいて、インバータ33から直接電圧を受けない状態へ短時間で遷移させることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、制御部152は、系統側半導体スイッチ部26をオフするタイミングで、出力切替部25を制御して第3端と接続点C3,C5とが接続された状態から第3端と中間接続点C1,C4とが接続された状態へ切り替えるとともに、電力変換部20を制御して、第3端から出力される電圧を電圧vAから中間電圧vNへ切り替える。
このような構成により、系統側半導体スイッチ部26が接続点Cおよび電力系統を非接続とするタイミングの前後において、無瞬断かつ自動で中間接続点C1,C4へ中間電圧vNを継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、制御部152は、電圧計Mv4により測定された系統側電圧v4に基づいて復電を検知し、復電を検知した場合、電圧計Mv4により測定された系統側電圧v4の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出する。そして、制御部152は、オフ状態にある系統側半導体スイッチ部26およびオン状態にある系統側リレー23のうち、検出した復電時ゼロクロスタイミングで系統側半導体スイッチ部26をオンする。
このように、復電時ゼロクロスタイミングで接続点Cおよび電力系統を接続する構成により、系統復電時において、交流電圧の瞬断および交流電圧の位相の急激な変化等により歪みを有する交流電力が負荷Zに供給されることを防止することができる。これにより、負荷Zへ与える悪影響を抑えることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、制御部152は、系統側半導体スイッチ部26をオンするタイミングで、出力切替部25を制御して第3端と中間接続点C1,C4とが接続された状態から第3端と接続点C3,C5とが接続された状態へ切り替えるとともに、電力変換部20を制御して、第3端から出力される電圧を中間電圧vNから電圧vAへ切り替える。
このような構成により、系統側半導体スイッチ部26が接続点Cおよび電力系統を接続するタイミングの前後において、無瞬断かつ自動で中間接続点C1,C4へ中間電圧vNを継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
また、本発明の第2の実施の形態に係る系統連系電力制御装置では、制御部152は、復電を検知した場合、系統側リレー23をオンする。そして、制御部152は、系統側リレー23をオンした後、検出した復電時ゼロクロスタイミングで系統側半導体スイッチ部26をオンする。
このように、系統側リレー23をオンしてから系統側半導体スイッチ部26をオンする構成により、接続点Cおよび電力系統を復電時ゼロクロスタイミングで確実に接続することができる。
なお、系統連系PCS102では、出力切替部25におけるスイッチ71,72は系統側リレー23におけるスイッチ44,45,46と比べて高速に切替え可能な構成であるとしたが、これに限定するものではない。系統連系PCS102は、たとえば、出力切替部25におけるスイッチ71,72の動作速度が、系統側リレー23におけるスイッチ44,45,46と同程度の動作速度であってもよい。
たとえば、本発明の第2の実施の形態に係る系統連系電力制御装置では、電力変換部20におけるインバータ33は、電圧vAおよび電圧vBがそれぞれ出力される第3端および第4端を有する。分電部22は、接続点Cとして、電圧vAが供給される接続点C3,C5と、電圧vBが供給される接続点C2,C6と、電圧vAおよび電圧vBの中間電圧vNが供給される中間接続点C1,C4とを含む。101V重要負荷ZAは、接続点C2および中間接続点C1の間に接続される。出力切替部25は、電流計Ma2および電圧計Mv2と接続点C3,C5および中間接続点C1,C4との間に接続され、第3端と接続点C3,C5とが接続された状態から第3端と中間接続点C1,C4とが接続された状態へ切替える。制御部152は、停電を検知した場合、出力切替部25を制御して第3端と接続点C3,C5とが接続された状態から第3端と中間接続点C1,C4とが接続された状態へ切り替えるとともに、電力変換部20を制御して、第3端から出力される電圧を電圧vAから中間電圧vNへ切り替える。
このような構成により、系統側リレー23が接続点Cおよび電力系統を非接続とするタイミングの前後において、中間接続点C1,C4へ中間電圧vNを継続して供給することができる。これにより、ユーザによる電力プラグの繋ぎ変えを不要とすることができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第3の実施の形態>
本実施の形態は、第1の実施の形態に係る系統連系電力制御装置と比べて、電流計を増設することにより「エネルギー見える化」機能を実装した系統連系電力制御装置に関する。以下で説明する内容以外は第1の実施の形態に係る系統連系システムと同様である。
[比較例としての「エネルギー見える化」システム]
再び図2を参照して、発電装置における発電電力、負荷Zにおける消費電力および電力系統へ供給する売電電力をユーザに対して分かりやすく提示するための「エネルギー見える化」システムは、電力変換装置920と、分電装置922とを備える。
「エネルギー見える化」機能を実現するために、分電装置922における制御部938は、電圧計Mv907から通知される電圧値および電流計Ma908から通知される電流値に基づいて、電力変換装置920から受ける電力を発電電力として演算する。
また、制御部938は、電圧計Mv904から通知される電圧値および電流計Ma903から通知される電流値に基づいて売電電力を演算する。
また、制御部938は、電圧計Mv907から通知される電圧値および電流計Ma904,Ma905,Ma909から通知される電流値に基づいて負荷Zにおける消費電力を演算する。なお、電流計Ma909から通知される電流値については、電流計Ma903,Ma908から演算できるので、電流計Ma909は設けられなくてもよい。
上記のように、「エネルギー見える化」システムを構築する場合、MCUが電力変換装置920および分電装置922の各々において必要となり、また、電圧計および電流計の個数が増えてしまう。このため、製造コストが上がってしまうという問題がある。また、電力変換装置920および分電装置922用に別個の筐体が必要となるので、設置スペースが大きくなるという問題がある。
これに対して、本発明の第3の実施の形態に係る系統連系システムでは、以下のような構成および動作により、上記問題を解決する。
[系統連系PCS103の構成]
図9は、本発明の第3の実施の形態に係る系統連系PCSの構成を示す図である。
図9を参照して、系統連系PCS(系統連系電力制御装置)103は、第1の実施の形態に係る系統連系PCS101と比べて、制御部151の代わりに制御部153を備え、さらに、電流計Ma3と、電流計(負荷電流計)Ma4と、電流計(負荷電流計)Ma5とを備える。
電流計Ma3は、たとえば、接続点Cに対して電力系統側の電流を測定する。より詳細には、電流計Ma3は、たとえば、分電部22および系統側リレー23間に設けられる。なお、電流計Ma3は、たとえば、系統側リレー23およびトランスT1間に設けられてもよい。
電流計Ma3は、たとえば、電力線PL3を通して流れる電流である系統側出力電流i3を測定し、測定した系統側出力電流i3の測定値を制御部153へ出力する。なお、電流計Ma3は、電力線PL4を通して流れる電流を系統側出力電流i3として測定してもよい。
電流計Ma4,Ma5は、たとえば、接続点Cに対して負荷Z側の電流を測定する。より詳細には、電流計Ma4は、たとえば、接続点C1またはC2に対して101V重要負荷ZA側の電流を測定する。具体的には、電流計Ma4は、たとえば、分電部22および101V重要負荷ZA間に設けられる。なお、電流計Ma4は、たとえば、分電部22内に設けられてもよい。
電流計Ma4は、たとえば、電力線PL10を通して流れる電流である101V重要負荷電流i4を測定し、測定した101V重要負荷電流i4の測定値を制御部153へ出力する。なお、電流計Ma4は、電力線PL11を通して流れる電流を101V重要負荷電流i4として測定してもよい。
電流計Ma5は、たとえば、接続点C3またはC4に対して101V負荷ZB側の電流を測定する。より詳細には、電流計Ma5は、たとえば、分電部22および101V負荷ZB間に設けられる。なお、電流計Ma5は、たとえば、分電部22内に設けられてもよい。
電流計Ma5は、たとえば、電力線PL12を通して流れる電流である101V負荷電流i5を測定し、測定した101V負荷電流i5の測定値を制御部153へ出力する。なお、電流計Ma5は、電力線PL13を通して流れる電流を101V負荷電流i5として測定してもよい。
