JP3915534B2 - Dry particle size analyzer - Google Patents

Dry particle size analyzer Download PDF

Info

Publication number
JP3915534B2
JP3915534B2 JP2002030934A JP2002030934A JP3915534B2 JP 3915534 B2 JP3915534 B2 JP 3915534B2 JP 2002030934 A JP2002030934 A JP 2002030934A JP 2002030934 A JP2002030934 A JP 2002030934A JP 3915534 B2 JP3915534 B2 JP 3915534B2
Authority
JP
Japan
Prior art keywords
measured
measurement
optical system
particle size
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002030934A
Other languages
Japanese (ja)
Other versions
JP2003232714A (en
Inventor
秋博 深井
慎一郎 十時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2002030934A priority Critical patent/JP3915534B2/en
Publication of JP2003232714A publication Critical patent/JP2003232714A/en
Application granted granted Critical
Publication of JP3915534B2 publication Critical patent/JP3915534B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ回折・散乱式の粒度分布測定装置に関し、更に詳しくは、被測定粒子群を分散させる分散媒として空気を用いた、いわゆる乾式のレーザ回折・散乱式粒度分布測定装置に関する。
【0002】
【従来の技術】
レーザ回折・散乱式粒度分布測定法においては、一般に、分散飛翔状態の被測定粒子群にレーザ光を照射することによって生じる回折・散乱光の空間強度分布を測定し、その光強度分布がミーの散乱理論ないしはフラウンホーファ回折理論に則ることを利用し、回折・散乱光の空間強度分布の測定結果からミーの散乱理論ないしはフラウンホーファ回折理論に基づく演算によって被測定粒子群の粒度分布を算出する。
【0003】
従来のこの種の粒度分布測定法においては、被測定粒子群を分散させるための媒体として液体を用いて懸濁液状態とする湿式測定と、気体を用いてエアロゾル状態とする乾式測定が知られている。乾式測定は、薬品などの液体に溶けやすい粉粒体の測定に主として用いられる。
【0004】
乾式測定を行うための従来のレーザ回折・散乱式粒度分布測定装置では、被測定粒子群にレーザ光を照射する照射光学系と、そのレーザ光の照射により生じる回折・散乱光の空間強度分布を測定する測定光学系との間に、被測定粒子群をエアロゾル状にして供給する装置として、以下に示すような方式のものが採用されている。
【0005】
その一つは、回転が与えられる円盤状の試料台の表面に、その回転中心を中心とする円弧に沿って溝を設けるとともに、その試料台に隣接して吸引装置を配置して、その吸引口を溝上に臨ませた状態で固定した構成により、測定に先立って溝内に投入しておいた被測定粒子群を試料台の回転により順次吸引口の下方に供給し、吸引口から吸引された被測定粒子群を配管を通じて照射光学系と測定光学系の間の測定空間に向けて開口する分散ノズルに誘導して、その分散ノズルから測定空間にエアロゾル状に被測定粒子群を供給する方式である。なお、溝を直線状として、直線的な運動によって溝内の被測定粒子群を順次吸引していくものもある。
【0006】
また、他の一つは、照射光学系と測定光学系の間の測定空間の上方に被測定粒子群を投入するためのホッパを設け、そのホッパの下端部と測定空間とを閉じられた通路で連通させ、その通路の一端側から被測定粒子群を吸引することによって、ホッパ内の被測定粒子群を順次測定空間に被測定粒子群をエアロゾル状に供給する方式である。
【0007】
【発明が解決しようとする課題】
ところで、以上のような従来の乾式のレーザ回折・散乱式粒度分布測定装置においては、いずれも、被測定粒子群を試料台上の溝内やホッパ内にセットする必要があるため、その作業に手間と時間が掛かるという問題がある。また、被測定粒子群を試料台やホッパにセットする際に粒子群がこぼれる可能性があり、無駄な試料が発生するという問題もある。更に、粒子群によっては簡単には試料台等にセットできない状態にあるものもあり、このような粒子群については従来のこの種の測定装置では測定できない場合もあった。
【0008】
更にまた、ある種類の試料の測定を完了した後、引き続いてそれとは異なる種類の試料の測定を行うに際して、試料台やホッパを清掃する必要があり、特にホッパ内に投入した被測定粒子群を閉じられた通路を介して吸引する方式ではその清掃が困難であるという問題がある。
【0009】
本発明とこのような実情に鑑みてなされたもので、被測定粒子群を試料台やホッパにセットすることなく、従って手間を掛けることなく、かつ、セット時にこぼれて無駄にすることなく、容易に粒度分布測定を行うことでき、しかも、手元操作で被測定粒子の吸引・測定が可能となり、使用の利便性を大幅に向上させることのできる乾式粒度分布測定装置の提供を目的としている。
【0010】
【課題を解決するための手段】
上記の目的を達成するため、本発明の乾式粒度分布測定装置は、分散飛翔状態の被測定粒子群にレーザ光を照射する照射光学系と、そのレーザ光の被測定粒子群による回折・散乱光の空間強度分布を測定する測定光学系と、その測定結果から被測定粒子群の粒度分布を算出する演算手段を備えるとともに、上記照射光学系と測定光学系の間の測定空間に、エジェクタに対して圧縮空気を供給することにより生じる吸引力を利用した吸引手段により被測定粒子群を吸引してノズルを介してエアロゾル状態で供給する乾式粒度分布測定装置において、
上記吸引手段の被測定粒子群の吸引口が、上記測定空間に向けて開口するように固定されたノズルに対し、フレキシブルチューブを介して移動自在に接続されているとともに、上記吸引手段のエジェクタに供給する圧縮空気の開閉弁を兼ね、かつ、上記測定空間にエアロゾル状に供給される被測定粒子群の濃度を調整するための圧力調整弁が、上記吸引口と一体に設けられていることによって特徴づけられる。
【0011】
本発明は、被測定粒子群を吸引して測定空間に導く吸引口を、従来のように試料台の上方等に固定配置するのではなく、自由に移動できるように構成し、任意の位置に存在する試料を吸引して測定空間に導けるように構成するとともに、その吸引口に一体に、エジェクタを主体とする吸引手段による被測定粒子群の吸引の開始/停止と、エアロゾル状に供給される被測定粒子群の濃度を調整するための圧力調整を含む吸引動作を制御するための操作部を設けることにより、所期の目的を達成しようとするものである。
【0012】
すなわち、照射光学系と測定光学系の間の測定空間に向けて被測定試料群をエアロゾル状に噴射するように固定されたノズルに対し、被測定試料群を吸引して当該ノズルに導くためのエジェクタを用いた吸引手段の吸引口を、フレキシブルチューブを介して移動自在に接続した構成を採用することで、任意の位置にある試料を吸引して測定空間に導くことができる。具体的には、例えば被測定粒子群が入っている容器から直接吸引して粒度分布を測定することが可能となり、被測定粒子群を試料台やホッパにセットするための手間と時間を大幅に省略することができるとともに、試料台やホッパに被測定粒子群をセットする際にこぼれることによる無駄の発生を防止することができ、更には試料台等にセットできない被測定試料群であっても吸引口を移動させて吸引することにより、粒度分布の測定が可能となる。更には、試料台やホッパ等を使用する必要がないが故に、その清掃作業も不要となる。
【0013】
しかも、被測定粒子群の吸引の開始/停止を含めた吸引動作の制御のための操作部、具体的には、吸引圧を生むエジェクタに対する圧縮空気の開閉弁を兼ね、かつ、測定空間にエアロゾル状に供給される被測定粒子群の濃度を調整するための圧力調整弁を吸引口と一体に設けていることにより、任意の位置にある試料を吸引すべく吸引口を移動させた状態で、その場での手元操作により被測定粒子群の吸引および被測定粒子群の濃度調整の制御を行うことが可能となり、使用の利便性を大幅に向上させることができる。
【0014】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、光学系並びに粒子サンプリング・分散系の構成を表す模式図と、電気的構成を表すブロック図とを併記して示す図である。
【0015】
