JP2014224795A - 電気負荷駆動装置 - Google Patents

電気負荷駆動装置 Download PDF

Info

Publication number
JP2014224795A
JP2014224795A JP2013105240A JP2013105240A JP2014224795A JP 2014224795 A JP2014224795 A JP 2014224795A JP 2013105240 A JP2013105240 A JP 2013105240A JP 2013105240 A JP2013105240 A JP 2013105240A JP 2014224795 A JP2014224795 A JP 2014224795A
Authority
JP
Japan
Prior art keywords
potential
voltage
common line
downstream
electric load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013105240A
Other languages
English (en)
Inventor
誠 矢野
Makoto Yano
誠 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013105240A priority Critical patent/JP2014224795A/ja
Publication of JP2014224795A publication Critical patent/JP2014224795A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

【課題】複数の電気負荷を駆動する装置にて、通電停止期間中に、電流経路の正常、天絡、地絡の判別だけでなく、電気負荷毎の個別電流経路の断線本数も判別可能にする。【解決手段】コイル5−1,5−2の上流側が共通接続された共通ライン15と各駆動電圧VB,VCとの間に、直列に設けられたスイッチ19,29と、各コイルの下流側が接続される下流端子9−1,9−2と、その各下流端子をグランドラインに導通させるスイッチ11−1,11−2と、を備える駆動装置1では、一定の電圧VDと共通ライン15との間に抵抗51があり、グランド電位と共通ライン15との間に抵抗52があり、グランド電位と各下流端子9−1,9−2との間に抵抗53−1,53−2がある。そして、診断部45が、コイルへの通電停止期間に、共通ライン15の電圧Vmに基づいて、総電流経路60の正常、天絡、地絡と個別電流経路61−1,61−2の断線本数とを判別する。【選択図】図1

Description

本発明は、複数の電気負荷を駆動する電気負荷駆動装置に関する。
電気負荷駆動装置として、電気負荷の上流側と下流側との両方に駆動回路を設けたものがある。この種の電気負荷駆動装置では、上流側の駆動回路により、電気負荷の上流側に駆動電圧を供給し、下流側の駆動回路により、電気負荷の下流側を基準電位に接続することで、電気負荷に電流を流す。そして、特許文献1には、電気負荷への通電を実施していないときに、電気負荷の断線と、電気負荷の端子の天絡と、電気負荷の端子の地絡と、正常とを、判別することが記載されている。
特開2007−225441号公報
特許文献1には、駆動対象の電気負荷が複数ある場合の構成及び診断手法について記載されていない。特に、特許文献1では、複数の電気負荷毎の個別電流経路の断線本数まで判別することはできない。
そこで、本発明は、複数の電気負荷を駆動する電気負荷駆動装置において、電気負荷への通電停止期間中に、電気負荷を含む電流経路の正常、天絡、地絡の判別だけでなく、電気負荷毎の個別電流経路の断線本数までも判別可能にすること、を目的としている。
