JP2014235368A - 立体映像投影装置 - Google Patents

立体映像投影装置 Download PDF

Info

Publication number
JP2014235368A
JP2014235368A JP2013117907A JP2013117907A JP2014235368A JP 2014235368 A JP2014235368 A JP 2014235368A JP 2013117907 A JP2013117907 A JP 2013117907A JP 2013117907 A JP2013117907 A JP 2013117907A JP 2014235368 A JP2014235368 A JP 2014235368A
Authority
JP
Japan
Prior art keywords
microlens array
laser light
plane
imaging element
diffusion angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013117907A
Other languages
English (en)
Inventor
篤史 池田
Atsushi Ikeda
篤史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funai Electric Co Ltd
Original Assignee
Funai Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funai Electric Co Ltd filed Critical Funai Electric Co Ltd
Priority to JP2013117907A priority Critical patent/JP2014235368A/ja
Priority to US14/283,365 priority patent/US20140354955A1/en
Publication of JP2014235368A publication Critical patent/JP2014235368A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels

Abstract

【課題】投影部からのレーザ光の光利用効率を高めることにより、立体投影画像を高輝度化することが可能な立体映像投影装置を提供する。
【解決手段】この立体映像投影装置100は、立体投影画像101を投影するためのレーザ光を走査して出射する走査型プロジェクタ1と、走査型プロジェクタ1からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイ2aと、マイクロレンズアレイ2aにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイ2aからのレーザ光を内部で反射させてマイクロレンズアレイ2aとは反対側にレーザ光を出射することにより、マイクロレンズアレイ2aとは面対称の位置に立体投影画像101を投影する面対称結像素子3とを備え、マイクロレンズアレイ2aは、面対称結像素子3に対して傾斜して配置されている。
【選択図】図1

