JP2015023595A - Foreign matter detection device and method for non-contact power supply device - Google Patents

Foreign matter detection device and method for non-contact power supply device Download PDF

Info

Publication number
JP2015023595A
JP2015023595A JP2013147603A JP2013147603A JP2015023595A JP 2015023595 A JP2015023595 A JP 2015023595A JP 2013147603 A JP2013147603 A JP 2013147603A JP 2013147603 A JP2013147603 A JP 2013147603A JP 2015023595 A JP2015023595 A JP 2015023595A
Authority
JP
Japan
Prior art keywords
coil
detection
foreign matter
induced voltage
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013147603A
Other languages
Japanese (ja)
Inventor
広樹 齋藤
Hiroki Saito
広樹 齋藤
晋 徳良
Susumu Tokuyoshi
晋 徳良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2013147603A priority Critical patent/JP2015023595A/en
Priority to CN201480019565.2A priority patent/CN105052013B/en
Priority to PCT/JP2014/068168 priority patent/WO2015008662A1/en
Publication of JP2015023595A publication Critical patent/JP2015023595A/en
Priority to US14/867,053 priority patent/US9950636B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foreign matter detection device and method for a non-contact power supply device capable of reducing an induction voltage generated in a coil for foreign matter detection, and therefore achieving the increase of the sensitivity of foreign matter detection for detecting the presence/absence of a conductive foreign matter and the reduction of erroneous detection.SOLUTION: The foreign matter detection device includes: a detection coil 12 positioned between a power transmission coil 3 and a power reception coil 4; and a detection unit 14 for detecting an induction voltage V generated in the detection coil 12, and for detecting the presence/absence of a conductive foreign matter positioned between the power transmission coil 3 and the power reception coil 4 from this. The detection coil 12 is configured of a consecutive conductive wire 13 in which two loop parts 12a are wound mutually in reverse directions. The area and the number of windings of each loop part 12a or a direction connecting the centroids of the two loop parts 12a are set such that the induction voltage V(that is, a reference voltage V0) generated in the detection coil 12 when there does not exist any conductive foreign matter becomes 0 or minimum.

Description

本発明は、非接触給電装置用の異物検出装置と方法に関する。   The present invention relates to a foreign object detection apparatus and method for a non-contact power supply apparatus.

近年、電動モータと内燃機関を備えたハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)が実用化されている。また、電動モータのみを備えた電気自動車(EV:Electric Vehicle)も実用化されている。   In recent years, a hybrid electric vehicle (HEV) including an electric motor and an internal combustion engine has been put into practical use. An electric vehicle (EV) having only an electric motor has also been put into practical use.

電気自動車などに非接触給電を行う非接触給電装置は、給電側の1次コイルと受電側の2次コイルとを磁気結合させて給電側から受電側に非接触で電力を伝送するものである。
かかる非接触給電装置は、例えば特許文献1、2が開示されている。
A non-contact power supply apparatus that performs non-contact power supply to an electric vehicle or the like is a device that magnetically couples a primary coil on a power supply side and a secondary coil on a power reception side to transmit power from the power supply side to the power reception side in a contactless manner. .
For example, Patent Documents 1 and 2 disclose such non-contact power feeding devices.

特許文献1の非接触給電装置は、1次コイルと2次コイルの軸線がそれぞれ鉛直かつ同一軸になっている。この形式の非接触給電装置を「サーキュラー型」と呼ぶ。
また特許文献2の非接触給電装置は、1次コイルと2次コイルの軸線が互いに平行に位置している。この形式の非接触給電装置を「ソレノイド型」と呼ぶ。
In the non-contact power feeding device of Patent Document 1, the axes of the primary coil and the secondary coil are vertical and have the same axis. This type of non-contact power feeding device is called a “circular type”.
Moreover, the non-contact electric power feeder of patent document 2 has the axis line of a primary coil and a secondary coil located in parallel with each other. This type of non-contact power feeding device is called a “solenoid type”.

非接触給電は、電磁誘導方式、電波方式、磁界共鳴方式の3つの方式に大別される。
電磁誘導方式は、2つの隣接するコイルの一方に電流を流すと発生する磁束を媒体として他方のコイルに起電力が発生する電磁誘導を用いたものである。
電波方式は、電流を電磁波に変換しアンテナを介して送受信するものである。
磁界共鳴方式は、電磁誘導方式と同様に磁束を媒体とするが、電気回路の共振現象を積極的に利用し、コイルに流れる誘導電流を増幅するものである。
The non-contact power supply is roughly classified into three methods: an electromagnetic induction method, a radio wave method, and a magnetic field resonance method.
The electromagnetic induction method uses electromagnetic induction in which an electromotive force is generated in the other coil using a magnetic flux generated when a current is passed through one of two adjacent coils as a medium.
In the radio wave system, current is converted into electromagnetic waves and transmitted / received via an antenna.
The magnetic field resonance method uses magnetic flux as a medium in the same manner as the electromagnetic induction method, but amplifies the induced current flowing in the coil by actively utilizing the resonance phenomenon of the electric circuit.

上述した非接触給電装置において、金属異物が1次コイルと2次コイルの間に混入した場合、金属異物に渦電流が発生し、ジュール熱により発熱する可能性がある。
そのため、このような異物を検出する非接触給電装置が、例えば特許文献3に開示されている。
In the non-contact power supply apparatus described above, when a metal foreign object is mixed between the primary coil and the secondary coil, an eddy current may be generated in the metal foreign object and heat may be generated due to Joule heat.
For this reason, for example, Patent Document 3 discloses a non-contact power feeding device that detects such a foreign object.