制御部153は、たとえば、電圧計Mv1から通知されるPCS入力電圧V1、電圧計Mv2から通知されるPCS出力電圧v2、電圧計Mv3から通知される中間段電圧V3、電圧計Mv4から通知される系統側電圧v4、電流計Ma1から通知されるPCS入力電流I1、電流計Ma2から通知されるPCS出力電流i2、電流計Ma3から通知される系統側出力電流i3、電流計Ma4から通知される101V重要負荷電流i4、および電流計Ma5から通知される101V負荷電流i5に基づいて、「エネルギー見える化」機能に必要な値を演算する。
より詳細には、制御部153は、たとえば、PCS入力電圧V1およびPCS入力電流I1を用いて、発電装置11から受ける発電電力を演算する。
また、制御部153は、たとえば、PCS出力電圧v2または系統側電圧v4と、PCS出力電流i2とを用いて、電力変換部20が接続点C側へ供給する供給電力、すなわちインバータ33が負荷Zおよび電力系統へ供給する供給電力を演算する。また、発電電力および供給電力の比を演算することにより変換効率を求めることも可能である。
また、制御部153は、たとえば、PCS出力電圧v2または系統側電圧v4と、101V重要負荷電流i4とを用いて、101V重要負荷ZAにおいて消費される101V重要負荷消費電力を演算する。
また、制御部153は、たとえば、PCS出力電圧v2または系統側電圧v4と、101V負荷電流i5とを用いて、101V負荷ZBにおいて消費される101V負荷消費電力を演算する。
また、制御部153は、たとえば、PCS出力電圧v2または系統側電圧v4と、PCS出力電流i2および系統側出力電流i3の差とを用いて、202V負荷ZCにおいて消費される202V負荷消費電力を演算する。以下、101V重要負荷消費電力、101V負荷消費電力および202V負荷消費電力の各々を単に消費電力と称する場合がある。
また、制御部153は、たとえば、PCS出力電圧v2または系統側電圧v4と、系統側出力電流i3とを用いて、系統連系PCS103が電力系統へ供給する系統連系電力、すなわち系統連系PCS103が電力事業者へ売電する売電電力を演算する。
なお、制御部153は、たとえば、供給電力および総消費電力の大小関係から、売電電力を演算してもよい。
制御部153は、たとえば、演算した発電電力、供給電力、変換効率、101V重要負荷消費電力、101V負荷消費電力、202V負荷消費電力および売電電力を図示しない表示部において表示する。
これにより、現在発電している電力、消費している電力および売買電している電力をユーザに対して分かりやすく提示することが可能な「エネルギー見える化」機能を実装することができる。
系統連系PCS103では、図2に示す「エネルギー見える化」機能を実装した電力変換装置920および分電装置922と比較して、1つの電圧計、1つの電流計、系統側ブレーカおよび1つの制御部を削減することができる。このように、部品点数を減らすことができるので、製造コストを下げることができる。
また、系統連系PCS103では、1つの筐体内にまとめることにより形状を小さくすることができるので、「エネルギー見える化」機能を実装した場合においても設置スペースを小さくすることができる。
なお、系統側出力電流i3は、電力線PL14またはPL15を通して流れる電流とPCS出力電流i2とから演算できるので、系統連系PCS103は、電流計Ma3の代わりに、電力線PL14またはPL15を通して流れる電流を測定する電流計を備える構成であってもよい。
その他の構成および動作は第1の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
以上のように、本発明の第3の実施の形態に係る系統連系電力制御装置では、電流計Ma3は、接続点Cに対して電力系統側の系統側出力電流i3を測定する。電流計Ma4,Ma5は、接続点Cに対して負荷Z側の電流を測定する。より詳細には、電流計Ma4は、接続点C1に対して101V重要負荷ZA側の101V重要負荷電流i4を測定する。電流計Ma5は、接続点C3に対して101V負荷ZB側の101V負荷電流i5を測定する。制御部153は、電圧計Mv2またはMv4によりそれぞれ測定されたPCS出力電圧v2または系統側電圧v4、ならびに電流計Ma2,Ma3,Ma4,Ma5によりそれぞれ測定されたPCS出力電流i2、系統側出力電流i3、101V重要負荷電流i4および101V負荷電流i5に基づいて、電力変換部20が接続点C側へ供給する供給電力、自己の系統連系PCS103が電力系統へ供給する売電電力および負荷Zが消費する消費電力をそれぞれ演算する。
このような構成により、供給電力、売電電力および消費電力の演算処理を系統連系PCS103において行うことができるので、たとえば系統連系PCS103が設置された家庭または事業所において入出力されるエネルギーの収支に関する情報を一元的に管理することができ、また当該情報をユーザに対して提示することができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第4の実施の形態>
本実施の形態は、第3の実施の形態に係る系統連系電力制御装置と比べて、各負荷Zへの電力供給を制御するスマート分電盤の機能を有する系統連系電力制御装置に関する。以下で説明する内容以外は第3の実施の形態に係る系統連系システムと同様である。
[比較例としてのスマート分電盤]
図10は、本発明の第4の実施の形態に係る系統連系PCSの比較例としての分電装置の構成を示す図である。
図10を参照して、分電装置1022は、図2に示す分電装置922と比べて、制御部938および分岐ブレーカ951A,951B,951Cの代わりに制御部1038および分岐ブレーカ1051A,1051B,1051Cを備え、さらに、通信部1027を備える。
たとえば、分電装置1022は、各負荷へ電力を供給するか否かを制御する「スマート分電盤」の機能を有する場合、集中制御機能を有するEMS(Energy Management System)1040と通信する。
より詳細には、分電装置1022における制御部1038は、演算した各負荷における消費電力を通信部1027経由でEMS1040へ送信する。
EMS1040は、たとえば、電力変換装置、蓄電池および分電装置1022等を管理しており、現在の発電電力および蓄電池における蓄電量等に基づいて、下位システムの電力のバランスを演算する。そして、EMS1040は、演算結果および節電目標に基づいて、強制的に電力供給を停止すべき負荷を選択し、選択結果を分電装置1022へ送信する。
分電装置1022は、EMS1040から通信部1027経由で選択結果を受信すると、受信した選択結果に基づいて分岐ブレーカ1051A,1051B,1051Cのいずれかをオフする。
上記のように、EMS1040が電力変換装置、蓄電池および分電装置1022等を管理する構成である場合、EMS1040が別途必要となり、かつ分電装置1022において通信部1027が必要となり、製造コストが上がってしまうという問題がある。
また、分電装置1022およびEMS1040間における通信に時間を要し、制御が遅れてしまう場合がある。
これに対して、本発明の第4の実施の形態に係る系統連系システムでは、以下のような構成および動作により、上記問題を解決する。
[系統連系PCS104の構成]
図11は、本発明の第4の実施の形態に係る系統連系PCSの構成を示す図である。
図12は、本発明の第4の実施の形態に係る分電部の構成を示す図である。
図11および図12を参照して、系統連系PCS(系統連系電力制御装置)104は、第3の実施の形態に係る系統連系PCS103と比べて、制御部153および分電部22の代わりに制御部154および分電部422を備える。分電部422は、第3の実施の形態に係る分電部22と比べて、分岐ブレーカ51A,51B,51Cの代わりに分岐リレー(負荷接続切替部)61A,61B,61Cを備える。
分岐リレー61A,61B,61Cは、それぞれ101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCに対応して設けられる。図12では、各1つの分岐リレー61A,61B,61Cを代表的に示しているが、さらに多数の分岐リレー61A,61B,61Cが設けられてもよい。以下、分岐リレー61A,61B,61Cを分岐リレー61と称する場合がある。
分岐リレー61は、たとえば、制御部154から受ける制御信号に基づいて、接続点Cおよび負荷Zを電気的に接続するか否かを切替える。
より詳細には、電力線PL10,PL11には、分岐リレー61Aが接続されている。分岐リレー61Aにおいて、スイッチ62Aは、接続点C1と接続された第1端と、101V重要負荷ZAの第1端と接続された第2端とを有する。スイッチ63Aは、接続点C2と接続された第1端と、101V重要負荷ZAの第2端と接続された第2端とを有する。