Description

この発明は、立体映像投影装置に関し、特に、立体投影画像を投影する面対称結像素子を備える立体映像投影装置に関する。
従来、立体投影画像を投影する面対称結像素子を備える立体映像投影装置が知られている(たとえば、特許文献1参照)。
上記特許文献1には、液晶ディスプレイ(投影部)と、反射型面対称結像素子(面対称結像素子)とを備えた表示装置(立体映像投影装置)が開示されている。この表示装置は、液晶ディスプレイから発せられた光線を反射型面対称結像素子において反射および透過させることにより、反射型面対称結像素子に対して液晶ディスプレイと面対称の位置に空中映像(立体投影画像)を投影するように構成されている。
特開2011−81296号公報
しかしながら、上記特許文献1の表示装置(立体映像投影装置)では、光源として視野角の広い液晶ディスプレイが使用されるので、液晶ディスプレイからの光があらゆる方向に拡散してしまい、多くの光が反射型面対称結像素子(面対称結像素子)に到達しないと考えられる。したがって、光のエネルギー損失が大きくなる。すなわち、液晶ディスプレイで一部の光しか反射型面対称結像素子による空中映像(立体投影画像)の結像に利用されないので、光利用効率が低くなり、結果として、空中映像の輝度が低下してしまうという問題点がある。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、投影部からのレーザ光の光利用効率を高めることによって、立体投影画像を高輝度化することが可能な立体映像投影装置を提供することである。
この発明の一の局面による立体映像投影装置は、立体投影画像を投影するためのレーザ光を走査して出射する投影部と、投影部からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイと、マイクロレンズアレイにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイからのレーザ光を内部で反射させてマイクロレンズアレイとは反対側にレーザ光を出射することにより、マイクロレンズアレイとは面対称の位置に立体投影画像を投影する面対称結像素子とを備え、マイクロレンズアレイは、面対称結像素子に対して傾斜して配置されている。
この発明の一の局面による立体映像投影装置では、上記のように、投影部からのレーザ光を所定の角度に拡散するとともに、拡散角を制御するマイクロレンズアレイと、マイクロレンズアレイにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイからのレーザ光を内部で反射させてマイクロレンズアレイとは反対側にレーザ光を出射することにより、マイクロレンズアレイとは面対称の位置に立体投影画像を投影する面対称結像素子とを設ける。これにより、マイクロレンズアレイにより、所定の角度に拡散角が制御されたレーザ光が拡散されることによって、所望の方向以外へのレーザ光の出射を抑制することができるので、面対称結像素子に到達しないレーザ光が生じるのを抑制することができ、面対称結像素子に到達しないレーザ光によるエネルギー損失を低減することができる。その結果、投影部からのレーザ光の光利用効率を高めることによって、面対称結像素子により投影される立体投影画像を高輝度化することができる。また、マイクロレンズアレイが面対称結像素子に対して傾斜して配置されることにより、面対称結像素子を基準としてマイクロレンズアレイとは面対称の位置に立体投影画像を投影することができる。
上記一の局面による立体映像投影装置において、好ましくは、マイクロレンズアレイは、レーザ光の拡散角を制御することにより略すべてのレーザ光が面対称結像素子に照射するように構成されている。このように構成すれば、面対称結像素子上の領域にレーザ光が略漏れることなく照射されるので、容易に光のエネルギー損失を低減することができる。
上記一の局面による立体映像投影装置において、好ましくは、面対称結像素子に対して傾斜して配置されるとともに、マイクロレンズアレイに対して略平行に配置され、マイクロレンズアレイに投影部からのレーザ光が略垂直に入射するように投影部からのレーザ光を平行なレーザ光に補正するレンズをさらに備えている。このように構成すれば、マイクロレンズアレイにレーザ光が略垂直に入射するので、マイクロレンズアレイから拡散されるレーザ光の拡散角を所定の角度により正確に制御することができる。
上記一の局面による立体映像投影装置において、好ましくは、マイクロレンズアレイは、複数のレーザ光の照射領域を有するとともに、複数の照射領域に応じてマイクロレンズアレイ上に異なる表面形状を有することによって、異なる拡散角によりレーザ光を出射するように構成されている。このように構成すれば、マイクロレンズアレイの照射領域に応じて拡散角を制御することができるようになるので、面対称結像素子の位置に応じて異なる拡散角でレーザ光を拡散することができる。
この場合、好ましくは、マイクロレンズアレイは、面対称結像素子上のマイクロレンズアレイから遠い側にレーザ光を出射する照射領域における拡散角が、マイクロレンズアレイから近い側にレーザ光を出射する照射領域における拡散角よりも小さくなるような表面形状を有している。ここで、マイクロレンズアレイが面対称結像素子に対して傾斜していることにより、面対称結像素子のマイクロレンズアレイから遠い側では、近い側よりも、より広範囲にレーザ光が照射される。そこで、マイクロレンズアレイから遠い側にレーザ光を照射する照射領域における拡散角を小さくすることにより、マイクロレンズアレイから遠い側において、面対称結像素子上のレーザ光が照射される領域を小さくすることができる。これにより、面対称結像素子を小さくすることができるので、立体映像投影装置を小型化することができる。
上記面対称結像素子上のマイクロレンズアレイから遠い側へのレーザ光の拡散角が、近い側への拡散角よりも小さくなるような構成において、好ましくは、マイクロレンズアレイの照射領域は、面対称結像素子上のマイクロレンズアレイから近い側にレーザ光を比較的大きい拡散角で出射する第1照射領域と、面対称結像素子上のマイクロレンズアレイから遠い側にレーザ光を比較的小さい拡散角で出射する第2照射領域とを含んでいる。このように構成すれば、マイクロレンズアレイから近い側においては、レーザ光を広範囲に拡散させて、面対称結像素子上の小さな領域のみにレーザ光が照射されるのを抑制しつつ、マイクロレンズアレイから遠い側においては、レーザ光の拡散を抑制することにより、面対称結像素子上のレーザ光が照射される領域が大きくなるのを抑制することができる。
上記照射領域が第1照射領域と第2照射領域とを含んでいる構成において、好ましくは、マイクロレンズアレイは、第1照射領域から第2照射領域に向かって拡散角が徐々に小さくなるように構成されている。このように構成すれば、第1照射領域と第2照射領域との境界において拡散角が急に変化することがないので、第1照射領域と第2照射領域との境界が立体投影画像に投影されるのを抑制することができる。