第1発明の電気負荷駆動装置は、複数の電気負荷の上流側が共通に接続された共通ラインと前記各電気負荷に電流を流すための駆動電圧との間に、直列に設けられ、オンすることで、前記各電気負荷の上流側に前記駆動電圧を供給する上流側スイッチと、前記各電気負荷に対してそれぞれ設けられ、自身に対応する前記電気負荷の下流側が接続される複数の下流端子と、前記各電気負荷に対してそれぞれ設けられ、オンすることで、自身に対応する前記電気負荷が接続された前記下流端子を、前記駆動電圧よりも低い基準電位のラインに導通させる複数の下流側スイッチと、前記上流側スイッチと前記各下流側スイッチとのオン/オフを制御することにより、前記各電気負荷への通電を制御する制御手段と、を備える。この電気負荷駆動装置では、制御手段により、上側スイッチがオンされると共に、下流側スイッチのうちの何れかがオンされれば、そのオンされた下流側スイッチに対応する電気負荷に電流が流れる。
更に、第1発明の電気負荷駆動装置は、前記基準電位よりも高い第1の電位と前記共通ラインとの間に設けられた第1の抵抗と、前記第1の電位よりも低く且つ前記基準電位以上の第2の電位と前記共通ラインとの間に設けられた第2の抵抗と、前記第1の電位よりも低く且つ前記基準電位以上の第3の電位と前記各下流端子との間に、それぞれ設けられた複数の第3の抵抗と、診断手段とを備える。
診断手段は、前記制御手段が、前記上流側スイッチ及び前記各下流側スイッチをオフさせて、前記各電気負荷への通電を停止している期間(以下、非駆動期間という)おいて、動作する。
そして、診断手段は、前記共通ラインから前記各電気負荷を経由して前記各下流端子に至る各個別電流経路と前記共通ラインとからなる総電流経路が正常であることと、前記総電流経路が前記第1の電位よりも高い電位に短絡していることと、前記総電流経路が前記基準電位に短絡していることと、前記各個別電流経路のうちで断線している個別電流経路の数である断線本数とを、前記共通ラインの電圧に基づき判別する。
個別電流経路には電気負荷が含まれるため、総電流経路にも電気負荷が含まれる。また、総電流経路が第1の電位よりも高い電位に短絡することは、天絡に該当し、総電流経路が基準電位に短絡することは、地絡に該当する。
非駆動期間における共通ラインの電圧は、総電流経路が正常であれば、第1の電位よりも低く基準電位よりは高い所定の電圧である正常電圧となる。この正常電圧は、第1〜第3の電位と第1〜第3の抵抗の各抵抗値とによって決まる。
一方、非駆動期間における共通ラインの電圧は、総電流経路が基準電位に短絡した地絡の場合には、正常電圧よりも低い基準電位となる。また、非駆動期間における共通ラインの電圧は、総電流経路が第1の電位よりも高い電位に短絡した天絡の場合には、正常電圧より高い第1の電位よりも更に高くなる。また、非駆動期間における共通ラインの電圧は、個別電流経路の1つ以上が断線した場合には、正常電圧よりも高く第1の電位よりは低い電圧となり、しかも、断線本数が多くなるほど高くなる。
このため、診断手段は、非駆動期間における共通ラインの電圧に基づいて、総電流経路の正常、天絡、地絡の判別だけでなく、電気負荷毎の個別電流経路の断線本数までも判別することができる。
その上、この電気負荷駆動装置によれば、第1及び第2の抵抗を、各電気負荷に共通の共通ラインに設けているため、電気負荷の数が増えても、第1及び第2の抵抗の数は変わらない。よって、装置の部品点数増加及び大型化を抑制することができる。
実施形態の電気負荷駆動装置を表す構成図である。 電気負荷駆動装置の動作を説明する説明図である。 故障診断のための閾値電圧を説明する説明図である。 診断部の診断動作内容を表すフローチャートである。
以下に、本発明が適用された実施形態の電気負荷駆動装置について説明する。