特許文献3の非接触給電装置は、上述した電磁誘導方式の非接触給電装置であり、第1のコイルと第2のコイルとの間に第3のコイルを設け、第3のコイルに生じる誘導電圧に基づき、第1のコイルと第2のコイルとの間の異物を検出するものである。   The non-contact power feeding device of Patent Document 3 is the above-described electromagnetic induction type non-contact power feeding device, in which a third coil is provided between the first coil and the second coil, and induction generated in the third coil. A foreign object between the first coil and the second coil is detected based on the voltage.

特開2010−226889号公報JP 2010-226889 A 特開2013−90392号公報JP 2013-90392 A 特開2012−249401号公報JP 2012-249401 A

第1のコイルと第2のコイルとの間に第3のコイルを設け、第3のコイルに生じる誘導電圧を検出する場合、第1のコイルと第2のコイルとの間に異物が存在しない状態でも誘導電圧が発生する。
そのため、異物がないときの誘導電圧の存在により、第3のコイルによる異物の検出が困難又は誤検出する可能性があった。
When a third coil is provided between the first coil and the second coil and an induced voltage generated in the third coil is detected, no foreign matter exists between the first coil and the second coil. An induced voltage is generated even in the state.
For this reason, the presence of an induced voltage when there is no foreign object may make it difficult or erroneous to detect the foreign object using the third coil.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、導電性異物がないときに異物検出用のコイルに発生する誘導電圧を低減することができ、これにより導電性異物の有無を検出する異物検出の感度を高め、誤検出を低減することができる非接触給電装置用の異物検出装置と方法を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to reduce the induced voltage generated in the coil for detecting foreign matter when there is no conductive foreign matter, thereby increasing the sensitivity of foreign matter detection for detecting the presence or absence of conductive foreign matter. It is an object of the present invention to provide a foreign object detection device and method for a non-contact power supply device that can reduce detection.

本発明によれば、送電コイルと受電コイルとの間に位置する検出コイルと、
前記検出コイルに発生する誘導電圧を検出し、これから送電コイルと受電コイルとの間に位置する導電性異物の有無を検出する検出ユニットと、を備え、
前記検出コイルは、2つのループ部が互い逆方向に巻かれた連続した導電線からなり、
各ループ部の面積、巻き数、又は前記2つのループ部の図心を結ぶ方向が、導電性異物が存在しないときに前記検出コイルに発生する誘導電圧が0又は最小になるように設定されている、ことを特徴とする非接触給電装置用の異物検出装置が提供される。
According to the present invention, a detection coil located between the power transmission coil and the power reception coil;
A detection unit that detects an induced voltage generated in the detection coil and detects the presence or absence of a conductive foreign substance positioned between the power transmission coil and the power reception coil.
The detection coil is composed of continuous conductive wires in which two loop portions are wound in opposite directions,
The area of each loop part, the number of turns, or the direction connecting the centroids of the two loop parts is set so that the induced voltage generated in the detection coil when the conductive foreign matter does not exist is 0 or minimum There is provided a foreign object detection device for a non-contact power feeding device.

前記2つのループ部は、送電コイルと受電コイルとの間に位置する同一平面上に位置しており、かつ前記図心を結ぶ方向は、検出コイルの設置位置における磁気勾配方向に垂直になるように配置されている。   The two loop portions are located on the same plane located between the power transmission coil and the power reception coil, and the direction connecting the centroids is perpendicular to the magnetic gradient direction at the detection coil installation position. Is arranged.

前記ループ部は、同一平面上において互いに重ならずに位置する円形、矩形、三角形、又はひし形のループである。   The loop portions are circular, rectangular, triangular, or rhombus loops that are located on the same plane without overlapping each other.

前記検出ユニットは、検出コイルに発生する誘導電圧を検出する検出部と、検出された誘導電圧を導電性異物が存在しないときの基準電圧と比較して導電性異物の有無を判定する判定部とを有する。   The detection unit includes a detection unit that detects an induced voltage generated in the detection coil, a determination unit that compares the detected induced voltage with a reference voltage when no conductive foreign matter is present, and determines the presence or absence of the conductive foreign matter. Have

また本発明によれば、送電コイルと受電コイルとの間に位置する検出コイルを、2つのループ部が互い逆方向に巻かれた連続した導電線で構成し、
各ループ部の面積、巻き数、又は前記2つのループ部の図心を結ぶ方向を、送電コイルと受電コイルとの間に導電性異物が存在しないときに前記検出コイルに発生する誘導電圧が0又は最小になるように設定し、
前記検出コイルに発生する誘導電圧を検出し、これから送電コイルと受電コイルとの間に位置する導電性異物の有無を検出する、ことを特徴とする非接触給電装置用の異物検出方法が提供される。
According to the present invention, the detection coil located between the power transmission coil and the power reception coil is constituted by continuous conductive wires in which two loop portions are wound in opposite directions,
The induced voltage generated in the detection coil when the area of each loop part, the number of turns, or the direction connecting the centroids of the two loop parts does not exist between the power transmission coil and the power reception coil is 0. Or set it to the minimum,
There is provided a foreign matter detection method for a non-contact power feeding device, characterized in that an induced voltage generated in the detection coil is detected, and then the presence or absence of a conductive foreign matter located between the power transmission coil and the power reception coil is detected. The

前記検出コイルを前後ないし左右に並行移動、もしくは垂直軸まわりに回転させつつ、検出コイルに発生する誘導電圧を計測し、前記誘導電圧の計測値が0又は最小になる位置と回転角に位置決めする。   The induced voltage generated in the detecting coil is measured while the detecting coil is moved back and forth or left and right, or rotated around the vertical axis, and the measured value of the induced voltage is zero or minimized and positioned at the rotation angle. .

