JP2014239175A - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP2014239175A
JP2014239175A JP2013121596A JP2013121596A JP2014239175A JP 2014239175 A JP2014239175 A JP 2014239175A JP 2013121596 A JP2013121596 A JP 2013121596A JP 2013121596 A JP2013121596 A JP 2013121596A JP 2014239175 A JP2014239175 A JP 2014239175A
Authority
JP
Japan
Prior art keywords
side coil
core
power transmission
transmission device
infrastructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013121596A
Other languages
Japanese (ja)
Other versions
JP5746267B2 (en
Inventor
安井 克明
Katsuaki Yasui
克明 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013121596A priority Critical patent/JP5746267B2/en
Publication of JP2014239175A publication Critical patent/JP2014239175A/en
Application granted granted Critical
Publication of JP5746267B2 publication Critical patent/JP5746267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-contact power transmission device, having a high coupling coefficient between coils, preferable from viewpoints of efficiency, EMC, and human body protection.SOLUTION: The non-contact power transmission device transmits power between an infrastructure side coil 10 and a mobile side coil 30 on the basis of mutual inductive action of electromagnetic induction. Between the infrastructure side coil 10 and the mobile side coil 30, a pair of coupling cores 20 that magnetically couples the infrastructure side coil 10 and the mobile side coil 30 are provided.

Description

この発明は、電気自動車等の移動体に搭載された移動体側コイルとインフラ側コイルとの間で電力を伝送する非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission device that transmits power between a moving body side coil and an infrastructure side coil mounted on a moving body such as an electric vehicle.

電気自動車等の移動体に電力を供給したり、逆に移動体側から電力の供給を受けたりする装置としては、インフラ側と移動体側を、接触式のコネクタを介して接続する方式が一般的である。
しかし、コネクタの挿抜は面倒であることから、電力を電磁誘導の原理を用いて非接触で伝送する方式が開発されている。
As a device for supplying electric power to a moving body such as an electric vehicle or conversely receiving electric power from the moving body side, a method of connecting the infrastructure side and the moving body side via a contact-type connector is generally used. is there.
However, since the insertion and removal of the connector is troublesome, a system for transmitting electric power in a non-contact manner using the principle of electromagnetic induction has been developed.

この装置として、地上に置かれたインフラ側のリング状コイルに交流電流を流し、これにより発生した磁束を移動体の下面に装着された移動体側のリング状コイルによって電磁誘導の原理で電流に復元し、非接触により移動体側で電力を得るものが知られている(例えば、特許文献1参照)。
この方式によれば、接触式のコネクタのように挿抜の手間が不要で、かつ浸水時にも漏電による感電の危険が小さいという利点がある。
なお、非接触とは、接点を介して導通する電流による電力伝送を行わないという意味で用いられる技術用語であり、導通に関わらないカバーその他が物理的に接触しないという意味ではない。
As this device, alternating current is passed through the ring coil on the infrastructure side placed on the ground, and the magnetic flux generated by this is restored to the current by the principle of electromagnetic induction by the ring coil on the mobile body side mounted on the lower surface of the mobile body. In addition, a device that obtains electric power on the moving body side in a non-contact manner is known (see, for example, Patent Document 1).
According to this method, there is an advantage that there is no need to insert and remove like a contact type connector, and there is a small risk of electric shock due to electric leakage even during flooding.
Note that non-contact is a technical term used to mean that power is not transmitted by a current that is conducted through a contact, and does not mean that a cover or the like that is not involved in conduction is not in physical contact.

特開2010−93180号公報JP 2010-93180 A

しかしながら、上記特許文献1に記載された非接触電力伝送装置を用いた場合、この装置は移動体である自動車の底部に取付けられるが、そもそも自動車の底部は障害物との衝突を避けるために地面に対して低く設定できないために、インフラ側のコイルと自動車側のコイルとの間のギャップはあまり小さくできない。
このため、両コイル間の結合係数を大きくできない。
電磁誘導による電力伝送の効率は、結合係数が高いほど高くできるため、結合係数の低さは効率悪化の要因になるという問題点があった。
また、結合係数が低いということは、漏洩磁束が大きいということなので、EMC(電磁両立性)や、漏洩する磁界、電界に対する人体防護の観点からも好ましくないという問題点もあった。
However, when the non-contact power transmission device described in Patent Document 1 is used, this device is attached to the bottom of a vehicle that is a moving body. In the first place, the bottom of the vehicle is grounded to avoid a collision with an obstacle. Therefore, the gap between the infrastructure coil and the automobile coil cannot be made very small.
For this reason, the coupling coefficient between both coils cannot be increased.
Since the efficiency of power transmission by electromagnetic induction can be increased as the coupling coefficient is higher, there is a problem that the lower coupling coefficient causes the efficiency to deteriorate.
In addition, since the low coupling coefficient means that the leakage magnetic flux is large, there is also a problem that it is not preferable from the viewpoint of EMC (electromagnetic compatibility), leakage magnetic field, and human body protection against an electric field.

