JP2014232164A - 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置 - Google Patents

波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置 Download PDF

Info

Publication number
JP2014232164A
JP2014232164A JP2013112003A JP2013112003A JP2014232164A JP 2014232164 A JP2014232164 A JP 2014232164A JP 2013112003 A JP2013112003 A JP 2013112003A JP 2013112003 A JP2013112003 A JP 2013112003A JP 2014232164 A JP2014232164 A JP 2014232164A
Authority
JP
Japan
Prior art keywords
light
frequency
wavelength
unit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013112003A
Other languages
English (en)
Inventor
山田 朋宏
Tomohiro Yamada
朋宏 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013112003A priority Critical patent/JP2014232164A/ja
Publication of JP2014232164A publication Critical patent/JP2014232164A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 ロスが少なく、透過した光のスペクトルのピークの半値全幅が狭い波長選択フィルタを提供すること。また、ロスが少なく、発せられる光のスペクトルのピークの半値全幅が狭い波長可変光源を提供すること。
【解決手段】 広帯域光のうち特定の波長の光を透過させ、かつ、透過させる光の波長を変化させることが可能な波長選択フィルタであって、周波数間隔Δνの離散ピークを有する光を透過させる第一の周波数選択部と、前記Δνと異なる周波数間隔Δνの離散ピークを有する光を透過させる第二の周波数選択部と、前記第一の周波数選択部と前記第二の周波数選択部との間の光路上に設けられた、光の周波数をシフトさせることが可能な周波数シフト部とを有し、前記シフトの量を変えることによって、透過させる光の波長を変化させることが可能であることを特徴とする波長選択フィルタ。
【選択図】 図1