上記本発明の装置及び方法によれば、検出コイルが、2つのループ部が互い逆方向に巻かれた連続した導電線からなるので、磁界による誘導電流が2つのループ部で逆向きとなり、互いに打ち消し合う。
また、各ループ部の面積、巻き数、又は2つのループ部の図心を結ぶ方向が、導電性異物が存在しないときに前記検出コイルに発生する誘導電圧が0又は最小になるように設定されているので、磁気勾配のある場所でも、導電性異物がないときに検出コイルに発生する誘導電圧は0又は最小になる。
従って、導電性異物がないときに異物検出用のコイルに発生する誘導電圧を低減することができ、これにより異物検出の感度を高め、誤検出を低減することができる。
According to the apparatus and method of the present invention, since the detection coil is composed of continuous conductive wires in which two loop portions are wound in opposite directions, induced currents caused by magnetic fields are reversed in the two loop portions and are mutually opposite. Negate each other.
Further, the area of each loop part, the number of turns, or the direction connecting the centroids of the two loop parts is set so that the induced voltage generated in the detection coil is 0 or minimum when there is no conductive foreign matter. Therefore, even in a place with a magnetic gradient, the induced voltage generated in the detection coil when there is no conductive foreign matter is 0 or minimum.
Accordingly, it is possible to reduce the induced voltage generated in the foreign object detection coil when there is no conductive foreign object, thereby increasing the sensitivity of foreign object detection and reducing false detection.

本発明の異物検出装置を備えた非接触給電装置の構成図である。It is a block diagram of the non-contact electric power feeder provided with the foreign material detection apparatus of this invention. 検出コイルの設置位置を示す図である。It is a figure which shows the installation position of a detection coil. 検出ユニットの構成図である。It is a block diagram of a detection unit. 送電コイルと受電コイルとの間に位置する検出コイルの具体例を示す図である。It is a figure which shows the specific example of the detection coil located between a power transmission coil and a receiving coil. ループ部の別の構成例を示す図である。It is a figure which shows another structural example of a loop part. 図5(C)の検出コイルにおける異物検出の原理説明図である。It is principle explanatory drawing of the foreign material detection in the detection coil of FIG.5 (C). 複数の検出コイルの配置例を示す図である。It is a figure which shows the example of arrangement | positioning of a some detection coil. 本発明の異物検出方法のフローチャートである。It is a flowchart of the foreign material detection method of this invention.

以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.

図1は、本発明の異物検出装置10を備えた非接触給電装置2の構成図であり、(A)は使用状態図、(B)はブロック回路図である。本発明の異物検出装置10は、非接触給電装置用の異物検出装置10である。
この図において、非接触給電装置2は、送電コイル3から受電コイル4に電磁誘導によって非接触に給電を行う。
FIG. 1 is a configuration diagram of a non-contact power feeding device 2 including a foreign object detection device 10 of the present invention, where (A) is a use state diagram and (B) is a block circuit diagram. The foreign object detection device 10 of the present invention is a foreign object detection device 10 for a non-contact power supply device.
In this figure, a non-contact power feeding device 2 feeds power from a power transmission coil 3 to a power receiving coil 4 in a non-contact manner by electromagnetic induction.

図1において、1は駐車スペース、3は送電コイル、4は受電コイル、5は受電側整流器、6は車載バッテリである。
非接触給電装置2は、交流電源2a、送電側整流器2b、インバータ2c及び送電コイル3を含み、送電コイル3に高周波に変換した電力を供給する。
送電コイル3は、この電力により高周波の磁界を発生させる。この磁界により受電コイル4に高周波の電力が発生する。この電力は受電側整流器5で直流に変換され、車載バッテリ6に充電される。
In FIG. 1, 1 is a parking space, 3 is a power transmission coil, 4 is a power reception coil, 5 is a power reception side rectifier, and 6 is an in-vehicle battery.
The non-contact power feeding device 2 includes an AC power source 2a, a power transmission side rectifier 2b, an inverter 2c, and a power transmission coil 3, and supplies the power transmission coil 3 with electric power converted into a high frequency.
The power transmission coil 3 generates a high-frequency magnetic field with this electric power. This magnetic field generates high-frequency power in the receiving coil 4. This electric power is converted into direct current by the power receiving side rectifier 5 and charged to the in-vehicle battery 6.

図1において、本発明の異物検出装置10は、検出コイル12と検出ユニット14を備える。   In FIG. 1, a foreign object detection device 10 of the present invention includes a detection coil 12 and a detection unit 14.

検出コイル12は、送電コイル3と受電コイル4との間に位置する。
図2は、検出コイル12の設置位置を示す図である。この図において、(A)は検出コイル12を送電コイル3に近接させて設置した例であり、(B)は受電コイル4に近接させて設置した例であり、(C)は2つの検出コイル12を送電コイル3と受電コイル4にそれぞれ近接させて設置した例である。
この図に示すように、検出コイル12は、送電コイル3と受電コイル4との間であれば、どちらに近接させても良く、或いは両者の中間位置に設置してもよい。
The detection coil 12 is located between the power transmission coil 3 and the power reception coil 4.
FIG. 2 is a diagram showing the installation position of the detection coil 12. In this figure, (A) is an example in which the detection coil 12 is installed close to the power transmission coil 3, (B) is an example in which the detection coil 12 is installed close to the power receiving coil 4, and (C) is two detection coils. This is an example in which 12 is installed close to the power transmission coil 3 and the power reception coil 4.
As shown in this figure, as long as the detection coil 12 is between the power transmission coil 3 and the power reception coil 4, the detection coil 12 may be close to either, or may be installed at an intermediate position between the two.