この発明は、かかる問題点を解決することを課題とするものであって、インフラ側コイルと移動体側コイルとの間の結合係数が高く、効率、EMC、人体防護の観点からも好ましい非接触電力伝送装置を提供することを目的とする。   The present invention has an object to solve such problems, and has a high coupling coefficient between the infrastructure side coil and the moving body side coil, which is preferable from the viewpoint of efficiency, EMC, and human body protection. An object is to provide a transmission apparatus.

この発明に係る非接触電力伝送装置は、棒状のコア、及びこのコアに導線が巻回された巻線を有するインフラ側コイルと、移動体に設けられているとともに前記インフラ側コイルと接近して対向し、棒状のコア、及びこのコアに導線が巻回された巻線を有する移動体側コイルと、を備え、電磁誘導の相互誘電作用に基づき、前記インフラ側コイルと前記移動体側コイルとの間で電力を伝送する非接触電力伝送装置であって、
前記インフラ側コイルと前記移動体側コイルとの間に前記インフラ側コイルと前記移動体側コイルとを磁気的に接続する一対の接続コアが設けられている。
A non-contact power transmission device according to the present invention is provided with an infrastructure side coil having a rod-shaped core and a winding around which a conducting wire is wound, and is provided in a moving body and approaches the infrastructure side coil. A movable body side coil having a rod-shaped core and a winding around which a conductive wire is wound, and based on a mutual dielectric action of electromagnetic induction, between the infrastructure side coil and the movable body side coil. A non-contact power transmission device that transmits power at
A pair of connection cores that magnetically connect the infrastructure side coil and the mobile body side coil are provided between the infrastructure side coil and the mobile body side coil.

この発明に係る非接触電力伝送装置によれば、インフラ側コイルと移動体側コイルとの間にインフラ側コイルと移動体側コイルとを磁気的に接続する一対の接続コアが設けられているので、閉じたループ回路の磁気回路が可能となり、漏洩磁束の発生を抑制し、結合係数が高く、効率、EMC、人体防護の観点からも好ましい非接触電力伝送装置を得ることができる。   According to the non-contact power transmission device according to the present invention, since the pair of connection cores that magnetically connect the infrastructure side coil and the mobile body side coil are provided between the infrastructure side coil and the mobile body side coil, In addition, a magnetic circuit of a loop circuit is possible, a generation of leakage magnetic flux is suppressed, a coupling coefficient is high, and a contactless power transmission device that is preferable from the viewpoint of efficiency, EMC, and human body protection can be obtained.

この発明の実施の形態1に係る非接触電力伝送装置の正面断面図である。It is front sectional drawing of the non-contact electric power transmission apparatus which concerns on Embodiment 1 of this invention. 図1の非接触電力伝送装置の移動体側コイルの底断面図であってインフラ側コイルの方から視たときの図である。It is a bottom sectional view of the moving body side coil of the non-contact power transmission device of FIG. 1, and is a view when viewed from the infrastructure side coil.

以下、この発明の非接触電力伝送装置の実施の形態について図に基づいて説明する。   Hereinafter, embodiments of the non-contact power transmission apparatus of the present invention will be described with reference to the drawings.

実施の形態1.
図1は、この発明の実施の形態1に係る非接触電力伝送装置の正面断面図、図2は移動体側コイル30の下面断面図である。
この非接触電力伝送装置は、給電エリアに設けられたインフラ側コイル10と、移動体である自動車の底部に取付けられているとともにインフラ側コイル10と接近して対向した移動体側コイル30と、インフラ側コイル10と移動体側コイル30との間に設けられインフラ側コイル10と移動体側コイル30とを磁気的に接続する一対の接続コア20と、を備えている。
Embodiment 1 FIG.
FIG. 1 is a front sectional view of a non-contact power transmission apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a bottom sectional view of a moving body side coil 30.
This non-contact power transmission device includes an infrastructure-side coil 10 provided in a power feeding area, a mobile body-side coil 30 that is attached to the bottom of an automobile that is a mobile body and faces the infrastructure-side coil 10 in close proximity, A pair of connecting cores 20 provided between the side coil 10 and the moving body side coil 30 and magnetically connecting the infrastructure side coil 10 and the moving body side coil 30 are provided.