照射光学系1は、レーザ光源1a,集光レンズ1b、空間フィルタ1cおよびコリメータレンズ1dからなり、後述する粒子サンプリング・分散系6により被測定粒子群Pがエアロゾル状態で供給される測定空間Aに向けて平行なレーザ光を照射する。
【0016】
測定空間Aを挟んで照射光学系1と反対側には、集光レンズ2aおよびその焦点位置に置かれたリングディテクタ2bを主体とする測定光学系2が配置されている。リングディテクタ2bは、互いに半径の異なるリング状ないしは半リング状あるいは1/4リング状の受光面を有する複数の光センサを同心上に配置した光センサアレイであって、その各光センサの出力は、測定空間A内に供給されたエアロゾル状の被測定粒子群Pによるレーザ光の回折・散乱光のうち、集光レンズ2aにより集光された前方所定角度範囲の回折・散乱光の角度ごとの強度信号を表し、従ってこの測定光学系2によって、測定空間A内で分散飛翔状態にある被測定粒子群Pによる回折・散乱光の空間強度分布が測定されることになる。なお、この図においては、測定光学系2の光センサとしてリングディテクタ2bのみを図示しているが、これに加えて、より広い角度範囲で回折・散乱光の空間強度分布を測定する必要のある場合には、必要な散乱角度に対応して単体の光センサをそれぞれ配置し、前方広角度散乱光センサ、側方散乱光センサおよび後方散乱光センサとして回折・散乱光の空間強度分布の測定に供することもできる。
【0017】
以上の測定光学系2による各回折・散乱角度ごとの光強度検出信号は、それぞれのアンプ並びにA−D変換器を有してなるデータサンプリング回路3によって増幅されたうえでデジタル化され、回折・散乱光の空間強度分布データとしてコンピュータ4に取り込まれる。
【0018】
コンピュータ4では、その回折・散乱光の空間強度分布データを用いて、レーザ回折・散乱式の粒度分布測定装置において公知の、ミーの散乱理論およびフラウンホーファの回折理論に基づく演算手法により、レーザ光が回折・散乱した原因粒子である被測定粒子群Pの粒度分布を算出する。
【0019】
上記した照射光学系1および測定光学系2は、これらの間の測定空間Aを含めて遮光のためのケース5内に収容されており、そのケース5内の測定空間A内に、粒子サンプリング・分散系6により被測定粒子群Pがエアロゾル状態で供給される。
【0020】
粒子サンプリング・分散系6は、測定空間Aに向けて照射光学系1の光軸に直交する姿勢でケース5に固定された分散ノズル6aと、圧縮空気源(図示せず)からの高圧空気が供給されることによって内部の吸い込み室に真空を発生させるエジェクタ6bと、そのエジェクタ6bの吸気ポートに一端が連通し、他端が開口する吸引口6cと、そのエジェクタ6bの排気ポートと分散ノズル6aとを連通させる十分な長さを有するのフレキシブルチューブ6dを主体として構成されている。
【0021】
エジェクタ6bに高圧空気を供給するための配管もフレキシブルチューブ6eとされており、このフレキシブルチューブ6eとエジェクタ6bの高圧空気供給ポートとの間には、開閉弁を兼ねた圧力調整弁7が装着されている。
【0022】
また、前記したケース5には、分散ノズル6aに対向して集塵機(図示せず)に連通する吸い込み口8が設けられている。
【0023】
以上の本発明の実施の形態を使用するとき、エジェクタ6b並びに吸引口6cを手で持って、例えば図示のように被測定試料群Pを収容した容器V内に吸引口6cを臨ませ、圧力調整弁7を操作して被測定試料群Pを吸引する。これにより、被測定試料群Pはフレキシブルチューブ6d内を通って分散ノズル6aから測定空間Aに向けてエアロゾル状に噴射され、照射光学系1からのレーザ光が被測定粒子群Pにより回折・散乱する。この回折・散乱光の空間強度分布が測定光学系2によって測定され、その測定結果がコンピュータ4に取り込まれて被測定粒子群Pの粒度分布に換算される。また、測定空間Aに向けて供給された被測定粒子群Pは、分散ノズル6aに対向配置された吸い込み口8から集塵機に導かれ、その内部のフィルタに捕捉される。
【0024】
以上の実施の形態において特に注目すべき点は、エジェクタ6bおよび吸引口6cを任意に移動させることができる点であり、これにより、図1に示すような任意の容器V等に被測定試料Pを収容した状態で粒度分布測定に供することができる。このとき、被測定粒子群Pの吸引量、換言すればエアロゾル状に測定空間Aに供給される被測定粒子群Pの濃度は、エジェクタ6bに供給する高圧空気の圧力に依存するが、その高圧空気の圧力調整弁7がエジェクタ6bおよび吸引口6cに一体的に装着されているので、その操作も簡単である。
【0025】
【発明の効果】
以上のように、本発明によれば、被測定粒子群をエアロゾル状にノズルから測定空間に供給して回折・散乱光の空間強度分布を測定する乾式のレーザ回折・散乱式粒度分布測定装置において、被測定粒子群の吸引口を、ノズルに対して自由に移動できるように構成しているので、任意の容器などに収容された被測定粒子群を直接的に吸引して測定に供したり、あるいは粉粒体の製造ライン内の任意の位置にある粒子群を直接吸引して粒度分布の測定を行うことができる。その結果、従来のように試料台上の溝やホッパ内に被測定粒子群をセットする手間と時間を省略することができるとともに、そのセットの際に発生する可能性のあった粒子群の無駄をなくすることができ、より少量の試料で粒度分布を測定することができる。また、試料台等にセットできない状態にある粒子群についても粒度分布の測定が可能となる。
【0026】
更に、異なる種類の粒子の測定に際して試料台やホッパなどを清掃する作業が不要となり、粒子の種類ごとに容器を用意するだけで連続して測定を行うことができ、前記した被測定粒子群の試料台等へのセットが不要なことと併せて、測定に要する労力を大幅に軽減させることができると同時に、所要時間も大幅に短縮することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の構成図で、光学系並びに粒子サンプリング・分散系の構成を表す模式図と、電気的構成を表すブロック図とを併記して示す図である。
【符号の説明】
1 照射光学系
2 測定光学系
3 データサンプリング回路
4 コンピュータ
5 ケース
6 粒子サンプリング・分散系
6a 分散ノズル
6b エジェクタ
6c 吸引口
6d フレキシブルチューブ
7 圧力調整弁
A 測定空間
P 被測定粒子群
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laser diffraction / scattering particle size distribution measuring apparatus, and more particularly to a so-called dry laser diffraction / scattering particle size distribution measuring apparatus using air as a dispersion medium for dispersing a group of particles to be measured.
[0002]
[Prior art]
In the laser diffraction / scattering particle size distribution measurement method, generally, the spatial intensity distribution of diffracted / scattered light generated by irradiating a group of particles in a dispersed flight state with laser light is measured. Using the scattering theory or the Fraunhofer diffraction theory, the particle size distribution of the particle group to be measured is calculated from the measurement result of the spatial intensity distribution of the diffracted / scattered light by calculation based on the Mie scattering theory or the Fraunhofer diffraction theory.
[0003]
In this type of conventional particle size distribution measurement method, there are known wet measurement in which a liquid is used as a medium for dispersing the particles to be measured in a suspension state and dry measurement in which a gas is used in an aerosol state. ing. The dry measurement is mainly used for measuring a granular material that is easily dissolved in a liquid such as a medicine.