尚、本実施形態の電気負荷駆動装置は、例えば、車両に搭載されたエンジンの気筒に燃料を噴射する電磁ソレノイド式のインジェクタを駆動するものであり、詳しくは、そのインジェクタのコイルへの通電を制御することにより、気筒への燃料噴射を制御する。また、本実施形態の例では、インジェクタの数が2個として説明するが、3個以上であっても同様である。また、本実施形態において、スイッチとして使用しているスイッチング素子は、例えばMOSFETであるが、バイポーラトランジスタやIGBT(絶縁ゲートバイポーラトランジスタ)等の他種類のスイッチング素子でも良い。
図1に示すように、実施形態の電気負荷駆動装置(以下単に、駆動装置という)1は、各インジェクタ3−1,3−2のコイル5−1,5−2の上流側がそれぞれ接続される上流端子7−1,7−2と、コイル5−1,5−2の下流側がそれぞれ接続される下流端子9−1,9−2と、各下流端子9−1,9−2に一方の出力端子がそれぞれ接続されたスイッチング素子である選択スイッチ11−1,11−2と、選択スイッチ11−1,11−2の他方の出力端子とグランド電位のライン(以下、グランドラインという)との間に共通接続された電流検出用の抵抗13と、上流端子7−1,7−2に共通接続された(換言すれば、コイル5−1,5−2の上流側に共通接続された)共通ライン15と、を備える。
尚、グランド電位は0Vであり、基準電位に該当する。また、インジェクタ3−1,3−2やコイル5−1,5−2等、符号として、数字の後に「−1」,「−2」を付した符号を用いた構成要素については、2つのものを特に区別しない場合、符号として、「−1」,「−2」を除いた数字を用いる。例えば、2つのインジェクタ3−1,3−2を特に区別しない場合には、インジェクタの符号として「3」を用いる。
インジェクタ3では、コイル5に通電されると、図示しない弁体(いわゆるノズルニードル)が開弁位置に移動して(換言すれば、リフトして)、燃料噴射が行われ、コイル5の通電が遮断されると、弁体が元の閉弁位置に戻って、燃料噴射が停止される。また、選択スイッチ11は、通電対象のコイル5(換言すれば、駆動対象のインジェクタ3であり、また噴射対象の気筒)を選択するためのスイッチング素子である。
更に、駆動装置1は、車載バッテリの電圧(バッテリ電圧)VBが供給される電源ライン17に一方の出力端子が接続されたスイッチング素子である定電流スイッチ19と、定電流スイッチ19の他方の出力端子にアノードが接続され、カソードが共通ライン15に接続された逆流防止用のダイオード21と、アノードがグランドラインに接続され、カソードが共通ライン15に接続された電流還流用のダイオード23と、昇圧回路25とを備える。
ダイオード23は、選択スイッチ11−1,11−2のうちの何れかがオンされている状態で、定電流スイッチ19がオンからオフされた時に、コイル5−1,5−2のうち、オンしている選択スイッチ11に対応する方のコイル5に、電流を還流させる。
昇圧回路25は、コンデンサ27を備えた周知のDC/DCコンバータである。コンデンサ27には、インジェクタ3の弁体を開弁方向へ速やかに動かすため(即ち、開弁を速めるため)の電気エネルギが蓄積される。そして、昇圧回路25は、バッテリ電圧VBを昇圧し、その昇圧した電圧でコンデンサ27を充電することにより、コンデンサ27の充電電圧VCがバッテリ電圧VBよりも高い所定の目標電圧となるようにする。
また、駆動装置1は、コンデンサ27の正極側と共通ライン15との間に直列に設けられたスイッチング素子であって、オンすることで、コンデンサ27の正極側を共通ライン15に接続させる放電スイッチ29と、マイコン(マイクロコンピュータ)31と、マイコン31からの噴射指令信号に応じて、選択スイッチ11−1,11−2、定電流スイッチ19及び放電スイッチ29のオン/オフを制御することにより、コイル5−1,5−2への通電を制御する駆動制御回路33と、を備えている。
マイコン31は、プログラムを実行するCPU35、プログラムや固定のデータ等が記憶されたROM36、CPU35による演算結果等が記憶されるRAM37及びAD変換器(ADC)38等を備えている。