上記移動体側コイル30は、自動車(図示せず)の底部に取付けられた矩形状のベース35と、このベース35上にインフラ側コイル10側に突出したリング状の突起部36と、この突起部36に取付けられた棒状のコア31と、このコア31に導線が巻回された巻線32と、を備えている。
コア31は、両端部に自動車の移動方向に沿って延びた拡張コア33を有している。
突起部36のうち、拡張コア33から自動車の進行方向(図2の矢印方向)側の部位は、対向した辺部が外方向に膨大した三角形状のガイド部34である。
The moving body-side coil 30 includes a rectangular base 35 attached to the bottom of an automobile (not shown), a ring-shaped protrusion 36 protruding on the infrastructure-side coil 10 side on the base 35, and the protrusion A rod-shaped core 31 attached to 36 and a winding 32 around which a conducting wire is wound are provided.
The core 31 has extended cores 33 extending along the moving direction of the automobile at both ends.
A portion of the protruding portion 36 on the side of the extension core 33 on the traveling direction side of the automobile (the arrow direction in FIG. 2) is a triangular guide portion 34 whose opposing side portions are enormous in the outward direction.

上記インフラ側コイル10は、給電エリアの地面に固定されたケース13と、このケース13内に支持部材(図示せず)を介して支持された棒状のコア11と、このコア11に導線が巻回された巻線12と、を備えている。   The infrastructure side coil 10 includes a case 13 fixed to the ground of the power supply area, a rod-like core 11 supported in the case 13 via a support member (not shown), and a conductor wound around the core 11. And a wound winding 12.

上記接続コア20は、隣接した同士が互いに屈曲自在の第1のコア要素である球状コア要素22及び第2のコア要素である凹状コア要素21からなるコア部23と、各コア部23を交互に連なるように重ねられた接続コア本体26を覆った弾性チューブ24と、を備えている。
球状コア要素22は、全体形状が球であり、その大円に沿って全周に凸部25が形成されている。凹状コア要素21は、両側で球状コア要素22の半球面と摺動自在に面接触している。
The connecting core 20 has a core portion 23 composed of a spherical core element 22 that is a first core element that is adjacent to each other and a concave core element 21 that is a second core element, and each core portion 23 alternately. And an elastic tube 24 that covers the connection core body 26 that is stacked so as to be connected to the main body 26.
The spherical core element 22 has a spherical shape as a whole, and a convex portion 25 is formed along the entire circumference of the spherical core element 22. The concave core element 21 is slidably in surface contact with the hemispherical surface of the spherical core element 22 on both sides.

上記移動体側コイル30の巻線32には、巻線32の電磁特性を計測できる電磁特性測定装置(図示せず)が接続されている。   An electromagnetic characteristic measuring device (not shown) that can measure the electromagnetic characteristics of the winding 32 is connected to the winding 32 of the moving body side coil 30.

次に、上記構成の非接触電力伝送装置の動作について説明する。
先ず、自動車を給電エリアに定置されたインフラ側コイル10上に、移動体側コイル30を接近させるように移動させる。
このとき、自動車の下面に装着された移動体側コイル30のガイド部34がインフラ側コイル10から導出した接続コア20の先端部を押し拡げ、左右一対の接続コア20の先端部がそれぞれ移動体側コイル30の左右の拡張コア33に接触するように導く。
Next, the operation of the non-contact power transmission apparatus having the above configuration will be described.
First, the vehicle is moved so that the moving body side coil 30 approaches the infrastructure side coil 10 placed in the power feeding area.
At this time, the guide part 34 of the moving body side coil 30 mounted on the lower surface of the automobile pushes and expands the tip end of the connection core 20 derived from the infrastructure side coil 10, and the tip ends of the pair of left and right connection cores 20 respectively move to the moving body side coil. The left and right expansion cores 30 are guided so as to be in contact with each other.

この後、電磁特性特定装置を用いて接続コア20が拡張コア33に正しく接触しているかどうか、またインフラ側コイル10と移動体側コイル30との間で異常があるかどうかを検知する。
そして、正しく接触し、また異常が無いことが確認した後、インフラ側コイル10に交流を励磁電流として通電することにより、電流に比例した磁界が巻線12の周囲に生じ、インフラ側コイル10に形成された磁束が、接続コア20を介して移動体側コイル30の巻線32を鎖交し、その結果移動体側コイル30に起電力が生成される。
移動体側コイル30は車載バッテリ(図示せず)に接続されており、移動体側コイル30で生成された電力は車載バッテリに充電される。
Thereafter, it is detected whether the connecting core 20 is correctly in contact with the expansion core 33 and whether there is an abnormality between the infrastructure side coil 10 and the moving body side coil 30 using the electromagnetic characteristic specifying device.
Then, after confirming that the contact is correct and that there is no abnormality, a magnetic field proportional to the current is generated around the winding 12 by energizing the infrastructure side coil 10 with alternating current as an exciting current. The formed magnetic flux links the windings 32 of the moving body side coil 30 via the connecting core 20, and as a result, an electromotive force is generated in the moving body side coil 30.
The moving body side coil 30 is connected to an in-vehicle battery (not shown), and the electric power generated by the moving body side coil 30 is charged in the in-vehicle battery.