Description

本発明は、透過させる光の波長を変化させることが可能な波長可変フィルタ、出射する光の波長を変化可能な波長可変光源及びそれを用いた光干渉断層撮像装置に関する。
出射する光の波長を変化可能な光源(以下、波長可変光源と略すことがある)が様々な分野で利用されている。
検査装置における波長可変光源の用途としては、レーザ分光器、分散測定器、膜厚測定器、光干渉断層撮像(Optical Coherence Tomography)装置(以下、OCT装置ということがある)等がある。
波長可変光源の一例である波長掃引光源(SS(Swept−Source)光源)を用いたOCT装置をSS−OCT(Swept−Source Optical Coherence Tomography)装置ということがある。SS−OCT装置は、測定対象物体へ光を照射し、照射光の波長を変化させながら、参照光と物体の異なる深さから戻ってくる反射光とを干渉させる。そして干渉光の強度の時間波形に含まれる周波数成分を分析することによって物体の断層像を得る。SS−OCT装置は、分光器を用いないことから、光量のロスが少なく高SN比の断層像の取得が期待されている。また、OCT装置に用いられる波長可変光源から発せられる光のスペクトルのピークの半値全幅が狭いほどコヒーレンス長が長く、深さ方向の測定範囲が大きいため好ましい。
上記の波長可変光源としては、2台のファブリーペロー共振器を備える波長走査型ファイバレーザ光源が知られている(特許文献1)。この光源は、互いに近接するFSR(自由スペクトル領域、free spectral range)を有し、電気光学結晶と凹面鏡を用いた、2台のファブリーペロー共振器(11A、11B)と、光増幅器12とを備える。そして、2台のファブリーペロー共振器の少なくとも一方の共振器長を変えることで、出射される光の波長を変えるものである(図9(a))。図9(b)は、特許文献1で開示されているファブリーペロー共振器の構成を示す図で、110は電気光学結晶、111、112は凹面鏡である。
特開2009−16396号公報
特許文献1の光源から出射される光は、ファブリーペロー共振器(11A、11B)内に電気光学結晶110が設けられているため、電気光学結晶110のロスにより、発せられる光のスペクトルのピークの半値全幅が広いという課題がある。すなわち、ファブリーペロー共振器に入射した光は、2枚のミラー間(凹面鏡間)を何度も往復するにつれて、共振器長に応じた波長(共振波長)の光が残り、その他の波長の光は残らない。そのため、共振波長に鋭いピークをもつ半値幅の狭いスペクトルの光が得られる。
一方、ファブリーペロー共振器内に電気光学結晶110が設けられている場合、2枚のミラー間(凹面鏡間)を往復する際に電気光学結晶110に吸収される、すなわちロスがあるため、往復する回数が少ない。その結果、共振波長に鋭いピークをもたない半値幅の広いスペクトルの光が得られる。
そこで、本発明は、透過した光のスペクトルのピークの半値全幅が、特許文献1のような従来の波長可変光源に比べて狭い波長選択フィルタ及び、発せられる光のスペクトルのピークの半値全幅が狭い波長可変光源を提供することを目的とする。
本発明に係る波長選択フィルタは、広帯域光のうち特定の波長の光を透過させ、かつ、透過させる光の波長を変化させることが可能な波長選択フィルタであって、周波数間隔Δνの離散ピークを有する光を透過させる第一の周波数選択部と、前記Δνと異なる周波数間隔Δνの離散ピークを有する光を透過させる第二の周波数選択部と、前記第一の周波数選択部と前記第二の周波数選択部との間の光路上に設けられた、光の周波数をシフトさせることが可能な周波数シフト部とを有し、前記シフトの量を変えることによって、透過させる光の波長を変化させることが可能であることを特徴とする。
本発明に係る波長可変光源は、周波数間隔Δνの離散ピークを有する光を発する発光部と、前記発光部から発せられた光から、前記Δνとは異なる周波数間隔Δνの離散ピークのいずれかの周波数を有する光を選択して透過させる第二の周波数選択部とを有し、前記第二の周波数選択部を透過した光を出射する波長可変光源であって、
前記発光部と前記第二の周波数選択部との間の光路上に、前記発光部から発せられた光の周波数をシフトさせる周波数シフト部を有し、前記周波数シフト部によってシフトさせる周波数の量を変えることによって、出射する光の波長を変化させることを特徴とする。
本発明に係る波長選択フィルタは、ロスの少ない構成であるため、透過した光のスペクトルのピークの半値全幅が狭い。また、本発明に係る波長可変光源は、ロスの少ない構成であるため、発せられる光のスペクトルのピークの半値全幅が狭い。
本発明の実施形態に係る波長選択フィルタの模式図である。 本発明の実施形態の周波数選択部の特性の一例を説明するための図である。 本発明の実施形態に係る波長選択フィルタによって選択する波長を変化させる方法について説明するための図である。 本発明の実施形態における第一の周波数選択部、第二の周波数選択部の一例を示す模式図である。 本発明の実施形態における周波数シフト部の一例を示す模式図である。 本発明の実施形態に係る波長可変光源の一例を示す模式図である。 本発明の実施形態に係る波長可変光源の別の例を示す模式図である。 本発明の実施形態に係るOCT装置の一例を示す模式図である。 特許文献1に開示されている、従来の波長走査型ファイバレーザ光源(a)。およびファブリーペロー共振器(b)について説明するための図である。
(波長選択フィルタ)
以下、本発明の実施形態に係る波長選択フィルタについて図1を用いて説明する。図1は本実施形態に係る波長選択フィルタの模式図である。なお、図中の矢印は光の進む方向を示している。