そして、マイコン31は、例えばエンジン回転数、アクセル開度及びエンジン水温など、各種センサにて検出されるエンジンの運転情報に基づいて、気筒毎に噴射指令信号を生成して駆動制御回路33に出力する。噴射指令信号は、その信号のレベルがハイの間だけインジェクタ3のコイル5に通電する、という意味を持つ駆動信号である。このため、マイコン31は、エンジンの運転情報に基づいて、気筒毎に、インジェクタ3のコイル5への通電期間を設定し、その通電期間だけ、該当する気筒の噴射指令信号をハイにしていると言える。
また、駆動制御回路33は、選択スイッチ11−1,11−2を制御する下流ドライバ制御部41と、定電流スイッチ19を制御する定電流制御部42と、放電スイッチ29を制御する放電制御部43と、抵抗13の両端の電位差からコイル5−1,5−2に流れる電流を検出する電流検出部44と、故障診断を行う診断部45と、を備える。
更に、駆動装置1は、グランド電位よりも高い一定の電圧VD(本実施形態では例えば5V)と共通ライン15との間に設けられたプルアップ用の抵抗51と、共通ライン15とグランドラインとの間に設けられたプルダウン用の抵抗52と、各下流端子9−1,9−2とグランドラインとの間にそれぞれ設けられたプルダウン用の抵抗53−1,53−2と、を備える。抵抗51,52,53−1,53−2の抵抗値は、コイル5の抵抗値と比較すると十分に大きい値(例えば数百倍〜数千倍程度の値)に設定されている。また、一定の電圧VDは、駆動装置1に備えられた電源回路(図示省略)により、バッテリ電圧VBを降圧して生成される。
次に、駆動制御回路33における診断部45以外の各部の動作について、図2を用い説明する。尚、ここでは、インジェクタ3−1が駆動される場合を例に挙げて説明するが、他のインジェクタ3−2についても同様である。また、燃料噴射の開始前において、コンデンサ電圧VCは目標電圧になっている。
駆動制御回路33では、図2に示すように、マイコン31から出力される噴射指令信号のうち、インジェクタ3−1に対応する噴射指令信号がハイになると、下流ドライバ制御部41が、インジェクタ3−1に対応する選択スイッチ11−1をオンさせる。更に、放電制御部43が、放電スイッチ29をオンさせる。
すると、各コイル5−1,5−2の上流側にコンデンサ27の充電電圧VCが供給された状態で、コイル5−1の下流側が選択スイッチ11−1及び抵抗13を介してグランドラインに導通することとなる。このため、コンデンサ27からコイル5−1に放電される。つまり、「コンデンサ27→放電スイッチ29→共通ライン15→コイル5−1→選択スイッチ11−1→抵抗13→グランドライン」の経路で電流が流れる。尚、このようなコンデンサ27の放電に際し、高電位となる共通ライン15側から電源ライン17側への回り込みは、ダイオード21によって防止される。
そして、放電制御部43は、電流検出部44によって検出される電流(この例では、コイル5−1の電流)が目標最大値Ipに達したと判定すると、放電スイッチ29をオフさせる。
また、放電制御部43により放電スイッチ29がオフされた後は、定電流制御部42が、電流検出部44によって検出されるコイル5−1の電流が目標最大値Ipよりも小さい一定の電流となるように、定電流スイッチ19をオン/オフさせる。
定電流スイッチ19のオン時には、各コイル5−1,5−2の上流側にバッテリ電圧VBが供給された状態で、コイル5−1の下流側が選択スイッチ11−1及び抵抗13を介してグランドラインに導通することとなる。このため、バッテリ電圧VB(電源ライン17)からコイル5−1に電流が流れる。つまり、「電源ライン17→定電流スイッチ19→ダイオード21→共通ライン15→コイル5−1→選択スイッチ11−1→抵抗13→グランドライン」の経路で電流が流れる。また、定電流スイッチ19のオフ時には、コイル5−1に、グランドライン側からダイオード23を介して電流が流れる(還流する)。よって、コイル5−1の電流は、定電流スイッチ19のオン時において徐々に増加し、定電流スイッチ19のオフ時において徐々に減少することとなる。