分岐リレー61Aは、たとえば、制御部154から受ける制御信号S6に基づいて、接続点C1、C2および101V重要負荷ZAを電気的に接続するか否かを切替える。より詳細には、分岐リレー61Aは、たとえば、制御部154から制御信号S6を受け、インバータ33および電力系統と101V重要負荷ZAとを電気的に接続するか否かを切替える。
電力線PL12,PL13には、分岐リレー61Bが接続されている。分岐リレー61Bにおいて、スイッチ62Bは、接続点C3と接続された第1端と、101V負荷ZBの第1端と接続された第2端とを有する。スイッチ63Bは、接続点C4と接続された第1端と、101V負荷ZBの第2端と接続された第2端とを有する。
分岐リレー61Bは、たとえば、制御部154から受ける制御信号S7に基づいて、接続点C3、C4および101V負荷ZBを電気的に接続するか否かを切替える。より詳細には、分岐リレー61Bは、たとえば、制御部154から制御信号S7を受け、インバータ33および電力系統と101V負荷ZBとを電気的に接続するか否かを切替える。
電力線PL14,PL15には、分岐リレー61Cが接続されている。分岐リレー61Cにおいて、スイッチ62Cは、接続点C5と接続された第1端と、202V負荷ZCの第1端と接続された第2端とを有する。スイッチ63Cは、接続点C6と接続された第1端と、202V負荷ZCの第2端と接続された第2端とを有する。
分岐リレー61Cは、たとえば、制御部154から受ける制御信号S8に基づいて、接続点C5、C6および202V負荷ZCを電気的に接続するか否かを切替える。より詳細には、分岐リレー61Cは、たとえば、制御部154から制御信号S8を受け、インバータ33および電力系統と202V負荷ZCとを電気的に接続するか否かを切替える。
制御部154は、たとえば、供給電力、101V重要負荷消費電力、101V負荷消費電力、202V負荷消費電力および売電電力に基づいて、分岐リレー61のオンおよびオフを制御する。
具体的には、たとえば、各分岐リレー61には、自己と接続された負荷Zの重要度に基づいて優先度が付与されている。たとえば、重要度が、101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCの順である場合、分岐リレー61A、分岐リレー61Bおよび分岐リレー61Cの順に優先度が付与される。そして、制御部154は、たとえば、供給電力、消費電力および売電電力の大小関係と、優先度とに基づいて、分岐リレー61A,61B,61Cのオンおよびオフを切り替える。
より詳細には、制御部154は、たとえば、電力系統から買電しない状態を維持すべき旨の命令をユーザから受けている場合、以下の処理を行う。
すなわち、制御部154は、たとえば、売電電力の値が負になりそうなとき、言い換えると電力系統へ電力を供給する状態から電力系統から電力の供給を受ける状態へ遷移しそうなとき、負荷Zの消費電力および各分岐リレー61の優先度に基づいて、分岐リレー61A,61B,61Cのいずれかをオフすることを総合的に判断する。
たとえば、制御部154は、売電電力の値が負になりそうなとき、優先度の低い分岐リレー61Cにおけるスイッチ62C,63Cをオフする命令を示す制御信号S8を分岐リレー61Cへ出力する。
分岐リレー61Cは、制御部154から上記制御信号S8を受けると、スイッチ62C,63Cをオフする。これにより、負荷Zにおける消費電力を減少させることができるので、供給電力が総消費電力を上回る状態、すなわち電力系統から買電しない状態を維持することができる。
系統連系PCS104では、図10に示す電力変換装置920および分電装置1022と比較して、通信部、1つの電圧計、1つの電流計、系統側ブレーカおよび1つの制御部を削減することができる。このように、部品点数を減らすことができるので、製造コストを下げることができる。
また、系統連系PCS104では、1つの筐体内にまとめることにより形状を小さくすることができるので、「エネルギー見える化」機能および各負荷Zへの電力供給を制御する機能を実装した場合においても設置スペースを小さくすることができる。
また、系統連系PCS104において、EMS1040との通信を不要とすることができるので、迅速な制御が可能となる。
また、系統連系PCS104において、2つのMCUが有する機能を1つのMCUが有するので、通信を介してEMS1040を用いることなく1つのMCUで、電力の需給に基づいて分岐リレー61を制御することができる。
電気料金は、季節別および時間帯別で細かく設定される場合がある。このような場合、系統連系PCS104において、電気料金の高い時間帯においては電力の使用を控える制御を行うことができる。
その他の構成および動作は第3の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
以上のように、本発明の第4の実施の形態に係る系統連系電力制御装置では、分岐リレー61は、接続点Cおよび負荷Zを接続するか否かを切替える。制御部154は、演算した供給電力、売電電力および消費電力に基づいて、分岐リレー61を制御して接続点Cと負荷Zとの接続および非接続を切替える。
このような構成により、供給電力、売電電力および消費電力を総合的に判断し、判断結果に基づいて接続点Cと負荷Zとの接続および非接続を切替えることができるので、発電装置11における発電電力の変動に基づく供給電力の変化に応じて消費電力を調整することができる。
また、本発明の第4の実施の形態に係る系統連系電力制御装置では、分岐リレー61A,61B,61Cは、101V重要負荷ZA、101V負荷101Bおよび202V負荷ZCにそれぞれ対応して設けられる。また、分岐リレー61A,61B,61Cには優先度が付与されている。制御部154は、演算した供給電力、売電電力および消費電力の大小関係、ならびに優先度に基づいて分岐リレー61A,61B,61Cの接続状態および切断状態を切替える。
このような構成により、供給電力、売電電力および消費電力の大小関係、ならびに優先度を総合的に判断し、判断結果に基づいて分岐リレー61A,61B,61Cの接続状態を切替えることができるので、消費電力をきめ細かく調整することができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第5の実施の形態>
本実施の形態は、第1の実施の形態に係る系統連系電力制御装置と比べて、売電電力を測定可能であって売電電力を通信により電力事業者へ通知するスマートメータの機能を有する系統連系電力制御装置に関する。以下で説明する内容以外は第1の実施の形態に係る系統連系システムと同様である。
[系統連系システム205の構成]
図13は、本発明の第5の実施の形態に係る系統連系システムの構成を示す図である。
図13を参照して、系統連系システム205は、第1の実施の形態に係る系統連系システム201と比べて、系統連系PCS101、売電電力計12および買電電力計13の代わりに系統連系PCS105、ネットワーク17および検針サーバ16を備える。
ネットワーク17は、たとえば、インターネットである。検針サーバ16は、たとえば、電力事業者により設置され、系統連系PCS105における売電電力をネットワーク17経由で取得し、取得した売電電力に基づいて電力使用料金を算出する。
また、検針サーバ16は、たとえば、各家庭および事業所における消費電力をネットワーク17経由で取得し、取得した消費電力に基づいて電力使用料金を算出してもよい。
[系統連系PCS105の構成]
図14は、本発明の第5の実施の形態に係る系統連系PCSの構成を示す図である。
図14を参照して、系統連系PCS(系統連系電力制御装置)105は、第1の実施の形態に係る系統連系PCS101と比べて、制御部151の代わりに制御部155を備え、さらに、電流計Ma3と、通信部(送信部)27とを備える。
電流計Ma3は、たとえば、接続点Cに対して電力系統側の電流を測定する。より詳細には、電流計Ma3は、たとえば、分電部22および系統側リレー23間に設けられる。なお、電流計Ma3は、たとえば、系統側リレー23およびトランスT1間に設けられてもよい。
電流計Ma3は、たとえば、電力線PL3を通して流れる電流である系統側出力電流i3を測定し、測定した系統側出力電流i3の測定値を制御部155へ出力する。なお、電流計Ma3は、電力線PL4を通して流れる電流を系統側出力電流i3として測定してもよい。
通信部27は、たとえば、制御部155から受けた情報をネットワーク17経由で他の装置、具体的には検針サーバ16へ送信する。また、通信部27は、たとえば、検針サーバ16からネットワーク17経由で受けた情報を制御部155へ送信する。
制御部155は、たとえば、PCS出力電圧v2または系統側電圧v4と、系統側出力電流i3とを収集し、系統連系PCS105が電力系統へ供給する売電電力を演算する。そして、制御部155は、演算した売電電力を積算する。