[0004]
A conventional laser diffraction / scattering particle size distribution analyzer for dry measurement uses an irradiation optical system that irradiates laser light onto a group of particles to be measured, and the spatial intensity distribution of the diffracted / scattered light generated by the laser light irradiation. As a device for supplying the particles to be measured in the form of an aerosol between the measuring optical system to be measured, the following system is employed.
[0005]
One of them is to provide a groove on the surface of a disk-shaped sample table to which rotation is provided along an arc centered on the center of rotation, and to place a suction device adjacent to the sample table. With the configuration in which the mouth faces the groove, the particles to be measured that have been placed in the groove prior to measurement are sequentially supplied to the lower part of the suction port by the rotation of the sample stage, and are sucked from the suction port. System that guides the measured particle group through a pipe to a dispersion nozzle that opens toward the measurement space between the irradiation optical system and the measurement optical system, and supplies the measurement particle group in an aerosol form from the dispersion nozzle to the measurement space It is. In some cases, the groove is linear, and the particles to be measured in the groove are sequentially sucked by a linear motion.
[0006]
The other is a path in which a hopper for introducing a group of particles to be measured is provided above the measurement space between the irradiation optical system and the measurement optical system, and the lower end of the hopper and the measurement space are closed. In this method, the particles to be measured in the hopper are sequentially supplied to the measurement space in an aerosol form by sucking the particles to be measured from one end of the passage.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional dry laser diffraction / scattering type particle size distribution measuring apparatus as described above, it is necessary to set the particles to be measured in a groove on a sample table or in a hopper. There is a problem that it takes time and effort. In addition, there is a problem that the particle group may be spilled when the particle group to be measured is set on the sample stage or the hopper, and a wasteful sample is generated. Further, some particle groups cannot be easily set on a sample stage or the like, and such particle groups may not be measured by this type of conventional measuring apparatus.
[0008]
Furthermore, after completing the measurement of a sample of a certain type, it is necessary to clean the sample stage and the hopper when measuring a sample of a different type, and in particular, the group of particles to be measured put into the hopper. There is a problem that it is difficult to clean the suction method through the closed passage.
[0009]
The present invention has been made in view of such circumstances, and it is easy to set the particle group to be measured on the sample stage or the hopper, and thus without taking time and without spilling and wasting at the time of setting. can perform a two-particle size distribution measurement, moreover, it is possible to suction and measurement of the particles to be measured by hand operation, and aims to provide a can Ru dry particle size distribution measuring apparatus to significantly improve the convenience of use .