以上説明したように、この実施の形態による非接触電力伝送装置によれば、インフラ側コイル10と移動体側コイル30との間にインフラ側コイル10と移動体側コイル30とを磁気的に接続する一対の接続コア20が設けられているので、インフラ側コイル10のコア11と移動体側コイル30のコア31とが、接続コア20を介して磁気的に大きなギャップの無い、磁気抵抗の小さい閉ループの磁気回路が形成される。隣接したコア部23間、接続コア20と拡張コア33との接触部では多少のギャップが生じることは避けられないが、背景技術の欄で説明した装置のコイル間の大きなギャップに比べれば、これらの小さなギャップによる磁気抵抗の増加は無視できる程度に小さい。
従って、インフラ側コイル10と移動体側コイル30との間の結合係数が高く、効率、EMCが向上し、また漏洩する磁界、電界に対する人体に対する影響を抑制することができる。
As described above, according to the contactless power transmission device according to this embodiment, a pair of magnetically connecting the infrastructure side coil 10 and the mobile body side coil 30 between the infrastructure side coil 10 and the mobile body side coil 30. Since the connecting core 20 is provided, the core 11 of the infrastructure side coil 10 and the core 31 of the moving body side coil 30 do not have a large magnetic gap through the connecting core 20 and are closed-loop magnetism having a small magnetic resistance. A circuit is formed. It is inevitable that some gaps occur between the adjacent core portions 23 and the contact portion between the connecting core 20 and the expansion core 33, but these are larger than the large gaps between the coils of the device described in the background art section. The increase in magnetoresistance due to the small gap is negligibly small.
Therefore, the coupling coefficient between the infrastructure side coil 10 and the moving body side coil 30 is high, the efficiency and EMC are improved, and the influence on the human body with respect to the leaking magnetic field and electric field can be suppressed.

また、接続コア20は、可撓性であるので、インフラ側コイル10に対する移動体側コイル30の左右方向(自動車の進行方向に対する左右方向)の多少の位置ずれが生じても閉ループの磁気回路が確保される。   Further, since the connecting core 20 is flexible, a closed-loop magnetic circuit is ensured even if a slight positional shift occurs in the left-right direction of the moving body-side coil 30 with respect to the infrastructure-side coil 10 (left-right direction with respect to the traveling direction of the automobile). Is done.

また、移動体側コイル30のコア31は、両端部に自動車の移動方向に延びた拡張コア33を有しているので、インフラ側コイル10に対する移動体側コイル30の前後方向(自動車の進行方向)の多少の位置ずれが生じても閉ループの磁気回路が確保される。   Moreover, since the core 31 of the moving body side coil 30 has the extended core 33 extended in the moving direction of the automobile at both ends, the moving body side coil 30 extends in the front-rear direction (the moving direction of the automobile) with respect to the infrastructure side coil 10. A closed-loop magnetic circuit is ensured even if a slight misalignment occurs.

また、移動体側コイル30は、拡張コア33に接続コア20の端部を導くガイド部34を有しているので、接続コア20の端部は、拡張コア33に確実に導かれる。   Moreover, since the moving body side coil 30 has the guide part 34 which guides the edge part of the connection core 20 to the expansion core 33, the edge part of the connection core 20 is reliably guide | induced to the expansion core 33. FIG.

また、接続コア20は、球状コア要素22と、この球状コア要素22の半球面と面接触した凹状コア要素21とを有しているので、インフラ側コイル10に対する移動体側コイル30の左右方向の多少の位置ずれに対して簡単な構成で追随して閉ループの磁気回路が確保される。   Further, since the connecting core 20 includes the spherical core element 22 and the concave core element 21 in surface contact with the hemispherical surface of the spherical core element 22, the moving body side coil 30 in the left-right direction with respect to the infrastructure side coil 10. A closed loop magnetic circuit can be secured by following a simple configuration with respect to a slight positional deviation.