制御部155は、たとえば、所定期間毎に積算した売買電力を通信部27経由で検針サーバ16へ送信する。なお、制御部155は、たとえば、検針サーバ16から通信部27経由で検針命令を受けたタイミングで、積算した売買電力を通信部27経由で検針サーバ16へ送信してもよい。
その他の構成および動作は第1の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
以上のように、本発明の第5の実施の形態に係る系統連系電力制御装置では、電流計Ma3は、接続点Cに対して電力系統側の系統側出力電流i3を測定する。通信部27は、他の装置たとえば検針サーバ16へ情報を送信する。制御部155は、電圧計Mv2または電圧計Mv4によりそれぞれ測定されたPCS出力電圧v2または系統側電圧v4、および電流計Ma3により測定された系統側出力電流i3に基づいて、自己の系統連系PCS105が電力系統へ供給する売電電力を演算する。そして、制御部155は、演算した売電電力を通信部27経由でたとえば検針サーバ16へ送信する。
これにより、図1に示すような売電電力計12および買電電力計13を用いることなく、売買電力を積算することができる。また、ネットワーク17経由で売電電力を電力事業者へ通知することができるので、各家庭または各事業所へ個別に訪問して売電電力を検針する手間を省くことができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第6の実施の形態>
本実施の形態は、第1の実施の形態に係る系統連系電力制御装置と比べて、発電した電気を蓄電することが可能な系統連系電力制御装置に関する。以下で説明する内容以外は第1の実施の形態に係る系統連系システムと同様である。
[系統連系システム206の構成]
図15は、本発明の第6の実施の形態に係る系統連系システムの構成を示す図である。
図15を参照して、系統連系システム206は、第1の実施の形態に係る系統連系システム201と比べて、系統連系PCS101の代わりに系統連系PCS106を備え、さらに、蓄電装置B1を備える。
蓄電装置B1は、たとえば、蓄電池または電気二重層キャパシタ(Electric Double-Layer Capacitor, EDLC)である。蓄電装置B1は、たとえば、系統連系PCS106から電力線PL16,PL17経由で受ける電力を化学エネルギーまたは電気エネルギーとして蓄積する。また、蓄電装置B1は、たとえば、蓄積した化学エネルギーまたは電気エネルギーに基づく電力を系統連系PCS106へ出力する。
たとえば、系統停電時において、系統連系PCS106と電力系統とが電気的に切り離されると、発電装置11は、各負荷Zにおける総消費電力分しか発電することができない。したがって、負荷Zが小さい場合、発電装置11が発電する電力が抑えられてしまう。
また、系統停電時において、発電装置11における発電電力が安定しない場合、重要負荷に対して電力を安定して供給することができなくなる。
また、蓄電装置B1において蓄積された化学エネルギーまたは電気エネルギーに基づく電力を電力系統へ出力する逆潮流は、系統連系規程により禁止されている。
本発明の第6の実施の形態に係る系統連系PCSでは、以下のような構成および動作により、逆潮流を防止しつつ、蓄電装置B1における充放電を制御し、系統停電時においても負荷に対して安定して電力を供給することを可能とする。
[系統連系PCS106の構成]
図16は、本発明の第6の実施の形態に係る系統連系PCSの構成を示す図である。
図17は、本発明の第6の実施の形態に係る電力変換部の構成を示す図である。
図16および図17を参照して、系統連系PCS(系統連系電力制御装置)106は、第1の実施の形態に係る系統連系PCS101と比べて、制御部151および電力変換部20の代わりに制御部156および電力変換部620を備え、さらに、電流計Ma3,Ma7と、電圧計Mv5とを備える。電力変換部620は、第1の実施の形態に係る電力変換部20と比べて、インバータ33の代わりに双方向インバータ35を備え、さらに、電流計Ma6と、双方向コンバータ34とを備える。
電力変換部620は、たとえば、制御部156による制御に従って、発電装置11から受けた電力を変換し、変換した電力の一部または全部をエネルギーとして蓄電装置B1へ出力する。また、たとえば、電力変換部620は、制御部156による制御に従って、電力系統から受けた電力を変換し、変換した電力の全部をエネルギーとして蓄電装置B1へ出力してもよい。
また、たとえば、電力変換部620は、制御部156による制御に従って、蓄電装置B1に蓄電したエネルギーに基づく電力を電力系統および負荷Zへ出力する。また、たとえば、電力変換部620は、逆潮流を防止するために、制御部156による制御に従って、蓄電装置B1から受ける電力の全部を負荷Zへ出力してもよい。
より詳細には、電力変換部620における双方向インバータ35は、キャパシタ32および太陽光発電側ブレーカ21の間に接続されている。双方向インバータ35は、電力線PL7を介してキャパシタ32の第1端と接続された第1端と、電力線PL8を介してキャパシタ32の第2端と接続された第2端とを有する。
双方向インバータ35は、たとえば、複数のスイッチ素子を含み、制御部156から受ける制御信号S10に基づいて、複数のスイッチ素子をスイッチングすることにより、コンバータ31および双方向コンバータ34からキャパシタ32を介して受ける中間段電圧V3を単相の交流電圧vA,vBすなわち交流電力に変換する。
この際、双方向インバータ35は、たとえば逆潮流を防止するために、制御部156から受ける制御信号S10に基づいて、蓄電装置B1から双方向コンバータ34経由で受ける電力が各負荷Zにおける総消費電力を超えないように中間段電圧V3を単相の交流電圧vA,vBに変換する。
双方向インバータ35は、変換した交流電圧vA,vBを、それぞれ第3端および第4端から太陽光発電側ブレーカ21、分電部22および系統側リレー23経由でトランスT1へ出力する。
トランスT1における1次側コイルL1は、電力線PL3を介して双方向インバータ35の第3端と接続された第1端と、電力線PL4を介して双方向インバータ35の第4端と接続された第2端と、中性線PLnと接続された中間点とを有する。
電力線PL3,PL4および中性線PLn上に、太陽光発電側ブレーカ21、分電部22および系統側リレー23が接続されている。
太陽光発電側ブレーカ21において、スイッチ41は、電力線PL3を介して双方向インバータ35の第3端と接続された第1端と、第2端とを有する。スイッチ42は、第1端と、第2端とを有する。スイッチ43は、電力線PL4を介して双方向インバータ35の第4端と接続された第1端と、第2端とを有する。
また、双方向インバータ35は、たとえば、制御部156から受ける制御信号S10に基づいて、複数のスイッチ素子をスイッチングすることにより、トランスT1から系統側リレー23、分電部22および太陽光発電側ブレーカ21を介して受ける単相の交流電圧vA,vB交流電圧を中間段電圧V3に変換する。
双方向インバータ35は、変換した中間段電圧V3のうちVh,Vlを、それぞれ第1端および第2端から双方向コンバータ34へ出力する。
双方向コンバータ34は、双方向インバータ35および蓄電装置B1の間に接続されている。双方向コンバータ34は、双方向インバータ35の第1端とノードNhを介して接続された第1端と、双方向インバータ35の第2端とノードNlを介して接続された第2端とを有する。
双方向コンバータ34は、たとえば、制御部156から受ける制御信号S9に基づいて、コンバータ31および双方向インバータ35から受ける直流電圧を昇圧または降圧する。そして、双方向コンバータ34は、たとえば、昇圧または降圧した直流電圧のうち、高電圧側の電圧Vhbおよび低電圧側の電圧Vlbをそれぞれ第3端および第4端から蓄電装置B1へ出力する。
双方向コンバータ34は、たとえば、制御部156から受ける制御信号S9に基づいて、コンバータ31が出力する直流電力の一部または全部を異なる直流電圧の電力へ変換し、変換した電力をエネルギーとして蓄電装置B1へ出力する。
また、たとえば、電力変換部620は、制御部156から受ける制御信号S9に基づいて、双方向インバータ35から受けた直流電力を変換し、変換した電力の全部をエネルギーとして蓄電装置B1へ出力する。
蓄電装置B1は、電力変換部620における双方向コンバータ34に接続されている。蓄電装置B1は、電力線PL16を介して双方向コンバータ34の第3端と接続された第1端と、電力線PL17を介して双方向コンバータ34の第4端と接続された第2端とを有する。
蓄電装置B1は、電力線PL16、PL17の線間電圧に応じて、自己が蓄積したエネルギーを直流電力として双方向コンバータ34へ出力し、また、双方向コンバータ34から受ける直流電力をエネルギーとして蓄積する。
電流計Ma3は、たとえば、接続点Cに対して電力系統側の電流を測定する。より詳細には、電流計Ma3は、たとえば、分電部22および系統側リレー23間に設けられている。なお、電流計Ma3は、たとえば、系統側リレー23およびトランスT1間に設けられてもよい。
