JP2014237298A - 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法 - Google Patents

樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法 Download PDF

Info

Publication number
JP2014237298A
JP2014237298A JP2013122118A JP2013122118A JP2014237298A JP 2014237298 A JP2014237298 A JP 2014237298A JP 2013122118 A JP2013122118 A JP 2013122118A JP 2013122118 A JP2013122118 A JP 2013122118A JP 2014237298 A JP2014237298 A JP 2014237298A
Authority
JP
Japan
Prior art keywords
resin
powder
fiber mat
content
resin fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013122118A
Other languages
English (en)
Other versions
JP6098978B2 (ja
Inventor
内藤 茂樹
Shigeki Naito
茂樹 内藤
武史 池村
Takeshi Ikemura
武史 池村
章彦 田中
Akihiko Tanaka
章彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013122118A priority Critical patent/JP6098978B2/ja
Publication of JP2014237298A publication Critical patent/JP2014237298A/ja
Application granted granted Critical
Publication of JP6098978B2 publication Critical patent/JP6098978B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量を簡便に測定することができる樹脂繊維マットの粉末樹脂含有量の測定方法を提供する。【解決手段】所定の比率で無機粉体3を混合した粉末樹脂2を供給して混合してなる樹脂繊維マット12に放射線を照射して、その放射線透過量を測定する。予め取得しておいた、樹脂繊維マットの所定の無機粉体混合比率における粉末樹脂の含有量と放射線透過量との関係に基づいて、樹脂繊維マット12における粉末樹脂2の含有量を求める。【選択図】図1