検出ユニット14は、検出コイル12に発生する誘導電圧Vを検出し、これから送電コイル3と受電コイル4との間に位置する導電性異物(図示せず)の有無を検出する。   The detection unit 14 detects the induced voltage V generated in the detection coil 12, and detects the presence or absence of a conductive foreign substance (not shown) located between the power transmission coil 3 and the power reception coil 4.

図3は、検出ユニット14の構成図である。
検出ユニット14は、好ましくは、記憶装置と演算装置を含むコンピュータ(PC)であり、検出部14aと判定部14bを有する。
検出部14aは、検出コイル12に発生する誘導電圧Vを検出する。
判定部14bは、検出された誘導電圧Vを導電性異物が存在しないときの基準電圧V0と比較して導電性異物の有無を判定する。
導電性異物が存在しないときの基準電圧V0は、記憶装置に予め記憶するのがよい。
FIG. 3 is a configuration diagram of the detection unit 14.
The detection unit 14 is preferably a computer (PC) including a storage device and an arithmetic device, and includes a detection unit 14a and a determination unit 14b.
The detection unit 14 a detects the induced voltage V generated in the detection coil 12.
The determination unit 14b compares the detected induced voltage V with the reference voltage V0 when no conductive foreign matter is present, and determines the presence or absence of the conductive foreign matter.
The reference voltage V0 when there is no conductive foreign matter is preferably stored in advance in the storage device.

図4は、送電コイル3と受電コイル4との間に位置する検出コイル12の具体例を示す図であり、(A)は側面図、(B)はB−B平面における断面図である。また、図4は、送電コイル3に高周波に変換した電力を供給したときに、送電コイル3および受電コイル4の周辺に発生する磁界の概略も示す。   FIG. 4 is a diagram illustrating a specific example of the detection coil 12 positioned between the power transmission coil 3 and the power reception coil 4, (A) is a side view, and (B) is a cross-sectional view in the BB plane. FIG. 4 also shows an outline of a magnetic field generated around the power transmission coil 3 and the power reception coil 4 when power converted into a high frequency is supplied to the power transmission coil 3.

図4(A)において、送電コイル3と受電コイル4の軸線は、互いに平行に位置している。すなわちこの図は、上述した「ソレノイド型」の非接触給電装置2を示している。また、図4(A)において、各破線は磁力線を示している。
なおこの図において送電コイル3と受電コイル4を円筒型で示しているが、これに限定されず、矩形断面でもその他の形状であってもよい。また、送電コイル3と受電コイル4を内部が空な空芯として示しているが、内部にフェライト等を含んでもよい。
また、本発明は「ソレノイド型」に限定されず、送電コイル3と受電コイル4の軸線がそれぞれ鉛直かつ同一軸になっている上述した「サーキュラー型」の非接触給電装置2であってもよい。
In FIG. 4A, the axes of the power transmission coil 3 and the power reception coil 4 are positioned in parallel to each other. That is, this figure shows the “solenoid type” non-contact power feeding device 2 described above. In FIG. 4A, each broken line indicates a magnetic field line.
In addition, in this figure, although the power transmission coil 3 and the receiving coil 4 are shown by the cylindrical shape, it is not limited to this, A rectangular cross section or another shape may be sufficient. Further, although the power transmission coil 3 and the power reception coil 4 are shown as empty cores inside, ferrite or the like may be included inside.
Further, the present invention is not limited to the “solenoid type”, and may be the above-described “circular type” non-contact power feeding device 2 in which the axes of the power transmission coil 3 and the power reception coil 4 are vertical and on the same axis. .

図4(A)において、B−B平面は、送電コイル3と受電コイル4の対称平面であるが、本発明は、これに限定されず、送電コイル3と受電コイル4との間に位置する平面であればよい。
検出コイル12は、B−B平面上の任意の場所に位置する。
In FIG. 4A, the BB plane is a symmetrical plane of the power transmission coil 3 and the power reception coil 4, but the present invention is not limited to this, and is located between the power transmission coil 3 and the power reception coil 4. Any plane may be used.
The detection coil 12 is located at an arbitrary place on the BB plane.

図4(B)は、B−B平面上の磁界の分布を示しており、各破線は等磁界線(磁界強度が等しい線)を示している。
この図において、検出コイル12は、2つのループ部12aが互い逆方向に巻かれた連続した導電線13からなる。連続した導電線13の両端部13a、13bは、図示しない信号線を介して検出ユニット14に接続されている。この信号線は、磁界の影響を受けないように配置する。
FIG. 4B shows the distribution of the magnetic field on the BB plane, and each broken line shows isomagnetic field lines (lines having the same magnetic field strength).
In this figure, the detection coil 12 comprises a continuous conductive wire 13 in which two loop portions 12a are wound in opposite directions. Both end portions 13a and 13b of the continuous conductive wire 13 are connected to the detection unit 14 via signal lines (not shown). This signal line is arranged so as not to be affected by the magnetic field.

各ループ部12aの面積、巻き数、又は2つのループ部12aの図心を結ぶ方向(線分C−C)は、導電性異物が存在しないときに検出ユニット14に発生する誘導電圧V(すなわち基準電圧V0)が0又は最小になるように設定されている。
また、導電性異物が存在しないときに検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)は、検出ユニット14の記憶装置に予め記憶する。
The area of each loop portion 12a, the number of windings, or the direction connecting the centroids of the two loop portions 12a (line segment CC) is an induced voltage V generated in the detection unit 14 when there is no conductive foreign matter (ie, The reference voltage V0) is set to 0 or minimum.
In addition, the induced voltage V (that is, the reference voltage V0) generated in the detection coil 12 when there is no conductive foreign matter is stored in advance in the storage device of the detection unit 14.