電流計Ma3は、たとえば、電力線PL3を通して流れる電流である系統側出力電流i3を測定し、測定した系統側出力電流i3の測定値を制御部156へ出力する。なお、電流計Ma3は、電力線PL4を通して流れる電流を系統側出力電流i3として測定してもよい。
電流計Ma6は、たとえば、電力変換部620における電流を測定する。より詳細には、電流計Ma6は、たとえば、ノードNhおよび双方向コンバータ34の第1端の間を接続する電力線を通して流れる電流である双方向コンバータ電流I6を測定し、測定した双方向コンバータ電流I6の測定値を制御部156へ出力する。なお、電流計Ma6は、ノードNlおよび双方向コンバータ34の第2端の間を接続する電力線を通して流れる電流を双方向コンバータ電流I6として測定してもよい。
電流計Ma7は、たとえば、電力変換部620および蓄電装置B1間における電流を測定する。より詳細には、電流計Ma7は、たとえば、電力線PL16を通して流れる電流である蓄電装置入力電流I7を測定し、測定した蓄電装置入力電流I7の測定値を制御部156へ出力する。なお、電流計Ma7は、電力線PL17を通して流れる電流を蓄電装置入力電流I7として測定してもよい。
電圧計Mv5は、たとえば、電力変換部620および蓄電装置B1間における電圧を測定する。より詳細には、電圧計Mv5は、電力線PL16,PL17間の電圧である蓄電装置入力電圧V5を測定し、測定した蓄電装置入力電圧V5の測定値を制御部156へ出力する。
制御部156は、たとえば、電圧計Mv1から通知されるPCS入力電圧V1、電圧計Mv2から通知されるPCS出力電圧v2、電圧計Mv3から通知される中間段電圧V3、電圧計Mv4から通知される系統側電圧v4、電圧計Mv5から通知される蓄電装置入力電圧V5、電流計Ma1から通知されるPCS入力電流I1、電流計Ma2から通知されるPCS出力電流i2、電流計Ma3から通知される系統側出力電流i3、電流計Ma6から通知される双方向コンバータ電流I6および電流計Ma7から通知される蓄電装置入力電流I7に基づいて、電力変換部620、すなわちコンバータ31、双方向インバータ35および双方向コンバータ34を一体的に制御する。
より詳細には、制御部156は、たとえば、PCS入力電圧V1およびPCS入力電流I1から発電装置11から受ける発電電力を演算する。
また、制御部156は、たとえば、PCS出力電圧v2または系統側電圧v4と、PCS出力電流i2とを用いて、電力変換部620が接続点C側へ供給する供給電力、すなわち双方向インバータ35が負荷Zおよび電力系統へ供給する供給電力を演算する。
また、制御部156は、たとえば、中間段電圧V3および双方向コンバータ電流I6を用いて、双方向コンバータ34へ入力する双方向コンバータ電力を演算する。
また、制御部156は、たとえば、PCS出力電圧v2または系統側電圧v4と、系統側出力電流i3とを用いて、系統連系PCS103が電力系統へ供給する売電電力を演算する。
また、制御部156は、たとえば、蓄電装置入力電圧V5および蓄電装置入力電流I7を用いて蓄電装置B1における蓄電量を演算する。
また、制御部156は、たとえば、演算した供給電力および売電電力の差から各負荷Zにおいて消費される総消費電力を演算する。
そして、制御部156は、たとえば、演算した発電電力、供給電力、総消費電力、双方向コンバータ電力、売電電力および蓄電量に基づいて、双方向コンバータ34および双方向インバータ35を制御する。
具体的には、制御部156は、たとえば、蓄電量が少ない場合であって、売電電力の値が正であるとき、言い換えると系統連系PCS106が電力系統へ電力を供給するとき、充電すべきことを示す制御信号S9を双方向コンバータ34へ出力する。
双方向コンバータ34は、制御信号S9を制御部156から受けると、電力線PL16,PL17間の電圧を調整し、蓄電装置B1を充電する。
また、制御部156は、たとえば、蓄電量が少なく、かつ発電電力が少ない場合、電力系統から受けた電力を双方向コンバータ34側へ出力すべきことを示す制御信号S10を双方向インバータ35へ出力し、また、充電すべきことを示す制御信号S9を双方向コンバータ34へ出力する。
双方向インバータ35は、制御信号S10を制御部156から受けると、電力線PL3,PL4を介して電力系統から受ける交流電力を直流電力へ変換し、変換した交流電力を双方向コンバータ34へ出力する。
双方向コンバータ34は、制御信号S9を制御部156から受けると、電力線PL16,PL17間の電圧を調整し、双方向インバータ35から受ける直流電力を用いて蓄電装置B1を充電する。
また、制御部156は、たとえば、総消費電力を超える電力を蓄電装置B1から放電させないように制御信号S9を双方向コンバータ34へ出力する。これにより、逆潮流を防ぐことができる。
また、制御部156は、たとえば、蓄電量が多く、かつ発電電力が少ない場合であって、売電電力の値が負であるとき、言い換えると系統連系PCS106が電力系統から電力を受けるとき、放電すべきことを示す制御信号S9を双方向コンバータ34へ出力する。
双方向コンバータ34は、制御信号S9を制御部156から受けると、電力線PL16,PL17間の電圧を調整し、蓄電装置B1を放電する。これにより、発電電力が少ない場合であっても、電力系統からの買電電力を少なくすることができる。
また、制御部156は、たとえば、電力系統における停電を検知した場合、系統側リレー23をオフする。この場合、系統連系PCS106は、発電装置11から受ける発電電力を202V負荷ZCへ出力する。
たとえば、発電装置11から受ける発電電力が202V負荷ZCにおける消費電力より大きい場合、電力変換部620は、制御部156による制御に従って、発電電力の一部を202V負荷ZCへ出力し、かつ残りを蓄電装置B1に充電する。これにより、系統停電時において、発電装置11が発電する電力が抑えられてしまうことを防ぐことができる。
また、たとえば、発電装置11から受ける発電電力が202V負荷ZCにおける消費電力より小さい場合、電力変換部620は、制御部156による制御に従って、発電装置11から受ける発電電力および蓄電装置B1から受ける電力を合わせて202V負荷ZCへ出力する。これにより、系統停電時において、発電装置11が発電する電力が202V負荷ZCの消費電力より小さい場合であっても、202V負荷ZCが要求するだけの電力を供給することができる。
すなわち、系統停電時において、発電装置11における発電電力が安定しない場合であっても、202V負荷ZCに対して電力を安定して供給することができる。
なお、系統停電時において、無停電電源装置(Uninterruptible Power Supply, UPS)および鉛蓄電池を用いて負荷Zに対して電力を供給する方法が考えられる。しかしながら、鉛蓄電池では、容量が小さいため短時間しか負荷Zに対して電力を供給することができない。
これに対して、系統連系PCS106では、発電装置11において発電された発電電力を蓄電装置B1に充電しながら負荷Zへ電力を供給するので、系統停電時においても長時間安定して負荷Zに対して電力を供給することができる。
また、系統連系PCS106は、本発明の第2の実施の形態に係る系統連系PCS102において説明した出力切替部25および系統側半導体スイッチ部26を備える構成であってもよい。
制御部156は、たとえば、電力系統における停電を検知した場合、停電時ゼロクロスタイミングで出力切替部25を中性線PLn側へ切替え、かつ系統側半導体スイッチ部26および系統側リレー23をオフする。
これにより、系統連系PCS106では、系統停電時において、101V重要負荷ZAに対して自動で無瞬断かつ長時間安定に電力を供給することができる。
また、制御部156は、たとえば、系統復電時において、復電時ゼロクロスタイミングで出力切替部25を電力線PL3側へ切替え、かつ系統側半導体スイッチ部26および系統側リレー23をオンする。
これにより、系統連系PCS106では、系統復電時において、101V重要負荷ZAに対して自動かつ無瞬断で電力を供給することができる。
また、電力変換部620では、双方向インバータ35を用いて電力系統から受けた電力の一部または全部を蓄電装置B1へ出力することが可能な構成であるとしたが、これに限定するものではない。たとえば、電力変換部620は、双方向インバータ35の代わりに本発明の第1の実施の形態に係る系統連系PCS101において説明したインバータ33を含む構成であってもよい。
その他の構成および動作は第1の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