また、フェライトなどの、安価で性能の良い磁性体を製造するためには、上下2面割りの成形型を用いる。従って、成型時に多少の型ずれやパーティングラインの発生が避けられない。
これに対して、この球状コア要素22は、その大円に沿って凸部25が形成されているので、球状コア要素22が回転してもパーティングラインが凹状コア要素21の摺動面に入り込むようなことはなく、型ずれやパーティングラインによって、球状コア要素22と凹状コア要素21との間の摺動面に浮きが発生して磁気抵抗が増加するといった不都合の発生を防止することができる。
In addition, in order to produce an inexpensive and high-performance magnetic material such as ferrite, an upper and lower split mold is used. Therefore, some mold shift and parting line are unavoidable during molding.
On the other hand, since this spherical core element 22 has a convex portion 25 formed along its great circle, even if the spherical core element 22 rotates, the parting line is formed on the sliding surface of the concave core element 21. To prevent the occurrence of inconveniences such as floating of the sliding surface between the spherical core element 22 and the concave core element 21 and increase of the magnetic resistance due to mold misalignment and parting line. Can do.

また、隣接したコア部23同士が接続されて構成された接続コア本体26は、全面が弾性チューブ24で覆われているので、接続コア本体26が保護され、接続コア20の長寿命化を図ることができる。   In addition, since the connecting core body 26 configured by connecting adjacent core portions 23 to each other is entirely covered with the elastic tube 24, the connecting core body 26 is protected and the life of the connecting core 20 is extended. be able to.

また、移動体側コイル30は、巻線32と接続され巻線32の電磁特性を計測する電磁特性測定装置を備えているので、接続コア20が正しく拡張コア33に接触していれば、移動体側コイル30のインダクタンスが大きくなり、インダクタンスを監視することにより、正しく接続されたかどうかを検知することができる。   In addition, since the moving body side coil 30 includes an electromagnetic characteristic measuring device that is connected to the winding 32 and measures the electromagnetic characteristics of the winding 32, if the connecting core 20 is correctly in contact with the expansion core 33, the moving body side coil 30 is provided. The inductance of the coil 30 is increased, and by monitoring the inductance, it can be detected whether or not the coil 30 is correctly connected.

また、電磁特性測定装置は、巻線32に複数の周波数の電流を流して巻線32の電磁特性を測定することで、インフラ側コイル10と移動体側コイル30との間に小動物、缶等の異物の存在、接触等の異常を検知することができる。   In addition, the electromagnetic characteristic measuring apparatus measures the electromagnetic characteristics of the winding 32 by flowing currents of a plurality of frequencies through the winding 32, so that a small animal, a can, or the like is interposed between the infrastructure side coil 10 and the moving body side coil 30. Abnormalities such as the presence of foreign matter and contact can be detected.

なお、上記実施の形態では、移動体側コイル30に、拡張コア33及びガイド部34を設けたが、拡張コア33及びガイド部34をインフラ側コイル10に設けてもよい。
また、自動車によって前進、または後進させて移動体側コイル30をインフラ側コイル10に対向させることになるが、この場合、その自動車の前進、後進に応じて移動体側コイル30を180°回転させて自動車に搭載することで対応することができる。
また、移動体側コイル30の巻線32に交流電流を流せば、それによって発生する磁束によってインフラ側コイル10の巻線12に誘導電流が流れるため、移動体側コイル30からインフラ側コイル10に電力を伝送することもできる。
また、電磁特性測定装置は、移動体側コイル30とともにインフラ側コイル10にも備えてもよいし、インフラ側コイル10のみに備えてもよい。
また、移動体として自動車について説明したが、自動車に限定されず、例えば電車等であってもよい。
In the above embodiment, the expansion core 33 and the guide part 34 are provided in the moving body side coil 30, but the expansion core 33 and the guide part 34 may be provided in the infrastructure side coil 10.
Further, the moving body side coil 30 is made to move forward or backward by the automobile and the moving body side coil 30 is opposed to the infrastructure side coil 10. In this case, the moving body side coil 30 is rotated by 180 ° in accordance with the forward or backward movement of the automobile. It can respond by installing in
Further, if an alternating current is passed through the winding 32 of the moving body side coil 30, an induced current flows through the winding 12 of the infrastructure side coil 10 due to the magnetic flux generated thereby, so that power is transferred from the moving body side coil 30 to the infrastructure side coil 10. It can also be transmitted.
Further, the electromagnetic characteristic measuring device may be provided in the infrastructure side coil 10 together with the moving body side coil 30 or may be provided only in the infrastructure side coil 10.
Moreover, although the automobile has been described as the moving body, it is not limited to the automobile, and may be, for example, a train.