このため、定電流制御部42は、定電流スイッチ19をオン/オフさせる制御として、例えば、「コイル5−1の電流が下側閾値IL以下になると定電流スイッチ19をオンさせ、コイル5−1の電流が上側閾値IH以上になると定電流スイッチ19をオフさせる」という制御を行う。下側閾値ILと、上側閾値IHと、目標最大値Ipとの関係は、「IL<IH<Ip」である。
その後、インジェクタ3−1に対応する噴射指令信号がローになると、定電流制御部42は、定電流スイッチ19をオフさせたままにし、また、下流ドライバ制御部41も、選択スイッチ11−1をオフさせる。すると、コイル5−1への通電が停止してインジェクタ3−1が閉弁し、そのインジェクタ3−1による燃料噴射が終了する。
次に、駆動制御回路33における診断部45の動作について説明する。
診断部45は、マイコン31からの気筒毎の噴射指令信号が全てローになっていて、下流ドライバ制御部41、定電流制御部42及び放電制御部43が、選択スイッチ11−1,11−2、定電流スイッチ19及び放電スイッチ29を全てオフさせている非駆動期間において動作し、故障診断のために共通ライン15の電圧Vmをモニタする。
ここで、非駆動期間における共通ライン15の電圧Vm(以下、モニタ対象電圧Vmともいう)が、正常時及び各故障状態に応じて、どのようになるかを説明する。
尚、抵抗51の抵抗値を「R51」とし、抵抗52の抵抗値を「R52」とし、抵抗53−1の抵抗値を「R53−1」とし、抵抗53−2の抵抗値を「R53−2」とする。また、抵抗52と抵抗53−1と抵抗53−2との並列抵抗値を「R52//R53−1//R53−2」とし、抵抗52と抵抗53−1との並列抵抗値を「R52//R53−1」とし、抵抗52と抵抗53−2との並列抵抗値を「R52//R53−2」とする。「//」は並列を意味する。
《正常時》
正常とは、共通ライン15から(実質的には各上流端子7−1,7−2から)各コイル5−1,5−2を経由して各下流端子9−1,9−2に至る各個別電流経路61−1,61−2と、共通ライン15とからなる総電流経路60が、正常ということである。
正常であれば、モニタ対象電圧Vmは、電圧VDを「R51」と「R52//R53−1//R53−2」とで分圧した電圧Vno(<VD)になる。尚、前述したように、「R51」,「R52」,「R53−1」,「R53−2」は、コイル5の抵抗値よりも十分に大きいため、コイル5の抵抗値は無視している。
《天絡時》
天絡とは、総電流経路60が、電圧VDよりも高い電位に短絡していることである。本実施形態では、短絡先の電位として、バッテリ電圧VBを想定している。このため、天絡とは、バッテリ電圧VBへの短絡(いわゆるバッテリショート)ということになる。
天絡時であれば、モニタ対象電圧Vmは、電圧VDよりも高いバッテリ電圧VBとなる。
《地絡時》
地絡とは、総電流経路60が、グランド電位に短絡していること(いわゆるグランドショート)である。
地絡時であれば、モニタ対象電圧Vmは0Vになる。
《1本断線時》
1本断線とは、個別電流経路61−1,61−2のうちの1つが断線していることである。
モニタ対象電圧Vmは、個別電流経路61−2が断線した場合には、電圧VDを「R51」と「R52//R53−1」とで分圧した電圧V1aになり、個別電流経路61−1が断線した場合には、電圧VDを「R51」と「R52//R53−2」とで分圧した電圧V1bになる。
そして、電圧V1a,V1bは、電圧VDよりも低いが、正常時の電圧Vnoよりは高くなる。また、本実施形態では、例えば「R53−1」=「R53−2」に設定しているため、V1aとV1bは同じになる。但し、「R53−1」と「R53−2」は異なる値であっても良い。