本発明によれば、上記のように、投影部からのレーザ光の光利用効率を高めることにより、立体投影画像を高輝度化することができる。
本発明の第1実施形態による立体映像投影装置の全体の構成を示した図である。 本発明の第1実施形態による立体映像投影装置の走査型プロジェクタの構成を示したブロック図である。 本発明の第1実施形態による立体映像投影装置のマイクロレンズアレイの構成を示した平面図である。 図3の400−400線に沿った断面図である。 本発明の第1実施形態による立体映像投影装置の面対称結像素子にレーザ光が照射された状態を示した底面図である。 本発明の第1実施形態による立体映像投影装置の面対称結像素子の構成を示した斜視図である。 本発明の第1実施形態による立体映像投影装置の面対称結像素子による投影原理について説明するための図である。 本発明の第2および第3実施形態による立体映像投影装置の全体の構成を示した図である。 本発明の第2実施形態による立体映像投影装置のマイクロレンズアレイの構成を示した平面図である。 図9の500−500線に沿った断面図である。 本発明の第3実施形態による立体映像投影装置のマイクロレンズアレイの構成を示した平面図である。 図11の600−600線に沿った断面図である。
(第1実施形態)
以下、本発明の実施形態を図面に基づいて説明する。
図1〜図7を参照して、本発明の第1実施形態による立体映像投影装置100の構成について説明する。
第1実施形態による立体映像投影装置100は、図1に示すように、面対称結像素子3によりレーザ光を反射させることにより、空間上に立体投影画像101を投影するように構成されている。詳細には、立体映像投影装置100は、立体投影画像101を投影するためのレーザ光を走査して出射する走査型プロジェクタ1と、走査型プロジェクタ1からのレーザ光の拡散角を所定の角度(α)に制御した状態でレーザ光を拡散するマイクロレンズアレイ2aと、マイクロレンズアレイ2aにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイ2aからのレーザ光を内部で反射させてマイクロレンズアレイ2aとは反対側(Z1方向側)にレーザ光を出射することにより、マイクロレンズアレイ2aとは面対称の位置に立体投影画像101を投影する面対称結像素子3とを備えている。また、マイクロレンズアレイ2aは、面対称結像素子3に対して傾斜して配置されている。また、マイクロレンズアレイ2aは、フレネルレンズ4においてレーザ光が互いに平行となるように補正されることにより、略垂直にレーザ光が照射されるように構成されている。なお、走査型プロジェクタ1は、本発明の「投影部」の一例である。また、フレネルレンズ4は、本発明の「レンズ」の一例である。以下、立体映像投影装置100の各構成について説明する。
まず、面対称結像素子3にレーザ光が照射されるまでの光学系の構成について説明する。すなわち、走査型プロジェクタ1、フレネルレンズ4およびマイクロレンズアレイ2aについて説明する。
走査型プロジェクタ1、フレネルレンズ4およびマイクロレンズアレイ2aは、図1に示すように、面対称結像素子3に対して傾斜して延びる同一の軸(軸D)線上に直列に配置されている。また、フレネルレンズ4は、マイクロレンズアレイ2aに対して平行に配置されている。
走査型プロジェクタ1は、図2に示すように、メインCPU11と、操作部12と、3つ(青(B)、緑(G)、赤(R))のレーザ光源13a〜13cと、2つのビームスプリッタ14aおよび14bと、集光レンズ15と、レーザ光走査部16と、表示制御部17とを備えている。また、空間上に投影される立体投影画像101は、レーザ光源13a〜13cから出射されるレーザ光によって形成されている。レーザ光走査部16は、MEMS(Micro Electro Mechanical System)ミラー16aを含む。表示制御部17は、映像処理部171と、光源制御部172と、LD(レーザダイオード)ドライバ173と、ミラー制御部174と、ミラードライバ175とを含む。走査型プロジェクタ1は、映像処理部171に入力された映像信号に基づいて立体投影画像101を投影するためのレーザ光をフレネルレンズ4に向けて出射するように構成されている。
メインCPU11は、走査型プロジェクタ1の各部を制御するように構成されている。操作部12は、走査型プロジェクタ1の電源を入れる操作などを受け付けるために設けられている。レーザ光源13aは、青色のレーザ光をビームスプリッタ14aおよび集光レンズ15を通過させてMEMSミラー16aに照射するように構成されている。レーザ光源13bおよび13cは、それぞれ、緑色のレーザ光および赤色のレーザ光をビームスプリッタ14a、14bおよび集光レンズ15を通過させてMEMSミラー16aに照射するように構成されている。
レーザ光走査部16は、レーザ光をマイクロレンズアレイ2aに投影するように構成されている。具体的には、レーザ光走査部16のMEMSミラー16aが、レーザ光源13a〜13cから照射されたレーザ光を走査して、立体投影画像101をマイクロレンズアレイ2aに投影するように構成されている。MEMSミラー16aは、水平方向および垂直方向の2軸に駆動してレーザ光を走査するように構成されている。また、MEMSミラー16aは、水平方向を共振駆動により高速走査するとともに、垂直方向を直流駆動により低速走査するように構成されている。
映像処理部171は、外部から入力される映像信号に基づいて、レーザ光による立体投影画像101の投影を制御するように構成されている。具体的には、映像処理部171は、外部から入力される映像信号に基づいて、ミラー制御部174を介して、MEMSミラー16aの駆動を制御するとともに、光源制御部172を介して、レーザ光源13a〜13cによるレーザ光の照射を制御するように構成されている。
光源制御部172は、映像処理部171による制御に基づいて、LDドライバ173を制御して、レーザ光源13a〜13cによるレーザ光の照射を制御するように構成されている。具体的には、光源制御部172は、MEMSミラー16aが走査するタイミングに合せて映像信号の各画素に対応する色のレーザ光をレーザ光源13a〜13cから照射させる制御を行うように構成されている。
ミラー制御部174は、映像処理部171による制御に基づいて、ミラードライバ175を制御して、MEMSミラー16aの駆動を制御するように構成されている。
フレネルレンズ4は、図1に示すように、走査型プロジェクタ1からのレーザ光を内部で屈折させることにより、透過したレーザ光が互いに平行(軸Dに平行)となるようにレーザ光の方向を補正するように構成されている。なお、フレネルレンズ4によりレーザ光を互いに平行となるように補正するためには、レーザ光の光源がフレネルレンズ4の焦点距離に置かれる必要がある。したがって、走査型プロジェクタ1は、フレネルレンズ4の焦点距離を考慮して、軸D上のフレネルレンズ4から所定距離離れた位置からレーザ光を出射するように配置されている。その結果、フレネルレンズ4は、マイクロレンズアレイ2aに対してレーザ光を略垂直に補正して照射可能なように構成されている。
