WO2023203848A1 - Particle detection device - Google Patents

Particle detection device Download PDF

Info

Publication number
WO2023203848A1
WO2023203848A1 PCT/JP2023/004886 JP2023004886W WO2023203848A1 WO 2023203848 A1 WO2023203848 A1 WO 2023203848A1 JP 2023004886 W JP2023004886 W JP 2023004886W WO 2023203848 A1 WO2023203848 A1 WO 2023203848A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
compressed fluid
pressure
optical sensor
upstream
Prior art date
Application number
PCT/JP2023/004886
Other languages
French (fr)
Japanese (ja)
Inventor
貴大 渡辺
敏文 余語
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Publication of WO2023203848A1 publication Critical patent/WO2023203848A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers

Definitions

  • the present disclosure relates to a particle detection device that detects particles contained in compressed fluid.
  • the particle detection device includes a branch flow path that branches from a supply flow path that supplies compressed fluid from a fluid supply source to a fluid pressure device. A part of the compressed fluid flowing through the supply flow path flows through the branch flow path.
  • the particle detection device also includes an optical sensor. An optical sensor is provided in the branch channel. The optical sensor detects particles contained in the compressed fluid flowing through the branch channel.
  • Patent Document 1 power is consumed by driving the pump, so there is a problem that power consumption increases in the particle detection device.
  • a particle detection device includes a supply flow path configured to supply compressed fluid from a fluid supply source to a fluid pressure device, and a supply flow path that branches from the supply flow path and flows through the supply flow path.
  • a branch channel configured to allow a portion of the compressed fluid to flow; an optical sensor provided in the branch channel and configured to detect particles contained in the compressed fluid flowing through the branch channel; It is equipped with
  • the branch flow path includes a primary flow path located upstream of the optical sensor in the flow direction of the compressed fluid, and a secondary flow path located downstream of the optical sensor in the flow direction of the compressed fluid. It has a side flow path.
  • the primary flow path is connected to the atmosphere.
  • the primary side flow path is provided with a pressure reducing section configured to reduce the pressure of the compressed fluid flowing through the primary side flow path.
  • An ejector is provided in the secondary flow path.
  • the primary flow path has an upstream flow path located upstream of the pressure reduction section in the flow direction of the compressed fluid.
  • the particle detection device includes an introduction channel configured to introduce a portion of the compressed fluid flowing through the upstream channel into the ejector.
  • the ejector is configured such that a part of the compressed fluid flowing through the upstream flow path is introduced into the ejector via the introduction flow path, thereby reducing the pressure of the compressed fluid flowing through the primary flow path and reduced in pressure by the pressure reducing section. is configured to draw the optical sensor toward the optical sensor.
  • FIG. 1 is a schematic diagram of a particle detection device in an embodiment.
  • the particle detection device 10 includes a body 11.
  • the body 11 is made of resin or metal.
  • the body 11 has an upstream port 11a and a downstream port 11b.
  • An upstream pipe 12 is connected to the upstream port 11a.
  • a downstream pipe 13 is connected to the downstream port 11b.
  • Upstream piping 12 is connected to a fluid supply source 14 . Therefore, upstream piping 12 connects fluid supply source 14 and upstream port 11a to each other.
  • the downstream piping 13 is connected to a fluid pressure device 15. Therefore, the downstream piping 13 connects the downstream port 11b and the fluid pressure device 15 to each other.
  • Fluid supply source 14 supplies compressed fluid to fluid pressure equipment 15 .
  • the compressed fluid is, for example, compressed air.
  • the body 11 has a connection flow path 11c.
  • the connection channel 11c is formed inside the body 11.
  • the connection channel 11c connects the upstream port 11a and the downstream port 11b to each other.
  • Compressed fluid from the fluid supply source 14 is supplied to the fluid pressure device 15 via the upstream piping 12, the upstream port 11a, the connection channel 11c, the downstream port 11b, and the downstream piping 13. Therefore, the upstream piping 12, the upstream port 11a, the connection passage 11c, the downstream port 11b, and the downstream piping 13 constitute a supply passage 16 that supplies compressed fluid from the fluid supply source 14 to the fluid pressure device 15. .
  • the particle detection device 10 includes a branch flow path 20.
  • the branch flow path 20 is formed inside the body 11.
  • the branch flow path 20 branches from the connection flow path 11c. Therefore, branch channel 20 branches from supply channel 16 .
  • a part of the compressed fluid flowing through the connection channel 11c flows into the branch channel 20. Therefore, a portion of the compressed fluid flowing through the supply flow path 16 flows into the branch flow path 20 .
  • the particle detection device 10 includes an optical sensor 30.
  • Optical sensor 30 is built into body 11 .
  • Optical sensor 30 is provided in branch channel 20 .
  • Optical sensor 30 detects particles contained in compressed fluid flowing through branch channel 20 .
  • the optical sensor 30 has a light projector and a light receiver (not shown).
  • the light projector is configured to irradiate light onto the compressed fluid flowing through the branch flow path 20.
  • the light receiving section is configured to receive scattered light that is light that is irradiated onto the compressed fluid by the light projecting section and reflected by particles contained in the compressed fluid.
  • the optical sensor 30 detects particles contained in the compressed fluid flowing through the branch flow path 20 based on the level of the amount of light received by the light receiving section.
  • the branch flow path 20 has a primary flow path 21 and a secondary flow path 22.
  • the primary flow path 21 is a portion of the branch flow path 20 located upstream of the optical sensor 30 in the flow direction of the compressed fluid.
  • the secondary flow path 22 is a portion of the branch flow path 20 located downstream of the optical sensor 30 in the flow direction of the compressed fluid.
  • the primary flow path 21 has a first flow path 21a and a second flow path 21b.
  • the first end of the first channel 21a is connected to the connection channel 11c. Therefore, the first end of the first channel 21a is connected to the supply channel 16.
  • the second end of the first flow path 21a is connected to the atmosphere. Therefore, the primary flow path 21 is connected to the atmosphere.
  • the first end of the second flow path 21b is connected to the first flow path 21a.
  • the second end of the second flow path 21b is connected to the optical sensor 30.
  • a portion of the compressed fluid flowing through the first flow path 21a flows into the second flow path 21b.
  • the compressed fluid that has flowed into the second flow path 21b from the first flow path 21a flows toward the optical sensor 30.
  • a pressure reducing section 23 is provided in the first flow path 21a. Therefore, the primary flow path 21 is provided with a pressure reducing section 23 .
  • the pressure reducing part 23 is provided in a portion of the first flow path 21a that is located upstream in the flow direction of the compressed fluid than a portion of the first flow path 21a to which the first end of the second flow path 21b is connected.
  • the pressure reducing unit 23 reduces the pressure of the compressed fluid flowing through the primary flow path 21 .
  • the pressure reducing section 23 is, for example, a variable orifice.
  • the first flow path 21a has an upstream flow path 24.
  • the upstream flow path 24 is a portion of the first flow path 21a located upstream of the pressure reducing portion 23 in the flow direction of the compressed fluid. Therefore, the upstream flow path 24 is a portion of the primary flow path 21 located upstream of the pressure reducing section 23 in the flow direction of the compressed fluid.
  • the first end of the upstream flow path 24 is connected to the connection flow path 11c. Therefore, the first end of the upstream flow path 24 is connected to the supply flow path 16 .
  • the first end of the upstream flow path 24 is also the first end of the first flow path 21a.
  • a second end of the upstream flow path 24 is connected to the pressure reducing section 23 .
  • the particle detection device 10 includes a pressure sensor 25.
  • the pressure sensor 25 detects the pressure of compressed fluid flowing through the upstream channel 24 . Therefore, the pressure sensor 25 detects the pressure of the compressed fluid flowing through a portion of the primary flow path 21 that is located upstream of the pressure reduction section 23 in the flow direction of the compressed fluid.
  • the particle detection device 10 includes an on-off valve 26.
  • the on-off valve 26 is provided in a portion of the upstream flow path 24 that is located upstream of the pressure sensor 25 in the flow direction of the compressed fluid. Therefore, the on-off valve 26 is provided in the branch flow path 20.
  • the on-off valve 26 opens when performing particle detection processing to allow the compressed fluid to flow from the supply channel 16 to the branch channel 20.
  • the on-off valve 26 is, for example, a solenoid valve.
  • a first end of the secondary flow path 22 is connected to an optical sensor 30.
  • the second end of the secondary flow path 22 is connected to the atmosphere.
  • the compressed fluid that has passed through the optical sensor 30 is released to the atmosphere via the secondary flow path 22.
  • the particle detection device 10 includes a flow rate sensor 27.
  • the flow rate sensor 27 is provided in the secondary flow path 22.
  • the flow rate sensor 27 detects the flow rate of the compressed fluid flowing through the secondary flow path 22 . Therefore, flow sensor 27 detects the flow rate of compressed fluid flowing through optical sensor 30 .
  • An ejector 28 is provided in the secondary flow path 22.