本発明の実施形態に係る波長選択フィルタ101は、広帯域光(L1)のうち特定の波長の光を透過させ、かつ、透過させる光の波長を変化させることが可能な波長選択フィルタである。ここで広帯域光とは例えば10nm以上の幅の波長成分を有する光のことである。
本実施形態に係る波長選択フィルタは、周波数間隔Δνの離散ピークを有する光を透過させる第一の周波数選択部102と、Δνと異なる周波数間隔Δνの離散ピークを有する光を透過させる第二の周波数選択部103と、第一の周波数選択部102と第二の周波数選択部103との間の光路上に設けられた、光の周波数をシフトさせることが可能な周波数シフト部104とを有する。そして、シフト部104が周波数のシフトの量を変えることによって、透過させる光の波長を変化させることが可能である。以下、透過させる光の波長を変化させるメカニズムについて、図1乃至3を用いて詳細を説明する。なお、以下の説明では、第一の周波数選択部および第二の周波数選択部としてファブリーペローフィルタを用い、Δνを第一のFSR(FSR1)、Δνを第二のFSR(FSR2)と表現する。
ここで、図2(a)のような特性をもつ第一の周波数選択部と、図2(b)のような特性をもつ第二の周波数選択部とを用いるとする。また、FSR2=FSR1+Δν(Δν≠0)の関係にあるとする。第一の周波数選択部で選択される離散ピークを有する光の各中心周波数をν11、ν12、・・・とし、ν1(n+1)−ν1n=FSR1(nは正整数)である。同様に、第二の周波数選択部で選択される周波数をν21、ν22、・・・とし、ν2(n+1)−ν2n=FSR2(nは正整数)であるとする。
まず、広帯域光L1が図3(a)で示されるような特性を有するとする。光L1が第一の周波数選択部102を透過すると図3(b)で示されるような特性をもつ光L2となる。光L2が周波数シフト部104を透過し、透過する際にΔνのシフト量だけ周波数がシフトするとする。周波数がシフトした光L3の光の特性は図3(c)のようになる。次に、光L3が第二の周波数選択部103を透過すると、光L3のうち、第二の周波数選択部103の透過率のピーク位置に対応する周波数の光のみ(ν11+Δν=ν21)が選択される。
さらに周波数シフト部によって、周波数をΔνのシフト量だけシフトすると、ν12+2Δν=ν22の周波数の光のみが第二の周波数選択部103に選択される。以下同様にして、周波数シフト部による周波数のシフト量を変化させることで、v23、ν24・・・といった周波数の光が選択されるため、選択される波長を変えることのできる波長選択フィルタとして機能する。
このように、本実施形態に係る波長選択フィルタは、背景技術で示した特許文献1のようなファブリーペローフィルタ共振器内に電気光学結晶が設けられた構成でないため、電気光学結晶によるロスが発生せず、透過した光のスペクトルのピークの半値全幅が狭い。
ここで、SS−OCT装置では測定対象の物体の深い部位からの干渉信号はスぺクトル上で高周波数になるため、波長可変光源の波長掃引ステップが細かいことも好ましい。特許文献1の光源から出射される光は、ファブリーペロー共振器内に電気光学結晶が設けられているため、電気光学結晶のロスによりピークの半値全幅が太いため、フィネス(ファブリーペロー共振器の透過スペクトルのピーク間隔/ピークの半値全幅)が小さく、OCT像を取得するために波長掃引ステップを細くできないという課題がある。一方、本実施形態に係る波長可変フィルタをSS−OCT装置に用いると、電気光学結晶によるロスが発生せず共振波長の光が残り、その結果、透過する光のスペクトルのピークの半値全幅が狭いため、フィネスが大きく波長掃引ステップを細くできる。
なお周波数シフト部104によってシフトする量は、制御部105によって制御される。
(広帯域光)
本実施形態において、広帯域光とは、例えば10nm以上の幅の波長成分を有する光のことである。また、50nm以上の幅の波長成分を有する光であることが好ましく、70nm以上であることがさらに好ましく、200nm以下であることが好ましい。広帯域光は例えば利得媒体(gain medium)から得られる。利得媒体は、広帯域にわたる波長成分を有する自然放出光を発生し、利得媒体に入射する入射光に対しては誘導放出による光増幅機能を有するものであれば特に限定されない。本実施形態における利得媒体の動作波長は700nm乃至2000nmのうち、波長幅50nm乃至200nm程度に渡って変化できるものが望ましい。特に、利得媒体から発せられる光は780nm乃至900nm、800nm乃至880nm、980nm乃至1100nm、または1250nm乃至1400nmのいずれかの範囲の波長成分を有することが好ましい。利得媒体の代表的なものとして半導体光増幅器(Semiconductor Optical Amplifier、以下、SOAと略すことがある)が挙げられる。SOAの他には、エルビウムやイットリビウム、ネオジウムなどを含有した希土類添加ファイバ、色素を光増幅材として含有した光ファイバなどが挙げられる。SOAの活性層を構成する材料は、一般的な半導体レーザの活性層を構成する化合物半導体を用いることができ、具体的にはInGaAs系、InGaAsP系、GaAsP系、AlGaAs系等が挙げられる。SOAが持つ利得の中心波長は840nm、1060nm、1300nmなどを代表として挙げることができる。
(第一の周波数選択部、第二の周波数選択部)
本実施形態において、第一の周波数選択部、第二の周波数選択部は、等周波数間隔で透過率の極大値を有するものであれば特に限定されない。別の言い方をすると、第一の周波数選択部、第二の周波数選択部は、広帯域光が透過した結果、等周波数間隔に離散ピークを有する光になるようなものであれば特に限定されない。