この例において、2つのループ部12aの面積と巻き数は同一であり、ループ部12aの図心を結ぶ方向(線分C−C)は、検出コイル12の設置位置における磁気勾配方向(図に破線の矢印で示す)に垂直になるように配置されている。
この構成により、2つのループ部12aが互い逆方向に巻かれた連続した導電線13からなり、かつ2つのループ部12aの面積と巻き数は同一であるので、磁気勾配のある場所でも、磁界による誘導電流i1,i2は実質的に同一となり、2つの誘導電流i1,i2が2つのループ部12aで逆向きとなり、互いに打ち消し合う。
従って、磁気勾配のある場所でも、導電性異物がないときに検出コイル12に発生する基準電圧V0は実質的に0になる。
In this example, the area and the number of turns of the two loop portions 12a are the same, and the direction connecting the centroids of the loop portion 12a (line segment CC) is the magnetic gradient direction at the installation position of the detection coil 12 (in the figure). It is arranged so as to be perpendicular to (indicated by a broken arrow).
With this configuration, the two loop portions 12a are composed of continuous conductive wires 13 wound in opposite directions, and the area and the number of turns of the two loop portions 12a are the same. Induced currents i1 and i2 are substantially the same, and the two induced currents i1 and i2 are reversed in the two loop portions 12a and cancel each other.
Accordingly, the reference voltage V0 generated in the detection coil 12 when there is no conductive foreign matter is substantially zero even in a place with a magnetic gradient.

図5は、ループ部12aの別の構成例を示す図である。この図において、(A)は面積を変える例、(B)は面積と巻き数を変える例、(C)は形状が矩形である例である。
図5に示すように、各ループ部12aの面積、巻き数を変えてもよい。また、ループ部12aは、同一平面上において互いに重ならずに位置する円形、矩形、三角形、又はひし形のループであるのがよい。
FIG. 5 is a diagram illustrating another configuration example of the loop unit 12a. In this figure, (A) is an example in which the area is changed, (B) is an example in which the area and the number of turns are changed, and (C) is an example in which the shape is rectangular.
As shown in FIG. 5, the area and the number of turns of each loop portion 12a may be changed. The loop portion 12a may be a circular, rectangular, triangular, or rhombus loop that is positioned on the same plane without overlapping each other.

図6は、図5(C)の検出コイル12における異物検出の原理説明図であり、(A)は送電コイル3と受電コイル4との間に導電性異物が存在しないとき、(B)は導電性異物が存在するときを示している。   FIG. 6 is a diagram for explaining the principle of foreign matter detection in the detection coil 12 of FIG. 5C. FIG. 6A shows a case where no conductive foreign matter exists between the power transmission coil 3 and the power receiving coil 4, and FIG. It shows when conductive foreign matter is present.

導電性異物が存在しないときは、図6(A)に示すように、2つのループ部12aが互い逆方向に巻かれた連続した導電線13からなり、かつ2つのループ部12aの面積と巻き数は同一である場合、2つのループ部12aの磁束が等しい。従ってこの場合は、発生する誘導電流i1,i2は同一であり、誘導電流i1,i2は2つのループ部12aで逆向きとなり、互いに打ち消し合うので、検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)は実質的に0になる。
磁気勾配のある場所でも、図4(B)に示すように、ループ部12aの図心を結ぶ方向(線分C−C)が、検出コイル12の設置位置における磁気勾配方向(図に破線の矢印で示す)に垂直になるように配置されているので、同様に、導電性異物が存在しないときに検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)は0又は最小になる。
When there is no conductive foreign matter, as shown in FIG. 6 (A), the two loop portions 12a are composed of continuous conductive wires 13 wound in opposite directions, and the area and winding of the two loop portions 12a. When the numbers are the same, the magnetic fluxes of the two loop portions 12a are equal. Therefore, in this case, the generated induced currents i1 and i2 are the same, and the induced currents i1 and i2 are reversed in the two loop portions 12a and cancel each other, so that the induced voltage V generated in the detection coil 12 (ie, the reference voltage) The voltage V0) is substantially zero.
Even in a place where there is a magnetic gradient, as shown in FIG. 4B, the direction connecting the centroids of the loop portion 12a (line segment CC) is the magnetic gradient direction at the installation position of the detection coil 12 (indicated by the broken line in the figure). Similarly, the induced voltage V (that is, the reference voltage V0) generated in the detection coil 12 when there is no conductive foreign matter is 0 or minimum.

導電性異物が存在するとき、図6(B)に示すように、導電性異物が存在する方のループ部12aの磁束が強くなるので、一方の誘導電流i1が他方の誘導電流i2より大きくなり、検出コイル12に発生する誘導電圧Vが大きくなる。
従って、検出された誘導電圧Vを導電性異物が存在しないときの基準電圧V0と比較して導電性異物の有無を判定することができる。
When conductive foreign matter exists, as shown in FIG. 6B, the magnetic flux of the loop portion 12a on which conductive foreign matter is present becomes stronger, so that one induced current i1 becomes larger than the other induced current i2. The induced voltage V generated in the detection coil 12 increases.
Therefore, the presence or absence of conductive foreign matter can be determined by comparing the detected induced voltage V with the reference voltage V0 when no conductive foreign matter is present.