  • the ejector 28 is provided in a portion of the secondary flow path 22 located downstream of the flow rate sensor 27 in the flow direction of the compressed fluid.
  • the particle detection device 10 includes an introduction channel 31.
  • the introduction channel 31 is formed inside the body 11.
  • a first end of the introduction flow path 31 is connected to a portion of the upstream flow path 24 between the pressure sensor 25 and the pressure reduction section 23 .
  • a second end of the introduction channel 31 is connected to the ejector 28.
  • the introduction channel 31 introduces a portion of the compressed fluid flowing through the upstream channel 24 into the ejector 28 .
  • the ejector 28 is configured so that a part of the compressed fluid flowing through the upstream flow path 24 is introduced into the ejector 28 via the introduction flow path 31, so that the compressed fluid flowing through the primary flow path 21 and whose pressure has been reduced by the pressure reduction part 23 is supplied to the ejector 28. toward the optical sensor 30.
  • a flow rate adjustment section 32 is provided in the introduction channel 31.
  • the flow rate adjustment unit 32 adjusts the flow rate of the compressed fluid introduced into the ejector 28.
  • the flow rate adjustment section 32 is, for example, a variable orifice.
  • the particle detection device 10 includes a controller 40.
  • the controller 40 is electrically connected to an external control device 41 such as a programmable logic controller (PLC), for example.
  • PLC programmable logic controller
  • the controller 40 is supplied with power from an external control device 41 .
  • the controller 40 is one of: 1) a processing circuit including one or more processors that operates according to a computer program (software); 2) an application-specific integrated circuit (ASIC) that executes at least some of various processes. It is possible to provide a processing circuit including the above dedicated hardware circuit, or 3) a processing circuit including a combination thereof.
  • a processor includes a CPU and memory, such as RAM and ROM, where the memory stores program codes or instructions configured to cause the CPU to perform processing.
  • Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • the controller 40 is electrically connected to the optical sensor 30. For example, information regarding the light intensity level of the light received by the light receiving section of the optical sensor 30 is transmitted to the controller 40 from the light receiving section.
  • the controller 40 detects the particle size, amount, etc. of particles based on information regarding the light intensity level transmitted from the light receiving section. Then, the controller 40 transmits detection information such as the particle size and amount of particles detected by the controller 40 to the external control device 41.
  • External control device 41 monitors detection information transmitted from controller 40.
  • the controller 40 is electrically connected to the pressure sensor 25. Information regarding the pressure detected by the pressure sensor 25 is transmitted to the controller 40 .
  • the controller 40 is electrically connected to the pressure reducing section 23.
  • the controller 40 controls the opening degree of the pressure reducing section 23 based on the pressure information transmitted from the pressure sensor 25 so that the pressure of the compressed fluid that has passed through the pressure reducing section 23 is reduced to atmospheric pressure. Note that the pressure of the compressed fluid that is reduced in pressure by the pressure reduction unit 23 and flows through the primary flow path 21 is slightly higher than atmospheric pressure.
  • the controller 40 is electrically connected to the flow rate sensor 27. Information regarding the flow rate detected by the flow rate sensor 27 is transmitted to the controller 40 .
  • the controller 40 is electrically connected to the flow rate adjustment section 32.
  • the controller 40 controls the opening degree of the flow rate adjustment section 32 based on the flow rate information transmitted from the flow rate sensor 27.
  • the controller 40 reduces the opening degree of the flow rate adjustment section 32.
  • the controller 40 increases the opening degree of the flow rate adjustment section 32, for example, when the flow rate detected by the flow rate sensor 27 is less than a predetermined flow rate.
  • the flow rate adjustment unit 32 adjusts the flow rate of the compressed fluid drawn from the primary flow path 21 toward the optical sensor 30 by the ejector 28 .
  • the opening degree of the flow rate adjustment section 32 is adjusted by the controller 40 so that the compressed fluid with reduced pressure flowing through the primary flow path 21 flows to the optical sensor 30 at a constant flow rate.
  • the controller 40 is electrically connected to the on-off valve 26.
  • Information regarding the driving of the on-off valve 26 is transmitted to the controller 40 from an external control device 41 .
  • the controller 40 controls the driving of the on-off valve 26 so that the on-off valve 26 opens.
  • the controller 40 controls the drive of the on-off valve 26 so that the on-off valve 26 is closed.
  • the primary flow path 21 Since the primary flow path 21 is connected to the atmosphere, a flow of compressed fluid from the supply flow path 16 can always occur in the branch flow path 20. Therefore, when the on-off valve 26 opens, the compressed fluid from the supply channel 16 always flows through the branch channel 20 .
  • the compressed fluid that has flowed into the upstream flow path 24 of the branch flow path 20 from the supply flow path 16 passes through the on-off valve 26 and flows toward the pressure reducing section 23 .
  • the pressure sensor 25 detects the pressure of compressed fluid flowing through the upstream channel 24 .
  • the controller 40 controls the opening degree of the pressure reducing section 23 based on the pressure information of the compressed fluid transmitted from the pressure sensor 25.
  • the pressure reducing unit 23 reduces the pressure of the compressed fluid flowing through the primary flow path 21 .
  • the ejector 28 draws the compressed fluid flowing through the primary flow path 21 and whose pressure has been reduced by the pressure reducing section 23 toward the optical sensor 30 .
  • the flow rate sensor 27 detects the flow rate of the compressed fluid flowing through the secondary flow path 22 .
  • the controller 40 controls the opening degree of the flow rate adjustment section 32 based on the information on the flow rate of the compressed fluid transmitted from the flow rate sensor 27 .
  • the compressed fluid with reduced pressure flows to the optical sensor 30 at a constant flow rate.
  • the optical sensor 30 detects particles contained in the compressed fluid.
  • the compressed fluid that has passed through the optical sensor 30 and flowed out into the secondary flow path 22 passes through the ejector 28 and is then released into the atmosphere.
  • the compressed fluid introduced into the ejector 28 through the introduction channel 31 passes through the ejector 28, flows out into the secondary channel 22, and is discharged to the atmosphere.
  • the controller 40 causes the on-off valve 26 to close.
  • the drive of the on-off valve 26 is controlled.
  • the on-off valve 26 closes, and a portion of the compressed fluid flowing through the supply flow path 16 is restricted from flowing into the branch flow path 20 . Therefore, the compressed fluid from the fluid supply source 14 is all supplied to the fluid pressure device 15 via the upstream piping 12, the upstream port 11a, the connection channel 11c, the downstream port 11b, and the downstream piping 13.
  • the introduction channel 31 is provided with a flow rate adjustment section 32 that adjusts the flow rate of the compressed fluid introduced into the ejector 28.
  • a flow rate adjustment section 32 that adjusts the flow rate of the compressed fluid introduced into the ejector 28.
  • the particle detection device 10 includes an on-off valve 26 that opens when performing particle detection processing to allow the compressed fluid to flow from the supply channel 16 to the branch channel 20. According to this, only when the on-off valve 26 is open, the compressed fluid from the supply flow path 16 can always be caused to flow in the branch flow path 20. Therefore, when there is no need to detect particles contained in the compressed fluid, a part of the compressed fluid flowing through the supply flow path 16 does not flow into the branch flow path 20, so that the compressed fluid from the fluid supply source 14 is You can avoid wasting it.
  • the flow rate sensor 27 is provided in the secondary flow path 22. According to this, for example, unlike the case where the flow rate sensor 27 is provided in the second flow path 21b of the primary side flow path 21, dust generated from the flow rate sensor 27 is prevented from flowing into the optical sensor 30. Avoided. Therefore, particles contained in the compressed fluid can be detected with high accuracy by the optical sensor 30.
  • the particle detection device 10 may have a configuration in which the flow rate adjustment section 32 is not provided in the introduction channel 31. - In the embodiment, the particle detection device 10 may be configured without the on-off valve 26.
  • the on-off valve 26 is not limited to a solenoid valve.
  • the on-off valve 26 may be a manual valve.
  • a regulator may be provided in the upstream flow path 24 as a pressure reducing section.
  • the flow rate sensor 27 may be provided in the second flow path 21b of the primary flow path 21.
  • the optical sensor 30 may have the following configuration, for example. That is, the optical sensor 30 is configured such that the light emitted from the light projecting section is received by the light receiving section. The light emitted from the light projecting section is blocked by the particles contained in the compressed fluid, so that the level of the amount of light received by the light receiving section changes.
  • the pressure reducing section 23 it is not necessary to reduce the pressure of the compressed fluid that has passed through the pressure reducing section 23 to atmospheric pressure. In short, it is sufficient that the pressure of the compressed fluid that has passed through the pressure reducing section 23 is reduced to a pressure that allows the optical sensor 30 to detect particles.