また、接続コア20は、下端部の1箇所のみにコア部23を設けたものであっても、コア部23の変形が大きくなり、弾性チューブ24の負担が大きくなって寿命が問題となるものの適用できる。
また、コア部23の接触面は球面形としたが、屈曲時にも磁性体相互の接触面積が大きく取れる構造であればよく、円筒面形や樽面形としてもよい。
また、接続コアには、ゴム状の樹脂と磁性粉とを混合して成形した複合磁性材料を用いてもよく、性能や耐久性はやや落ちるが、同様に変形可能な接続コアを安価に得ることができる。
Further, even if the connecting core 20 is provided with the core portion 23 only at one position on the lower end portion, the deformation of the core portion 23 becomes large, the load of the elastic tube 24 becomes large, and the life becomes a problem. Applicable.
Further, although the contact surface of the core portion 23 is a spherical shape, it may be a structure that allows a large contact area between magnetic bodies even when bent, and may be a cylindrical surface shape or a barrel surface shape.
In addition, a composite magnetic material formed by mixing rubber-like resin and magnetic powder may be used for the connection core, and although the performance and durability are slightly reduced, a similarly deformable connection core is obtained at a low cost. be able to.

10 インフラ側コイル、11 コア、12 巻線、13 ケース、20 接続コア、21 凹状コア要素、22 球状コア要素、23 コア部、24 弾性チューブ、25 凸部、26 接続コア本体、30 移動体側コイル、31 コア、32 巻線、33 拡張コア、34 ガイド部、35 ベース、36 突起部。   DESCRIPTION OF SYMBOLS 10 Infrastructure side coil, 11 core, 12 winding, 13 Case, 20 Connection core, 21 Concave core element, 22 Spherical core element, 23 Core part, 24 Elastic tube, 25 Convex part, 26 Connection core main body, 30 Mobile body side coil 31 cores, 32 windings, 33 expansion cores, 34 guide parts, 35 bases, 36 protrusions

この発明に係る非接触電力伝送装置は、棒状のコア、及びこのコアに導線が巻回された巻線を有するインフラ側コイルと、移動体に設けられているとともに前記インフラ側コイルと接近して対向し、棒状のコア、及びこのコアに導線が巻回された巻線を有する移動体側コイルと、を備え、電磁誘導の相互誘電作用に基づき、前記インフラ側コイルと前記移動体側コイルとの間で電力を伝送する非接触電力伝送装置であって、
前記インフラ側コイルと前記移動体側コイルとの間に前記インフラ側コイルと前記移動体側コイルとを磁気的に接続する一対の接続コアが設けられており、
前記接続コアは、可撓性であり、
前記移動体側コイルの前記コアまたは前記インフラ側コイルの前記コアは、両端部に前記移動体の移動方向に延びた拡張コアを有している
A non-contact power transmission device according to the present invention is provided with an infrastructure side coil having a rod-shaped core and a winding around which a conducting wire is wound, and is provided in a moving body and approaches the infrastructure side coil. A movable body side coil having a rod-shaped core and a winding around which a conductive wire is wound, and based on a mutual dielectric action of electromagnetic induction, between the infrastructure side coil and the movable body side coil. A non-contact power transmission device that transmits power at
A pair of connecting cores that magnetically connect the infrastructure side coil and the mobile body side coil are provided between the infrastructure side coil and the mobile body side coil ,
The connecting core is flexible;
The core of the movable body side coil or the core of the infrastructure side coil has extended cores extending in the moving direction of the movable body at both ends .

以上説明したように、この実施の形態による非接触電力伝送装置によれば、インフラ側コイル10と移動体側コイル30との間にインフラ側コイル10と移動体側コイル30とを磁気的に接続する一対の接続コア20が設けられているので、インフラ側コイル10のコア11と移動体側コイル30のコア31とが、接続コア20を介して磁気的に大きなギャップの無い、磁気抵抗の小さい閉ループの磁気回路が形成される。隣接したコア部23間、接続コア20と拡張コア33との接触部では多少のギャップが生じることは避けられないが、背景技術の欄で説明した装置のコイル間の大きなギャップに比べれば、これらの小さなギャップによる磁気抵抗の増加は無視できる程度に小さい。
従って、インフラ側コイル10と移動体側コイル30との間の結合係数が高く、効率、EMCが向上し、また漏洩する磁界、電界に対する人体の影響を抑制することができる。
As described above, according to the contactless power transmission device according to this embodiment, a pair of magnetically connecting the infrastructure side coil 10 and the mobile body side coil 30 between the infrastructure side coil 10 and the mobile body side coil 30. Since the connecting core 20 is provided, the core 11 of the infrastructure side coil 10 and the core 31 of the moving body side coil 30 do not have a large magnetic gap through the connecting core 20 and are closed-loop magnetism having a small magnetic resistance. A circuit is formed. It is inevitable that some gaps occur between the adjacent core portions 23 and the contact portion between the connecting core 20 and the expansion core 33, but these are larger than the large gaps between the coils of the device described in the background art section. The increase in magnetoresistance due to the small gap is negligibly small.
Therefore, it is possible coupling coefficient between the infrastructure side coil 10 and the movable body side coil 30 is high, the efficiency, EMC is improved, also to suppress the influence of the human body with respect to the leakage magnetic field, electric field.