以上のように、本発明の第6の実施の形態に係る系統連系電力制御装置では、電力変換部620は、発電装置11から受けた電力を変換し、変換した電力の一部または全部をエネルギーとして蓄電装置B1に蓄電する。また、電力変換部620は、蓄電装置B1に蓄電したエネルギーに基づく電力を電力系統へ出力する。電流計Ma3は、接続点Cに対して電力系統側の系統側出力電流i3を測定する。電流計Ma6は、電力変換部620における双方向コンバータ電流I6を測定する。電流計Ma7は、電力変換部620および蓄電装置B1間における蓄電装置入力電流I7を測定する。電圧計Mv5は、電力変換部620および蓄電装置B1間における蓄電装置入力電圧V5を測定する。制御部156は、電圧計Mv1,Mv2,Mv3,Mv4,Mv5により測定されたPCS入力電圧V1、PCS出力電圧v2、中間段電圧V3、系統側電圧v4および蓄電装置入力電圧V5、ならびに電流計Ma1,Ma2,Ma3,Ma6,Ma7により測定されたPCS入力電流I1、PCS出力電流i2、系統側電流i3、双方向コンバータ電流I6および蓄電装置入力電流I7に基づいて電力変換部620を制御する。
このような構成により、蓄電装置B1をエネルギーのバッファとして使用することができるので、発電装置11における発電電力の変動に基づく供給電力の変化を平滑化することができる。これにより、停電時においても、負荷Zに対して電力を安定して供給することができる。
次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
<第7の実施の形態>
本実施の形態は、第2の実施の形態、第4の実施の形態、第5の実施の形態および第6の実施の形態に係る系統連系電力制御装置を組み合わせた、HEMS(Home Energy Management System)機能を有する系統連系電力制御装置に関する。以下で説明する内容以外は第6の実施の形態に係る系統連系システムと同様である。
[系統連系システム207の構成]
図18は、本発明の第7の実施の形態に係る系統連系システムの構成を示す図である。
図18を参照して、系統連系システム207は、第6の実施の形態に係る系統連系システム206と比べて、系統連系PCS106、売電電力計12および買電電力計13の代わりに系統連系PCS107、ネットワーク17および検針サーバ16を備える。
ネットワーク17および検針サーバ16は、第5の実施の形態に係る系統連系システム205において説明したものと同様であるので、詳細な説明は繰り返さない。
[系統連系PCS107の構成]
図19は、本発明の第7の実施の形態に係る系統連系PCSの構成を示す図である。
図19を参照して、系統連系PCS(系統連系電力制御装置)107は、第6の実施の形態に係る系統連系PCS106と比べて、制御部156および分電部22の代わりに制御部157および分電部422を備え、さらに、出力切替部25と、系統側半導体スイッチ部26と、電流計Ma4と、電流計Ma5と、通信部(送信部)27とを備える。
制御部157は、第2の実施の形態に係る系統連系PCS102における制御部152、第4の実施の形態に係る系統連系PCS104における制御部154、第5の実施の形態に係る系統連系PCS105における制御部155、および第6の実施の形態に係る系統連系PCS106における制御部156の機能を組み合わせた機能を有する。
出力切替部25および系統側半導体スイッチ部26は、第2の実施の形態に係る系統連系PCS102において説明したものと同様であるので、詳細な説明は繰り返さない。
分電部422、電流計Ma4および電流計Ma5は、第4の実施の形態に係る系統連系PCS104において説明したものと同様であるので、詳細な説明は繰り返さない。
通信部27は、第5の実施の形態に係る系統連系PCS105において説明したものと同様であるので、詳細な説明は繰り返さない。
系統連系PCS107は、第1の実施の形態に係る系統連系PCS101において説明した系統連系PCSの標準機能に加えて、分岐リレー61、出力切替部25、系統側半導体スイッチ部26、双方向インバータ35および双方向コンバータ34の制御とネットワーク17を介した電力事業者との双方向通信を行うことにより、HEMS機能を実現することができる。
すなわち、たとえば、電力系統が正常であるとき、系統連系PCS107は、電力事業者が設置する検針サーバ16と通信することにより売電価格および買電価格の時価を認識することができる。
たとえば、系統連系PCS107は、売電価格および買電価格の時価に応じて、発電装置11から受ける発電電力について、以下の判断を行う。
すなわち、系統連系PCS107は、たとえば、発電電力の一部を売電することが可能な場合、言い換えると余剰電力がある場合、当該余剰電力を電力系統へ売電するか、または蓄電装置B1へ蓄電するかのどちらがコスト面で有利かを判断する。
また、系統連系PCS107は、たとえば、発電電力の全部を自己の各負荷Zにおいて消費し、余剰電力がない場合、電力系統から買電するか、または蓄電装置B1を放電するかのどちらがコスト面で有利かを判断する。
系統連系PCS107は、上記判断に従って、電力変換部620における双方向インバータ35および双方向コンバータ34を制御する。
また、系統連系PCS107は、ユーザにより与えられた命令に従って、分電部422における分岐リレー61を制御することにより、負荷制御を行う。
具体的には、系統連系PCS107は、たとえば、電力系統から買電しない状態を維持すべき旨の命令をユーザから受けている場合、以下の処理を行う。
すなわち、系統連系PCS107は、たとえば、発電電力の全部を自己の各負荷Zにおいて消費し、余剰電力がない場合、101V重要負荷ZA、101V負荷ZBおよび202V負荷ZCに対応して設けられる分岐リレー61A,61B,61Cのうち、優先度の低い分岐リレー61をオフする。
これにより、負荷Zにおける消費電力を減少させることができるので、電力系統から買電しない状態を維持することができる。
また、系統停電時において、系統連系PCS107は、たとえば、系統連系モードから自立運転モードへ遷移し、出力切替部25、系統側半導体スイッチ部26および系統側リレー23を制御する。
これにより、101V重要負荷ZAに対する101Vの交流電力の供給を、電力系統経由から双方向インバータ35へ無瞬断かつ自動で切り替えることができる。
また、発電装置11における発電電力が不足している場合、系統連系PCS107は、たとえば、蓄電装置B1を放電させることにより、長時間安定して101V重要負荷ZAに対して電力を供給することができる。
その他の構成および動作は第1の実施の形態に係る系統連系PCSと同様であるため、ここでは詳細な説明を繰り返さない。
なお、本発明の第1の実施の形態〜第7の実施の形態に係る各装置の構成要素および動作のうち、一部または全部を任意に組み合わせることも可能である。
上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
11 発電装置
12 売電電力計
13 買電電力計
14 太陽電池モジュール
15 接続箱
16 検針サーバ
17 ネットワーク
20 電力変換部
21 太陽光発電側ブレーカ
22 分電部
23 系統側リレー(接続切替部)
25 出力切替部
26 系統側半導体スイッチ部(接続切替部)
27 通信部(送信部)
31 コンバータ
32 キャパシタ
33 インバータ
34 双方向コンバータ
35 双方向インバータ
41,42,43 スイッチ
44,45,46 スイッチ(第2のスイッチ)
51A,51B,51C 分岐ブレーカ
52A,52B,52C スイッチ
53A,53B,53C スイッチ
61A,61B,61C 分岐リレー(負荷接続切替部)
62A,62B,62C スイッチ
63A,63B,63C スイッチ
71,72 スイッチ
73,74,75 スイッチ(第1のスイッチ)
101,102,103,104,105,106,107 系統連系PCS(系統連系電力制御装置)
151,152,153,154,155,156,157 制御部
201,205,206,207 系統連系システム
422 分電部
620 電力変換部
B1 蓄電装置
C1,C2,C3,C4,C5,C6 接続点
Ma1,Ma2,Ma3,Ma6,Ma7 電流計
Ma4,Ma5 電流計(負荷電流計)
Mv1,Mv2,Mv3,Mv4,Mv5 電圧計
T1 トランス
ZA 101V重要負荷
ZB 101V負荷
ZC 202V負荷

Claims (17)

  1. 発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、
    前記電力変換部および前記電力系統の間に接続され、負荷との接続点を含み、前記電力変換部によって変換された電力および前記電力系統から受けた電力の少なくとも一方を前記接続点を介して前記負荷へ供給するための分電部と、
    前記接続点および前記電力系統を接続するか否かを切替えるための接続切替部と、
    前記発電装置および前記電力変換部間における電流を測定するための第1の電流計と、
    前記発電装置および前記電力変換部間における電圧を測定するための第1の電圧計と、