Description

本発明は、樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法に関する。
従来、繊維に粉末樹脂を混合して繊維と粉末樹脂との混合物からなる樹脂繊維マットを製造し、この樹脂繊維マットを加熱加圧成形して繊維板を製造することが知られている(例えば特許文献1)。このように繊維板の製造では、まず繊維と粉末樹脂との混合物からなる樹脂繊維マットを製造している。粉末樹脂は取扱い易さ、繊維との混合の容易性などから樹脂繊維マットの製造において好ましく用いられる。
特開2002−192507号公報
繊維と粉末樹脂との混合物からなる樹脂繊維マットを製造する方法においては、その製造過程で粉末樹脂が繊維から脱落してこぼれ落ちることがある。粉末樹脂の含有量が規定量を下回る樹脂繊維マットは、繊維板として所期の物性を得ることができない。このため、粉末樹脂の含有量が規定量を下回る樹脂繊維マットの繊維板への使用を防ぐために、樹脂繊維マットの製造現場においては樹脂繊維マットにおける粉末樹脂の含有量を測定して、粉末樹脂が規定量含有されているか確認することが求められる。しかしながら、樹脂繊維マットにおける粉末樹脂の含有量を簡便に測定したり、粉末樹脂の含有量が適正か否かを簡便に判断することができる方法が依然として確立されていない。
本発明は、以上のとおりの事情に鑑みてなされたものであり、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量を簡便に測定することができる樹脂繊維マットの粉末樹脂含有量の測定方法を提供することを課題としている。また、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量が適正か否かを簡便に判断することができる樹脂繊維マットの粉末樹脂含有量の判断方法を提供することを課題としている。
上記の課題を解決するために、本発明の樹脂繊維マットの粉末樹脂含有量の測定方法は、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量を測定する方法であって、所定の比率で無機粉体を混合した粉末樹脂を供給して混合してなる樹脂繊維マットに放射線を照射して、その放射線透過量を測定し、予め取得しておいた、樹脂繊維マットの所定の無機粉体混合比率における粉末樹脂の含有量と放射線透過量との関係に基づいて、樹脂繊維マットにおける粉末樹脂の含有量を求めることを特徴とする。
この樹脂繊維マットの粉末樹脂含有量の測定方法においては、粉末樹脂及び無機粉体は、ともに平均粒径が30μm以下であることが好ましい。
また、本発明の粉末樹脂含有量の判断方法は、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量が適正か否かを判断する方法であって、所定の比率で無機粉体を混合した粉末樹脂を供給して混合してなる樹脂繊維マットに放射線を照射して、その放射線透過量を測定し、予め取得しておいた、樹脂繊維マットの所定の無機粉体混合比率における放射線透過量の合否判断基準に基づいて、樹脂繊維マットにおける粉末樹脂の含有量が適正か否かを判断することを特徴とする。
本発明の樹脂繊維マットの粉末樹脂含有量の測定方法によれば、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量を簡便に測定することができる。
本発明の樹脂繊維マットの粉末樹脂含有量の判断方法によれば、繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける粉末樹脂の含有量が適正か否かを簡便に判断することができる。
本発明の一実施形態である樹脂繊維マットの粉末樹脂含有量の測定方法が適用された樹脂繊維マットの製造工程を示す模式図である。 (a)は、樹脂繊維マットの内部構造を可視化した画像である。(b)は、(a)の画像から作成されたヒストグラムである。(c)は、粉末樹脂とこの粉末樹脂と混合してなる無機粉体との割合が既知である樹脂繊維マットにおける粉末樹脂の含有量と無機粉体の含有量との関係を示したグラフである。
以下、本発明の一実施形態について図面を参照して説明する。図1は、本発明の一実施形態である樹脂繊維マットの粉末樹脂含有量の測定方法が適用された樹脂繊維マットの製造工程を示す模式図である。
樹脂繊維マットは、次のようにして製造される。まず、繊維、粉末樹脂及び無機粉体を準備する。
繊維としては、各種の植物性繊維を用いることができる。例えば、ケナフ、亜麻、ラミー、大麻、ジュート等の麻類植物の靱皮から採取される繊維、マニラ麻やサイザル麻等の麻類植物の茎または端の筋から採取される繊維、針葉樹や広葉樹等を原料とする木材繊維等を挙げることができる。また、さとうきび、とうもろこし、竹、イネ等の農産廃棄物(例えば、さとうきびから糖分を煮出した後の搾りかす)を原料とする繊維も挙げることができる。これらの植物性繊維は、単独でも混合物でも使用可能である。
粉末樹脂は、後述する樹脂繊維マットを加熱加圧成形して得られる繊維板において繊維同士を接着するバインダー成分となるものであり、一般的には、樹脂繊維マット全体中、重量比で40%以下の割合で配合されている。本実施形態では、粉末樹脂は、常温(5〜35℃)で固体状であるが、所定の熱が加えられると溶融する樹脂が用いられる。ここで「溶融」とは軟化の意味をも含む。
このような粉末樹脂の樹脂種としては、例えば、ユリア樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、不飽和ポリエスエテル樹脂等の熱硬化性樹脂を挙げることができる。また、ポリプロピレン樹脂、ポリエチレン樹脂、ポリエチレンテレフタレート(PET)、塩化ビニル(PVC)樹脂等の熱可塑性樹脂も挙げることができる。
粉末樹脂の粒径としては、平均粒径が30μm以下であることが好ましい。このような範囲内の平均粒径を有する粉末樹脂は、繊維との混合性がより良好となる。粉末樹脂の粒径の下限は特に制限されるものではないが、実際上は平均粒径5μmが下限となる。なお、平均粒径は、市販のレーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)として求めることができる。
無機粉体は、樹脂繊維マットにおける粉末樹脂の含有状態測定のための必須成分として、樹脂繊維マットに配合される。
無機粉体は、粉末状の無機化合物である。この無機粉体は、有機化合物としての繊維や粉末樹脂と対比した際、放射線を照射した際の放射線の透過の程度に差異を有する。
無機粉体は、有機化合物としての繊維や粉末樹脂との対比において放射線の透過の程度が区別可能であるため、その種類は特に限定されるものではないが、繊維板の物性に与える影響が小さく、低価格のものが好ましく用いられる。例えば、炭酸カルシウム、酸化鉄等が好適である。
無機粉体の配合量は、繊維板の物性に与える影響や粉末樹脂の含有量等を考慮して適宜設定すればよい。例えば、粉末樹脂が有する接着性の効果を阻害しないように、樹脂繊維マットにおいては粉末樹脂の含有量よりも少なくなるように無機粉体を配合することが好ましい。例えば、樹脂繊維マットに配合される粉末樹脂全量に対して、重量比で5%以下の割合で無機粉体を配合することができる。繊維板の物性に与える影響を考慮すれば、無機粉体の配合量がより少ない方が好ましく、粉末樹脂全量に対して重量比で3%以下の割合であることが好ましい。無機粉体の配合量の下限は特に制限されるものではないが、例えば下限が重量比で0.5%であれば、樹脂繊維マットにおける粉末樹脂の含有状態の測定を十分に行うことができる。