Claims (10)

棒状のコア、及びこのコアに導線が巻回された巻線を有するインフラ側コイルと、移動体に設けられているとともに前記インフラ側コイルと接近して対向し、棒状のコア、及びこのコアに導線が巻回された巻線を有する移動体側コイルと、を備え、電磁誘導の相互誘電作用に基づき、前記インフラ側コイルと前記移動体側コイルとの間で電力を伝送する非接触電力伝送装置であって、
前記インフラ側コイルと前記移動体側コイルとの間に前記インフラ側コイルと前記移動体側コイルとを磁気的に接続する一対の接続コアが設けられている非接触電力伝送装置。
A rod-shaped core, and an infrastructure-side coil having a winding around which a conducting wire is wound, and a movable body and close to and opposed to the infrastructure-side coil, the rod-shaped core and the core A non-contact power transmission device for transmitting power between the infrastructure-side coil and the mobile-side coil based on a mutual dielectric action of electromagnetic induction. There,
A non-contact power transmission device in which a pair of connection cores that magnetically connect the infrastructure side coil and the moving body side coil are provided between the infrastructure side coil and the moving body side coil.
前記接続コアは、可撓性である請求項1に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 1, wherein the connection core is flexible. 前記移動体側コイルの前記コアまたは前記インフラ側コイルの前記コアは、両端部に前記移動体の移動方向に延びた拡張コアを有している請求項1または2に記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 1, wherein the core of the moving body side coil or the core of the infrastructure side coil has extended cores extending in a moving direction of the moving body at both ends. 前記拡張コアを有する前記インフラ側コイルまたは前記移動体側コイルは、前記拡張コアに前記接続コアの端部を導くガイド部を有している請求項3に記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 3, wherein the infrastructure-side coil or the moving body-side coil having the extension core has a guide portion that guides an end of the connection core to the extension core. 前記接続コアは、隣接した同士が互いに屈曲自在の第1のコア要素及び第2のコア要素からなるコア部を有する請求項1〜4の何れか1項に記載の非接触電力伝送装置。   The contactless power transmission device according to any one of claims 1 to 4, wherein the connection core includes a core portion including a first core element and a second core element that are adjacent to each other and are bendable. 前記第1のコア要素は、全体形状が球である球状コア要素であり、前記第2のコア要素は、前記球状コア要素の半球面と面接触した凹状コア要素である請求項5に記載の非接触電力伝送装置。   6. The first core element is a spherical core element having a spherical shape as a whole, and the second core element is a concave core element in surface contact with a hemispherical surface of the spherical core element. Non-contact power transmission device. 前記球状コア要素は、その大円に沿って凸部が形成されている請求項6に記載の非接触電力伝送装置。   The contactless power transmission device according to claim 6, wherein the spherical core element has a convex portion formed along a great circle. 隣接した前記コア部同士が接続されて構成された接続コア本体は、全面が弾性チューブで覆われている請求項5〜7の何れか1項に記載の非接触電力伝送装置。   The contactless power transmission device according to any one of claims 5 to 7, wherein a connecting core main body configured by connecting adjacent core portions is covered with an elastic tube. 前記移動体側コイル及び前記インフラ側コイルの少なくとも一方には、前記巻線と接続され巻線の電磁特性を計測する電磁特性測定装置を備えている請求項1〜8の何れか1項に記載の非接触電力伝送装置。   9. The electromagnetic characteristic measuring device according to claim 1, wherein at least one of the moving body side coil and the infrastructure side coil includes an electromagnetic characteristic measuring device connected to the winding and measuring an electromagnetic characteristic of the winding. Non-contact power transmission device. 前記電磁特性測定装置は、前記巻線に複数の周波数の電流を流すことで巻線の電磁特性を測定する請求項9に記載の非接触電力伝送装置。   The non-contact power transmission device according to claim 9, wherein the electromagnetic characteristic measurement device measures the electromagnetic characteristics of the winding by flowing currents having a plurality of frequencies through the winding.
JP2013121596A 2013-06-10 2013-06-10 Non-contact power transmission device Active JP5746267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013121596A JP5746267B2 (en) 2013-06-10 2013-06-10 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013121596A JP5746267B2 (en) 2013-06-10 2013-06-10 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2014239175A true JP2014239175A (en) 2014-12-18
JP5746267B2 JP5746267B2 (en) 2015-07-08