マイクロレンズアレイ2aは、図3および図4に示すように、矩形の平板状に形成されている。なお、図3および図4に示すA方向、B方向およびC方向は互いに直交する方向を示している。また、A方向およびC方向は、X方向およびZ方向と同様に、図1を示す紙面に平行な直線を示している。また、図3および図4に示すマイクロレンズアレイ2aは、表面形状の説明のため、実際よりも凸状のレンズ部を大きく描画している。また、以下の第2および第3実施形態におけるマイクロレンズアレイ2bおよび2cを示した図9〜図12においても同様である。
また、マイクロレンズアレイ2aは、図4に示すように、一方(C1方向)の面20aが複数のレンズ部21を有するように形成されるとともに、他方(C2方向)の面20bが略平坦状に形成されている。詳細には、マイクロレンズアレイ2aは、平面視において、複数のレンズ部21が敷き詰められて(平面充填されて)構成されている。この複数のレンズ部21は、平面視において、楕円形状で、側面視において、凸形状になるように形成されている。また、マイクロレンズアレイ2aの複数のレンズ部21は、隣接するレンズ部21とのレンズピッチが等しくなるようにマトリクス状(碁盤目状)に配置されている。また、マイクロレンズアレイ2aのC2方向の面20bは、走査型プロジェクタ1(図1参照)から出射されるとともに、フレネルレンズ4(図1参照)により平行に補正されたレーザ光が入射するように構成されている。
ここで、第1実施形態では、マイクロレンズアレイ2aは、上記のように、同種の凸形状のレンズ部21が敷き詰められて表面形状が形成されている。その結果、マイクロレンズアレイ2aは、図1に示すように、側面視において、レンズ部21によりレーザ光を屈折させて所定の拡散角(α)で拡散可能に構成されており、その結果、各々のレンズ部21は、点光源となるように構成されている。また、レーザ光の拡散角は、マイクロレンズアレイ2aの表面形状により、制御することが可能なように構成されている。その結果、マイクロレンズアレイ2aは、図5に示すように、略すべてのレーザ光を面対称結像素子3上の所定の領域30に照射可能に構成されている。これにより、立体映像投影装置100は、面対称結像素子3に到達しないレーザ光を減少させることにより、光のエネルギー損失を低減することが可能なように構成されている。
次に、図6および図7を参照して、面対称結像素子3の構成について説明する。
面対称結像素子3は、図6および図7に示すように、2枚の透明な平板状の光制御パネル31と光制御パネル32とを密着させて貼り合わせることにより積層状に形成されている。詳細には、光制御パネル31は、レーザ光を反射する複数の反射面31aを有している。また、光制御パネル31は、厚み方向に延びるとともに、所定のピッチで平行に並べられた複数の反射面31aにより、複数の帯状体31bに区分されるように構成されている。また、光制御パネル32も、光制御パネル31と同様に複数の反射面32aにより、複数の帯状体32bに区分されるように構成されている。そして、面対称結像素子3は、光制御パネル31および32をそれぞれの帯状体31bおよび32bが互いに直交する状態で貼り合わせることにより積層状に構成されている。また、反射面31aおよび32aを除く光制御パネル31および32は、ともにレーザ光を透過するアクリル樹脂材料から構成されている。また、反射面31aおよび32aは、ともにレーザ光を反射する金属材料から構成されている。
面対称結像素子3によりマイクロレンズアレイ2a上の点P1から出射された複数のレーザ光が、立体投影画像101の一部を形成する点P2において結像する原理について簡単に説明する。
図7に示すように、マイクロレンズアレイ2a上の点P1から2つのレーザ光L1およびL2が面対称結像素子3の異なる位置に向けて出射される場合を考える。マイクロレンズアレイ2a上の点P1から面対称結像素子3に向けて出射されたレーザ光L1は、面対称結像素子3の光制御パネル31側から入射した後、光制御パネル31の反射面31aにおいて反射して、光制御パネル31側から光制御パネル32側にレーザ光が入射する。さらに、入射したレーザ光が、光制御パネル32の反射面32aにおいて反射して、面対称結像素子3の外に出射される。図示しないが、このレーザ光L1の面対称結像素子3から出射される際の出射角(面対称結像素子3と面対称結像素子3から出射されるレーザ光L1とがなす角度)は、レーザ光L1の面対称結像素子3に入射する際の入射角(面対称結像素子3と面対称結像素子3に入射するレーザ光L1とがなす角度)と等しくなる。また、面対称結像素子3への入射前および出射後のレーザ光L1は、平面視において、略同一の軌跡を通る。また、レーザ光L1と同様に、レーザ光L2は、面対称結像素子3への入射角と出射角とが等しくなるとともに、入射前および出射後のレーザ光L2は、平面視において、略同一の軌跡を通る。したがって、レーザ光L1およびL2は、面対称結像素子3から出射した後、同一の点P2を通過する。この点P2は、面対称結像素子3に対して点P1と面対称となる位置に形成される。このように、マイクロレンズアレイ2a上の複数の点光源からレーザ光が拡散されることにより、面対称結像素子3を基準として、マイクロレンズアレイ2aとは反対側の面対称の位置に立体投影画像101が投影される。
第1実施形態では、上記のように、走査型プロジェクタ1からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイ2aと、マイクロレンズアレイ2aにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイ2aからのレーザ光を内部で反射させてマイクロレンズアレイ2aとは反対側にレーザ光を出射することにより、マイクロレンズアレイ2aとは面対称の位置に立体投影画像101を投影する面対称結像素子3とを設ける。これにより、マイクロレンズアレイ2aにより、所定の角度αに拡散角が制御されたレーザ光が拡散されることによって、所望の方向以外へのレーザ光の出射を抑制することができるので、面対称結像素子3に到達しないレーザ光が生じるのを抑制することができ、面対称結像素子3に到達しないレーザ光によるエネルギー損失を低減することができる。その結果、走査型プロジェクタ1からのレーザ光の光利用効率を高めることによって、面対称結像素子3により投影される立体投影画像101を高輝度化することができる。また、マイクロレンズアレイ2aが面対称結像素子3に対して傾斜して配置されることにより、面対称結像素子3を基準としてマイクロレンズアレイ2aとは面対称の位置に立体投影画像101を投影することができる。