無機粉体の粒径は、粉末樹脂と同様、平均粒径が30μm以下であることが好ましい。このような範囲内の平均粒径を有する無機粉体は、繊維との混合性がより良好となる。また、無機粉体と粉末樹脂との混合性をより向上させるために、無機粉体と粉末樹脂との平均粒径を同程度とすることが好ましい。無機粉体の粒径の下限は特に制限されるものではないが、実際上は平均粒径5μmが下限となる。なお、無機粉体の平均粒径は、粉末樹脂の平均粒径と同様の測定方法で求めることができる。
次に、図1に示すように、粉末樹脂2と無機粉体3とを混合して、粉末樹脂2中に無機粉体3を均一に分散させる。粉末樹脂2と無機粉体3との混合は、容器4内において攪拌機5を用いて行うことができる。なお、本実施形態では、粉末樹脂2全量に対して重量比で1%の割合で炭酸カルシウム(無機粉体3)を混合している。
次に、搬送用の第1コンベアベルト6の上面に繊維1を散布して繊維積層物7を形成し、その上に粉末樹脂2と無機粉体3との混合物8を散布して繊維積層物7の上面に均一に混合物8を分散させた積層体9を形成する。
積層体9は第1コンベアベルト6によって解繊シリンダー10まで搬送される。解繊シリンダー10に搬送された積層体9は、解繊シリンダー10の回転によって繊維がほぐされ、粉末樹脂2と無機粉体3との混合物8が繊維1と混合し、繊維1中に粉末樹脂2および無機粉体3が均一に分散する。これら粉末樹脂2、無機粉体3および繊維1を混合した状態で、解繊シリンダー10の下方に配置されている搬送用の第2コンベアベルト11の上に順次落下させる。こうして第2コンベアベルト11の上面に、粉末樹脂2と無機粉体3と繊維1とが混合した状態で積層して樹脂繊維マット12が形成される。
このようにして得られた樹脂繊維マット12は、その製造過程で粉末樹脂2が繊維1から脱落してこぼれ落ちることがあるため、粉末樹脂2の含有量は、実際上未知である。また、樹脂繊維マット12においては、粉末樹脂2と無機粉体3との混合によってその両者が均一分散しているので、粉末樹脂2がこぼれ落ちる場合には無機粉体3もほぼ同じ比率でこぼれ落ちる。したがって、樹脂繊維マット12における粉末樹脂2と無機粉体3との割合は、製造時の配合割合とほぼ同じ比率であり、既知とされている。本実施形態では、粉末樹脂2の含有量が未知であり粉末樹脂2と無機粉体3との割合が既知である樹脂繊維マット12における無機粉体3の含有状態を測定し、その無機粉体3の含有状態から粉末樹脂2の含有量を求める。以下、その手順について説明する。
まず、図1に示すように、放射線源13からX線、γ線、中性子線等の放射線を樹脂繊維マット12に照射する。
次に、樹脂繊維マット12の放射線透過量から無機粉体3の含有量に対応する値を測定する。例えば、図1に示すように、放射線測定装置14において、樹脂繊維マット12を透過した放射線を検出器で検出し、放射線の透過の程度が樹脂繊維マット12の配合成分により異なることを利用して樹脂繊維マット12の内部構造を可視化する。可視化の方法は、放射線透過試験において行われている方法、例えば、透視法、直接撮影法、間接撮影法等の方法を採用することができる。
繊維1と粉末樹脂2との放射線の透過の程度は同程度であるため、樹脂繊維マット12の内部構造が可視化された画像において繊維1と粉末樹脂2とを判別しにくい。一方、無機粉体3は、放射線の透過の程度が繊維1や粉末樹脂2と異なるため、樹脂繊維マット12の内部構造が可視化された画像において無機粉体3と他の配合成分とを容易に判別することができる。樹脂繊維マット12の内部構造を可視化した画像を図2(a)に示す。
そして、樹脂繊維マット12の内部構造を可視化した画像から、図2(b)に示すようなヒストグラムを作成し、そのヒストグラムにおける無機粉体3由来のピークのピクセル数を算出する。こうして無機粉体3の含有量に対応する値を、画像から作成したヒストグラムにおける無機粉体3由来のピークのピクセル数として測定することができる。
次に、測定された無機粉体3の含有量に対応する値(ピクセル数)から粉末樹脂2の含有量を求める。
図2(c)は、粉末樹脂とこの粉末樹脂と混合してなる無機粉体との割合が既知である樹脂繊維マットにおける粉末樹脂の含有量と無機粉体の含有量に対応する値であるピクセル数(放射線透過量)との関係を示したグラフである。横軸は、樹脂量(樹脂繊維マットにおける粉末樹脂の含有量)であり、縦軸は、ピクセル数(樹脂繊維マットにおける無機粉体の含有量に対応する値)である。このグラフは、樹脂量が既知の3種の樹脂繊維マットを用いて測定したデータに基づいて作成されている。具体的には、粉末樹脂の含有量が樹脂繊維マット全体中、重量比で0%、20%、30%となっている3種の樹脂繊維マットを用いている。これら3種の樹脂繊維マットには、その樹脂繊維マットに配合される粉末樹脂全量に対して重量比で1%の割合で炭酸カルシウム(無機粉体)が配合されている。したがって、3種の樹脂繊維マットは、粉末樹脂と無機粉体との割合も既知である。そして、3種の樹脂繊維マットそれぞれにおける無機粉体の含有量に対応する値は、例えば上述した方法で測定されるように、画像から作成したヒストグラムにおける無機粉体由来のピークのピクセル数として示されている。
このように予め取得しておいた図2(c)に示すようなグラフ、またはこのグラフを式化した関係式から、樹脂繊維マット12中の粉末樹脂の含有量を算出する。こうして算出された粉末樹脂の含有量を、樹脂繊維マット12における粉末樹脂2の含有量として求めることができる。
測定された粉末樹脂2の含有量が規定量であれば、樹脂繊維マット12を加熱加圧工程に搬送する。加熱加圧工程では、樹脂繊維マット12を両面から一対の加熱加圧プレートで挟み、板状に成形して、繊維板を製造する。
樹脂繊維マットにおける粉末樹脂の含有量を測定する方法として、上記した方法以外の方法では、ソックスレー法が考えられる。ソックスレー法は、樹脂繊維マットをアセトンに浸漬して粉末樹脂を抽出し、乾燥させて粉末樹脂の含有量を把握する方法である。しかしながら、ソックスレー法は測定設備が大がかりであり、また、測定に時間がかかるため、製造現場での粉末樹脂の含有量の把握には不向きである。これに対して、本実施形態の測定方法は、無機粉体を配合した樹脂繊維マットに放射線を照射し、その放射線透過量から樹脂繊維マットにおける粉末樹脂の含有量を求めることができるので、簡便な方法といえる。また、樹脂繊維マットを破壊することなく、樹脂繊維マットにおける粉末樹脂の含有量を短時間で測定することができるので、インラインで測定可能である。
なお、上記の実施形態は、グラフまたは関係式を用いて、樹脂繊維マット12中の粉末樹脂含有量を求めたが、粉末樹脂含有量があらかじめ設定した基準範囲内に収まっているか否かを判断したい場合には、次のようにする。すなわち、樹脂繊維マットの所定の無機粉体混合比率における放射線透過量の合否判断基準として、上記した無機粉体の含有量に対応する値であるピクセル数(放射線透過量)の基準範囲を予め設定しておく。放射線を樹脂繊維マット12に照射して得られたピクセル数(放射線透過量)が、その基準範囲内にあるか否かを判定する。これによって、樹脂繊維マット中の粉末樹脂の含有量が適正か否かを判断することもできる。
1 繊維
2 粉末樹脂
3 無機粉体
12 樹脂繊維マット