本実施形態に係る第一の周波数選択部、第二の周波数選択部として、ファブリーペローフィルタなどの光学素子、マッハツェンダー干渉計、マイケルソン干渉計などの光学系を用いることができる。また、エアギャップを有する構成、具体的には、エアギャップを介して対向するハーフミラーを用いても良く、光ファイバ内に対向する多重反射膜ミラー(Distributed Bragg Reflector、以下DBRと略すことがある)を作製したものであってもよい。本実施形態に係る第一の周波数選択部、第二の周波数選択部として、少なくともいずれか一方が、フィネスを高くしやすいファブリーペローフィルタであることが好ましい。ファブリーペローフィルタとして例えばファブリーペローエタロンが挙げられる。
ファブリーペローエタロンについて図4を用いて説明する。ファブリーペローエタロンの一例は、透過させたい波長に対して透明な基板401の両面にDBR402を設けた構成となっている。DBRは透過させたい波長に対して透明な層の複数からなり、層の数や、多層の屈折率を変えることで、ファブリーペローエタロンの反射率を制御することができる。反射率を高くすることでフィネスは高くなり、等周波数間隔の波長選択性は高くなる。透明な基板、層を構成する材料としては、誘電体、半導体を用いることができる。上記の透明な基板401は特に限定されないが、光学ガラスなどを用いることが好ましい。
また、本実施形態に係る第一の周波数選択部、第二の周波数選択部として、エアギャップを有するファブリーペローフィルタ、または、光学ガラスからなるエタロン板であることが、光のロスが少ないという観点から好ましい。
本実施形態に係る波長選択フィルタを有する波長可変光源を用いたOCT装置において、第一の周波数選択部、第二の周波数選択部がファブリーペローフィルタである場合、フィルタが狭帯域であることが好ましい。これは、フィルタが狭帯域であるほど、透過率の極大値のピークの線幅が狭いため、正確に、等周波数間隔で干渉光の強度の値のサンプリングをしやすく、正確に、等周波数間隔でサンプリングできると、歪みの少ない断層画像を得やすいからである。例えば、サンプリングする光の周波数間隔が18.7GHzである場合、ファブリーペローフィルタの透過率の極大値のピークの線幅は、サンプリングする光の周波数間隔の1/10以下であることが好ましく、1/100以下であることがさらに好ましい。これは、ファブリーペローフィルタを構成する両端の反射鏡の反射率をそれぞれ、75%以上、90%以上に設定することで実現する。
なお、第一の周波数選択部、第二の周波数選択部は、透過光を用いる形態に限らず、反射、吸収、散乱等を用いるものであってもよい。
(周波数シフト部)
周波数シフト部は、透過させた光の周波数をシフトさせることのできるものであれば特に限定されない。周波数シフト部は、周波数シフタと呼ばれることもある。
周波数シフト部による周波数シフトの方法としては、入力した光の周波数ωに対してサイドバンド(ω±ωで表わされる周波数を有する光)を発生させて、一方(ω+ωまたはω−ω)を消して、シングルサイドバンドを発生させる方法が知られている。シングルサイドバンドを発生させる方法としては、光を電気的に変調する方法、すなわち光を電気光学結晶などに入射させ、電気光学結晶に印加する電圧を変化させる方法、光を直接変調する方法、が知られている。
ここでは、光を電気的に変調することによってシングルサイドバンドを発生させる周波数シフト部の例を図5に示す。本例の周波数シフト部501は、複数の光変調素子502、503、504とマッハツェンダー型の干渉計導波路とを組み合わせたものである。光変調素子502、503、504はいずれも、電気光学結晶(不図示)、および電気光学結晶に電圧を印加する電極(不図示)を有する。
次に、
S=sinωt (1)
で表わされる光が上記周波数シフタ部501に入力された結果、出射される光がどのようになるか、図5を用いて説明する。
まず、Sの光は2つの光路L1、およびL2に分岐する。光路L1に進んだ光は、光路L1に設けられた光変調素子502において、
C=Asinωt (2)
で表わされる変調がかかると、
S・C=Asinωt・sinω
=−(A/2){cos(ω+ω)t−cos(ω−ω)t} (3)
で表わされる光となって出力される。
一方、光路L2に進んだ光は、光路L2に設けられた光変調素子504による変調を受けて、
=cosωt (4)
で表わされる光を出力する。すなわち、光変調素子504を通過することで位相がπずれる。
光路L2をさらに進んだ光は、光変調素子503において、
=Acosωt (5)
で表わされる変調がかかると、
・C=Acosωt・cosω
=(A/2){cos(ω+ω)t+cos(ω−ω)t} (6)
で表わされる光となって出力される。
最終的に周波数シフタ部501から出力される光は、
(S・C)+(S・C)=A{cos(ω−ω)t} (7)
で表わされる。
このように、ωの周波数成分を有するSで表わされる光は、周波数シフタ部501を経由することで、(ω−ω)の周波数成分を有する光となる。すなわち、周波数成分ωを有する光から、(ω−ω)の周波数成分を有する光へと、周波数をシフトさせることができる。
なお、上記周波数シフト部では、光路に電気光学結晶を用いているが、従来技術で用いられたような共振器内に電気光学結晶を設けたものではないため、電気光学結晶によるロスの影響は少ない。
周波数シフト部の別の例としては音響光学素子(Acousto−Optic Modulator、以下AOMと略すことがある)を用いた構成が挙げられる。これは、AOMに光を入射し、AOMに電圧を印加して音響波を発生させてドップラーシフトを起こすことで、AOMから出射される光の周波数をシフトさせるものである。AOMに入射する光の方向と、音響波の進行方向が同じ場合は、周波数は高くなるようにシフトされ、AOMに入射する光の方向と、音響波の進行方向が逆の場合は、周波数は低くなるようにシフトされる。