また、レーザ光を出射する走査型プロジェクタ1を設けることにより、液晶ディスプレイの光とは異なりレーザ光は指向性が高いので、レーザ光があらゆる方向に拡散するのを抑制することができるので、エネルギー損失を低減することができる。
また、第1実施形態では、上記のように、マイクロレンズアレイ2aを、レーザ光の拡散角を制御することにより略すべてのレーザ光が面対称結像素子3に照射するように構成する。これにより、面対称結像素子3上の領域にレーザ光が略漏れることなく照射されるので、容易に光のエネルギー損失を抑制することができる。
また、第1実施形態では、上記のように、面対称結像素子3に対して傾斜して配置されるとともに、マイクロレンズアレイ2aに対して略平行に配置され、マイクロレンズアレイ2aに走査型プロジェクタ1からのレーザ光が略垂直に入射するように走査型プロジェクタ1からのレーザ光を平行なレーザ光に補正するフレネルレンズ4を設ける。これにより、マイクロレンズアレイ3にレーザ光が略垂直に入射するので、マイクロレンズアレイ2aから拡散されるレーザ光の拡散角を所定の角度αにより正確に制御することができる。
(第2実施形態)
次に、図8〜図10を参照して、本発明の第2実施形態による立体映像投影装置200の構成について説明する。
この第2実施形態では、マイクロレンズアレイ2aがレーザ光を拡散角αで拡散するように構成されている第1実施形態と異なり、マイクロレンズアレイ2bがレーザ光を拡散角αおよびβで拡散するように構成されている立体映像投影装置200について説明する。なお、拡散角αは、拡散角βよりも大きい角度とする。
上記のようなマイクロレンズアレイ2bの拡散角を異ならせる構成は、マイクロレンズアレイ2bの表面形状のみに基づくものであるため、以下、マイクロレンズアレイ2bの表面形状について主に説明する。
マイクロレンズアレイ2bは、図9および図10に示すように、矩形の平板状に形成されている。また、マイクロレンズアレイ2bは、レーザ光を照射する第1照射領域24および第2照射領域25を有するとともに、第1照射領域24および第2照射領域25に応じてそれぞれ異なる拡散角αおよびβによりレーザ光を出射するように構成されている。
詳細には、マイクロレンズアレイ2bは、図10に示すように、一方(C1方向)の面20aのA1方向側の第1照射領域24に形成された複数のレンズ部22aと、A2方向側の第2照射領域25に形成された複数のレンズ部22bとを有するように形成されるとともに、他方(C2方向)の面20bが略平坦状に形成されている。また、マイクロレンズアレイ2bは、図9に示すように、レンズ部22bのB方向における長さE1がレンズ部22aのB方向における長さE1と等しくなるように構成されている。つまり、レンズ部22aは、平面視において、楕円形状に形成されており、レンズ部22bは、平面視において、円形状に形成されている。なお、レンズ22aおよび22bは、側面視において、凸形状を有している。
また、マイクロレンズアレイ2bは、レンズ部22bのA方向における長さE2がレンズ部22aのA方向における長さE1よりも小さくなるように構成されている。また、マイクロレンズアレイ2bの第1照射領域24および第2照射領域25には、平面視において、それぞれ複数のレンズ部22aおよび22bが敷き詰められて(平面充填されて)構成されている。また、マイクロレンズアレイ2bの第1照射領域24の複数のレンズ部22aおよび第2照射領域25の複数のレンズ部22bは、それぞれ隣接するレンズピッチが等しくなるようマトリクス状に配置されている。また、図10に示すように、マイクロレンズアレイ2bのC2方向の面20aは、走査型プロジェクタ1(図8参照)から出射されるとともに、フレネルレンズ4により平行なレーザ光に補正されたレーザ光が入射するように構成されている。
ここで、第2実施形態では、マイクロレンズアレイ2bは、上記のように、第1照射領域24および第2照射領域25にそれぞれ異なる形状のレンズ部22aおよび22bが敷き詰められて表面形状が形成されている。そのため、マイクロレンズアレイ2bは、A1方向側の第1照射領域24の面20a上に敷き詰められたレンズ部22aにより、レーザ光を屈折することにより拡散角αで拡散可能に構成されている。また、マイクロレンズアレイ2bは、A2方向側の第2照射領域25の面20a上に敷き詰められたレンズ部22bにより、レーザ光を屈折することにより拡散角αよりも小さい拡散角βで拡散可能に構成されている。すなわち、マイクロレンズアレイ2bは、面対称結像素子3上のマイクロレンズアレイ2bから遠い側にレーザ光を出射する第2照射領域25における拡散角βが、マイクロレンズアレイ2bから近い側にレーザ光を出射する第1照射領域24における拡散角αよりも小さくなるような表面形状に構成されている。
ここで、第2照射領域25から拡散角αでレーザ光が出射される場合(第1実施形態の場合)と比べて、第2実施形態では、図8に示すように、拡散角βのときのX方向における面対称結像素子3上の照射領域が拡散角αの照射領域よりも小さくなる。したがって、マイクロレンズアレイ2bは、面対称結像素子3上のマイクロレンズアレイ2bから遠い側のレーザ光が照射される領域への拡散角を小さくすることにより、面対称結像素子3のマイクロレンズアレイ2bから遠い側(X1方向側)の端部3aの一部が不要になるので、面対称結像素子3を小さくすることが可能である。
また、マイクロレンズアレイ2bは、図9および図10に示すように、レンズ部22aを備えるレンズパーツ26aとレンズ部22bを備えるレンズパーツ26bとを張り合わせることにより製造される。このように、マイクロレンズアレイ2bは、異なる拡散角のレンズ部22aおよび22bを備える部品を張り合わせるだけで、面20aにそれぞれ異なる拡散角を有する第1照射領域24および第2照射領域25を容易に形成することが可能なように構成されている。
なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。
第2実施形態では、上記のように、走査型プロジェクタ1からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイ2bと、マイクロレンズアレイ2bにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイからのレーザ光を内部で反射させてマイクロレンズアレイ2bとは反対側にレーザ光を出射することにより、マイクロレンズアレイ2bとは面対称の位置に立体投影画像101を投影する面対称結像素子3とを設ける。これにより、走査型プロジェクタ1からのレーザ光の光利用効率を高めることによって、面対称結像素子3により投影される立体投影画像101を高輝度化することができる。また、マイクロレンズアレイ2bが面対称結像素子3に対して傾斜して配置されることにより、面対称結像素子3を基準としてマイクロレンズアレイ2bとは面対称の位置に立体投影画像101を投影することができる。