Abstract

This particle detection device (10) comprises a branch flow path (20) and an optical sensor (30). The branch flow path (20) has a primary-side flow path (21) and a secondary-side flow path (22) that are respectively positioned on the upstream side and the downstream side relative to the optical sensor (30). The primary-side flow path (21) is provided with a decompression unit (23). The secondary-side flow path (22) is provided with an ejector (28). The primary-side flow path (21) has an upstream-side flow path (24) positioned on the upstream side relative to the decompression unit (23). Some compressed air flowing through the upstream-side flow path (24) is guided to the ejector (28) via a guiding flow path (31), as a result of which the ejector (28) draws a compressed fluid decompressed by the decompression unit (23) toward the optical sensor (30).

Description

パーティクル検出装置particle detection device
 本開示は、圧縮流体に含まれるパーティクルを検出するパーティクル検出装置に関する。 The present disclosure relates to a particle detection device that detects particles contained in compressed fluid.
 パーティクル検出装置は、流体供給源からの圧縮流体を流体圧機器に供給する供給流路から分岐する分岐流路を備えている。分岐流路には、供給流路を流れる圧縮流体の一部が流れる。また、パーティクル検出装置は、光学的センサを備えている。光学的センサは、分岐流路に設けられている。光学的センサは、分岐流路を流れる圧縮流体に含まれるパーティクルを検出する。 The particle detection device includes a branch flow path that branches from a supply flow path that supplies compressed fluid from a fluid supply source to a fluid pressure device. A part of the compressed fluid flowing through the supply flow path flows through the branch flow path. The particle detection device also includes an optical sensor. An optical sensor is provided in the branch channel. The optical sensor detects particles contained in the compressed fluid flowing through the branch channel.
 減圧された圧縮流体を光学的センサに一定流量だけ流すために、例えば特許文献1のように、光学的センサよりも圧縮流体の流れ方向における下流側にポンプを設置することが知られている。ポンプは、減圧された圧縮流体が光学的センサに一定流量だけ流れるように、光学的センサに向けて圧縮流体を引き込む。このようにポンプが駆動することにより、減圧された圧縮流体が光学的センサに一定流量だけ流れる。そのため、圧縮流体に含まれるパーティクルが光学的センサによって精度良く検出される。 In order to flow a constant flow rate of a compressed fluid that has been reduced in pressure to an optical sensor, it is known to install a pump downstream of the optical sensor in the flow direction of the compressed fluid, as in Patent Document 1, for example. The pump draws compressed fluid toward the optical sensor such that the reduced pressure compressed fluid flows to the optical sensor at a constant flow rate. By driving the pump in this manner, the compressed fluid with reduced pressure flows to the optical sensor at a constant flow rate. Therefore, particles contained in the compressed fluid can be detected with high precision by the optical sensor.
特許第5599249号公報Patent No. 5599249
 しかしながら、特許文献1では、ポンプを駆動させることにより電力を消費するので、パーティクル検出装置において消費電力が増大してしまうという問題がある。 However, in Patent Document 1, power is consumed by driving the pump, so there is a problem that power consumption increases in the particle detection device.
 本開示の一態様に係るパーティクル検出装置は、流体供給源からの圧縮流体を流体圧機器に供給するように構成される供給流路と、前記供給流路から分岐するとともに前記供給流路を流れる圧縮流体の一部が流れるように構成される分岐流路と、前記分岐流路に設けられるとともに前記分岐流路を流れる圧縮流体に含まれるパーティクルを検出するように構成される光学的センサと、を備えている。前記分岐流路は、前記光学的センサよりも前記圧縮流体の流れ方向における上流側に位置する一次側流路と、前記光学的センサよりも前記圧縮流体の流れ方向における下流側に位置する二次側流路と、を有する。前記一次側流路は、大気に接続されている。前記一次側流路には、前記一次側流路を流れる圧縮流体を減圧させるように構成される減圧部が設けられている。前記二次側流路には、エジェクタが設けられている。前記一次側流路は、前記減圧部よりも前記圧縮流体の流れ方向における上流側に位置する上流側流路を有する。前記パーティクル検出装置は、前記上流側流路を流れる圧縮流体の一部を前記エジェクタに導入するように構成される導入流路を備える。前記エジェクタは、前記上流側流路を流れる圧縮流体の一部が前記導入流路を介して前記エジェクタに導入されることにより、前記一次側流路を流れ且つ前記減圧部によって減圧された圧縮流体を前記光学的センサに向けて引き込むように構成される。 A particle detection device according to one aspect of the present disclosure includes a supply flow path configured to supply compressed fluid from a fluid supply source to a fluid pressure device, and a supply flow path that branches from the supply flow path and flows through the supply flow path. a branch channel configured to allow a portion of the compressed fluid to flow; an optical sensor provided in the branch channel and configured to detect particles contained in the compressed fluid flowing through the branch channel; It is equipped with The branch flow path includes a primary flow path located upstream of the optical sensor in the flow direction of the compressed fluid, and a secondary flow path located downstream of the optical sensor in the flow direction of the compressed fluid. It has a side flow path. The primary flow path is connected to the atmosphere. The primary side flow path is provided with a pressure reducing section configured to reduce the pressure of the compressed fluid flowing through the primary side flow path. An ejector is provided in the secondary flow path. The primary flow path has an upstream flow path located upstream of the pressure reduction section in the flow direction of the compressed fluid. The particle detection device includes an introduction channel configured to introduce a portion of the compressed fluid flowing through the upstream channel into the ejector. The ejector is configured such that a part of the compressed fluid flowing through the upstream flow path is introduced into the ejector via the introduction flow path, thereby reducing the pressure of the compressed fluid flowing through the primary flow path and reduced in pressure by the pressure reducing section. is configured to draw the optical sensor toward the optical sensor.
実施形態におけるパーティクル検出装置の模式図である。FIG. 1 is a schematic diagram of a particle detection device in an embodiment.
 以下、パーティクル検出装置の一実施形態を図1にしたがって説明する。
 <パーティクル検出装置10の構成>
 図1に示すように、パーティクル検出装置10は、ボディ11を備えている。ボディ11は、樹脂製又は金属製である。ボディ11は、上流ポート11a及び下流ポート11bを有している。
An embodiment of a particle detection device will be described below with reference to FIG.
<Configuration of particle detection device 10>
As shown in FIG. 1, the particle detection device 10 includes a body 11. The body 11 is made of resin or metal. The body 11 has an upstream port 11a and a downstream port 11b.
 上流ポート11aには、上流配管12が接続されている。下流ポート11bには、下流配管13が接続されている。上流配管12は、流体供給源14に接続されている。したがって、上流配管12は、流体供給源14と上流ポート11aとを互いに接続している。下流配管13は、流体圧機器15に接続されている。したがって、下流配管13は、下流ポート11bと流体圧機器15とを互いに接続している。流体供給源14は、圧縮流体を流体圧機器15に供給する。圧縮流体は、例えば、圧縮空気である。 An upstream pipe 12 is connected to the upstream port 11a. A downstream pipe 13 is connected to the downstream port 11b. Upstream piping 12 is connected to a fluid supply source 14 . Therefore, upstream piping 12 connects fluid supply source 14 and upstream port 11a to each other. The downstream piping 13 is connected to a fluid pressure device 15. Therefore, the downstream piping 13 connects the downstream port 11b and the fluid pressure device 15 to each other. Fluid supply source 14 supplies compressed fluid to fluid pressure equipment 15 . The compressed fluid is, for example, compressed air.
 ボディ11は、接続流路11cを有している。接続流路11cは、ボディ11の内部に形成されている。接続流路11cは、上流ポート11aと下流ポート11bとを互いに接続している。流体供給源14からの圧縮流体は、上流配管12、上流ポート11a、接続流路11c、下流ポート11b、及び下流配管13を介して流体圧機器15に供給される。したがって、上流配管12、上流ポート11a、接続流路11c、下流ポート11b、及び下流配管13は、流体供給源14からの圧縮流体を流体圧機器15に供給する供給流路16を構成している。 The body 11 has a connection flow path 11c. The connection channel 11c is formed inside the body 11. The connection channel 11c connects the upstream port 11a and the downstream port 11b to each other. Compressed fluid from the fluid supply source 14 is supplied to the fluid pressure device 15 via the upstream piping 12, the upstream port 11a, the connection channel 11c, the downstream port 11b, and the downstream piping 13. Therefore, the upstream piping 12, the upstream port 11a, the connection passage 11c, the downstream port 11b, and the downstream piping 13 constitute a supply passage 16 that supplies compressed fluid from the fluid supply source 14 to the fluid pressure device 15. .
 パーティクル検出装置10は、分岐流路20を備えている。分岐流路20は、ボディ11の内部に形成されている。分岐流路20は、接続流路11cから分岐している。したがって、分岐流路20は、供給流路16から分岐する。分岐流路20には、接続流路11cを流れる圧縮流体の一部が流れる。したがって、分岐流路20には、供給流路16を流れる圧縮流体の一部が流れる。 The particle detection device 10 includes a branch flow path 20. The branch flow path 20 is formed inside the body 11. The branch flow path 20 branches from the connection flow path 11c. Therefore, branch channel 20 branches from supply channel 16 . A part of the compressed fluid flowing through the connection channel 11c flows into the branch channel 20. Therefore, a portion of the compressed fluid flowing through the supply flow path 16 flows into the branch flow path 20 .