《2本断線時》
2本断線とは、個別電流経路61−1,61−2の両方が断線していることである。
2本断線時であれば、モニタ対象電圧Vmは、電圧VDを「R51」と「R52」とで分圧した電圧V2になる。
そして、電圧V2は、電圧VDよりも低いが、1本断線時の電圧V1a,V1bよりは高くなる。
ここで、モニタ対象電圧Vmがなり得る上記各電圧Vno,V1a,V1b,V2,VB,0Vの大小関係は、図3に示すように「VB>V2>V1a,V1b>Vno>0V」となる。
以上のことから、診断部45は、正常、天絡、地絡、1本断線及び2本断線を判別するために、図3に示すように4つの閾値電圧Vth1〜Vth4を有している。
閾値電圧Vth1は、地絡と正常とを判別するための閾値電圧であり、0Vよりも高く電圧Vnoよりは低い値に設定されている。
閾値電圧Vth2は、正常と1本断線とを判別するための閾値電圧であり、電圧Vnoよりも高く電圧V1a,V1bよりは低い値に設定されている。
閾値電圧Vth3は、1本断線と2本断線とを判別するための閾値電圧であり、電圧V1a,V1bよりも高く電圧V2よりは低い値に設定されている。
閾値電圧Vth4は、2本断線と天絡とを判別するための閾値電圧であり、電圧V2よりも高くバッテリ電圧VBよりは低い値に設定されている。
そして、診断部45は、非駆動期間において、図4に示す診断動作により、正常、天絡、地絡、1本断線及び2本断線を判別する。
図4に示すように、診断部45は、共通ライン15の電圧Vmと閾値電圧Vth1〜Vth4とを比較して、「Vm<Vth1」であれば(S110:YES)、地絡(グランドショート)と判定する(S120、図3参照)。
また、診断部45は、「Vth1≦Vm<Vth2」であれば(S130:YES)、正常と判定する(S140、図3参照)。
また、診断部45は、「Vth2≦Vm<Vth3」であれば(S150:YES)、1本断線と判定する(S160、図3参照)。
また、診断部45は、「Vth3≦Vm<Vth4」であれば(S170:YES)、2本断線と判定する(S180、図3参照)。
また、診断部45は、「Vth4≦Vm」であれば(S170:NO)、天絡(バッテリショート)と判定する(S190、図3参照)。
診断部45は、図4の診断動作による判定結果(即ち診断結果)をマイコン31に出力する。そして、マイコン31は、診断部45による判定結果に応じたフェイルセーフ用の処理を行うこととなる。
尚、診断部45は、例えば複数の比較器を含むハードウェア回路によって構成することができる。また例えば、診断部45は、A/D変換器を有したマイコンによって構成することもできる。また、診断部45の動作を、マイコン31によって実現しても良い。
本実施形態の駆動装置1によれば、総電流経路60の正常、天絡、地絡の判別だけでなく、コイル5毎の個別電流経路61の断線本数までも判別することができる。また、抵抗51,52を、各コイル5に共通の共通ライン15に設けているため、コイル5の数が増えても、抵抗51,52の数は変わらない。よって、部品点数増加及び装置の大型化を抑制することができる。
例えば、コイル5が3つであれば、上流端子7、下流端子9,選択スイッチ11及びプルダウン用の抵抗53が、1組増えることとなる。そして、その場合にも、モニタ対象電圧Vmは、「天絡時の電圧値>3本断線時の電圧値>2本断線時の電圧値>1本断線時の電圧値>正常時の電圧値>地絡時の電圧値」という大小関係になる。このため、診断部45は、モニタ対象電圧Vmに基づいて、正常と天絡と地絡と個別電流経路61の断線本数とを判別することができる。そして、このようにコイル5の数が増えても、抵抗51,52の数は変わらない。