    前記電力変換部および前記接続点間における電流を測定するための第2の電流計と、
    前記電力変換部および前記接続点間における電圧を測定するための第2の電圧計と、
    前記電力変換部における電圧を測定するための第3の電圧計と、
    前記接続切替部に対して前記電力系統側の電圧を測定するための第4の電圧計と、
    前記第1の電圧計、前記第2の電圧計および前記第3の電圧計により測定された電圧、ならびに前記第1の電流計および前記第2の電流計により測定された電流に基づいて前記電力変換部を制御するとともに、前記第2の電圧計または前記第4の電圧計により測定された電圧に基づいて停電を検知し、停電を検知した場合、前記接続切替部を制御して前記接続点および前記電力系統を非接続とするための制御部とを備える、系統連系電力制御装置。
  2. 前記接続切替部は、第1のスイッチと第2のスイッチとを含み、前記第1のスイッチは前記第2のスイッチと比べて高速に開閉可能である、請求項1に記載の系統連系電力制御装置。
  3. 前記制御部は、停電を検知した場合、前記第2の電圧計または前記第4の電圧計により測定された電圧の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出し、
    前記制御部は、前記接続切替部において、オン状態にある前記第1のスイッチおよびオン状態にある前記第2のスイッチのうち、検出した前記停電時ゼロクロスタイミングで前記第1のスイッチをオフする、請求項2に記載の系統連系電力制御装置。
  4. 前記電力変換部は、第1の電圧および第2の電圧がそれぞれ出力される第1出力端子および第2出力端子を有し、
    前記分電部は、前記接続点として、前記第1の電圧が供給される第1接続点と、前記第2の電圧が供給される第2接続点と、前記第1の電圧および前記第2の電圧の中間電圧が供給される中間接続点とを含み、
    前記負荷は、前記第2接続点および前記中間接続点の間に接続され、
    前記系統連系電力制御装置は、さらに、
    前記第2の電流計および前記第2の電圧計と前記第1接続点および前記中間接続点との間に接続され、前記第2のスイッチと比べて高速に切替え可能であり、前記第1出力端子と前記第1接続点とが接続された状態から前記第1出力端子と前記中間接続点とが接続された状態へ切替えるための出力切替部を備える、請求項2または請求項3に記載の系統連系電力制御装置。
  5. 前記出力切替部は、前記第1出力端子と前記中間接続点とが接続された状態から前記第1出力端子と前記第1接続点とが接続された状態へ切替える、請求項4に記載の系統連系電力制御装置。
  6. 前記制御部は、前記接続切替部における前記第1のスイッチをオフするタイミングで、前記出力切替部を制御して前記第1出力端子と前記第1接続点とが接続された状態から前記第1出力端子と前記中間接続点とが接続された状態へ切り替えるとともに、前記電力変換部を制御して、前記第1出力端子から出力される電圧を前記第1の電圧から前記中間電圧へ切り替える、請求項4または請求項5に記載の系統連系電力制御装置。
  7. 前記制御部は、前記第4の電圧計により測定された電圧に基づいて復電を検知し、復電を検知した場合、前記第4の電圧計により測定された電圧の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出し、
    前記制御部は、前記接続切替部において、オフ状態にある前記第1のスイッチおよびオン状態にある前記第2のスイッチのうち、検出した前記復電時ゼロクロスタイミングで前記第1のスイッチをオンする、請求項2から請求項6のいずれか1項に記載の系統連系電力制御装置。
  8. 前記制御部は、前記接続切替部における前記第1のスイッチをオンするタイミングで、前記出力切替部を制御して前記第1出力端子と前記中間接続点とが接続された状態から前記第1出力端子と前記第1接続点とが接続された状態へ切り替えるとともに、前記電力変換部を制御して、前記第1出力端子から出力される電圧を前記中間電圧から前記第1の電圧へ切り替える、請求項5に記載の系統連系電力制御装置。
  9. 前記制御部は、復電を検知した場合、前記第2のスイッチをオンし、
    前記制御部は、前記第2のスイッチをオンした後、検出した前記復電時ゼロクロスタイミングで前記第1のスイッチをオンする、請求項7に記載の系統連系電力制御装置。
  10. 前記電力変換部は、第1の電圧および第2の電圧がそれぞれ出力される第1出力端子および第2出力端子を有し、
    前記分電部は、前記接続点として、前記第1の電圧が供給される第1接続点と、前記第2の電圧が供給される第2接続点と、前記第1の電圧および前記第2の電圧の中間電圧が供給される中間接続点とを含み、
    前記負荷は、前記第2接続点および前記中間接続点の間に接続され、
    前記系統連系電力制御装置は、さらに、
    前記第2の電流計および前記第2の電圧計と前記第1接続点および前記中間接続点との間に接続され、前記第1出力端子と前記第1接続点とが接続された状態から前記第1出力端子と前記中間接続点とが接続された状態へ切替えるための出力切替部を備え、
    前記制御部は、停電を検知した場合、前記出力切替部を制御して前記第1出力端子と前記第1接続点とが接続された状態から前記第1出力端子と前記中間接続点とが接続された状態へ切り替えるとともに、前記電力変換部を制御して、前記第1出力端子から出力される電圧を前記第1の電圧から前記中間電圧へ切り替える、請求項1に記載の系統連系電力制御装置。
  11. 前記系統連系電力制御装置は、さらに、
    前記接続点に対して前記電力系統側の電流を測定するための第3の電流計と、
    前記接続点に対して前記負荷側の電流を測定するための1または複数の負荷電流計とを備え、
    前記制御部は、前記第2の電圧計または前記第4の電圧計により測定された電圧、ならびに前記第2の電流計、前記第3の電流計および前記1または複数の負荷電流計により測定された電流に基づいて、前記電力変換部が前記接続点側へ供給する供給電力、自己の前記系統連系電力制御装置が前記電力系統へ供給する売電電力および前記負荷が消費する消費電力をそれぞれ演算する、請求項1から請求項10のいずれか1項に記載の系統連系電力制御装置。
  12. 前記系統連系電力制御装置は、さらに、
    前記接続点および前記負荷を接続するか否かを切替えるための負荷接続切替部を備え、
    前記制御部は、演算した前記供給電力、前記売電電力および前記消費電力に基づいて、前記負荷接続切替部を制御して前記接続点と前記負荷との接続および非接続を切替える、請求項11に記載の系統連系電力制御装置。
  13. 前記負荷接続切替部は、複数の負荷にそれぞれ対応して設けられ、
    各前記負荷接続切替部には優先度が付与されており、
    前記制御部は、演算した前記供給電力、前記売電電力および前記消費電力の大小関係、ならびに前記優先度に基づいて前記各負荷接続切替部の接続状態および切断状態を切替える、請求項12に記載の系統連系電力制御装置。
  14. 前記電力変換部は、前記発電装置から受けた電力を変換し、変換した電力の一部または全部をエネルギーとして蓄電装置に蓄電し、
    前記電力変換部は、前記蓄電装置に蓄電したエネルギーに基づく電力を前記電力系統へ出力し、
    前記系統連系電力制御装置は、さらに、
    前記接続点に対して前記電力系統側の電流を測定するための第3の電流計と、
    前記電力変換部における電流を測定するための第6の電流計と、
    前記電力変換部および前記蓄電装置間における電流を測定するための第7の電流計と、
    前記電力変換部および前記蓄電装置間における電圧を測定するための第5の電圧計とを備え、
    前記制御部は、前記第1の電圧計、前記第2の電圧計、前記第3の電圧計、前記第4の電圧計および前記第5の電圧計により測定された電圧、ならびに前記第1の電流計、前記第2の電流計、前記第3の電流計、前記第6の電流計および前記第7の電流計により測定された電流に基づいて前記電力変換部を制御する、請求項1から請求項13のいずれか1項に記載の系統連系電力制御装置。
  15. 前記系統連系電力制御装置は、さらに、
    前記接続点に対して前記電力系統側の電流を測定するための第3の電流計と、
    他の装置へ情報を送信するための送信部とを備え、
    前記制御部は、前記第2の電圧計または前記第4の電圧計により測定された電圧、および前記第3の電流計により測定された電流に基づいて、自己の前記系統連系電力制御装置が前記電力系統へ供給する売電電力を演算し、
    前記制御部は、演算した前記売電電力を前記送信部経由で他の装置へ送信する、請求項1から請求項14のいずれか1項に記載の系統連系電力制御装置。
  16. 発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、