 パーティクル検出装置10は、光学的センサ30を備えている。光学的センサ30は、ボディ11内に内蔵されている。光学的センサ30は、分岐流路20に設けられている。光学的センサ30は、分岐流路20を流れる圧縮流体に含まれるパーティクルを検出する。光学的センサ30は、図示しない投光部及び受光部を有している。投光部は、分岐流路20を流れる圧縮流体に光を照射するように構成される。受光部は、投光部によって圧縮流体に照射されて圧縮流体に含まれるパーティクルに反射した光である散乱光を受光するように構成されている。光学的センサ30は、受光部によって受光された光の光量レベルに基づいて、分岐流路20を流れる圧縮流体に含まれるパーティクルを検出する。 The particle detection device 10 includes an optical sensor 30. Optical sensor 30 is built into body 11 . Optical sensor 30 is provided in branch channel 20 . Optical sensor 30 detects particles contained in compressed fluid flowing through branch channel 20 . The optical sensor 30 has a light projector and a light receiver (not shown). The light projector is configured to irradiate light onto the compressed fluid flowing through the branch flow path 20. The light receiving section is configured to receive scattered light that is light that is irradiated onto the compressed fluid by the light projecting section and reflected by particles contained in the compressed fluid. The optical sensor 30 detects particles contained in the compressed fluid flowing through the branch flow path 20 based on the level of the amount of light received by the light receiving section.
 分岐流路20は、一次側流路21と、二次側流路22と、を有している。一次側流路21は、分岐流路20において、光学的センサ30よりも圧縮流体の流れ方向における上流側に位置する部分である。二次側流路22は、分岐流路20において、光学的センサ30よりも圧縮流体の流れ方向における下流側に位置する部分である。 The branch flow path 20 has a primary flow path 21 and a secondary flow path 22. The primary flow path 21 is a portion of the branch flow path 20 located upstream of the optical sensor 30 in the flow direction of the compressed fluid. The secondary flow path 22 is a portion of the branch flow path 20 located downstream of the optical sensor 30 in the flow direction of the compressed fluid.
 一次側流路21は、第1流路21aと、第2流路21bと、を有している。第1流路21aの第1端は、接続流路11cに接続されている。したがって、第1流路21aの第1端は、供給流路16に接続されている。第1流路21aの第2端は、大気に接続されている。したがって、一次側流路21は、大気に接続されている。 The primary flow path 21 has a first flow path 21a and a second flow path 21b. The first end of the first channel 21a is connected to the connection channel 11c. Therefore, the first end of the first channel 21a is connected to the supply channel 16. The second end of the first flow path 21a is connected to the atmosphere. Therefore, the primary flow path 21 is connected to the atmosphere.
 第2流路21bの第1端は、第1流路21aに接続されている。第2流路21bの第2端は、光学的センサ30に接続されている。第1流路21aを流れる圧縮流体の一部は、第2流路21bに流れる。第1流路21aから第2流路21bに流れ込んだ圧縮流体は、光学的センサ30に向けて流れる。 The first end of the second flow path 21b is connected to the first flow path 21a. The second end of the second flow path 21b is connected to the optical sensor 30. A portion of the compressed fluid flowing through the first flow path 21a flows into the second flow path 21b. The compressed fluid that has flowed into the second flow path 21b from the first flow path 21a flows toward the optical sensor 30.
 第1流路21aには、減圧部23が設けられている。したがって、一次側流路21には、減圧部23が設けられている。減圧部23は、第1流路21aにおける第2流路21bの第1端が接続されている部分よりも圧縮流体の流れ方向における上流側に位置する部分に設けられている。減圧部23は、一次側流路21を流れる圧縮流体を減圧させる。減圧部23は、例えば、可変オリフィスである。 A pressure reducing section 23 is provided in the first flow path 21a. Therefore, the primary flow path 21 is provided with a pressure reducing section 23 . The pressure reducing part 23 is provided in a portion of the first flow path 21a that is located upstream in the flow direction of the compressed fluid than a portion of the first flow path 21a to which the first end of the second flow path 21b is connected. The pressure reducing unit 23 reduces the pressure of the compressed fluid flowing through the primary flow path 21 . The pressure reducing section 23 is, for example, a variable orifice.
 第1流路21aは、上流側流路24を有している。上流側流路24は、第1流路21aにおける減圧部23よりも圧縮流体の流れ方向における上流側に位置する部分である。したがって、上流側流路24は、一次側流路21における減圧部23よりも圧縮流体の流れ方向における上流側に位置する部分である。上流側流路24の第1端は、接続流路11cに接続されている。したがって、上流側流路24の第1端は、供給流路16に接続されている。上流側流路24の第1端は、第1流路21aの第1端でもある。上流側流路24の第2端は、減圧部23に接続されている。 The first flow path 21a has an upstream flow path 24. The upstream flow path 24 is a portion of the first flow path 21a located upstream of the pressure reducing portion 23 in the flow direction of the compressed fluid. Therefore, the upstream flow path 24 is a portion of the primary flow path 21 located upstream of the pressure reducing section 23 in the flow direction of the compressed fluid. The first end of the upstream flow path 24 is connected to the connection flow path 11c. Therefore, the first end of the upstream flow path 24 is connected to the supply flow path 16 . The first end of the upstream flow path 24 is also the first end of the first flow path 21a. A second end of the upstream flow path 24 is connected to the pressure reducing section 23 .
 パーティクル検出装置10は、圧力センサ25を備えている。圧力センサ25は、上流側流路24を流れる圧縮流体の圧力を検出する。したがって、圧力センサ25は、一次側流路21における減圧部23よりも圧縮流体の流れ方向における上流側に位置する部分を流れる圧縮流体の圧力を検出する。 The particle detection device 10 includes a pressure sensor 25. The pressure sensor 25 detects the pressure of compressed fluid flowing through the upstream channel 24 . Therefore, the pressure sensor 25 detects the pressure of the compressed fluid flowing through a portion of the primary flow path 21 that is located upstream of the pressure reduction section 23 in the flow direction of the compressed fluid.
 パーティクル検出装置10は、開閉弁26を備えている。開閉弁26は、上流側流路24における圧力センサ25よりも圧縮流体の流れ方向における上流側に位置する部分に設けられている。したがって、開閉弁26は、分岐流路20に設けられている。開閉弁26は、パーティクルの検出処理を実施する際に開弁することで、供給流路16から分岐流路20への圧縮流体の流れを許容する。開閉弁26は、例えば、電磁弁である。 The particle detection device 10 includes an on-off valve 26. The on-off valve 26 is provided in a portion of the upstream flow path 24 that is located upstream of the pressure sensor 25 in the flow direction of the compressed fluid. Therefore, the on-off valve 26 is provided in the branch flow path 20. The on-off valve 26 opens when performing particle detection processing to allow the compressed fluid to flow from the supply channel 16 to the branch channel 20. The on-off valve 26 is, for example, a solenoid valve.
 二次側流路22の第1端は、光学的センサ30に接続されている。二次側流路22の第2端は、大気に接続されている。光学的センサ30を通過した圧縮流体は、二次側流路22を介して大気に開放される。 A first end of the secondary flow path 22 is connected to an optical sensor 30. The second end of the secondary flow path 22 is connected to the atmosphere. The compressed fluid that has passed through the optical sensor 30 is released to the atmosphere via the secondary flow path 22.
 パーティクル検出装置10は、流量センサ27を備えている。流量センサ27は、二次側流路22に設けられている。流量センサ27は、二次側流路22を流れる圧縮流体の流量を検出する。したがって、流量センサ27は、光学的センサ30を流れる圧縮流体の流量を検出する。 The particle detection device 10 includes a flow rate sensor 27. The flow rate sensor 27 is provided in the secondary flow path 22. The flow rate sensor 27 detects the flow rate of the compressed fluid flowing through the secondary flow path 22 . Therefore, flow sensor 27 detects the flow rate of compressed fluid flowing through optical sensor 30 .
 二次側流路22には、エジェクタ28が設けられている。エジェクタ28は、二次側流路22における流量センサ27よりも圧縮流体の流れ方向における下流側に位置する部分に設けられている。 An ejector 28 is provided in the secondary flow path 22. The ejector 28 is provided in a portion of the secondary flow path 22 located downstream of the flow rate sensor 27 in the flow direction of the compressed fluid.
 パーティクル検出装置10は、導入流路31を備えている。導入流路31は、ボディ11の内部に形成されている。導入流路31の第1端は、上流側流路24における圧力センサ25と減圧部23との間の部分に接続されている。導入流路31の第2端は、エジェクタ28に接続されている。導入流路31は、上流側流路24を流れる圧縮流体の一部をエジェクタ28に導入する。 The particle detection device 10 includes an introduction channel 31. The introduction channel 31 is formed inside the body 11. A first end of the introduction flow path 31 is connected to a portion of the upstream flow path 24 between the pressure sensor 25 and the pressure reduction section 23 . A second end of the introduction channel 31 is connected to the ejector 28. The introduction channel 31 introduces a portion of the compressed fluid flowing through the upstream channel 24 into the ejector 28 .
 エジェクタ28は、上流側流路24を流れる圧縮流体の一部が導入流路31を介してエジェクタ28に導入されることにより、一次側流路21を流れ且つ減圧部23によって減圧された圧縮流体を光学的センサ30に向けて引き込む。 The ejector 28 is configured so that a part of the compressed fluid flowing through the upstream flow path 24 is introduced into the ejector 28 via the introduction flow path 31, so that the compressed fluid flowing through the primary flow path 21 and whose pressure has been reduced by the pressure reduction part 23 is supplied to the ejector 28. toward the optical sensor 30.
 導入流路31には、流量調整部32が設けられている。流量調整部32は、エジェクタ28に導入される圧縮流体の流量を調整する。流量調整部32は、例えば、可変オリフィスである。 A flow rate adjustment section 32 is provided in the introduction channel 31. The flow rate adjustment unit 32 adjusts the flow rate of the compressed fluid introduced into the ejector 28. The flow rate adjustment section 32 is, for example, a variable orifice.
 <コントローラ40>
 パーティクル検出装置10は、コントローラ40を備えている。コントローラ40は、例えば、プログラマブルロジックコントローラ(PLC)等の外部制御機器41に電気的に接続されている。コントローラ40には、外部制御機器41からの電力が供給される。コントローラ40は、1)コンピュータプログラム(ソフトウェア)に従って動作する1つ以上のプロセッサを含む処理回路、2)各種処理のうち少なくとも一部の処理を実行する特定用途向け集積回路(ASIC)等の1つ以上の専用のハードウェア回路を含む処理回路、或いは3)それらの組み合わせを含む処理回路、を備えることができる。プロセッサは、CPU並びに、RAM及びROM等のメモリを含み、メモリは、処理をCPUに実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。
<Controller 40>