図7は、複数の検出コイル12の配置例を示す図である。この図において、等磁界線は、図4(B)と同一である。また、検出コイル12は、矩形と三角形のループ部12aを用いている。
この図に示すように、複数の検出コイル12を用い、導電性異物が存在しないときに各検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)が0又は最小になるように設定することにより、導電性異物が存在するときに、その位置を検出することができる。
FIG. 7 is a diagram illustrating an arrangement example of the plurality of detection coils 12. In this figure, the isomagnetic field lines are the same as in FIG. The detection coil 12 uses rectangular and triangular loop portions 12a.
As shown in this figure, a plurality of detection coils 12 are used, and the induction voltage V (that is, the reference voltage V0) generated in each detection coil 12 when there is no conductive foreign matter is set to 0 or minimum. Thus, when a conductive foreign substance exists, the position can be detected.

図8は、本発明の異物検出方法のフローチャートである。本発明の異物検出方法は、S1〜S4の各ステップ(工程)からなる。検出コイル12は、2つのループ部12aが互い逆方向に巻かれた連続した導電線13で構成されており、ステップS1を実施する以前に、各ループ部12aの面積、巻き数、又は2つのループ部12aの図心を結ぶ方向を、送電コイル3と受電コイル4との間に導電性異物が存在しないときに検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)が0又は最小になるように設定されている。   FIG. 8 is a flowchart of the foreign object detection method of the present invention. The foreign matter detection method of the present invention includes steps (steps) S1 to S4. The detection coil 12 is composed of continuous conductive wires 13 in which two loop portions 12a are wound in opposite directions. Before performing step S1, the area, the number of turns, or two of the loop portions 12a The direction connecting the centroids of the loop portion 12a is such that the induction voltage V (that is, the reference voltage V0) generated in the detection coil 12 when the conductive foreign matter is not present between the power transmission coil 3 and the power reception coil 4 is 0 or minimized. It is set to be.

ステップS1では、検出コイル12を送電コイル3と受電コイル4との間に位置決めする。より詳しくは、検出コイル12を前後ないし左右に微小量の並行移動、もしくは垂直軸まわりに微小に回転させつつ、検出コイル12に発生する誘導電圧Vを計測し、誘導電圧Vの計測値が0又は最小になる位置と回転角に位置決めする。以降、検出コイル12の位置と回転角は固定しておく。
なお、位置決めした位置と回転角において検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)を計測し記憶する。
In step S <b> 1, the detection coil 12 is positioned between the power transmission coil 3 and the power reception coil 4. More specifically, the induction voltage V generated in the detection coil 12 is measured while the detection coil 12 is moved by a small amount of parallel movement from front to back or from side to side, or slightly rotated around the vertical axis, and the measured value of the induction voltage V is 0. Or, position at the minimum position and rotation angle. Thereafter, the position and rotation angle of the detection coil 12 are fixed.
Note that the induced voltage V (that is, the reference voltage V0) generated in the detection coil 12 at the positioned position and rotation angle is measured and stored.

検出コイル12の各ループ部12aの面積、巻き数、又は2つのループ部12aの図心を結ぶ方向は、検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)が0又は最小になるように設定されている。しかし、非接触給電装置2で発生する磁界が例えば周囲に存在する物質の影響で微小変化すると、検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)は厳密には0又は最小からずれてしまう。ステップS1を実施することにより、磁界の微小変化があっても、誘導電圧V(すなわち基準電圧V0)が厳密に0又は最小となる位置と回転角に検出コイル12を設置できる効果がある。   The induction voltage V (that is, the reference voltage V0) generated in the detection coil 12 is 0 or minimized in the area connecting the loop portions 12a of the detection coil 12, the number of turns, or the direction connecting the centroids of the two loop portions 12a. Is set to However, if the magnetic field generated in the non-contact power supply device 2 changes minutely due to the influence of substances present in the surroundings, for example, the induced voltage V (that is, the reference voltage V0) generated in the detection coil 12 is strictly deviated from 0 or the minimum. End up. By performing step S1, even if there is a minute change in the magnetic field, there is an effect that the detection coil 12 can be installed at a position and rotation angle at which the induced voltage V (that is, the reference voltage V0) is strictly zero or minimum.

ステップS2では、検出コイル12に生じる誘導電圧Vを検出する。   In step S2, the induced voltage V generated in the detection coil 12 is detected.

ステップS3では、検出コイル12に発生する誘導電圧Vを検出し、これから送電コイル3と受電コイル4との間に位置する導電性異物の有無を検出する。
具体的には、例えば、ステップS2において計測した誘導電圧Vと、ステップS1において計測した基準電圧V0との差が、所定の閾値を超えた場合に、送電コイル3と受電コイル4との間に導電性異物が存在するものと判断する。
In step S <b> 3, the induced voltage V generated in the detection coil 12 is detected, and from this, the presence or absence of a conductive foreign substance located between the power transmission coil 3 and the power reception coil 4 is detected.
Specifically, for example, when the difference between the induced voltage V measured in step S2 and the reference voltage V0 measured in step S1 exceeds a predetermined threshold, between the power transmission coil 3 and the power reception coil 4 Judge that conductive foreign matter exists.

このステップS3において導電性異物が存在すると判断した場合には、給電を停止する(ステップS4)。   If it is determined in step S3 that conductive foreign matter is present, power supply is stopped (step S4).