Claims (3)

  1. 繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける前記粉末樹脂の含有量を測定する方法であって、所定の比率で無機粉体を混合した前記粉末樹脂を供給して混合してなる前記樹脂繊維マットに放射線を照射して、その放射線透過量を測定し、予め取得しておいた、前記樹脂繊維マットの前記所定の無機粉体混合比率における粉末樹脂の含有量と放射線透過量との関係に基づいて、前記樹脂繊維マットにおける前記粉末樹脂の含有量を求めることを特徴とする樹脂繊維マットの粉末樹脂含有量の測定方法。
  2. 前記粉末樹脂及び前記無機粉体は、ともに平均粒径が30μm以下であることを特徴とする請求項1に記載の樹脂繊維マットの粉末樹脂含有量の測定方法。
  3. 繊維と粉末樹脂との混合物からなる樹脂繊維マットにおける前記粉末樹脂の含有量が適正か否かを判断する方法であって、所定の比率で無機粉体を混合した前記粉末樹脂を供給して混合してなる前記樹脂繊維マットに放射線を照射して、その放射線透過量を測定し、予め取得しておいた、前記樹脂繊維マットの前記所定の無機粉体混合比率における放射線透過量の合否判断基準に基づいて、前記樹脂繊維マットにおける前記粉末樹脂の含有量が適正か否かを判断することを特徴とする樹脂繊維マットの粉末樹脂含有量の判断方法。
JP2013122118A 2013-06-10 2013-06-10 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法 Expired - Fee Related JP6098978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013122118A JP6098978B2 (ja) 2013-06-10 2013-06-10 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013122118A JP6098978B2 (ja) 2013-06-10 2013-06-10 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法