The particle detection device 10 includes a controller 40. The controller 40 is electrically connected to an external control device 41 such as a programmable logic controller (PLC), for example. The controller 40 is supplied with power from an external control device 41 . The controller 40 is one of: 1) a processing circuit including one or more processors that operates according to a computer program (software); 2) an application-specific integrated circuit (ASIC) that executes at least some of various processes. It is possible to provide a processing circuit including the above dedicated hardware circuit, or 3) a processing circuit including a combination thereof. A processor includes a CPU and memory, such as RAM and ROM, where the memory stores program codes or instructions configured to cause the CPU to perform processing. Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
 コントローラ40は、光学的センサ30に電気的に接続されている。コントローラ40には、例えば、光学的センサ30の受光部に受光された光の光量レベルに関する情報が受光部から送信される。コントローラ40は、受光部から送信される光量レベルに関する情報に基づいて、パーティクルの粒径や量などを検出する。そして、コントローラ40は、コントローラ40により検出されたパーティクルの粒径や量などの検出情報を外部制御機器41に送信する。外部制御機器41は、コントローラ40から送信される検出情報をモニタリングする。 The controller 40 is electrically connected to the optical sensor 30. For example, information regarding the light intensity level of the light received by the light receiving section of the optical sensor 30 is transmitted to the controller 40 from the light receiving section. The controller 40 detects the particle size, amount, etc. of particles based on information regarding the light intensity level transmitted from the light receiving section. Then, the controller 40 transmits detection information such as the particle size and amount of particles detected by the controller 40 to the external control device 41. External control device 41 monitors detection information transmitted from controller 40.
 コントローラ40は、圧力センサ25に電気的に接続されている。コントローラ40には、圧力センサ25により検出された圧力に関する情報が送信される。コントローラ40は、減圧部23に電気的に接続されている。コントローラ40は、圧力センサ25から送信された圧力の情報に基づいて、減圧部23を通過した圧縮流体の圧力が大気圧まで減圧するように、減圧部23の開度を制御する。なお、減圧部23により減圧されて一次側流路21を流れる圧縮流体の圧力は、大気圧よりも僅かに高い。 The controller 40 is electrically connected to the pressure sensor 25. Information regarding the pressure detected by the pressure sensor 25 is transmitted to the controller 40 . The controller 40 is electrically connected to the pressure reducing section 23. The controller 40 controls the opening degree of the pressure reducing section 23 based on the pressure information transmitted from the pressure sensor 25 so that the pressure of the compressed fluid that has passed through the pressure reducing section 23 is reduced to atmospheric pressure. Note that the pressure of the compressed fluid that is reduced in pressure by the pressure reduction unit 23 and flows through the primary flow path 21 is slightly higher than atmospheric pressure.
 コントローラ40は、流量センサ27に電気的に接続されている。コントローラ40には、流量センサ27により検出された流量に関する情報が送信される。コントローラ40は、流量調整部32に電気的に接続されている。コントローラ40は、流量センサ27から送信された流量の情報に基づいて、流量調整部32の開度を制御する。 The controller 40 is electrically connected to the flow rate sensor 27. Information regarding the flow rate detected by the flow rate sensor 27 is transmitted to the controller 40 . The controller 40 is electrically connected to the flow rate adjustment section 32. The controller 40 controls the opening degree of the flow rate adjustment section 32 based on the flow rate information transmitted from the flow rate sensor 27.
 コントローラ40は、例えば、流量センサ27により検出された流量が、予め定められた流量よりも多い場合、流量調整部32の開度を小さくする。一方で、コントローラ40は、例えば、流量センサ27により検出された流量が、予め定められた流量よりも少ない場合、流量調整部32の開度を大きくする。 For example, when the flow rate detected by the flow rate sensor 27 is higher than a predetermined flow rate, the controller 40 reduces the opening degree of the flow rate adjustment section 32. On the other hand, the controller 40 increases the opening degree of the flow rate adjustment section 32, for example, when the flow rate detected by the flow rate sensor 27 is less than a predetermined flow rate.
 流量調整部32の開度が小さくなるほど、上流側流路24から導入流路31を介してエジェクタ28に導入される圧縮流体の流量が少なくなる。これにより、エジェクタ28によって一次側流路21から光学的センサ30に向けて引き込まれる圧縮流体の流量が少なくなる。一方で、流量調整部32の開度が大きくなるほど、上流側流路24から導入流路31を介してエジェクタ28に導入される圧縮流体の流量が多くなる。これにより、エジェクタ28によって一次側流路21から光学的センサ30に向けて引き込まれる圧縮流体の流量が多くなる。したがって、流量調整部32は、エジェクタ28によって一次側流路21から光学的センサ30に向けて引き込まれる圧縮流体の流量を調整する。流量調整部32の開度は、一次側流路21を流れる減圧された圧縮流体が一定流量だけ光学的センサ30に流れるように、コントローラ40によって調整される。 The smaller the opening degree of the flow rate adjustment section 32, the smaller the flow rate of the compressed fluid introduced from the upstream flow path 24 through the introduction flow path 31 to the ejector 28. As a result, the flow rate of the compressed fluid drawn from the primary flow path 21 toward the optical sensor 30 by the ejector 28 decreases. On the other hand, as the opening degree of the flow rate adjustment section 32 increases, the flow rate of the compressed fluid introduced from the upstream flow path 24 to the ejector 28 via the introduction flow path 31 increases. As a result, the flow rate of the compressed fluid drawn from the primary flow path 21 toward the optical sensor 30 by the ejector 28 increases. Therefore, the flow rate adjustment unit 32 adjusts the flow rate of the compressed fluid drawn from the primary flow path 21 toward the optical sensor 30 by the ejector 28 . The opening degree of the flow rate adjustment section 32 is adjusted by the controller 40 so that the compressed fluid with reduced pressure flowing through the primary flow path 21 flows to the optical sensor 30 at a constant flow rate.
 コントローラ40は、開閉弁26に電気的に接続されている。コントローラ40には、外部制御機器41から開閉弁26の駆動に関する情報が送信される。例えば、開閉弁26を開弁させる旨の指令情報が外部制御機器41からコントローラ40に送信されると、コントローラ40は、開閉弁26が開弁するように開閉弁26の駆動を制御する。一方で、開閉弁26を閉弁させる旨の指令情報が外部制御機器41からコントローラ40に送信されると、コントローラ40は、開閉弁26が閉弁するように開閉弁26の駆動を制御する。 The controller 40 is electrically connected to the on-off valve 26. Information regarding the driving of the on-off valve 26 is transmitted to the controller 40 from an external control device 41 . For example, when command information to open the on-off valve 26 is transmitted from the external control device 41 to the controller 40, the controller 40 controls the driving of the on-off valve 26 so that the on-off valve 26 opens. On the other hand, when command information to close the on-off valve 26 is transmitted from the external control device 41 to the controller 40, the controller 40 controls the drive of the on-off valve 26 so that the on-off valve 26 is closed.
 [実施形態の作用]
 次に、本実施形態の作用について説明する。
 流体供給源14からの圧縮流体は、上流配管12、上流ポート11a、接続流路11c、下流ポート11b、及び下流配管13を介して流体圧機器15に供給される。ここで、作業者によって、外部制御機器41が操作されて、開閉弁26を開弁させる旨の指令情報が外部制御機器41からコントローラ40に送信されると、コントローラ40は、開閉弁26が開弁するように開閉弁26の駆動を制御する。これにより、開閉弁26が開弁する。
[Operation of embodiment]
Next, the operation of this embodiment will be explained.
Compressed fluid from the fluid supply source 14 is supplied to the fluid pressure device 15 via the upstream piping 12, the upstream port 11a, the connection channel 11c, the downstream port 11b, and the downstream piping 13. Here, when the worker operates the external control device 41 and command information to open the on-off valve 26 is transmitted from the external control device 41 to the controller 40, the controller 40 controls the on-off valve 26 to open. The drive of the on-off valve 26 is controlled so that the on-off valve 26 is closed. As a result, the on-off valve 26 opens.
 一次側流路21は、大気に接続されているため、分岐流路20には、供給流路16からの圧縮流体の流れが常に生じ得る。よって、開閉弁26が開弁すると、分岐流路20には、供給流路16からの圧縮流体の流れが常に生じる。供給流路16から分岐流路20の上流側流路24に流れ込んだ圧縮流体は、開閉弁26を通過して、減圧部23に向かって流れる。圧力センサ25は、上流側流路24を流れる圧縮流体の圧力を検出する。コントローラ40は、圧力センサ25から送信された圧縮流体の圧力の情報に基づいて、減圧部23の開度を制御する。減圧部23は、一次側流路21を流れる圧縮流体を減圧させる。 Since the primary flow path 21 is connected to the atmosphere, a flow of compressed fluid from the supply flow path 16 can always occur in the branch flow path 20. Therefore, when the on-off valve 26 opens, the compressed fluid from the supply channel 16 always flows through the branch channel 20 . The compressed fluid that has flowed into the upstream flow path 24 of the branch flow path 20 from the supply flow path 16 passes through the on-off valve 26 and flows toward the pressure reducing section 23 . The pressure sensor 25 detects the pressure of compressed fluid flowing through the upstream channel 24 . The controller 40 controls the opening degree of the pressure reducing section 23 based on the pressure information of the compressed fluid transmitted from the pressure sensor 25. The pressure reducing unit 23 reduces the pressure of the compressed fluid flowing through the primary flow path 21 .
 上流側流路24を流れる圧縮流体の一部は、導入流路31に流れ込んで、エジェクタ28に導入される。それにより、エジェクタ28は、一次側流路21を流れ且つ減圧部23によって減圧された圧縮流体を光学的センサ30に向けて引き込む。流量センサ27は、二次側流路22を流れる圧縮流体の流量を検出する。コントローラ40は、流量センサ27から送信された圧縮流体の流量の情報に基づいて、流量調整部32の開度を制御する。これにより、減圧された圧縮流体が光学的センサ30に一定流量だけ流れる。そして、光学的センサ30は、圧縮流体に含まれるパーティクルを検出する。 A part of the compressed fluid flowing through the upstream flow path 24 flows into the introduction flow path 31 and is introduced into the ejector 28. Thereby, the ejector 28 draws the compressed fluid flowing through the primary flow path 21 and whose pressure has been reduced by the pressure reducing section 23 toward the optical sensor 30 . The flow rate sensor 27 detects the flow rate of the compressed fluid flowing through the secondary flow path 22 . The controller 40 controls the opening degree of the flow rate adjustment section 32 based on the information on the flow rate of the compressed fluid transmitted from the flow rate sensor 27 . As a result, the compressed fluid with reduced pressure flows to the optical sensor 30 at a constant flow rate. The optical sensor 30 then detects particles contained in the compressed fluid.