また、第2実施形態では、上記のように、マイクロレンズアレイ2bを、第1照射領域24および第2照射領域25にそれぞれ異なる形状のレンズ部22aおよび22bが敷き詰められて表面形状を形成することによって、異なる拡散角によりレーザ光を出射するように構成する。これにより、マイクロレンズアレイ2bの第1照射領域24および第2照射領域25に応じて拡散角を制御することができるようになるので、面対称結像素子3の位置に応じて異なる拡散角でレーザ光を拡散することができる。
また、第2実施形態では、上記のように、マイクロレンズアレイ2bを、面対称結像素子3上のマイクロレンズアレイ2bから遠い側にレーザ光を出射す第2照射領域25における拡散角βが、マイクロレンズアレイ2bから近い側にレーザ光を出射する第1照射領域24における拡散角αよりも小さくなるような表面形状に形成する。これにより、マイクロレンズアレイ2bから遠い側において、面対称結像素子3上のレーザ光が照射される領域を小さくすることができるので、面対称結像素子3を小さくすることができる。結果として、立体映像投影装置200を小型化することができる。
また、第2実施形態では、上記のように、マイクロレンズアレイ2bの照射領域を、面対称結像素子3上のマイクロレンズアレイ2bから近い側にレーザ光を比較的大きい拡散角αで出射する第1照射領域24と、面対称結像素子3上のマイクロレンズアレイ2bから遠い側にレーザ光を比較的小さい拡散角βで出射する第2照射領域25とから構成する。これにより、マイクロレンズアレイ2cから近い側においては、レーザ光を広範囲に拡散させて、面対称結像素子上3の小さな領域のみにレーザ光が照射されるのを抑制しつつ、マイクロレンズアレイ2cから遠い側においては、レーザ光の拡散を抑制することにより、面対称結像素子3上のレーザ光が照射される領域を小さくすることができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
(第3実施形態)
次に、図8、図11および図12を参照して、本発明の第3実施形態による立体映像投影装置300の構成について説明する。
この第3実施形態では、マイクロレンズアレイ2bがレーザ光を拡散角αおよびβで拡散するように構成されている第2実施形態と異なり、マイクロレンズアレイ2cがレーザ光を拡散角α以上β以下の範囲で拡散するように構成されている立体映像投影装置300について説明する。
マイクロレンズアレイ2cは、図11および図12に示すように、A1方向側に配置され、レーザ光の拡散角がαとなる第1照射領域27と、A2方向側に配置され、レーザ光の拡散角がβとなる第2照射領域28と、第1照射領域27と第2照射領域28との間の領域に配置され、レーザ光の拡散角がα以上β以下となる第3照射領域29とから構成されている。また、マイクロレンズアレイ2cは、第1照射領域27から第2照射領域28に向かって第3照射領域29の拡散角が徐々に小さくなるように(拡散角がα以上β以下となるように)構成されている。
また、マイクロレンズアレイ2cは、図11および図12に示すように、一方(C1方向)の面20aの第3照射領域29において、側面視凸形状のレンズ部22cを有するように形成されている。このレンズ部22cは、第1照射領域27から第2照射領域28に向かって平面視における形状が楕円形状から円形状に徐々に変化するように形成されている。
なお、第3実施形態のその他の構成は、上記第1実施形態と同様である。
第3実施形態では、上記のように、走査型プロジェクタ1からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイ2cと、マイクロレンズアレイ2cにより拡散角が制御されたレーザ光が照射されるとともに、マイクロレンズアレイからのレーザ光を内部で反射させてマイクロレンズアレイ2cとは反対側にレーザ光を出射することにより、マイクロレンズアレイ2cとは面対称の位置に立体投影画像101を投影する面対称結像素子3とを設ける。これにより、走査型プロジェクタ1からのレーザ光の光利用効率を高めることによって、面対称結像素子3により投影される立体投影画像101を高輝度化することができる。また、マイクロレンズアレイ2cが面対称結像素子3に対して傾斜して配置されることにより、面対称結像素子3を基準としてマイクロレンズアレイ2cとは面対称の位置に立体投影画像101を投影することができる。
第3実施形態では、上記のように、マイクロレンズアレイ2cは、第1照射領域27から第2照射領域28に向かって拡散角が徐々に小さくなるように構成されている。これにより、第1照射領域27と第2照射領域28との境界において拡散角が急に小さくなることがないので、第1照射領域27と第2照射領域28との境界が立体投影画像101に投影されるのを抑制することができる。
なお、第3実施形態のその他の効果は、上記第1実施形態と同様である。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
たとえば、上記実施1〜第3実施形態では、マイクロレンズアレイのレンズ部が円形状または楕円形状から構成される例を示したが、本発明はこれに限られない。本発明では、たとえば、マイクロレンズアレイのレンズ部が多角形形状から構成されるなど、レンズ部は、円形状または楕円形状以外の形状から構成されてもよい。
また、上記第2および第3実施形態では、マイクロレンズアレイは、面対称結像素子上のマイクロレンズアレイから遠い側にレーザ光を出射する照射領域における拡散角が、マイクロレンズアレイから近い側にレーザ光を出射する照射領域における拡散角よりも小さくなるような表面形状を有する例を示したが、本発明はこれに限られない。本発明では、たとえば、マイクロレンズアレイは、面対称結像素子上のマイクロレンズアレイから近い側にレーザ光を出射する照射領域における拡散角が、マイクロレンズアレイから遠い側にレーザ光を出射する照射領域における拡散角よりも小さくなるような表面形状を有してもよい。
また、上記実施1〜第3実施形態では、平行なレーザ光に補正するためにフレネルレンズを利用したが、本発明はこれに限られない。本発明では、たとえば、フレネルレンズ以外のレンズを使用して平行なレーザ光に補正してもよい。
また、上記第2および第3実施形態では、拡散角を異ならせるマイクロレンズアレイ上の照射領域をそれぞれ2つおよび3つで構成したが、本発明はこれに限られない。本発明では、レーザ光の照射領域を4つ以上で構成してもよい。
また、上記実施1〜第3実施形態では、面対称結像素子を2枚の透明な平板状の光制御パネルと光制御パネルとを密着させて貼り合わせることにより積層状に形成する例を示したが、本発明はこれに限られない。
1 走査型プロジェクタ(投影部)
2a、2b、2c マイクロレンズアレイ
3 面対称結像素子
4 フレネルレンズ(レンズ)
24、27 第1照射領域
25、28 第2照射領域
100、200、300 立体映像投影装置
101 立体投影画像