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the dry particle size distribution measuring apparatus of the present invention comprises an irradiation optical system for irradiating laser light to a group of particles in a dispersed flight state, and diffraction / scattered light of the laser beam by the group of particles to be measured. A measurement optical system for measuring the spatial intensity distribution of the sample, and a calculation means for calculating the particle size distribution of the group of particles to be measured from the measurement results, and in the measurement space between the irradiation optical system and the measurement optical system, In the dry particle size distribution measuring apparatus, the particles to be measured are sucked by a suction means using suction force generated by supplying compressed air and supplied in an aerosol state through a nozzle.
The suction port of the particle group to be measured of the suction means is movably connected via a flexible tube to a nozzle fixed so as to open toward the measurement space, and is connected to the ejector of the suction means. A pressure regulating valve that doubles as an on-off valve for supplying compressed air and that adjusts the concentration of the particle group to be measured supplied in aerosol form to the measurement space is provided integrally with the suction port. Characterized.
[0011]
The present invention is configured so that the suction port for sucking the group of particles to be measured and leading to the measurement space can be freely moved, instead of being fixedly arranged above the sample stage as in the prior art. It is configured so that the existing sample can be sucked and guided to the measurement space, and the start / stop of the suction of the group of particles to be measured by the suction means mainly composed of an ejector and the aerosol are supplied integrally with the suction port. By providing an operation unit for controlling the suction operation including pressure adjustment for adjusting the concentration of the particles to be measured, the intended object is to be achieved.
[0012]
That is, for sucking the sample group to be measured and guiding it to the nozzle that is fixed so as to spray the sample group to be measured in an aerosol shape toward the measurement space between the irradiation optical system and the measurement optical system By adopting a configuration in which the suction port of the suction means using the ejector is movably connected via a flexible tube, a sample at an arbitrary position can be sucked and guided to the measurement space. Specifically, for example, it is possible to measure the particle size distribution by directly sucking from the container containing the particle group to be measured, greatly reducing the time and labor for setting the particle group to be measured on the sample stage or hopper. In addition to being able to be omitted, it is possible to prevent waste due to spilling when setting the particle group to be measured on the sample stage or hopper. The particle size distribution can be measured by moving the suction port for suction. Furthermore, since it is not necessary to use a sample stage, a hopper, etc., the cleaning work is also unnecessary.
[0013]
In addition, the operation unit for controlling the suction operation including the start / stop of the suction of the particles to be measured, specifically, the open / close valve of the compressed air to the ejector that generates the suction pressure, and the aerosol in the measurement space In a state where the suction port is moved so as to suck the sample at an arbitrary position, by providing a pressure adjustment valve integrally with the suction port for adjusting the concentration of the particles to be measured supplied in a shape, It is possible to control the suction of the particle group to be measured and the concentration adjustment of the particle group to be measured by hand operation on the spot, and the convenience of use can be greatly improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram showing a configuration of an optical system and a particle sampling / dispersion system, and a block diagram showing an electrical configuration.
[0015]