 光学的センサ30を通過して二次側流路22へ流出した圧縮流体は、エジェクタ28を通過した後、大気へ放出される。導入流路31を介してエジェクタ28に導入された圧縮流体は、エジェクタ28を通過して二次側流路22へ流出し、大気へ放出される。 The compressed fluid that has passed through the optical sensor 30 and flowed out into the secondary flow path 22 passes through the ejector 28 and is then released into the atmosphere. The compressed fluid introduced into the ejector 28 through the introduction channel 31 passes through the ejector 28, flows out into the secondary channel 22, and is discharged to the atmosphere.
 作業者によって、外部制御機器41が操作されて、開閉弁26を閉弁させる旨の指令情報が外部制御機器41からコントローラ40に送信されると、コントローラ40は、開閉弁26が閉弁するように開閉弁26の駆動を制御する。これにより、開閉弁26が閉弁し、供給流路16を流れる圧縮流体の一部が分岐流路20に流れ込むことが規制される。そのため、流体供給源14からの圧縮流体は、上流配管12、上流ポート11a、接続流路11c、下流ポート11b、及び下流配管13を介して流体圧機器15に全て供給される。 When the worker operates the external control device 41 and command information to close the on-off valve 26 is transmitted from the external control device 41 to the controller 40, the controller 40 causes the on-off valve 26 to close. The drive of the on-off valve 26 is controlled. As a result, the on-off valve 26 closes, and a portion of the compressed fluid flowing through the supply flow path 16 is restricted from flowing into the branch flow path 20 . Therefore, the compressed fluid from the fluid supply source 14 is all supplied to the fluid pressure device 15 via the upstream piping 12, the upstream port 11a, the connection channel 11c, the downstream port 11b, and the downstream piping 13.
 [実施形態の効果]
 上記実施形態では以下の効果を得ることができる。
 (1)一次側流路21は、大気に接続されているため、分岐流路20には、供給流路16からの圧縮流体の流れが常に生じ得る。さらに、減圧部23が、一次側流路21を流れる圧縮流体を減圧させる。そして、上流側流路24を流れる圧縮流体の一部が導入流路31を介してエジェクタ28に導入されることにより、エジェクタ28は、一次側流路21を流れ且つ減圧部23によって減圧された圧縮流体を光学的センサ30に向けて引き込む。これにより、減圧された圧縮流体を光学的センサ30に一定流量だけ流すことができる。よって、従来技術のように、光学的センサ30よりも圧縮流体の流れ方向における下流側にポンプを設置する必要が無いため、ポンプを駆動させることにより電力を消費してしまうといった問題が生じ得ない。よって、パーティクル検出装置10において消費電力を低減することができる。
[Effects of embodiment]
In the above embodiment, the following effects can be obtained.
(1) Since the primary flow path 21 is connected to the atmosphere, a flow of compressed fluid from the supply flow path 16 can always occur in the branch flow path 20 . Further, the pressure reducing unit 23 reduces the pressure of the compressed fluid flowing through the primary flow path 21 . Then, a part of the compressed fluid flowing through the upstream flow path 24 is introduced into the ejector 28 via the introduction flow path 31, so that the ejector 28 is able to flow through the primary flow path 21 and is depressurized by the pressure reducing section 23. Draw compressed fluid towards optical sensor 30. This allows a constant flow rate of the reduced pressure fluid to flow through the optical sensor 30. Therefore, unlike the prior art, there is no need to install a pump downstream of the optical sensor 30 in the flow direction of the compressed fluid, so there is no problem of power consumption due to driving the pump. . Therefore, power consumption in the particle detection device 10 can be reduced.
 (2)導入流路31には、エジェクタ28に導入される圧縮流体の流量を調整する流量調整部32が設けられている。これによれば、上流側流路24から導入流路31を介してエジェクタ28に導入される圧縮流体の流量を流量調整部32によって調整することで、エジェクタ28によって一次側流路21から光学的センサ30に向けて引き込まれる圧縮流体の流量を調整できる。したがって、一次側流路21を流れる減圧された圧縮流体が一定流量だけ光学的センサ30に流れるように調整し易くすることができる。その結果、圧縮流体に含まれるパーティクルを光学的センサ30によって精度良く検出することができる。 (2) The introduction channel 31 is provided with a flow rate adjustment section 32 that adjusts the flow rate of the compressed fluid introduced into the ejector 28. According to this, by adjusting the flow rate of the compressed fluid introduced from the upstream flow path 24 to the ejector 28 via the introduction flow path 31 by the flow rate adjustment unit 32, the ejector 28 can optically remove the compressed fluid from the primary flow path 21. The flow rate of compressed fluid drawn towards sensor 30 can be adjusted. Therefore, it is possible to easily adjust the reduced pressure compressed fluid flowing through the primary flow path 21 to flow to the optical sensor 30 at a constant flow rate. As a result, particles contained in the compressed fluid can be detected with high accuracy by the optical sensor 30.
 (3)パーティクル検出装置10は、パーティクルの検出処理を実施する際に開弁することで供給流路16から分岐流路20への圧縮流体の流れを許容する開閉弁26を備えている。これによれば、開閉弁26が開弁しているときのみ、分岐流路20に、供給流路16からの圧縮流体の流れを常に生じさせることができる。したがって、圧縮流体に含まれるパーティクルの検出が不要なときに、供給流路16を流れる圧縮流体の一部が分岐流路20に流れ込んでしまうことが無いため、流体供給源14からの圧縮流体を無駄に消費してしまうことを回避することができる。 (3) The particle detection device 10 includes an on-off valve 26 that opens when performing particle detection processing to allow the compressed fluid to flow from the supply channel 16 to the branch channel 20. According to this, only when the on-off valve 26 is open, the compressed fluid from the supply flow path 16 can always be caused to flow in the branch flow path 20. Therefore, when there is no need to detect particles contained in the compressed fluid, a part of the compressed fluid flowing through the supply flow path 16 does not flow into the branch flow path 20, so that the compressed fluid from the fluid supply source 14 is You can avoid wasting it.
 (4)従来技術とは異なり、光学的センサ30よりも圧縮流体の流れ方向における下流側にポンプを設置する必要が無い。このため、ポンプが振動したり、ポンプからノイズが発生したりして、光学的センサ30がパーティクルを精度良く検出することが困難となるといった問題を回避することができる。 (4) Unlike the prior art, there is no need to install a pump downstream of the optical sensor 30 in the flow direction of the compressed fluid. Therefore, it is possible to avoid the problem that the pump vibrates or noise is generated from the pump, making it difficult for the optical sensor 30 to accurately detect particles.
 (5)流量センサ27は、二次側流路22に設けられている。これによれば、例えば、流量センサ27が一次側流路21の第2流路21bに設けられている場合とは異なり、流量センサ27から生じる塵等が光学的センサ30に流れ込んでしまうことが回避される。したがって、圧縮流体に含まれるパーティクルを光学的センサ30によって精度良く検出することができる。 (5) The flow rate sensor 27 is provided in the secondary flow path 22. According to this, for example, unlike the case where the flow rate sensor 27 is provided in the second flow path 21b of the primary side flow path 21, dust generated from the flow rate sensor 27 is prevented from flowing into the optical sensor 30. Avoided. Therefore, particles contained in the compressed fluid can be detected with high accuracy by the optical sensor 30.
 [変更例]
 なお、上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[Example of change]
Note that the above embodiment can be modified and implemented as follows. The above embodiment and the following modification examples can be implemented in combination with each other within a technically consistent range.
 ・実施形態において、パーティクル検出装置10は、導入流路31に流量調整部32が設けられていない構成であってもよい。
 ・実施形態において、パーティクル検出装置10は、開閉弁26を備えていない構成であってもよい。
- In the embodiment, the particle detection device 10 may have a configuration in which the flow rate adjustment section 32 is not provided in the introduction channel 31.
- In the embodiment, the particle detection device 10 may be configured without the on-off valve 26.
 ・実施形態において、開閉弁26は、電磁弁に限らない。例えば、開閉弁26は、手動弁であってもよい。
 ・実施形態において、例えば、上流側流路24に、レギュレータを減圧部として設けてもよい。
- In the embodiment, the on-off valve 26 is not limited to a solenoid valve. For example, the on-off valve 26 may be a manual valve.
- In the embodiment, for example, a regulator may be provided in the upstream flow path 24 as a pressure reducing section.
 ・実施形態において、流量センサ27が一次側流路21の第2流路21bに設けられていてもよい。
 ・実施形態において、光学的センサ30は、例えば、次のような構成を有していてもよい。すなわち、光学的センサ30は、投光部から出射された光が受光部によって受光されるように構成される。圧縮流体に含まれるパーティクルによって、投光部から出射された光が遮られることにより、受光部によって受光される光の光量レベルが変化する。
- In the embodiment, the flow rate sensor 27 may be provided in the second flow path 21b of the primary flow path 21.
- In the embodiment, the optical sensor 30 may have the following configuration, for example. That is, the optical sensor 30 is configured such that the light emitted from the light projecting section is received by the light receiving section. The light emitted from the light projecting section is blocked by the particles contained in the compressed fluid, so that the level of the amount of light received by the light receiving section changes.
 ・実施形態において、減圧部23を通過した圧縮流体の圧力を大気圧まで減圧させなくてもよい。要は、減圧部23を通過した圧縮流体の圧力が、光学的センサ30によってパーティクルが検出可能な圧力まで減圧されていればよい。 - In the embodiment, it is not necessary to reduce the pressure of the compressed fluid that has passed through the pressure reducing section 23 to atmospheric pressure. In short, it is sufficient that the pressure of the compressed fluid that has passed through the pressure reducing section 23 is reduced to a pressure that allows the optical sensor 30 to detect particles.