Claims (7)

  1. 立体投影画像を投影するためのレーザ光を走査して出射する投影部と、
    前記投影部からのレーザ光の拡散角を所定の角度に制御した状態でレーザ光を拡散するマイクロレンズアレイと、
    前記マイクロレンズアレイにより拡散角が制御されたレーザ光が照射されるとともに、前記マイクロレンズアレイからのレーザ光を内部で反射させて前記マイクロレンズアレイとは反対側にレーザ光を出射することにより、前記マイクロレンズアレイとは面対称の位置に前記立体投影画像を投影する面対称結像素子とを備え、
    前記マイクロレンズアレイは、前記面対称結像素子に対して傾斜して配置されている、立体映像投影装置。
  2. 前記マイクロレンズアレイは、レーザ光の拡散角を制御することにより略すべてのレーザ光が前記面対称結像素子に照射するように構成されている、請求項1に記載の立体映像投影装置。
  3. 前記面対称結像素子に対して傾斜して配置されるとともに、前記マイクロレンズアレイに対して略平行に配置され、前記マイクロレンズアレイに前記投影部からのレーザ光が略垂直に入射するように前記投影部からのレーザ光を平行なレーザ光に補正するレンズをさらに備えた、請求項1または2に記載の立体映像投影装置。
  4. 前記マイクロレンズアレイは、複数のレーザ光の照射領域を有するとともに、前記複数の照射領域に応じて前記マイクロレンズアレイ上に異なる表面形状を有することによって、異なる拡散角によりレーザ光を出射するように構成されている、請求項1〜3のいずれか1項に記載の立体映像投影装置。
  5. 前記マイクロレンズアレイは、前記面対称結像素子上の前記マイクロレンズアレイから遠い側にレーザ光を出射する前記照射領域における拡散角が、前記マイクロレンズアレイから近い側にレーザ光を出射する前記照射領域における拡散角よりも小さくなるような表面形状を有している、請求項4に記載の立体映像投影装置。
  6. 前記マイクロレンズアレイの照射領域は、前記面対称結像素子上の前記マイクロレンズアレイから近い側にレーザ光を比較的大きい拡散角で出射する第1照射領域と、前記面対称結像素子上の前記マイクロレンズアレイから遠い側にレーザ光を比較的小さい拡散角で出射する第2照射領域とを含む、請求項5に記載の立体映像投影装置。
  7. 前記マイクロレンズアレイは、前記第1照射領域から前記第2照射領域に向かって拡散角が徐々に小さくなるように構成されている、請求項6に記載の立体映像投影装置。
JP2013117907A 2013-06-04 2013-06-04 立体映像投影装置 Pending JP2014235368A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013117907A JP2014235368A (ja) 2013-06-04 2013-06-04 立体映像投影装置
US14/283,365 US20140354955A1 (en) 2013-06-04 2014-05-21 Stereoscopic Image Projection Apparatus and Optical Module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013117907A JP2014235368A (ja) 2013-06-04 2013-06-04 立体映像投影装置