上記本発明の装置及び方法によれば、検出コイル12が、2つのループ部12aが互い逆方向に巻かれた連続した導電線13からなるので、磁界による誘導電流i1,i2が2つのループ部12aで逆向きとなり、互いに打ち消し合う。
また、各ループ部12aの面積、巻き数、又は2つのループ部12aの図心を結ぶ方向が、導電性異物が存在しないときに検出コイル12に発生する誘導電圧V(すなわち基準電圧V0)が0又は最小になるように設定されているので、磁気勾配のある場所でも、導電性異物がないときに検出コイル12に発生する誘導電圧Vは0又は最小になる。
従って、導電性異物がないときに異物検出用のコイルに発生する誘導電圧Vを低減することができ、これにより異物検出の感度を高め、誤検出を低減することができる。
According to the apparatus and method of the present invention, the detection coil 12 is composed of the continuous conductive wires 13 in which the two loop portions 12a are wound in opposite directions, so that the induced currents i1 and i2 due to the magnetic field are generated by the two loop portions. At 12a, the directions are reversed and cancel each other.
Further, the induction voltage V (that is, the reference voltage V0) generated in the detection coil 12 when the area of each loop portion 12a, the number of turns, or the direction connecting the centroids of the two loop portions 12a is not present in the conductive foreign matter. Since it is set to be 0 or the minimum, the induced voltage V generated in the detection coil 12 when there is no conductive foreign matter is 0 or the minimum even in a place with a magnetic gradient.
Accordingly, the induced voltage V generated in the foreign object detection coil when there is no conductive foreign object can be reduced, thereby increasing the sensitivity of foreign object detection and reducing false detection.

なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。もちろん、磁界共鳴方式にかぎらず、電磁誘導方式等の他の方式も含むものである。   In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim. Of course, not only the magnetic field resonance method but also other methods such as an electromagnetic induction method are included.

i1 誘導電流、i2 誘導電流、V 誘導電圧、V0 基準電圧、
1 駐車スペース、2 非接触給電装置、
2a 交流電源、2b 送電側整流器、2c インバータ、
3 送電コイル、4 受電コイル、5 受電側整流器、6 車載バッテリ、
10 異物検出装置、12 検出コイル、12a ループ部、
13 導電線、13a 端部、13b 端部、
14 検出ユニット(コンピュータ)、14a 検出部、14b 判定部
i1 induced current, i2 induced current, V induced voltage, V0 reference voltage,
1 parking space, 2 contactless power supply device,
2a AC power supply, 2b Power transmission side rectifier, 2c Inverter,
3 power transmission coil, 4 power reception coil, 5 power reception side rectifier, 6 vehicle-mounted battery,
10 foreign object detection device, 12 detection coil, 12a loop part,
13 conductive wire, 13a end, 13b end,
14 detection unit (computer), 14a detection unit, 14b determination unit

Claims (6)

送電コイルと受電コイルとの間に位置する検出コイルと、
前記検出コイルに発生する誘導電圧を検出し、これから送電コイルと受電コイルとの間に位置する導電性異物の有無を検出する検出ユニットと、を備え、
前記検出コイルは、2つのループ部が互い逆方向に巻かれた連続した導電線からなり、
各ループ部の面積、巻き数、又は前記2つのループ部の図心を結ぶ方向が、導電性異物が存在しないときに前記検出コイルに発生する誘導電圧が0又は最小になるように設定されている、ことを特徴とする非接触給電装置用の異物検出装置。
A detection coil positioned between the power transmission coil and the power reception coil;
A detection unit that detects an induced voltage generated in the detection coil and detects the presence or absence of a conductive foreign substance positioned between the power transmission coil and the power reception coil.
The detection coil is composed of continuous conductive wires in which two loop portions are wound in opposite directions,
The area of each loop part, the number of turns, or the direction connecting the centroids of the two loop parts is set so that the induced voltage generated in the detection coil when the conductive foreign matter does not exist is 0 or minimum A foreign matter detection device for a non-contact power feeding device.
前記2つのループ部は、送電コイルと受電コイルとの間に位置する同一平面上に位置しており、かつ前記図心を結ぶ方向は、検出コイルの設置位置における磁気勾配方向に垂直になるように配置されている、ことを特徴とする請求項1に記載の非接触給電装置用の異物検出装置。   The two loop portions are located on the same plane located between the power transmission coil and the power reception coil, and the direction connecting the centroids is perpendicular to the magnetic gradient direction at the detection coil installation position. The foreign matter detection device for a non-contact power feeding device according to claim 1, wherein 前記ループ部は、同一平面上において互いに重ならずに位置する円形、矩形、三角形、又はひし形のループである、ことを特徴とする請求項2に記載の非接触給電装置用の異物検出装置。   The foreign object detection device for a non-contact power feeding device according to claim 2, wherein the loop portions are circular, rectangular, triangular, or rhombus loops that are located on the same plane without overlapping each other. 前記検出ユニットは、検出コイルに発生する誘導電圧を検出する検出部と、検出された誘導電圧を導電性異物が存在しないときの基準電圧と比較して導電性異物の有無を判定する判定部とを有する、ことを特徴とする請求項1に記載の非接触給電装置用の異物検出装置。   The detection unit includes a detection unit that detects an induced voltage generated in the detection coil, a determination unit that compares the detected induced voltage with a reference voltage when no conductive foreign matter is present, and determines the presence or absence of the conductive foreign matter. The foreign object detection device for a non-contact power feeding device according to claim 1, wherein 送電コイルと受電コイルとの間に位置する検出コイルを、2つのループ部が互い逆方向に巻かれた連続した導電線で構成し、
各ループ部の面積、巻き数、又は前記2つのループ部の図心を結ぶ方向を、送電コイルと受電コイルとの間に導電性異物が存在しないときに前記検出コイルに発生する誘導電圧が0又は最小になるように設定し、
前記検出コイルに発生する誘導電圧を検出し、これから送電コイルと受電コイルとの間に位置する導電性異物の有無を検出する、ことを特徴とする非接触給電装置用の異物検出方法。
The detection coil located between the power transmission coil and the power reception coil is composed of continuous conductive wires in which two loop portions are wound in opposite directions,
The induced voltage generated in the detection coil when the area of each loop part, the number of turns, or the direction connecting the centroids of the two loop parts does not exist between the power transmission coil and the power reception coil is 0. Or set it to the minimum,
A foreign object detection method for a non-contact power supply device, comprising: detecting an induced voltage generated in the detection coil; and detecting presence or absence of a conductive foreign object positioned between the power transmission coil and the power reception coil.
前記検出コイルを前後ないし左右に並行移動、もしくは垂直軸まわりに回転させつつ、検出コイルに発生する誘導電圧を計測し、前記誘導電圧の計測値が0又は最小になる位置と回転角に位置決めする、ことを特徴とする請求項5に記載の非接触給電装置用の異物検出方法。
The induced voltage generated in the detecting coil is measured while the detecting coil is moved back and forth or left and right, or rotated around the vertical axis, and the measured value of the induced voltage is zero or minimized and positioned at the rotation angle. The foreign object detection method for a non-contact power feeding device according to claim 5.
JP2013147603A 2013-07-16 2013-07-16 Foreign matter detection device and method for non-contact power supply device Pending JP2015023595A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013147603A JP2015023595A (en) 2013-07-16 2013-07-16 Foreign matter detection device and method for non-contact power supply device
CN201480019565.2A CN105052013B (en) 2013-07-16 2014-07-08 Foreign matter detection device and method for non-contact power supply device
PCT/JP2014/068168 WO2015008662A1 (en) 2013-07-16 2014-07-08 Foreign matter detection device and method for contactless power supply device
US14/867,053 US9950636B2 (en) 2013-07-16 2015-09-28 Foreign matter detection device and method for wireless power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013147603A JP2015023595A (en) 2013-07-16 2013-07-16 Foreign matter detection device and method for non-contact power supply device