The irradiation optical system 1 includes a laser light source 1a, a condensing lens 1b, a spatial filter 1c, and a collimator lens 1d. The irradiation optical system 1 is in a measurement space A in which a measured particle group P is supplied in an aerosol state by a particle sampling / dispersing system 6 described later. A parallel laser beam is irradiated.
[0016]
On the side opposite to the irradiation optical system 1 across the measurement space A, a measurement optical system 2 mainly including a condensing lens 2a and a ring detector 2b placed at the focal position thereof is arranged. The ring detector 2b is a photosensor array in which a plurality of photosensors having ring-shaped, semi-ring-shaped, or quarter-ring-shaped light receiving surfaces with different radii are arranged concentrically, and the output of each photosensor is Among the diffracted / scattered light of the laser beam by the aerosol-measured particle group P supplied in the measurement space A, the diffracted / scattered light in the predetermined forward angle range collected by the condenser lens 2a for each angle. This represents the intensity signal. Therefore, the measurement optical system 2 measures the spatial intensity distribution of the diffracted / scattered light by the group of particles to be measured P that are in a dispersed flight state in the measurement space A. In this figure, only the ring detector 2b is shown as an optical sensor of the measurement optical system 2, but in addition to this, it is necessary to measure the spatial intensity distribution of diffracted / scattered light in a wider angular range. In this case, a single light sensor is arranged corresponding to the required scattering angle to measure the spatial intensity distribution of diffracted / scattered light as a front wide angle scattered light sensor, a side scattered light sensor, and a back scattered light sensor. Can also be provided.
[0017]
The light intensity detection signal for each diffraction / scattering angle by the measurement optical system 2 is amplified by the data sampling circuit 3 having the respective amplifiers and AD converters, digitized, It is taken into the computer 4 as spatial intensity distribution data of scattered light.
[0018]
The computer 4 uses the spatial intensity distribution data of the diffracted / scattered light to detect the laser light by a calculation method based on the Mie scattering theory and the Fraunhofer diffraction theory, which is known in a laser diffraction / scattering particle size distribution measuring apparatus. The particle size distribution of the particle group P to be measured, which is the cause particle that has been diffracted and scattered, is calculated.
[0019]
The irradiation optical system 1 and the measurement optical system 2 described above are accommodated in a light shielding case 5 including the measurement space A between them, and in the measurement space A in the case 5, the particle sampling The particle group P to be measured is supplied in an aerosol state by the dispersion system 6.
[0020]
The particle sampling / dispersing system 6 includes a dispersion nozzle 6 a fixed to the case 5 in a posture orthogonal to the optical axis of the irradiation optical system 1 toward the measurement space A, and high-pressure air from a compressed air source (not shown). An ejector 6b that generates a vacuum in an internal suction chamber by being supplied, a suction port 6c having one end communicating with an intake port of the ejector 6b and opening the other end, an exhaust port of the ejector 6b, and a dispersion nozzle 6a The flexible tube 6d having a sufficient length to communicate with each other is mainly used.
[0021]
A piping for supplying high pressure air to the ejector 6b is also a flexible tube 6e, and a pressure regulating valve 7 serving as an on-off valve is mounted between the flexible tube 6e and the high pressure air supply port of the ejector 6b. ing.
[0022]
Further, the case 5 described above is provided with a suction port 8 facing the dispersion nozzle 6a and communicating with a dust collector (not shown).
[0023]