Publications (1)

Publication Number Publication Date
JP2014235368A true JP2014235368A (ja) 2014-12-15

Family

ID=51984733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013117907A Pending JP2014235368A (ja) 2013-06-04 2013-06-04 立体映像投影装置

Country Status (2)

Country Link
US (1) US20140354955A1 (ja)
JP (1) JP2014235368A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321869B1 (ja) * 2017-06-29 2018-05-09 ピクシーダストテクノロジーズ株式会社 光学イメージング装置
WO2019004202A1 (ja) * 2017-06-29 2019-01-03 ピクシーダストテクノロジーズ株式会社 光学イメージング装置
WO2019159758A1 (ja) * 2018-02-13 2019-08-22 株式会社村上開明堂 光学結像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107767793A (zh) * 2016-08-15 2018-03-06 鸿富锦精密工业(深圳)有限公司 能够在空气中显示影像的显示器及成像系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6321869B1 (ja) * 2017-06-29 2018-05-09 ピクシーダストテクノロジーズ株式会社 光学イメージング装置
WO2019004202A1 (ja) * 2017-06-29 2019-01-03 ピクシーダストテクノロジーズ株式会社 光学イメージング装置
JP2019012251A (ja) * 2017-06-29 2019-01-24 ピクシーダストテクノロジーズ株式会社 光学イメージング装置
WO2019159758A1 (ja) * 2018-02-13 2019-08-22 株式会社村上開明堂 光学結像装置
JPWO2019159758A1 (ja) * 2018-02-13 2021-03-11 株式会社村上開明堂 光学結像装置

Also Published As

Publication number Publication date
US20140354955A1 (en) 2014-12-04

Similar Documents

Publication Publication Date Title
US10549637B2 (en) Head-up display device
CN102184678B (zh) 拼接显示单元和大屏幕显示装置
JP6102194B2 (ja) プロジェクタおよび投影用スクリーン
CN210142255U (zh) 照明系统以及投影装置
JPWO2017183556A1 (ja) ヘッドアップディスプレイ装置
JP2016090769A (ja) ヘッドアップディスプレイ装置
TW200524183A (en) Light source unit and projector
US20240036340A1 (en) One-way homogeneous beam expanding screen and three-dimensional display device
JP2018098162A (ja) 面光源装置および表示装置
WO2019037370A1 (zh) 一种hud照明系统、抬头显示装置以及实现方法
JP2018511148A (ja) 出力の指向性制御を有する表示装置、およびこのような表示装置用のバックライトおよび光指向方法
JP2014235368A (ja) 立体映像投影装置
CN110622066A (zh) 投影显示装置
JP2015225216A (ja) 画像表示装置
JP2015225218A (ja) 画像表示装置
JP6748424B2 (ja) 発光装置、面光源装置および表示装置
JP2016219279A (ja) 灯具ユニット
JP6437242B2 (ja) 光束制御部材、面光源装置および表示装置
WO2017002725A1 (ja) 発光装置、面光源装置および表示装置
JP2015155957A (ja) 照明装置及びプロジェクター
JP2018120025A (ja) 照明装置及びプロジェクター
WO2018109978A1 (ja) 面光源装置および表示装置
JP2017122923A (ja) プロジェクタおよびスクリーン
JP2013235224A (ja) 画像表示モジュール及び画像表示装置
CN219475980U (zh) 一种投影光学引擎的激光光源光学系统