Publications (1)

Publication Number Publication Date
JP2015023595A true JP2015023595A (en) 2015-02-02

Family

ID=52487646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013147603A Pending JP2015023595A (en) 2013-07-16 2013-07-16 Foreign matter detection device and method for non-contact power supply device

Country Status (1)

Country Link
JP (1) JP2015023595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126779A (en) * 2014-05-05 2015-11-13 델피 테크놀로지스 인코포레이티드 Variable gain reference antenna for non-contact charging device
WO2018235540A1 (en) * 2017-06-20 2018-12-27 Tdk株式会社 Metallic foreign material detection device, wireless power supply device, wireless power receiving device, and wireless power transmission system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779182A (en) * 1993-06-22 1995-03-20 Yamatake Honeywell Co Ltd Contactless communications system
JPH10290186A (en) * 1997-04-16 1998-10-27 Kokusai Electric Co Ltd Ic card system
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779182A (en) * 1993-06-22 1995-03-20 Yamatake Honeywell Co Ltd Contactless communications system
JPH10290186A (en) * 1997-04-16 1998-10-27 Kokusai Electric Co Ltd Ic card system
JP2012016125A (en) * 2010-06-30 2012-01-19 Panasonic Electric Works Co Ltd Non-contact power supply system, and metal foreign substance detector of non-contact power supply system
JP2012249401A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150126779A (en) * 2014-05-05 2015-11-13 델피 테크놀로지스 인코포레이티드 Variable gain reference antenna for non-contact charging device
KR101704190B1 (en) 2014-05-05 2017-02-07 델피 테크놀로지스 인코포레이티드 Variable gain reference antenna for non-contact charging device
WO2018235540A1 (en) * 2017-06-20 2018-12-27 Tdk株式会社 Metallic foreign material detection device, wireless power supply device, wireless power receiving device, and wireless power transmission system
JP2019002882A (en) * 2017-06-20 2019-01-10 Tdk株式会社 Metal foreign matter detection device, wireless power supply device, wireless power reception device, and wireless power transmission system
CN110168413A (en) * 2017-06-20 2019-08-23 Tdk株式会社 Detection device of metal foreign body, wireless power supply, wireless receiving device and Wireless power transmission system

Similar Documents

Publication Publication Date Title
WO2015008662A1 (en) Foreign matter detection device and method for contactless power supply device
JP6217801B2 (en) Power transmission device and non-contact power feeding system
JP4772744B2 (en) Signal transmission coil communication device for non-contact power feeding device
EP3249783B1 (en) Power transmission system, foreign matter detection device, and coil device
JP6166227B2 (en) Power transmission device and power reception device
JP6156726B2 (en) Power supply device and charging system
JP2014225961A (en) Detector, power supply system and control method of detector
US9929606B2 (en) Integration of positioning antennas in wireless inductive charging power applications
JP6079026B2 (en) Coil unit and wireless power feeder using the same
CN104685760A (en) Methods and systems for detecting foreign objects in a wireless charging system
WO2014136396A1 (en) Wireless power transmission system
JP6179160B2 (en) Wireless power transmission equipment
EP3350899B1 (en) Methods and apparatus utilizing multi-filar alignment assistance in wireless power transfer applications
KR101921700B1 (en) Method for canceling leaked magnetic field
JP2015023595A (en) Foreign matter detection device and method for non-contact power supply device
JP6537071B2 (en) External demagnetization type non-contact power supply device
JP6372458B2 (en) Power transmission device, power reception device, and non-contact power transmission system
JP2011176949A (en) Noncontact power supply
JP6172567B2 (en) Foreign object detection device and method for non-contact power feeding device
WO2020070945A1 (en) Misalignment detection device and coil device
JP2015130734A (en) non-contact power supply device
JP6532086B2 (en) Externally shielded non-contact power supply
KR102418335B1 (en) Foreign object detection apparatus for wireless power transmission
JP2005086348A (en) Ac magnetic field detecting device
JP2015223026A (en) Foreign substance detection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170914