なお、図2、3を用いて説明したように、はじめに最小周波数(最大波長)の光を出射させ、順次、出射させる光の周波数を大きくしていく場合、最大周波数(最小波長)の光を出射させるために、周波数シフト部はΔνの量シフトさせる必要がある。しかし、はじめに出射させる光の周波数を、最小周波数と最大周波数とを加算して2で除した周波数とすることで、最大でΔν/2の量シフトさせることで、最小周波数の光から最大周波数の光までを出射させることができる。すなわち、周波数シフト部によってシフトされるシフト量がΔνの−0.5倍以上0.5倍以下の範囲内とすることができ、周波数シフト部の周波数シフト量を小さくすることができる。
また、周波数シフト部の有する端面のうち、光路上にある端面に反射抑制層が設けられていることが好ましい。反射抑制層が設けられていることで、周波数シフト部の有する端面のうち、光路上にある端面によって生じる光の共振を抑制することができる。上記「光路上にある端面」とは上記図5におけるSの光が入力する部位と(S+S・C)+(S+S・C)の光が出力する部位である。
(用途)
本発明の実施形態に係る波長選択フィルタは、下記に説明するように、広帯域光を発する光源部と組み合わせることで、波長可変光源とすることができる。
(波長可変光源)
(波長可変光源の一例)
本発明の実施形態に係る波長選択フィルタを用いた波長可変光源の一例について図6を用いて説明する。本実施形態における波長可変光源601は、広帯域光を発する光源部602と、光源部から発せられた広帯域光を透過させる、上記で説明した本実施形態に係る波長選択フィルタ101とを有する。光源部602は上記の通り広帯域光を発するものであれば特に限定されない。光源部602から出た光L1から特定の波長の光が選択されて出射される(光L4)。そして、周波数シフト部104でシフトさせる周波数のシフト量を変えることで、上記の通り、出射される光の波長が変化するため、波長可変光源として機能する。
後述するように、本例に係る波長可変光源はOCT装置に用いることができる。
(波長可変光源の別の例)
本発明の実施形態において波長可変光源の別の例について図7を用いて説明する。
本実施形態における波長可変光源701の別の例は、周波数間隔Δνの離散ピークを有する光L2’を発する発光部702と、発光部から発せられた光L2’から、Δνとは異なる周波数間隔Δνの離散ピークを有する光を選択して透過させる第二の周波数選択部103とを有し、第二の周波数選択部103を透過した光を出射する波長可変光源701である。そして、発光部702と第二の周波数選択部103との間の光路上に、発光部702から発せられた光の周波数をシフトさせる周波数シフト部104を有し、周波数シフト部104によってシフトさせる周波数の量を変えることによって、出射する光(L4)の波長を変化させる。本例に係る波長可変光源は、周波数間隔Δνの離散ピークを有する光を発生させるために、周波数選択部を有していなくてもよい構成である。本例に係る波長可変光源において用いる発光部として例えば、モードロックレーザやSC(Supercontinuum)光(スーパーコンティニウム光)を発するSC光源を挙げることができる。また、発光部はCW(Continuous wave)光(連続波光)を発するCW光源と、このCW光に周期的な変調をかけてサイドバンドを生成する変調部とを有する構成であってもよい。周期的な変調は、CW光の強度の周期的な変調であってもよいし、周波数の周期的な変調であってもよい。
後述するように、本例に係る波長可変光源はOCT装置に用いることができる。
(OCT装置)
本発明の実施形態に係る光干渉断層撮像装置(OCT装置)について図8を用いて説明する。なお、図中の矢印は光の進む方向を示している。
実施形態に係るOCT装置は、光源部801、干渉光学系802、光検出部803、情報取得部804、を少なくとも有する構成である。光源部801は上述の本実施形態に係る波長可変光源を用いる。また、図示していないが、情報取得部804はフーリエ変換器を有する。ここで、情報取得部804がフーリエ変換器を有するとは、情報取得部が入力されたデータに対してフーリエ変換する機能を有していれば形態は特に限定されない。一例は、情報取得部804が演算部を有し、該演算部がフーリエ変換する機能を有する場合である。具体的には、該演算部がCPUを有するコンピュータであり、このコンピュータが、フーリエ変換機能を有するアプリケーションを内蔵する場合である。他の例は、情報取得部804がフーリエ変換機能を有するフーリエ変換回路を有する場合である。光源部801から出た光は干渉光学系802を経て測定対象の物体813の情報を有する干渉光となって出力される。干渉光は光検出部803において受光される。なお光検出部803は差動検出型でも良いし単純な強度モニタ型でも良い。干渉光の強度の時間波形の情報は光検出部803から情報取得部804に送られる。情報取得部804では、受光された干渉光の強度の時間波形をフーリエ変換をし、物体813の情報(例えば断層像の情報)を取得する。なお、本発明の目的を達成する範囲において、ここで挙げた光源部801、干渉光学系802、光検出部803、情報取得部804以外のものを任意に設けることができる。例えば、光源部801から出た光のうち一方を光路806に導波し、もう一方を光路820に導波する構成とし、光路820上に波数クロック(k−clock)光学系805を設けてもよい。波数クロック光学系805は、光源部801から出射される、波長が変化する光を受光し、受光した光の波数が等波数間隔(等周波数間隔)となるタイミングごとに信号を発信する。波数クロック光学系805は具体的には、等波数間隔の波長選択特性を有する光学系と、この光学系を透過した光を受光して電気信号に変換して信号を発信する素子を有する。波数クロック光学系805から発信された信号は電気回路830を介して情報取得部804へと伝えられる。