    前記電力変換部および前記電力系統の間に接続され、負荷との接続点を含み、前記電力変換部によって変換された電力および前記電力系統から受けた電力の少なくとも一方を前記接続点を介して前記負荷へ供給するための分電部と、
    前記接続点および前記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、前記第1のスイッチは前記第2のスイッチと比べて高速に開閉可能である接続切替部と、
    前記電力変換部を制御するとともに、前記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、
    前記制御部が、停電を検知した場合、前記電力変換部および前記接続点間における電圧、または前記接続切替部に対して前記電力系統側の電圧の絶対値が所定のしきい値以下となる停電時ゼロクロスタイミングを検出するステップと、
    前記制御部が、オン状態にある前記第1のスイッチおよびオン状態にある前記第2のスイッチのうち、検出した前記停電時ゼロクロスタイミングで前記第1のスイッチをオフするステップとを含む、系統連系電力制御方法。
  17. 発電装置から受けた電力を変換し、変換した電力を電力系統へ出力するための電力変換部と、
    前記電力変換部および前記電力系統の間に接続され、負荷との接続点を含み、前記電力変換部によって変換された電力および前記電力系統から受けた電力の少なくとも一方を前記接続点を介して前記負荷へ供給するための分電部と、
    前記接続点および前記電力系統を接続するか否かを切替えるための第1のスイッチおよび第2のスイッチを含み、前記第1のスイッチは前記第2のスイッチと比べて高速に開閉可能である接続切替部と、
    前記電力変換部を制御するとともに、前記接続切替部を制御するための制御部とを備える系統連系電力制御装置における系統連系電力制御方法であって、
    前記制御部が、前記接続切替部に対して前記電力系統側の電圧に基づいて復電を検知し、復電を検知した場合、前記接続切替部に対して前記電力系統側の電圧の絶対値が所定のしきい値以下となる復電時ゼロクロスタイミングを検出するステップと、
    前記制御部が、オフ状態にある前記第1のスイッチおよびオン状態にある前記第2のスイッチのうち、検出した前記復電時ゼロクロスタイミングで前記第1のスイッチをオンするステップとを含む、系統連系電力制御方法。
JP2013121902A 2013-06-10 2013-06-10 系統連系電力制御装置および系統連系電力制御方法 Active JP6102538B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121902A JP6102538B2 (ja) 2013-06-10 2013-06-10 系統連系電力制御装置および系統連系電力制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121902A JP6102538B2 (ja) 2013-06-10 2013-06-10 系統連系電力制御装置および系統連系電力制御方法

Publications (2)

Publication Number Publication Date
JP2014239625A true JP2014239625A (ja) 2014-12-18
JP6102538B2 JP6102538B2 (ja) 2017-03-29

Family

ID=52136296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121902A Active JP6102538B2 (ja) 2013-06-10 2013-06-10 系統連系電力制御装置および系統連系電力制御方法

Country Status (1)

Country Link
JP (1) JP6102538B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182945A (ja) * 2017-04-18 2018-11-15 住友電気工業株式会社 電力変換装置
JP2019062639A (ja) * 2017-09-26 2019-04-18 東芝ライテック株式会社 制御装置、制御方法および制御プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094921A (ja) * 2003-09-17 2005-04-07 Osaka Gas Co Ltd 分散型発電システム及びその単独運転防止方法
JP2011109901A (ja) * 2009-11-19 2011-06-02 Samsung Sdi Co Ltd 電力管理システム及びこれを備える系統連係型電力保存システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005094921A (ja) * 2003-09-17 2005-04-07 Osaka Gas Co Ltd 分散型発電システム及びその単独運転防止方法
JP2011109901A (ja) * 2009-11-19 2011-06-02 Samsung Sdi Co Ltd 電力管理システム及びこれを備える系統連係型電力保存システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018182945A (ja) * 2017-04-18 2018-11-15 住友電気工業株式会社 電力変換装置
JP2019062639A (ja) * 2017-09-26 2019-04-18 東芝ライテック株式会社 制御装置、制御方法および制御プログラム

Also Published As

Publication number Publication date
JP6102538B2 (ja) 2017-03-29

Similar Documents

Publication Publication Date Title
Brearley et al. A review on issues and approaches for microgrid protection
EP3286820B1 (en) Hybrid inverter power control system for pv string, battery, grid and back-up loads
TWI669877B (zh) 電源系統
Van Der Merwe et al. The solid-state transformer concept: A new era in power distribution
US9711967B1 (en) Off grid backup inverter automatic transfer switch
WO2011030558A1 (ja) 多端子型電力変換装置、多端子型電力授受装置及び電力ネットワークシステム
WO2015200931A1 (en) Versatile site energy router
JP2019110755A (ja) 電力制御装置、電力制御装置の制御方法、電力制御システム及び電力制御システムの制御方法
KR101220773B1 (ko) 스마트 그리드 환경에서 에너지 관리기능을 갖는 지능형 분전반
JP5756903B2 (ja) 配電システム
JP5475387B2 (ja) 電力供給システムの電源最適化装置
JP6190224B2 (ja) 電力貯蔵システム
JP2014135855A (ja) 自然エネルギー発電システム、及び配電方法
JP5852779B2 (ja) 電力供給装置
JP5461445B2 (ja) 電力利用システム
JP2015220791A (ja) 電力供給制御装置
JP2019187107A (ja) 電源システム
JP2014023256A (ja) パワーコンディショナシステム
JP6102538B2 (ja) 系統連系電力制御装置および系統連系電力制御方法
JP6526421B2 (ja) 電力制御システム
JP2011062067A (ja) 直流配電システム
JP5680525B2 (ja) 蓄電システム、蓄電制御装置及び電力制御方法
Rosado et al. Review of technical issues and challenges in the development of community grids
JP7000227B2 (ja) 電力システム
JP2013085411A (ja) 系統連系パワーコンディショナ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160525

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250