When using the embodiment of the present invention described above, the ejector 6b and the suction port 6c are held by hand, for example, the suction port 6c is brought into the container V containing the sample group P to be measured as shown in the figure, and the pressure The adjusting valve 7 is operated to suck the sample group P to be measured. As a result, the sample group P to be measured passes through the flexible tube 6d and is sprayed in an aerosol form from the dispersion nozzle 6a toward the measurement space A, and the laser beam from the irradiation optical system 1 is diffracted and scattered by the particle group P to be measured. To do. The spatial intensity distribution of the diffracted / scattered light is measured by the measurement optical system 2, and the measurement result is taken into the computer 4 and converted into the particle size distribution of the particle group P to be measured. Further, the particle group P to be measured supplied toward the measurement space A is guided to the dust collector from the suction port 8 disposed so as to face the dispersion nozzle 6a, and is captured by the filter inside the dust collector.
[0024]
The point to be particularly noted in the above embodiment is that the ejector 6b and the suction port 6c can be arbitrarily moved. As a result, the sample P to be measured can be placed in any container V as shown in FIG. Can be used for particle size distribution measurement. At this time, the suction amount of the measured particle group P, in other words, the concentration of the measured particle group P supplied to the measurement space A in an aerosol form depends on the pressure of the high-pressure air supplied to the ejector 6b. Since the air pressure adjusting valve 7 is integrally mounted on the ejector 6b and the suction port 6c, the operation thereof is also simple.
[0025]
【The invention's effect】
As described above, according to the present invention, in the dry laser diffraction / scattering particle size distribution measuring apparatus for measuring the spatial intensity distribution of the diffracted / scattered light by supplying the particles to be measured from the nozzle to the measurement space in the form of aerosol Since the suction port of the particle group to be measured is configured to be freely movable with respect to the nozzle, the particle group to be measured contained in an arbitrary container or the like is directly sucked and used for measurement, Alternatively, the particle size distribution can be measured by directly sucking a particle group at an arbitrary position in the production line of the granular material. As a result, it is possible to save the labor and time for setting the particle group to be measured in the groove or hopper on the sample table as in the past and waste of the particle group that may have occurred during the setting. The particle size distribution can be measured with a smaller amount of sample. In addition, the particle size distribution can be measured for a particle group that cannot be set on the sample stage or the like.
[0026]
In addition, it is not necessary to clean the sample stage or hopper when measuring different types of particles, and it is possible to perform continuous measurement simply by preparing a container for each type of particle. Together with the fact that setting on a sample stage or the like is unnecessary, the labor required for measurement can be greatly reduced, and at the same time, the required time can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a schematic diagram illustrating a configuration of an optical system and a particle sampling / dispersion system, and a block diagram illustrating an electrical configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Irradiation optical system 2 Measurement optical system 3 Data sampling circuit 4 Computer 5 Case 6 Particle sampling / dispersion system 6a Dispersion nozzle 6b Ejector 6c Suction port 6d Flexible tube 7 Pressure adjustment valve A Measurement space P Particle group to be measured