以下、光源部801から光が発振されてから、測定対象の物体の断層像の情報を得るまでについて詳細に説明する。光の波長を変化させる光源部801から出た光は、ファイバ(光路)806を通って、カップラ807に入り、照射光用のファイバ808を通る照射光と、参照光用のファイバ809を通る参照光とに分岐される。照射光はコリメーター810を通って平行光になり、ミラー811で反射される。ミラー811で反射された光はレンズ812を通って物体813に照射され、物体813の奥行き方向の各層から反射される。一方、参照光はコリメーター814を通ってミラー815で反射される。カップラ807では、物体813からの反射光とミラー815からの反射光による干渉光が発生する。干渉した光はファイバ816を通り、コリメーター818を通って集光され、光検出部103で受光される。光検出部803で受光された干渉光の強度の情報は電圧などの電気的な情報に変換されて、情報取得部804に送られる。情報取得部804では、フーリエ変換器によってフーリエ変換することによって、物体813の断層像の情報を得る。フーリエ変換して得られる値は、干渉光に含まれる周波数成分に相当し、周波数成分は、カップラ807から物体表面で反射されカップラ807へ到達する光路の長さと、カップラ807からミラー815で反射されてカップラ807に到達する光路の長さとの差に比例する。したがって、物体813断層像の情報として、例えば、物体表面からの奥行き方向の長さと、物体813の各層からの反射光の強度との関係についての情報を得ることができる。
断層像の情報は、情報取得部804から画像表示部819に送って画像として表示させてもよい。なお、ミラー812を照射光の入射する方向と垂直な平面内で走査することで、測定対象の物体813の3次元の断層像を得ることができる。また、光源部801の制御は情報取得部804が行ってもよい。また図示しないが、光源部801から出る光の強度を逐次モニタリングし、そのデータを干渉光の強度の信号の振幅補正に用いてもよい。
本発明の実施例について説明するが、本発明はこれらに限られない。
(実施例1)
本実施例に係る波長選択フィルタおよび波長可変光源について説明する。
本実施例に係る波長選択フィルタは上記実施形態に係る波長選択フィルタで説明した構成である。
実施例1において、第一の周波数選択部102および第二の周波数選択部103として、2枚のエタロン板を用いる。各々のエタロン板はBK7を用いる。第一の周波数選択部を透過した光のFSRは、FSR1=12.7688GHz(半値全幅4.8MHz)であり、これは、800nmから880nmの範囲に、等周波数間隔に2668個の離散ピークを有する光であることを意味する。また、第二の周波数選択部を透過した光のFSRは、FSR2=12.7736GHz(半値全幅4.8MHz)であり、これは、800nmから880nmの範囲に、等周波数間隔に2667個の離散ピークを有する光であることを意味する。
周波数シフト部104として、図5に示す2つの光路を有するマッハツェンダー干渉計を用い、2つの光路には光変調素子が設けられている。周波数シフト部104によってシフトされる量Δνは4.8MHzである。
このような波長選択フィルタに、少なくとも800乃至880nmの波長成分を有する光を入射させるための発光部として利得媒体(InGaAs層を活性層とするSOA)を用いる。この利得媒体に電流を注入することで、利得媒体は広帯域光を発する。
このような波長可変光源において、周波数シフト部によって4.8MHzの量だけ周波数をシフトさせると、上記FSR2の有する離散ピークのうち、最小周波数の光が選択されて出射される。周波数シフト部によってさらに4.8MHzの量だけ周波数をシフトさせると、2番目に小さい周波数の光が選択されて出射される。同様にして4.8MHzの量づつ周波数をシフトさせることによって、出射される光の波長を変化させるこができる。
(実施例2)
本実施例に係るOCT装置の構成は、実施形態で説明した構成である。ただし、光源部801として実施例1で説明した波長可変光源、光検出部803としてフォトディテクタ(Photo detector、以下PDと略すことがある)、を用いる。
波長可変光源は波長800nmから880nmまでを周期5nsで掃引しこれを繰り返す動作をおこなう。これは掃引周波数にして200kHzに相当する。本実施例に係るOCT装置では光源部801の光が出射される点からミラー815までの光路長と、光源部801の光が出射される点から物体813の表面までの光路長を等しくし、物体の表面から照射光の光軸方向に深さ4mmの部位まで観察する。
物体の表面から照射光の光軸方向に深さ4mmの位置に単一の反射物体がある場合、得られる干渉強度のスペクトルは周波数37.5GHz毎に強度が強まる信号となる。これを周波数37.5GHzのサイン波と見なすならば、この信号の周波数成分を解析するためには少なくともこの半分の周波数間隔以下で干渉光の強度の値をサンプリングする必要がある。つまり18.75GHz以下の周波数間隔でサンプリングする必要がある。
物体の表面から照射光の光軸方向に4mmまでが最大の深さであると想定すると、周波数を解析すべき信号の周波数は37.5GHz以下の信号となるため、上記18.75GHz以下の周波数間隔にて信号を取得すれば、断層像を得るために必要な周波数帯域の信号は得られる。
本実施例では、このサンプリング間隔を、kクロック光学系805にて規定する。具体的には、等波数間隔、かつ、18.7GHz未満になるようなタイミングでkクロック信号を発信させる。次に、本実施例に係るOCT装置を用いてPDで得られる受光電圧の強度の時間波形から、kクロック信号が発信されるタイミングに相当するデータを取得する。取得したデータをフーリエ変換することで物体の断層像を取得出来る。
101 波長選択フィルタ
102 第一の周波数選択部
103 第二の周波数選択部
104 周波数シフト部

Claims (14)

  1. 広帯域光のうち特定の波長の光を透過させ、かつ、透過させる光の波長を変化させることが可能な波長選択フィルタであって、周波数間隔Δνの離散ピークを有する光を透過させる第一の周波数選択部と、前記Δνと異なる周波数間隔Δνの離散ピークを有する光を透過させる第二の周波数選択部と、前記第一の周波数選択部と前記第二の周波数選択部との間の光路上に設けられた、光の周波数をシフトさせることが可能な周波数シフト部とを有し、前記シフトの量を変えることによって、透過させる光の波長を変化させることが可能であることを特徴とする波長選択フィルタ。
  2. 前記周波数シフト部は複数の光変調素子とマッハツェンダー型の干渉計導波路とを有することを特徴とする請求項1に記載の波長選択フィルタ。
  3. 前記シフト量が前記Δνの−0.5倍以上0.5倍以下の範囲内であることを特徴とする請求項1または2に記載の波長選択フィルタ。
  4. 前記周波数シフト部の有する端面のうち、前記光路上にある端面に反射抑制層が設けられていることを特徴とする請求項1乃至3のいずれか一項に記載の波長選択フィルタ。
  5. 前記第一の周波数選択部、前記第二の周波数選択部の少なくともいずれか一方が、ファブリーペローフィルタであることを特徴とする請求項1乃至4のいずれか一項に記載の波長選択フィルタ。
  6. 前記ファブリーペローフィルタがエアギャップを有する構成、または、光学ガラスからなるエタロン板であることを特徴とする請求項5に記載の波長選択フィルタ。
  7. 広帯域光を発する光源部と、前記光源部から発せられた広帯域光を透過させる請求項1乃至6のいずれか一項に記載の波長選択フィルタとを有することを特徴とする波長可変光源。
  8. 周波数間隔Δνの離散ピークを有する光を発する発光部と、前記発光部から発せられた光から、前記Δνとは異なる周波数間隔Δνの離散ピークのいずれかの周波数を有する光を選択して透過させる周波数選択部とを有し、前記周波数選択部を透過した光を出射する波長可変光源であって、
    前記発光部と前記周波数選択部との間の光路上に、前記発光部から発せられた光の周波数をシフトさせる周波数シフト部を有し、前記周波数シフト部によってシフトさせる周波数の量を変えることによって、出射する光の波長を変化させることを特徴とする波長可変光源。
  9. 前記発光部は、利得媒体と、前記利得媒体から発せられた光から前記Δνを有する光を選択して透過させる更なる周波数選択部とを有することを特徴とする請求項8に記載の波長可変光源。
  10. 前記更なる周波数選択部がファブリーペローフィルタであることを特徴とする請求項9に記載の波長可変光源。
  11. 前記発光部は、モードロックレーザであることを特徴とする請求項8に記載の波長可変光源。
  12. 前記発光部は、スーパーコンティニウム光を発する光源であることを特徴とする請求項8に記載の波長可変光源。
  13. 前記発光部は連続波光を発する光源と、前記連続波光に周期的な変調をかけてサイドバンドを生成する変調部とを有することを特徴とする請求項8乃至10のいずれか一項に記載の波長可変光源。
  14. 光の波長を変化させる光源部と、
    前記光源部からの光を物体へ照射する照射光と参照光とに分岐し、前記物体に照射された光の反射光と前記参照光による干渉光を発生させる干渉光学系と、
    前記干渉光を受光する光検出部と、
    前記干渉光の強度の時間波形に基づいて、前記物体の情報を取得する情報取得部と、
    を有する光干渉断層撮像装置において、
    前記光源部が請求項7乃至13のいずれか一項に記載の波長可変光源を有することを特徴とする光干渉断層撮像装置。
JP2013112003A 2013-05-28 2013-05-28 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置 Pending JP2014232164A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013112003A JP2014232164A (ja) 2013-05-28 2013-05-28 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013112003A JP2014232164A (ja) 2013-05-28 2013-05-28 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置

Publications (1)

Publication Number Publication Date
JP2014232164A true JP2014232164A (ja) 2014-12-11

Family

ID=52125598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013112003A Pending JP2014232164A (ja) 2013-05-28 2013-05-28 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置

Country Status (1)

Country Link
JP (1) JP2014232164A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246531A1 (ja) * 2020-06-05 2021-12-09 国立大学法人埼玉大学 2つの異なる波長を選択的に用いるモード同期方法、および、当該方法を用いたレーザー装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246531A1 (ja) * 2020-06-05 2021-12-09 国立大学法人埼玉大学 2つの異なる波長を選択的に用いるモード同期方法、および、当該方法を用いたレーザー装置

Similar Documents

Publication Publication Date Title
US7391520B2 (en) Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
US20180226773A1 (en) Method and apparatus for performing optical imaging using frequency-domain interferometry
US8289523B2 (en) Method and device for generating a synthetic wavelength
WO2008093448A9 (ja) 波長走査型光源及び光コヒーレンストモグラフィー装置
JP6071203B2 (ja) 光源装置及びこれを用いた光干渉断層撮像装置、及び光発振方法
JP5984693B2 (ja) 光干渉断層撮像装置及び光干渉断層撮像方法
JP5489730B2 (ja) 波長可変光源装置
JP2012129514A (ja) 光源装置
Zhu et al. Broadband instantaneous multi-frequency measurement based on a Fourier domain mode-locked laser
Davila-Rodriguez et al. Multiheterodyne detection for spectral compression and downconversion of arbitrary periodic optical signals
JP2018142699A (ja) 時間的タルボ効果を利用したレーザ・パルスの生成および分光法
Kourogi et al. Programmable high speed (~ 1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging
JP5717392B2 (ja) 光源装置及びこれを用いた撮像装置
JP2023512154A (ja) 円形測距octのための電気光学位相符号モードロッキングに基づく周波数コム生成
JP2009060022A (ja) 波長走査型光源
JP2014232164A (ja) 波長可変フィルタ、波長可変光源及びそれを用いた光干渉断層撮像装置
EP3834259A1 (en) Laser assembly, spectrometer and method for operating a laser
JP2012156187A (ja) 光源装置及びこれを用いた撮像装置
JP2014232010A (ja) 波長可変光源、前記波長可変光源、及びこれを用いた光干渉断層撮像装置
US20230417810A1 (en) Device for wide-band spectral analysis of a signal of interest
JP5181384B2 (ja) 光干渉トモグラフィー装置,光形状計測装置
JP2013152223A (ja) 光干渉断層撮像装置及び光干渉断層撮像方法
Grill et al. Beating of two FDML lasers in real time
JP2014077712A (ja) 光共振器測定法及び測定装置
Grill et al. A detailed analysis of the coherence and field properties of an FDML laser by time resolved beat signal measurements