Family

ID=52136097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013121596A Active JP5746267B2 (en) 2013-06-10 2013-06-10 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5746267B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034579A (en) * 2019-08-26 2021-03-01 株式会社Ihi Coil device and non-contact power supply system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225482A (en) * 1993-01-26 1994-08-12 Matsushita Electric Works Ltd Power feeding apparatus
JPH06311659A (en) * 1993-04-21 1994-11-04 Kyushu Hitachi Maxell Ltd Miniature electric appliance
JPH0917665A (en) * 1995-06-28 1997-01-17 Toyota Autom Loom Works Ltd Coupler for battery charger
JPH09238428A (en) * 1996-03-04 1997-09-09 Sony Corp Charging device
JPH10214737A (en) * 1997-01-28 1998-08-11 Sumitomo Wiring Syst Ltd Magnetic coupler for charging electric automobile
JP3067306U (en) * 1999-09-09 2000-03-31 陳 世明 Mobile phone charger
JP2004022779A (en) * 2002-06-17 2004-01-22 Yazaki Corp Electromagnetic induction connector
JP2005136342A (en) * 2003-10-31 2005-05-26 Yonezawa Densen Kk Contactless rechargeable equipment
JP2012110199A (en) * 2010-10-27 2012-06-07 Equos Research Co Ltd Electric power transmission system
JP2013027171A (en) * 2011-07-21 2013-02-04 Sony Corp Detection device, electricity receiver, electricity transmitter, contactless power transmission system, and detection method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06225482A (en) * 1993-01-26 1994-08-12 Matsushita Electric Works Ltd Power feeding apparatus
JPH06311659A (en) * 1993-04-21 1994-11-04 Kyushu Hitachi Maxell Ltd Miniature electric appliance
JPH0917665A (en) * 1995-06-28 1997-01-17 Toyota Autom Loom Works Ltd Coupler for battery charger
JPH09238428A (en) * 1996-03-04 1997-09-09 Sony Corp Charging device
JPH10214737A (en) * 1997-01-28 1998-08-11 Sumitomo Wiring Syst Ltd Magnetic coupler for charging electric automobile
JP3067306U (en) * 1999-09-09 2000-03-31 陳 世明 Mobile phone charger
JP2004022779A (en) * 2002-06-17 2004-01-22 Yazaki Corp Electromagnetic induction connector
JP2005136342A (en) * 2003-10-31 2005-05-26 Yonezawa Densen Kk Contactless rechargeable equipment
JP2012110199A (en) * 2010-10-27 2012-06-07 Equos Research Co Ltd Electric power transmission system
JP2013027171A (en) * 2011-07-21 2013-02-04 Sony Corp Detection device, electricity receiver, electricity transmitter, contactless power transmission system, and detection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021034579A (en) * 2019-08-26 2021-03-01 株式会社Ihi Coil device and non-contact power supply system
JP7302381B2 (en) 2019-08-26 2023-07-04 株式会社Ihi Coil device

Also Published As

Publication number Publication date
JP5746267B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5286445B1 (en) Wireless power feeder for electric mobile body
CN105052013B (en) Foreign matter detection device and method for non-contact power supply device
JP6179160B2 (en) Wireless power transmission equipment
TW201711335A (en) Wireless charging system
CN107431386A (en) For the device of non-contact inductive energy transmission and the operating method of this device
WO2016056270A1 (en) Power reception coil device and contactless power supply system
JP6416773B2 (en) Non-contact connector
Kallel et al. MISO configuration efficiency in inductive power transmission for supplying wireless sensors
CN104242480A (en) Leakage preventing device of electromagnetic wave
US10673276B2 (en) Coil device, wireless power transfer system, and auxiliary magnetic member
JP5746267B2 (en) Non-contact power transmission device
CN106532967A (en) Wireless charging system
US11912149B2 (en) Misalignment detection device and coil device
EP2824680A1 (en) Noncontact power supply system and electromagnetic induction coil for noncontact power supply apparatus
JP2019030155A (en) Coil unit
CN102854359B (en) Current sensor
JP2015023595A (en) Foreign matter detection device and method for non-contact power supply device
KR101604618B1 (en) Real-time apparatus for detecting deformation data of tank type structures
KR102305652B1 (en) Motor
KR20150097011A (en) Wireless Electric Power Supply Apparatus
DK2860741T3 (en) Contactless power supply mechanism and secondary coil for contactless power supply mechanism
JP6285810B2 (en) Coil unit in non-contact power feeder
EP3709315A1 (en) Split-core coupler for inductive power transfer
WO2020026868A1 (en) Power transmission device, power reception device, wireless power transmission system, and method for driving power transmission device
JP6035155B2 (en) Coil device for contactless power transformer

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150507

R150 Certificate of patent or registration of utility model

Ref document number: 5746267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250