Claims (1)

分散飛翔状態の被測定粒子群にレーザ光を照射する照射光学系と、そのレーザ光の被測定粒子群による回折・散乱光の空間強度分布を測定する測定光学系と、その測定結果から被測定粒子群の粒度分布を算出する演算手段を備えるとともに、上記照射光学系と測定光学系の間の測定空間に、エジェクタに対して圧縮空気を供給することにより生じる吸引力を利用した吸引手段により被測定粒子群を吸引してノズルを介してエアロゾル状態で供給する乾式粒度分布測定装置において、
上記吸引手段の被測定粒子群の吸引口が、上記測定空間に向けて開口するように固定されたノズルに対し、フレキシブルチューブを介して移動自在に接続されているとともに、上記吸引手段のエジェクタに供給する圧縮空気の開閉弁を兼ね、かつ、上記測定空間にエアロゾル状に供給される被測定粒子群の濃度を調整するための圧力調整弁が、上記吸引口と一体に設けられていることを特徴とする乾式粒度分布測定装置。
Irradiation optical system that irradiates laser beam to a group of particles to be measured in a dispersed flight state, measurement optical system that measures the spatial intensity distribution of diffracted / scattered light from the laser particle group to be measured, and measurement results from the measurement results Computation means is provided for calculating the particle size distribution of the particle group, and is covered by suction means using suction force generated by supplying compressed air to the ejector in the measurement space between the irradiation optical system and the measurement optical system. In the dry particle size distribution measuring device that sucks the measurement particles and supplies them in an aerosol state through a nozzle,
The suction port of the particle group to be measured of the suction means is movably connected via a flexible tube to a nozzle fixed so as to open toward the measurement space, and is connected to the ejector of the suction means. A pressure regulating valve that doubles as an on-off valve for the compressed air to be supplied and that adjusts the concentration of the particles to be measured supplied in an aerosol form to the measurement space is provided integrally with the suction port. A dry particle size distribution measuring device.
JP2002030934A 2002-02-07 2002-02-07 Dry particle size analyzer Expired - Lifetime JP3915534B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002030934A JP3915534B2 (en) 2002-02-07 2002-02-07 Dry particle size analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002030934A JP3915534B2 (en) 2002-02-07 2002-02-07 Dry particle size analyzer

Publications (2)

Publication Number Publication Date
JP2003232714A JP2003232714A (en) 2003-08-22
JP3915534B2 true JP3915534B2 (en) 2007-05-16

Family

ID=27774487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002030934A Expired - Lifetime JP3915534B2 (en) 2002-02-07 2002-02-07 Dry particle size analyzer

Country Status (1)

Country Link
JP (1) JP3915534B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4618421B2 (en) * 2005-03-08 2011-01-26 株式会社島津製作所 Particle size distribution measuring device

Also Published As

Publication number Publication date
JP2003232714A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
TWI728453B (en) Detecting nanoparticles on production equipment and surfaces
JP3574045B2 (en) Continuous measurement system for suspended particulate matter
JP6031372B2 (en) Particle detection system and particle detection method
JP2024016262A (en) Fluid composition sensor device and method of using the same
EP1278057A2 (en) Method and apparatus for determining the size distribution of suspended particulate matter in the atmospheric air
JP2014228276A (en) Particle detection device and particle detection method
CN108181213A (en) A kind of outdoor constant current pump suction type laser dust detection device
JP3915534B2 (en) Dry particle size analyzer
US11047787B2 (en) And method for optical bench for detecting particles
JP3966253B2 (en) Particle size distribution analyzer for aerosol
JP4618421B2 (en) Particle size distribution measuring device
CN207730615U (en) A kind of outdoor constant current pump suction type laser dust detection device
JP3961244B2 (en) Method and apparatus for measuring suspended particulate matter
JP2014149240A (en) Particle detection system and particle detection method
JP3403564B2 (en) Powder particle size distribution analyzer
JP4354132B2 (en) PARTICLE SIZE DISTRIBUTION MEASURING DEVICE, SAMPLING METHOD AND SAMPLING SHEET USED FOR PARTICLE SIZE DISTRIBUTION MEASURING DEVICE
JP2004205491A (en) Apparatus for measuring concentration of suspended particulate matter, and filter tape for use in measuring concentration of the suspended particulate matter
JP3638807B2 (en) Cigarette smoke particle measuring device
JP3282365B2 (en) Particle size distribution analyzer
TW201618841A (en) Lateral filter detecting system
JP3386303B2 (en) Dry powder supply device
JP3493861B2 (en) Dry laser diffraction / scattering particle size distribution analyzer
TWI668424B (en) High accuracy optical detection device for particles matter
JPH01265137A (en) Fine grain detector by light scattering system
JP5521307B2 (en) Particle collection device and particle collection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060828

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070129

R150 Certificate of patent or registration of utility model

Ref document number: 3915534

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

EXPY Cancellation because of completion of term