Claims (3)

  1.  流体供給源からの圧縮流体を流体圧機器に供給するように構成される供給流路と、
     前記供給流路から分岐するとともに前記供給流路を流れる圧縮流体の一部が流れるように構成される分岐流路と、
     前記分岐流路に設けられるとともに前記分岐流路を流れる圧縮流体に含まれるパーティクルを検出するように構成される光学的センサと、を備えているパーティクル検出装置であって、
     前記分岐流路は、
      前記光学的センサよりも前記圧縮流体の流れ方向における上流側に位置する一次側流路と、
      前記光学的センサよりも前記圧縮流体の流れ方向における下流側に位置する二次側流路と、を有し、
     前記一次側流路は、大気に接続されており、
     前記一次側流路には、前記一次側流路を流れる圧縮流体を減圧させるように構成される減圧部が設けられており、
     前記二次側流路には、エジェクタが設けられており、
     前記一次側流路は、前記減圧部よりも前記圧縮流体の流れ方向における上流側に位置する上流側流路を有し、
     前記パーティクル検出装置は、前記上流側流路を流れる圧縮流体の一部を前記エジェクタに導入するように構成される導入流路を備え、
     前記エジェクタは、前記上流側流路を流れる圧縮流体の一部が前記導入流路を介して前記エジェクタに導入されることにより、前記一次側流路を流れ且つ前記減圧部によって減圧された圧縮流体を前記光学的センサに向けて引き込むように構成される、パーティクル検出装置。
    a supply channel configured to supply compressed fluid from a fluid supply source to a fluid pressure device;
    a branch flow path configured to branch from the supply flow path and allow a portion of the compressed fluid flowing through the supply flow path;
    A particle detection device comprising: an optical sensor provided in the branch flow path and configured to detect particles contained in compressed fluid flowing through the branch flow path,
    The branch flow path is
    a primary flow path located upstream of the optical sensor in the flow direction of the compressed fluid;
    a secondary flow path located downstream of the optical sensor in the flow direction of the compressed fluid;
    The primary flow path is connected to the atmosphere,
    The primary side flow path is provided with a pressure reducing part configured to reduce the pressure of the compressed fluid flowing through the primary side flow path,
    The secondary flow path is provided with an ejector,
    The primary flow path has an upstream flow path located upstream of the pressure reduction part in the flow direction of the compressed fluid,
    The particle detection device includes an introduction channel configured to introduce a part of the compressed fluid flowing through the upstream channel into the ejector,
    The ejector is configured such that a part of the compressed fluid flowing through the upstream flow path is introduced into the ejector via the introduction flow path, thereby reducing the pressure of the compressed fluid flowing through the primary flow path and reduced in pressure by the pressure reducing section. a particle detection device configured to draw a particle toward the optical sensor.
  2.  前記導入流路に設けられ、前記エジェクタに導入される圧縮流体の流量を調整するように構成される流量調整部をさらに備える、請求項1に記載のパーティクル検出装置。 The particle detection device according to claim 1, further comprising a flow rate adjustment section provided in the introduction flow path and configured to adjust the flow rate of the compressed fluid introduced into the ejector.
  3.  前記パーティクルの検出処理を実施する際に開弁することで前記供給流路から前記分岐流路への圧縮流体の流れを許容するように構成される開閉弁をさらに備える、請求項1に記載のパーティクル検出装置。 2. The method according to claim 1, further comprising an on-off valve configured to open when performing the particle detection process to allow a flow of compressed fluid from the supply flow path to the branch flow path. Particle detection device.
PCT/JP2023/004886 2022-04-22 2023-02-14 Particle detection device WO2023203848A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022070621A JP2023160326A (en) 2022-04-22 2022-04-22 Particle detector
JP2022-070621 2022-04-22