Publications (2)

Publication Number Publication Date
JP2014237298A true JP2014237298A (ja) 2014-12-18
JP6098978B2 JP6098978B2 (ja) 2017-03-22

Family

ID=52134909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013122118A Expired - Fee Related JP6098978B2 (ja) 2013-06-10 2013-06-10 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法

Country Status (1)

Country Link
JP (1) JP6098978B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119745A (ja) * 1987-11-02 1989-05-11 Nichizou Tec:Kk ガラス繊維強化プラスチックスのガラス含有量の測定方法
JP2008168917A (ja) * 2007-01-09 2008-07-24 Ishida Co Ltd 食品包装材
JP2013049150A (ja) * 2011-08-30 2013-03-14 Teijin Ltd ランダムマット基材からの成形体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01119745A (ja) * 1987-11-02 1989-05-11 Nichizou Tec:Kk ガラス繊維強化プラスチックスのガラス含有量の測定方法
JP2008168917A (ja) * 2007-01-09 2008-07-24 Ishida Co Ltd 食品包装材
JP2013049150A (ja) * 2011-08-30 2013-03-14 Teijin Ltd ランダムマット基材からの成形体の製造方法

Also Published As

Publication number Publication date
JP6098978B2 (ja) 2017-03-22

Similar Documents

Publication Publication Date Title
Pirayesh et al. Effect of using walnut/almond shells on the physical, mechanical properties and formaldehyde emission of particleboard
de Barros Filho et al. Hybrid chipboard panels based on sugarcane bagasse, urea formaldehyde and melamine formaldehyde resin
JP2015092032A5 (ja) シート製造装置、シート製造方法、及びこれらにより製造されるシート、並びに、これらに用いる複合体、その収容容器、及び複合体の製造方法
Ali et al. Effects of resin and moisture content on the properties of medium density fibreboards made from kenaf bast fibres
Uitterhaegen et al. Impact of thermomechanical fiber pre-treatment using twin-screw extrusion on the production and properties of renewable binderless coriander fiberboards
Huang et al. Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites
Sitz et al. The mechanical properties of soybean straw and wheat straw blended medium density fiberboards made with methylene diphenyl diisocyanate binder
Dos Santos et al. Influence of sugarcane bagasse fiber size on biodegradable composites of thermoplastic starch
CN103934875A (zh) 一种利用废弃农作物秸秆制备中密度纤维板的加工方法
Zhu et al. Effect of MAPP on interfacial compatibility of wood flour/polypropylene composite evaluated with dielectric approach
JP6098978B2 (ja) 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法
Motaung et al. Effect of mechanical treatment on morphology and thermal and mechanical properties of sugar cane bagasse–low‐density polyethylene composites
JP6115866B2 (ja) 樹脂繊維マットの粉末樹脂含有量の測定方法及び樹脂繊維マットの粉末樹脂含有量の判断方法
Fu et al. Preparation and Flame Retardant and Smoke Suppression Properties of Bamboo‐Wood Hybrid Scrimber Filled with Calcium and Magnesium Nanoparticles
Zeleniuc et al. Influence of adhesive type and content on the properties of particleboard made from sunflower husks
Fehrmann et al. Effects of particle dimension and constituent proportions on internal bond strength of ultra-low-density hemp hurd particleboard
CN105237948B (zh) 一种耐湿性酚醛模塑料
Wang et al. Properties of rice husk‐HDPE composites after exposure to thermo‐treatment
JP2014115195A (ja) 樹脂繊維マットの粉末樹脂含有量の測定方法
JP2015169569A (ja) 樹脂繊維マットの粉末樹脂含有率の測定方法及び樹脂繊維マットの粉末樹脂含有率の判定方法
JP5914825B2 (ja) 繊維ボード
Iwakiri et al. Evaluation of the quality of particleboard panels manufactured with wood from Sequoia sempervirens and Pinus taeda
JP2016075573A (ja) 植物繊維の解繊状態の決定方法
CN104589451A (zh) 一种新型强化复合地板的制备新方法
Hashim et al. Green binderless board from oil palm biomass

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170210

R151 Written notification of patent or utility model registration

Ref document number: 6098978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees