JP2014228276A - Particle detection device and particle detection method - Google Patents

Particle detection device and particle detection method Download PDF

Info

Publication number
JP2014228276A
JP2014228276A JP2013105318A JP2013105318A JP2014228276A JP 2014228276 A JP2014228276 A JP 2014228276A JP 2013105318 A JP2013105318 A JP 2013105318A JP 2013105318 A JP2013105318 A JP 2013105318A JP 2014228276 A JP2014228276 A JP 2014228276A
Authority
JP
Japan
Prior art keywords
chamber
fluid
path
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013105318A
Other languages
Japanese (ja)
Inventor
久弥 村上
Hisaya Murakami
久弥 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2013105318A priority Critical patent/JP2014228276A/en
Priority to EP14167907.6A priority patent/EP2803971B1/en
Priority to CN201410206025.7A priority patent/CN104165826B/en
Priority to US14/279,651 priority patent/US9297740B2/en
Publication of JP2014228276A publication Critical patent/JP2014228276A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1404Handling flow, e.g. hydrodynamic focusing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2273Atmospheric sampling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/075Investigating concentration of particle suspensions by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a particle detection device capable of accurately detecting a particle.SOLUTION: The particle detection device includes: an enclosure 1; a chamber 2 disposed inside the enclosure 1; an introduction nozzle 21 provided in the chamber 2; a sample introduction path 3 which connects a first introduction port 11 provided in the enclosure 1 and the introduction nozzle 21 provided in the chamber 2 and introduces a fluid including particles into the chamber 2; an adjustment mechanism 5 which supplies the fluid from which particles have been removed, into the chamber 2 via an adjustment path 4 communicating with the chamber 2 through a second introduction port 12 different from the first introduction port 11 provided in the enclosure 1 and which adjusts the state of the fluid in the chamber 2; and a detection mechanism 23 which irradiates the fluid jetted from the introduction nozzle 21 with light to detect particles included in the fluid.

Description

本発明は環境評価技術に関し、特に粒子検出装置及び粒子の検出方法に関する。   The present invention relates to an environment evaluation technique, and more particularly to a particle detection apparatus and a particle detection method.

一般的な屋内あるいはバイオクリーンルーム等のクリーンルームにおいて、粒子検出装置を用いて、飛散している微生物を含む粒子を検出したり、記録したりする場合がある(例えば、特許文献1、2及び非特許文献1参照。)。光学式の粒子検出装置は、例えば、装置が配置された部屋の気体を吸引し、吸引した気体に光を照射する。気体に粒子が含まれていると、光を照射された粒子が蛍光を発したり、散乱光を発生させたりするため、気体に含まれる粒子の数や大きさ等を検出することが可能となる。   In a general indoor room or a clean room such as a bio clean room, a particle detection device may be used to detect or record particles containing scattered microorganisms (for example, Patent Documents 1 and 2 and non-patent documents). Reference 1). The optical particle detection device, for example, sucks a gas in a room where the device is arranged and irradiates the sucked gas with light. If the gas contains particles, the light-irradiated particles emit fluorescence or generate scattered light, so it is possible to detect the number and size of the particles contained in the gas. .

特開2008−225539号公報JP 2008-225539 A 特開2011−83214号公報JP 2011-83214 A

長谷川倫男他,「気中微生物リアルタイム検出技術とその応用」,株式会社山武,azbil Technical Review 2009年12月号,p.2-7,2009年Hasegawa, M. et al., “Real-time microorganism detection technology in the air and its application”, Yamatake Corporation, azbil Technical Review December 2009, p.2-7, 2009

本発明は、粒子を正確に検出可能な粒子検出装置及び粒子の検出方法を提供することを目的の一つとする。   An object of the present invention is to provide a particle detection apparatus and a particle detection method capable of accurately detecting particles.

本発明の態様によれば、(a)筐体と、(b)筐体の内部に配置されたチャンバと、(c)筐体に設けられた第1の導入口からチャンバ内に粒子を含む流体を導入するためのサンプル導入経路と、(d)筐体に設けられた第1の導入口とは異なる第2の導入口からチャンバに連通する調整用経路を介してチャンバ内に粒子が除去された流体を供給し、チャンバ内の流体の状態を調整する調整機構と、(e)チャンバ内の流体に光を照射し、流体に含まれる粒子を検出する検出機構と、を備える、粒子検出装置が提供される。   According to an aspect of the present invention, (a) a housing, (b) a chamber disposed inside the housing, and (c) particles are contained in the chamber from the first inlet provided in the housing. Particles are removed into the chamber through a sample introduction path for introducing a fluid and (d) an adjustment path communicating with the chamber from a second inlet different from the first inlet provided in the housing A particle detection mechanism, comprising: an adjustment mechanism for supplying the measured fluid and adjusting a state of the fluid in the chamber; and (e) a detection mechanism for irradiating the fluid in the chamber with light and detecting particles contained in the fluid An apparatus is provided.

また、本発明の態様によれば、(a)筐体に設けられた第1の導入口からサンプル導入流路を介して筐体の内部に配置されたチャンバ内に粒子を含む流体を導入することと、(b)筐体に設けられた第1の導入口とは異なる第2の導入口からチャンバに連通する調整用経路を介してチャンバ内に粒子が除去された流体を供給し、チャンバ内の流体の状態を調整することと、(c)チャンバ内の流体に光を照射し、流体に含まれる粒子を検出することと、を含む、粒子の検出方法が提供される。   According to the aspect of the present invention, (a) a fluid containing particles is introduced from a first introduction port provided in the casing into a chamber disposed inside the casing through the sample introduction channel. And (b) supplying a fluid from which particles have been removed into the chamber through an adjustment path communicating with the chamber from a second inlet different from the first inlet provided in the housing, There is provided a particle detection method comprising: adjusting a state of the fluid in the chamber; and (c) irradiating the fluid in the chamber with light to detect particles contained in the fluid.

本発明によれば、粒子を正確に検出可能な粒子検出装置及び粒子の検出方法を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the particle | grain detection apparatus and particle | grain detection method which can detect particle | grains correctly can be provided.

本発明の第1の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 1st Embodiment of this invention. 本発明の比較例に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the comparative example of this invention. 本発明の第2の実施の形態に係る粒子検出装置の模式図である。It is a schematic diagram of the particle | grain detection apparatus which concerns on the 2nd Embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る粒子検出装置は、図1に示すように、筐体1と、筐体1の内部に配置されたチャンバ2と、チャンバ2に設けられた導入ノズル21と、筐体1に設けられた第1の導入口11とチャンバ2に設けられた導入ノズル21を結ぶ、チャンバ2内に粒子を含む流体を導入するためのサンプル導入経路3と、筐体1に設けられた第1の導入口11とは異なる第2の導入口12からチャンバ2に連通する調整用経路4を介してチャンバ2内に粒子が除去された流体を供給し、チャンバ2内の圧力等の流体の状態を調整する調整機構5と、導入ノズル21から噴出する流体に光を照射し、流体に含まれる粒子を検出する検出機構23と、を備える。
(First embodiment)
As shown in FIG. 1, the particle detection apparatus according to the first embodiment includes a housing 1, a chamber 2 disposed inside the housing 1, an introduction nozzle 21 provided in the chamber 2, and a housing. A sample introduction path 3 for introducing a fluid containing particles into the chamber 2, which connects the first introduction port 11 provided in the body 1 and the introduction nozzle 21 provided in the chamber 2, is provided in the housing 1. The fluid from which the particles have been removed is supplied into the chamber 2 through the adjustment path 4 communicating with the chamber 2 from the second inlet 12 different from the first inlet 11, An adjustment mechanism 5 that adjusts the state of the fluid, and a detection mechanism 23 that irradiates the fluid ejected from the introduction nozzle 21 with light and detects particles contained in the fluid.

筐体1の形状は任意である。筐体1の材料としては、金属及び樹脂等が使用可能であるが、これらに限定されない。チャンバ2の形状及び材料は任意である。ただし、チャンバ2は耐圧性を有することが好ましい。サンプル導入経路3は例えば金属及び樹脂等からなるパイプを備える。   The shape of the housing 1 is arbitrary. As a material of the housing 1, metal, resin, and the like can be used, but are not limited thereto. The shape and material of the chamber 2 are arbitrary. However, the chamber 2 preferably has pressure resistance. The sample introduction path 3 includes a pipe made of, for example, metal and resin.

チャンバ2には導入ノズル21と対向して排出ノズル22が設けられている。また、筐体1には、さらに排出口13が設けられており、チャンバ2の排出ノズル22と筐体1の排出口13を結ぶ、チャンバ2内の流体を筐体1の外部に排出するための排出経路6が設けられている。排出経路6は例えば金属及び樹脂等からなるパイプを備える。排出経路6には、排風機としての排風ポンプ62が設けられている。   A discharge nozzle 22 is provided in the chamber 2 so as to face the introduction nozzle 21. Further, the housing 1 is further provided with a discharge port 13 for discharging the fluid in the chamber 2 connecting the discharge nozzle 22 of the chamber 2 and the discharge port 13 of the housing 1 to the outside of the housing 1. The discharge path 6 is provided. The discharge path 6 includes a pipe made of, for example, metal and resin. The exhaust path 6 is provided with an exhaust pump 62 as an exhaust fan.

排風ポンプ62によって筐体1の第1の導入口11から吸引された筐体1外部の気体等の流体は、サンプル導入経路3及び導入ノズル21を経てチャンバ2内に噴出される。チャンバ2内に噴出された流体は、導入ノズル21に対向して設けられた排出ノズル22を経てチャンバ2から排出され、さらに排出経路6を経て筐体1に設けられた排出口13から筐体1の外部に排出される。   A fluid such as gas outside the housing 1 sucked from the first introduction port 11 of the housing 1 by the exhaust air pump 62 is ejected into the chamber 2 through the sample introduction path 3 and the introduction nozzle 21. The fluid ejected into the chamber 2 is discharged from the chamber 2 through a discharge nozzle 22 provided facing the introduction nozzle 21, and further from a discharge port 13 provided in the case 1 through a discharge path 6. 1 is discharged to the outside.

検出機構23は、導入ノズル21と排出ノズル22の間に形成される気流等の流体の流れに光を照射し、例えば、流体に含まれる粒子で生じる散乱光を検出することにより、粒子の数を検出する。あるいは、検出機構23は、流体に含まれる粒子が発する蛍光を検出することにより、第1の導入口11からチャンバ2内に導入された流体に含まれる粒子の数を検出する。さらに、検出機構23は、単位時間あたりに検出した粒子の数を、単位時間あたりに第1の導入口11から吸引された流体の体積で割って、流体における粒子の濃度を算出する。   The detection mechanism 23 irradiates light to a fluid flow such as an air flow formed between the introduction nozzle 21 and the discharge nozzle 22 and detects the number of particles by detecting, for example, scattered light generated by particles contained in the fluid. Is detected. Alternatively, the detection mechanism 23 detects the number of particles contained in the fluid introduced into the chamber 2 from the first introduction port 11 by detecting fluorescence emitted by the particles contained in the fluid. Further, the detection mechanism 23 calculates the concentration of particles in the fluid by dividing the number of particles detected per unit time by the volume of the fluid sucked from the first inlet 11 per unit time.

ここで、粒子とは、微生物等を含む生体物質、化学物質、ごみ、ちり、及び埃等のダスト等を含む。微生物の例としては細菌及び真菌が含まれる。細菌の例としては、グラム陰性菌及びグラム陽性菌が挙げられる。グラム陰性菌の例としては、大腸菌が挙げられる。グラム陽性菌の例としては、表皮ブドウ球菌、枯草菌、マイクロコッカス、及びコリネバクテリウムが挙げられる。真菌の例としては、黒カビ等のアスペルギルスが挙げられる。ただし、微生物はこれらに限定されない。   Here, the particles include biological substances including microorganisms, chemical substances, dust, dust, and dust such as dust. Examples of microorganisms include bacteria and fungi. Examples of bacteria include gram negative bacteria and gram positive bacteria. Examples of gram-negative bacteria include E. coli. Examples of Gram positive bacteria include Staphylococcus epidermidis, Bacillus subtilis, Micrococcus, and Corynebacterium. Examples of fungi include Aspergillus such as black mold. However, the microorganism is not limited to these.

流体に、微生物等の蛍光性粒子が含まれていると、粒子は光を照射されて蛍光を発する。例えば、微生物に含まれるリボフラビン(riboflavin)、フラビンヌクレオチド(FMN)、フラビンアデニンジヌクレオチド(FAD)、ニコチンアミドアデニンジヌクレオチドリン酸(NAD(P)H)、ピリドキサミン(pyridoxamine)、ピリドキサールリン酸(pyridoxal−5’−phosphate)、ピリドキシン(pyridoxine)、トリプトファン(tryptophan)、チロシン(tyrosine)、及びフェニルアラニン(phenylalanine)等が、蛍光を発する。   If the fluid contains fluorescent particles such as microorganisms, the particles emit light when irradiated with light. For example, riboflavin, flavin nucleotide (FMN), flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD (P) H), pyridoxamine, pyridoxal phosphate (pyridoxal) contained in microorganisms -5'-phosphate, pyridoxine, tryptophan, tyrosine, phenylalanine, and the like emit fluorescence.

例えば、粒子検出装置がクリーンルーム等に配置されている場合、筐体1に設けられた排出口13から筐体1外に排出される流体に粒子が含まれていることは好ましくない場合がある。この場合、排出経路6に、例えばHEPAフィルタ(High Efficiency Particulate Air Filter)等の排風フィルタ61を設けてもよい。   For example, when the particle detection device is arranged in a clean room or the like, it may not be preferable that particles are contained in the fluid discharged from the discharge port 13 provided in the case 1 to the outside of the case 1. In this case, an exhaust air filter 61 such as a HEPA filter (High Efficiency Particulate Air Filter) may be provided in the exhaust path 6.

チャンバ2の導入ノズル21においては、流体は断面積が絞られ、流速が増加し、圧力が低下する。そのため、導入ノズル21と排出ノズル22の間に形成される流体の流れの周りには対流が生じうる。また、チャンバ2内の圧力が低下することにより、排出ノズル22からの流体の排出がスムーズに行えない場合がある。チャンバ2内で対流が生じたり、チャンバ2内の圧力が低下したりすると、チャンバ2内部に粒子が滞留しうる。チャンバ2内部に粒子が滞留すると、検出機構23が同一の粒子を複数回検出しうるため、流体の体積あたりに含まれる粒子の数を正確に検出することが困難になりうる。   In the introduction nozzle 21 of the chamber 2, the cross-sectional area of the fluid is reduced, the flow rate increases, and the pressure decreases. Therefore, convection may occur around the fluid flow formed between the introduction nozzle 21 and the discharge nozzle 22. In addition, due to the pressure in the chamber 2 decreasing, fluid may not be smoothly discharged from the discharge nozzle 22. When convection occurs in the chamber 2 or the pressure in the chamber 2 decreases, particles can stay inside the chamber 2. If particles stay in the chamber 2, the detection mechanism 23 can detect the same particle a plurality of times, so that it may be difficult to accurately detect the number of particles contained per volume of the fluid.

これに対し、第1の実施の形態に係る粒子検出装置は、筐体1に設けられた第1の導入口11とは異なる第2の導入口12からチャンバ2に連通する調整用経路4を介してチャンバ2内に粒子が除去された流体を供給し、チャンバ2内の圧力を加圧等したり、チャンバ2内の流体を整流したりして、チャンバ2内の流体の状態を調整する調整機構5を備えている。これにより、排出ノズル22から粒子を含む流体をスムーズに排出することを可能としている。   On the other hand, the particle detection apparatus according to the first embodiment has an adjustment path 4 that communicates with the chamber 2 from a second introduction port 12 different from the first introduction port 11 provided in the housing 1. The fluid from which particles have been removed is supplied to the chamber 2 through the pressure, the pressure in the chamber 2 is increased, the fluid in the chamber 2 is rectified, and the state of the fluid in the chamber 2 is adjusted. An adjustment mechanism 5 is provided. Thereby, it is possible to smoothly discharge the fluid containing particles from the discharge nozzle 22.

調整用経路4は例えば金属及び樹脂等からなるパイプを備える。調整用経路4には、例えば、第1のフィルタ51、調整ポンプ52、流量計53、及び第2のフィルタ54が設けられている。調整ポンプ52によって、第2の導入口12から吸引された筐体1外部の流体に含まれていた粒子は、第1のフィルタ51及び第2のフィルタ54によって除去される。流量計53は、例えば、単位時間あたりに調整ポンプ52によってチャンバ2に供給される、粒子が除去された流体の体積等の流量を計測する。   The adjustment path 4 includes a pipe made of, for example, metal and resin. In the adjustment path 4, for example, a first filter 51, an adjustment pump 52, a flow meter 53, and a second filter 54 are provided. Particles contained in the fluid outside the housing 1 sucked from the second inlet 12 by the adjustment pump 52 are removed by the first filter 51 and the second filter 54. The flow meter 53 measures the flow rate such as the volume of the fluid from which particles are removed, which is supplied to the chamber 2 by the adjustment pump 52 per unit time, for example.

ここで、本発明の参考例においては、図2に示すように、筐体1に単一の導入口111が設けられており、単一の導入口111に接続された共通経路103に、調整機構105の調整用経路104と、サンプル導入経路3と、が接続されている。調整ポンプ152は、共通経路103から流体の一部を調整用経路104に吸引し、吸引された流体に含まれていた粒子は第1のフィルタ151及び第2のフィルタ154によって除去される。粒子が除去された流体は、チャンバ2内の圧力を加圧等して調整するために、チャンバ2に供給される。   Here, in the reference example of the present invention, as shown in FIG. 2, the housing 1 is provided with a single inlet 111, and the common path 103 connected to the single inlet 111 is adjusted to The adjustment path 104 of the mechanism 105 and the sample introduction path 3 are connected. The adjustment pump 152 sucks a part of the fluid from the common path 103 to the adjustment path 104, and particles contained in the sucked fluid are removed by the first filter 151 and the second filter 154. The fluid from which the particles have been removed is supplied to the chamber 2 in order to adjust the pressure in the chamber 2 by pressurizing or the like.

検出機構123は、単位時間あたりに検出した粒子の数を、単位時間あたりにサンプル導入経路3に吸引された流体の体積で割って、流体における粒子の濃度を算出する。例えば、単一の導入口111から単位時間あたり40Lの流体が吸引され、分岐点200において、10Lの流体が調整用経路104に分配され、30Lの流体がサンプル導入経路3に分配されるとする。この場合、検出機構123は、単位時間あたり検出した粒子の数を、サンプル導入経路3に分配された流体の体積である30Lで割って、粒子の濃度を算出する。   The detection mechanism 123 calculates the concentration of particles in the fluid by dividing the number of particles detected per unit time by the volume of the fluid sucked into the sample introduction path 3 per unit time. For example, 40 L of fluid per unit time is sucked from a single inlet 111, 10 L of fluid is distributed to the adjustment path 104 at the branch point 200, and 30 L of fluid is distributed to the sample introduction path 3. . In this case, the detection mechanism 123 calculates the concentration of particles by dividing the number of particles detected per unit time by 30 L that is the volume of the fluid distributed to the sample introduction path 3.

しかし、分岐点200において、調整用経路104に向かう粒子の数と、サンプル導入経路3に向かう粒子の数の比は、必ずしも、調整用経路104に分配される流体の体積と、サンプル導入経路3に分配される流体の体積の比と一致しない。例えば、調整用経路104に単位時間あたり10Lの流体が分配され、サンプル導入経路3に単位時間あたり30Lの流体が分配された場合、調整用経路104に分配される流体の体積と、サンプル導入経路3に分配される流体の体積の比は1:3である。しかし、分岐点200において、共通経路103と、サンプル導入経路3と、が直線上に配置されていると、粒子は慣性力により、調整用経路104よりもサンプル導入経路3に多く流される傾向にある。そのため、検出機構123で検出した粒子の数を、サンプル導入経路3に分配された流体の体積で割って、流体における粒子の濃度を算出すると、実際の濃度よりも高くなりうることを、本発明者は見出した。   However, the ratio of the number of particles toward the adjustment path 104 and the number of particles toward the sample introduction path 3 at the branch point 200 is not necessarily limited to the volume of the fluid distributed to the adjustment path 104 and the sample introduction path 3. Does not match the ratio of the volume of fluid dispensed into the. For example, when 10 L of fluid per unit time is distributed to the adjustment path 104 and 30 L of fluid per unit time is distributed to the sample introduction path 3, the volume of the fluid distributed to the adjustment path 104 and the sample introduction path The ratio of the volume of fluid distributed to 3 is 1: 3. However, when the common path 103 and the sample introduction path 3 are arranged on a straight line at the branch point 200, particles tend to flow more to the sample introduction path 3 than the adjustment path 104 due to inertial force. is there. For this reason, it is possible to calculate the concentration of particles in the fluid by dividing the number of particles detected by the detection mechanism 123 by the volume of the fluid distributed to the sample introduction path 3, and that the concentration may be higher than the actual concentration. Found.

これに対し、図1に示す第1の実施の形態に係る粒子検出装置においては、調整用経路4がサンプル導入経路3から分岐しておらず、チャンバ2内の圧力調整に用いる流体は、筐体1に設けられた第1の導入口11とは異なる第2の導入口12から吸引される。したがって、調整用経路4がサンプル導入経路3から独立しており、調整用経路4がサンプル導入経路3から分岐等していないため、検出機構123が、単位時間あたりに検出した粒子の数を、単位時間あたりに第1の導入口11から吸引されサンプル導入経路3を流れて来た流体の体積で割って、流体における粒子の濃度を算出しても、誤差が生じない。よって、第1の実施の形態に係る粒子検出装置によれば、流体に含まれる粒子の数や濃度を、正確に検出することが可能となる。   On the other hand, in the particle detector according to the first embodiment shown in FIG. 1, the adjustment path 4 is not branched from the sample introduction path 3, and the fluid used for adjusting the pressure in the chamber 2 is Suction is performed from a second introduction port 12 different from the first introduction port 11 provided in the body 1. Therefore, since the adjustment path 4 is independent of the sample introduction path 3 and the adjustment path 4 is not branched from the sample introduction path 3, the number of particles detected per unit time by the detection mechanism 123 is An error does not occur even if the concentration of particles in the fluid is calculated by dividing the volume of the fluid sucked from the first inlet 11 per unit time and flowing through the sample introduction path 3. Therefore, according to the particle detection apparatus according to the first embodiment, the number and concentration of particles contained in the fluid can be accurately detected.

(第2の実施の形態)
第2の実施の形態に係る粒子検出装置の調整機構5は、図3に示すように、流体としての気体を圧縮する圧縮機55を備える。圧縮機55から送り出された加圧流体としての圧縮気体は、第1のフィルタ51、調圧器56、コントロール弁57、及び第2のフィルタ54を経て、チャンバ2内に送り込まれる。第1のフィルタ51、調圧器56、コントロール弁57、及び第2のフィルタ54は、第2の導入口12を通過する調整用経路4に設けられている。
(Second Embodiment)
As shown in FIG. 3, the adjustment mechanism 5 of the particle detector according to the second embodiment includes a compressor 55 that compresses a gas as a fluid. The compressed gas as the pressurized fluid sent out from the compressor 55 is sent into the chamber 2 through the first filter 51, the pressure regulator 56, the control valve 57, and the second filter 54. The first filter 51, the pressure regulator 56, the control valve 57, and the second filter 54 are provided in the adjustment path 4 that passes through the second introduction port 12.

調整用経路4の調圧器56及びコントロール弁57の間の部分70からは、バイパス経路71が分岐しており、バイパス経路71は排出経路6に合流している。第1のフィルタ51及び第2のフィルタ54は、圧縮気体に含まれる粒子を除去する。調圧器56は、チャンバ2内に供給される圧縮気体の圧力を調節する。コントロール弁57は、調整用経路4と、バイパス経路71と、に分配される圧縮気体の分配比を調整する。   A bypass path 71 branches off from a portion 70 between the pressure regulator 56 and the control valve 57 of the adjustment path 4, and the bypass path 71 merges with the discharge path 6. The first filter 51 and the second filter 54 remove particles contained in the compressed gas. The pressure regulator 56 adjusts the pressure of the compressed gas supplied into the chamber 2. The control valve 57 adjusts the distribution ratio of the compressed gas distributed to the adjustment path 4 and the bypass path 71.

バイパス経路71と排出経路6の合流部には、エジェクタ63が配置されている。バイパス経路71からエジェクタ63に圧縮気体が供給されることにより、エジェクタ63がチャンバ2内の流体を吸引する。第2の実施の形態に係る粒子検出装置によれば、圧縮機55によって、チャンバ2内部への圧縮気体の供給と、チャンバ2内部からの排気と、の両方が行えるため、装置の簡素化や消費エネルギーの低減等が可能となる。   An ejector 63 is disposed at the junction of the bypass path 71 and the discharge path 6. When the compressed gas is supplied from the bypass path 71 to the ejector 63, the ejector 63 sucks the fluid in the chamber 2. According to the particle detector according to the second embodiment, the compressor 55 can perform both supply of compressed gas into the chamber 2 and exhaust from the chamber 2. Energy consumption can be reduced.

(その他の実施の形態)
上記のように本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。例えば、図1及び図3に示す検出機構23は、2つのレーザー光線の間を通過する粒子の飛行時間を測定することにより、粒子の空気動力学径を算出してもよい。このように、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
Although the present invention has been described by the embodiments as described above, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques should be apparent to those skilled in the art. For example, the detection mechanism 23 shown in FIGS. 1 and 3 may calculate the aerodynamic diameter of a particle by measuring the time of flight of the particle passing between two laser beams. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.

1 筐体
2 チャンバ
3 サンプル導入経路
4 調整用経路
5 調整機構
6 排出経路
11 第1の導入口
12 第2の導入口
13 排出口
21 導入ノズル
22 排出ノズル
23 検出機構
51 第1のフィルタ
52 調整ポンプ
53 流量計
54 第2のフィルタ
55 圧縮機
56 調圧器
57 コントロール弁
61 排風フィルタ
62 排風ポンプ
63 エジェクタ
70 部分
71 バイパス経路
103 共通経路
104 調整用経路
105 調整機構
111 導入口
123 検出機構
151 第1のフィルタ
152 調整ポンプ
154 第2のフィルタ
200 分岐点
DESCRIPTION OF SYMBOLS 1 Housing | casing 2 Chamber 3 Sample introduction path | route 4 Adjustment path | route 5 Adjustment mechanism 6 Discharge path | route 11 1st introduction port 12 2nd introduction port 13 Discharge port 21 Introduction nozzle 22 Discharge nozzle 23 Detection mechanism 51 1st filter 52 Adjustment Pump 53 Flow meter 54 Second filter 55 Compressor 56 Pressure regulator 57 Control valve 61 Exhaust filter 62 Exhaust pump 63 Ejector 70 Part 71 Bypass path 103 Common path 104 Adjustment path 105 Adjustment mechanism 111 Inlet 123 Detection mechanism 151 First filter 152 Regulating pump 154 Second filter 200 Branch point

Claims (18)

筐体と、
前記筐体の内部に配置されたチャンバと、
前記筐体に設けられた第1の導入口から前記チャンバ内に粒子を含む流体を導入するためのサンプル導入経路と、
前記筐体に設けられた前記第1の導入口とは異なる第2の導入口から前記チャンバに連通する調整用経路を介して前記チャンバ内に粒子が除去された流体を供給し、前記チャンバ内の流体の状態を調整する調整機構と、
前記チャンバ内の前記流体に光を照射し、前記流体に含まれる粒子を検出する検出機構と、
を備える、粒子検出装置。
A housing,
A chamber disposed within the housing;
A sample introduction path for introducing a fluid containing particles into the chamber from a first introduction port provided in the housing;
A fluid from which particles have been removed is supplied into the chamber from a second introduction port different from the first introduction port provided in the housing via an adjustment path communicating with the chamber. An adjustment mechanism for adjusting the fluid state of
A detection mechanism for irradiating the fluid in the chamber with light and detecting particles contained in the fluid;
A particle detector.
前記検出機構が、前記第1の導入口から前記チャンバ内に導入された流体の体積あたりの前記粒子の数を検出する、請求項1に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the detection mechanism detects the number of particles per volume of fluid introduced into the chamber from the first introduction port. 前記調整機構が、
前記チャンバ内に前記流体を供給するための調整ポンプと、
前記流体に含まれる粒子を除去するためのフィルタと、
を備える、請求項1又は2に記載の粒子検出装置。
The adjustment mechanism is
A regulating pump for supplying the fluid into the chamber;
A filter for removing particles contained in the fluid;
The particle | grain detection apparatus of Claim 1 or 2 provided with these.
前記チャンバに設けられた、前記サンプル導入経路に接続された導入ノズルと、
前記チャンバに前記導入ノズルと対向して設けられた排出ノズルと、
前記筐体に設けられた排出口と、前記排出ノズルと、を結ぶ、前記チャンバ内の流体を前記筐体の外部に排出するための排出経路と、
を更に備える、請求項1ないし3のいずれか1項に記載の粒子検出装置。
An introduction nozzle provided in the chamber and connected to the sample introduction path;
A discharge nozzle provided in the chamber facing the introduction nozzle;
A discharge path for discharging the fluid in the chamber to the outside of the casing, connecting the discharge port provided in the casing and the discharge nozzle;
The particle | grain detection apparatus of any one of Claim 1 thru | or 3 further equipped with these.
前記調整用経路から分岐し、前記排出経路に合流するバイパス経路を更に備え、
前記バイパス経路と前記排出経路の合流部にエジェクタが配置され、
前記バイパス経路から前記エジェクタに加圧流体が供給されることにより、前記エジェクタが前記チャンバ内の流体を吸引する、請求項4に記載の粒子検出装置。
A bypass path that branches off from the adjustment path and joins the discharge path;
An ejector is disposed at the junction of the bypass path and the discharge path,
The particle detection apparatus according to claim 4, wherein the ejector sucks the fluid in the chamber by supplying pressurized fluid from the bypass path to the ejector.
前記調整機構が、前記チャンバ内の圧力を調整する、請求項1ないし5のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the adjustment mechanism adjusts the pressure in the chamber. 前記調整機構が、前記チャンバ内を整流する、請求項1ないし6のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the adjustment mechanism rectifies the inside of the chamber. 前記検出機構が前記粒子で生じる散乱光を検出する、請求項1ないし7のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the detection mechanism detects scattered light generated in the particles. 前記検出機構が前記粒子が発する蛍光を検出する、請求項1ないし8のいずれか1項に記載の粒子検出装置。   The particle detection apparatus according to claim 1, wherein the detection mechanism detects fluorescence emitted by the particles. 筐体に設けられた第1の導入口からサンプル導入路を介して前記筐体の内部に配置されたチャンバ内に粒子を含む流体を導入することと、
前記筐体に設けられた前記第1の導入口とは異なる第2の導入口から前記チャンバに連通する調整用経路を介して前記チャンバ内に粒子が除去された流体を供給し、前記チャンバ内の流体の状態を調整することと、
前記チャンバ内の前記流体に光を照射し、前記流体に含まれる粒子を検出することと、
を含む、粒子の検出方法。
Introducing a fluid containing particles into a chamber disposed inside the casing through a sample introduction path from a first inlet provided in the casing;
A fluid from which particles have been removed is supplied into the chamber from a second introduction port different from the first introduction port provided in the housing via an adjustment path communicating with the chamber. Adjusting the fluid state of the
Irradiating the fluid in the chamber with light to detect particles contained in the fluid;
A method for detecting particles, comprising:
前記流体に含まれる粒子を検出することにおいて、前記第1の導入口から前記チャンバ内に導入された流体の体積あたりの前記粒子の数を検出する、請求項10に記載の粒子の検出方法。   The particle detection method according to claim 10, wherein in detecting particles contained in the fluid, the number of particles per volume of the fluid introduced into the chamber from the first introduction port is detected. 前記調整用経路を介して前記チャンバ内に粒子が除去された流体を供給することにおいて、調整ポンプが用いられ、
前記調整用経路に、前記粒子を除去するためのフィルタが設けられている、
請求項10又は11に記載の粒子の検出方法。
In supplying the fluid from which particles have been removed into the chamber via the adjustment path, an adjustment pump is used,
The adjustment path is provided with a filter for removing the particles,
The method for detecting particles according to claim 10 or 11.
前記チャンバに、前記サンプル導入経路に接続された導入ノズルが設けられており、
前記チャンバに前記導入ノズルと対向して設けられた排出ノズルと、前記筐体に設けられた排出口と、を結ぶ排出経路を介して、前記チャンバ内の流体を前記筐体の外部に排出することを更に含む、請求項10ないし12のいずれか1項に記載の粒子の検出方法。
The chamber is provided with an introduction nozzle connected to the sample introduction path;
The fluid in the chamber is discharged to the outside of the casing through a discharge path connecting a discharge nozzle provided in the chamber so as to face the introduction nozzle and a discharge port provided in the casing. The particle detection method according to claim 10, further comprising:
前記調整用経路から分岐し、前記排出経路にエジェクタを介して合流するバイパス経路に加圧流体を供給することと、
前記エジェクタが前記チャンバ内の流体を吸引することと、
を更に含む、請求項13に記載の粒子の検出方法。
Supplying pressurized fluid to a bypass path branched from the adjustment path and joined to the discharge path via an ejector;
The ejector aspirates fluid in the chamber;
The particle detection method according to claim 13, further comprising:
前記チャンバ内の流体の状態を調整することにおいて、前記チャンバ内の圧力を調整する、請求項10ないし14のいずれか1項に記載の粒子の検出方法。   The particle detection method according to claim 10, wherein the pressure in the chamber is adjusted in adjusting the state of the fluid in the chamber. 前記チャンバ内の流体の状態を調整することにおいて、前記チャンバ内を整流する、請求項10ないし15のいずれか1項に記載の粒子の検出方法。   The particle detection method according to any one of claims 10 to 15, wherein the inside of the chamber is rectified by adjusting a state of a fluid in the chamber. 前記粒子を検出することにおいて、前記粒子で生じる散乱光を検出する、請求項10ないし16のいずれか1項に記載の粒子の検出方法。   The particle detection method according to claim 10, wherein in detecting the particle, scattered light generated in the particle is detected. 前記粒子を検出することにおいて、前記粒子が発する蛍光を検出する、請求項10ないし17のいずれか1項に記載の粒子の検出方法。   The particle detection method according to claim 10, wherein in detecting the particle, fluorescence emitted from the particle is detected.
JP2013105318A 2013-05-17 2013-05-17 Particle detection device and particle detection method Pending JP2014228276A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013105318A JP2014228276A (en) 2013-05-17 2013-05-17 Particle detection device and particle detection method
EP14167907.6A EP2803971B1 (en) 2013-05-17 2014-05-12 Particle detecting device and particle detecting method
CN201410206025.7A CN104165826B (en) 2013-05-17 2014-05-15 Device for detecting particles and particle detecting method
US14/279,651 US9297740B2 (en) 2013-05-17 2014-05-16 Particle detecting device and particle detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105318A JP2014228276A (en) 2013-05-17 2013-05-17 Particle detection device and particle detection method

Publications (1)

Publication Number Publication Date
JP2014228276A true JP2014228276A (en) 2014-12-08

Family

ID=50729362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105318A Pending JP2014228276A (en) 2013-05-17 2013-05-17 Particle detection device and particle detection method

Country Status (3)

Country Link
US (1) US9297740B2 (en)
EP (1) EP2803971B1 (en)
JP (1) JP2014228276A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219488A (en) * 2016-06-09 2017-12-14 アズビル株式会社 Particle detector and method of controlling particle detector
JP2020533592A (en) * 2017-09-14 2020-11-19 センシリオン アーゲーSensirion AG Particulate matter sensor device
WO2023203848A1 (en) * 2022-04-22 2023-10-26 Ckd株式会社 Particle detection device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456605B2 (en) 2014-05-28 2019-01-23 アズビル株式会社 Particle detector
JP6475069B2 (en) * 2015-04-23 2019-02-27 アズビル株式会社 Particle detection apparatus and particle detection method
DK3781929T3 (en) * 2018-04-20 2022-09-12 Flo2R Aps Gas analyzer system
CN109406326A (en) * 2018-12-26 2019-03-01 内蒙古工业大学 The detection system of abrasion test device and mechanical part

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787122A (en) * 1973-01-05 1974-01-22 Wehr Corp Light scattering particle analyzer
JPS61278734A (en) * 1985-06-03 1986-12-09 Hitachi Electronics Eng Co Ltd Corpuscle detecting device
JPH07140060A (en) * 1993-11-17 1995-06-02 Hitachi Electron Eng Co Ltd Microparticle detector
JPH09145592A (en) * 1995-11-24 1997-06-06 Horiba Ltd Measuring apparatus for dry particle-size-distribution
JPH09159597A (en) * 1995-12-04 1997-06-20 Nikkiso Co Ltd Particle size distribution measuring device of powder
JP2003156428A (en) * 2001-11-21 2003-05-30 Hitachi Electronics Eng Co Ltd Fine particulate detector
JP2005308414A (en) * 2004-04-16 2005-11-04 Meisei Electric Co Ltd Floating substance detector
US20060065860A1 (en) * 2004-09-27 2006-03-30 Jones Michael L Apparatus for monitoring engine exhaust
JP2012127773A (en) * 2010-12-15 2012-07-05 Shimadzu Corp Particulate number measuring device

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1673068B2 (en) 1966-07-16 1976-07-01 Veba-Chemie Ag, 4660 Gelsenkirchen-Buer DEVICE FOR APPLYING A GAS ANALYZER, IN PARTICULAR A GAS CHROMATOGRAPH, WITH A PARTIAL QUANTITY OF A MAIN GAS FLOW
FR1529083A (en) * 1966-07-16 1968-06-14 Scholven Chemie Ag Sample divider device for gas analyzers
US4113386A (en) * 1976-09-20 1978-09-12 Climet Instruments Company Photometer
US5245405A (en) * 1990-05-11 1993-09-14 Boc Health Care, Inc. Constant pressure gas cell
US6211956B1 (en) * 1998-10-15 2001-04-03 Particle Sizing Systems, Inc. Automatic dilution system for high-resolution particle size analysis
AU4577900A (en) * 1999-04-20 2000-11-02 Secretary Of State For Defence, The Apparatus to detect shape, size and fluorescence of fluidborne particles
FR2810098B1 (en) * 2000-06-13 2004-04-23 Inst Francais Du Petrole VISUALIZATION DEVICE ADAPTABLE TO A PIPELINE OR FLUID LOADED WITH SOLID PARTICLES
US6714299B2 (en) * 2001-07-13 2004-03-30 Genicon Sciences Corporation Use of light scattering particles in design, manufacture, and quality control of small volume instruments, devices, and processes
US7300631B2 (en) * 2005-05-02 2007-11-27 Bioscale, Inc. Method and apparatus for detection of analyte using a flexural plate wave device and magnetic particles
JP4987515B2 (en) 2007-03-08 2012-07-25 能美防災株式会社 smoke detector
ITTO20080104A1 (en) * 2008-02-08 2009-08-09 Silicon Biosystems Spa APPARATUS AND METHOD FOR THE COUNTING AND IDENTIFICATION OF PARTICLES OF INTEREST IN A FLUID
JP2011083214A (en) 2009-10-14 2011-04-28 Sharp Corp Microorganism detection apparatus and detection method
DE102010002424A1 (en) * 2010-02-26 2011-09-01 Robert Bosch Gmbh Device for measuring a particle concentration in automotive exhaust gases
US8284398B2 (en) * 2010-06-24 2012-10-09 Met One Instruments, Inc. Nephelometer with concentration-modulated sample flow
CN104246475B (en) * 2012-03-22 2016-04-13 阿自倍尔株式会社 For detecting the equipment of the improvement of particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787122A (en) * 1973-01-05 1974-01-22 Wehr Corp Light scattering particle analyzer
JPS61278734A (en) * 1985-06-03 1986-12-09 Hitachi Electronics Eng Co Ltd Corpuscle detecting device
JPH07140060A (en) * 1993-11-17 1995-06-02 Hitachi Electron Eng Co Ltd Microparticle detector
JPH09145592A (en) * 1995-11-24 1997-06-06 Horiba Ltd Measuring apparatus for dry particle-size-distribution
JPH09159597A (en) * 1995-12-04 1997-06-20 Nikkiso Co Ltd Particle size distribution measuring device of powder
JP2003156428A (en) * 2001-11-21 2003-05-30 Hitachi Electronics Eng Co Ltd Fine particulate detector
JP2005308414A (en) * 2004-04-16 2005-11-04 Meisei Electric Co Ltd Floating substance detector
US20060065860A1 (en) * 2004-09-27 2006-03-30 Jones Michael L Apparatus for monitoring engine exhaust
JP2012127773A (en) * 2010-12-15 2012-07-05 Shimadzu Corp Particulate number measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017219488A (en) * 2016-06-09 2017-12-14 アズビル株式会社 Particle detector and method of controlling particle detector
WO2017212914A1 (en) * 2016-06-09 2017-12-14 アズビル株式会社 Particle detection device and method for controlling particle detection device
US10761008B2 (en) 2016-06-09 2020-09-01 Azbil Corporation Particle detecting device and control method for the particle detecting device
JP2020533592A (en) * 2017-09-14 2020-11-19 センシリオン アーゲーSensirion AG Particulate matter sensor device
JP7179057B2 (en) 2017-09-14 2022-11-28 センシリオン アーゲー Particulate matter sensor device
US11898953B2 (en) 2017-09-14 2024-02-13 Sensirion Ag Particulate matter sensor device
US11940370B2 (en) 2017-09-14 2024-03-26 Sensirion Ag Particulate matter sensor device
WO2023203848A1 (en) * 2022-04-22 2023-10-26 Ckd株式会社 Particle detection device

Also Published As

Publication number Publication date
US20140340681A1 (en) 2014-11-20
US9297740B2 (en) 2016-03-29
EP2803971A3 (en) 2015-01-28
CN104165826A (en) 2014-11-26
EP2803971A2 (en) 2014-11-19
EP2803971B1 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP2014228276A (en) Particle detection device and particle detection method
US10092873B2 (en) Air cleaning system and method of controlling the same
CN107073535B (en) For exporting the device of exhaust gas around metal tape
MY139703A (en) Oxygen concentrating apparatus.
JP6076680B2 (en) Method and apparatus for distinguishing insoluble impurities
FI20115272A0 (en) DEVICE FOR CHECKING PARTICLES
JP5993704B2 (en) Method and apparatus for identifying particles in air-liquid
CN109313118B (en) Particle detection device and control method for particle detection device
JP6138037B2 (en) Particle detection apparatus and particle detection method
JP5993752B2 (en) Particle detection system and particle detection method
CN211122431U (en) Biological aerosol detection device
JP2002022643A (en) Particle size distribution-measuring apparatus
CN110281744A (en) Air quality detecting device and its detection method
JP6125444B2 (en) Microorganism detection system and microorganism detection method
JP5923016B2 (en) Microorganism detection system and microorganism detection method
CN104165826B (en) Device for detecting particles and particle detecting method
JP6456605B2 (en) Particle detector
JP6227425B2 (en) Method for comparing fluorescence intensity of multiple types of particles and method for evaluating fluorescence detector
JP5638025B2 (en) Microbial rapid measurement method and capture device
TWM583543U (en) Particle detection device
TWI831470B (en) Particle measuring device
JP2007322296A (en) Differential pressure detection device
JP3915534B2 (en) Dry particle size analyzer
JP6779106B2 (en) Particle detection system and particle detection method
JP2003156428A (en) Fine particulate detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170928