Publications (1)

Publication Number Publication Date
WO2023203848A1 true WO2023203848A1 (en) 2023-10-26

Family

ID=88419611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004886 WO2023203848A1 (en) 2022-04-22 2023-02-14 Particle detection device

Country Status (2)

Country Link
JP (1) JP2023160326A (en)
WO (1) WO2023203848A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159597A (en) * 1995-12-04 1997-06-20 Nikkiso Co Ltd Particle size distribution measuring device of powder
JP2014228276A (en) * 2013-05-17 2014-12-08 アズビル株式会社 Particle detection device and particle detection method
JP2020189264A (en) * 2019-05-21 2020-11-26 Ckd株式会社 Filter device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159597A (en) * 1995-12-04 1997-06-20 Nikkiso Co Ltd Particle size distribution measuring device of powder
JP2014228276A (en) * 2013-05-17 2014-12-08 アズビル株式会社 Particle detection device and particle detection method
JP2020189264A (en) * 2019-05-21 2020-11-26 Ckd株式会社 Filter device

Also Published As

Publication number Publication date
JP2023160326A (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JPH0686950A (en) Powder injecting device
WO2009090775A1 (en) Vacuum generation device
PL367655A1 (en) Gas/air ratio controller for pre-mixing valve of combustion device
US5429156A (en) Pneumatic transmission apparatus
WO2023203848A1 (en) Particle detection device
CN109421476B (en) Air conditioning unit for vehicle
KR20180031103A (en) Apparatus for reducing dust scattering in belt conveyor and control method thereof
TWI723872B (en) Filter device
JP2747603B2 (en) Method and apparatus for venting vacuum processing equipment
US10940447B2 (en) Control circuit for stopping the flow of fluid in a primary circuit, and related methods and devices
US20080196786A1 (en) Method and Apparatus for the Phase Change in an Isolator
US6647808B2 (en) Position-detecting apparatus
SG142128A1 (en) Fan unit air flow control
US11413115B2 (en) Tooth cleaning system, powder container and insert for a powder container
JP2021028056A (en) Ultraviolet irradiation device
EP3760579A1 (en) Ozone generating apparatus and ozone generating method
EP1840477A3 (en) Volume control loop, in particular for air conditioning and ventilation systems
MX2022011924A (en) Edge-coating a panel with a coating medium.
JP2009144609A (en) Steam ejector
US9541926B2 (en) Drive device and valve comprising the same
US20230408379A1 (en) Gas flow path and gas detection system
TWI652561B (en) Gas pressure adjustment device
CN209728525U (en) A kind of device by controlling pressure regulating gas flow
JP3403394B2 (en) Collecting cylinder pressure control device for blow-out type wind tunnel
JP2009144608A (en) Steam ejector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23791504

Country of ref document: EP

Kind code of ref document: A1