以上、本発明の一実施形態について説明したが、本発明は、上記実施形態に限定されず、特許請求の範囲に記載された本発明の要旨の範囲において、種々の態様で実施することができ、前述した実施形態の構成や処理のうちの、何れかの組み合わせを変える変形や、一部を削除する変形等を行うことも可能である。また、前述した数値も一例である。
例えば、駆動対象の電気負荷は、インジェクタ3のコイル5以外でも良い。
例えば、電気負荷は、燃料タンク内の燃料を汲み上げてインジェクタ3に供給する燃料ポンプに設けられている燃料吐出量調整用電磁弁のコイルであっても良い。また、その場合、充電電圧VCの発生源である昇圧回路25と放電スイッチ29とを削除した構成を採ることができる。つまり、上記実施形態の駆動装置1は、上流側スイッチとして、放電スイッチ29と定電流スイッチ19との2つのスイッチを備えていた。そして、放電スイッチ29がコイル5の上流側に供給する駆動電圧は、充電電圧VCであり、定電流スイッチ19がコイル5の上流側に供給する駆動電圧は、バッテリ電圧VBであった。しかし、上流側スイッチは、勿論1つでも良い。
また、抵抗52の共通ライン15側とは反対側が接続される電位(第2の電位)は、グランド電位に限らず、グランド電位より高く電圧VDよりは低い電位であっても良い。そして、このことは、抵抗53の下流端子9側とは反対側が接続される電位(第3の電位)についても同様である。但し、第2の電位と第3の電位を、基準電位としてのグランド電位にすれば、特別な電位を設ける必要が無いという利点や、各故障状態を判別するための閾値電圧を決定し易いという点がある。
また、共通ライン15は、駆動装置1の外部において、コイル5毎の複数系統に分岐するようになっていても良い。
5−1,5−2…コイル(電気負荷)、15…共通ライン、19…定電流スイッチ、29…放電スイッチ、9−1,9−2…下流端子、11−1,11−2…選択スイッチ、41…下流ドライバ制御部、42…定電流制御部、43…放電制御部、44…電流検出部、45…診断部、51…抵抗(第1の抵抗)、52…抵抗(第2の抵抗)、53−1,53−2…抵抗(第3の抵抗)、60…総電流経路、61−1,61−2…個別電流経路、VB…バッテリ電圧、VC…充電電圧、VD…一定の電圧

Claims (2)

  1. 複数の電気負荷(5−1,5−2)の上流側が共通に接続された共通ライン(15)と前記各電気負荷に電流を流すための駆動電圧(VB,VC)との間に、直列に設けられ、オンすることで、前記各電気負荷の上流側に前記駆動電圧を供給する上流側スイッチ(19,29)と、
    前記各電気負荷に対してそれぞれ設けられ、自身に対応する前記電気負荷の下流側が接続される複数の下流端子(9−1,9−2)と、
    前記各電気負荷に対してそれぞれ設けられ、オンすることで、自身に対応する前記電気負荷が接続された前記下流端子を、前記駆動電圧よりも低い基準電位のラインに導通させる複数の下流側スイッチ(11−1,11−2)と、
    前記上流側スイッチと前記各下流側スイッチとのオン/オフを制御することにより、前記各電気負荷への通電を制御する制御手段(41,42,43,44)と、
    を備える電気負荷駆動装置において、
    前記基準電位よりも高い第1の電位(VD)と前記共通ラインとの間に設けられた第1の抵抗(51)と、
    前記第1の電位よりも低く且つ前記基準電位以上の第2の電位と前記共通ラインとの間に設けられた第2の抵抗(52)と、
    前記第1の電位よりも低く且つ前記基準電位以上の第3の電位と前記各下流端子との間に、それぞれ設けられた複数の第3の抵抗(53−1,53−2)と、
    前記制御手段が、前記上流側スイッチ及び前記各下流側スイッチをオフさせて、前記各電気負荷への通電を停止している期間おいて、前記共通ラインから前記各電気負荷を経由して前記各下流端子に至る各個別電流経路(61−1,61−2)と前記共通ラインとからなる総電流経路(60)が正常であることと、前記総電流経路が前記第1の電位よりも高い電位に短絡していることと、前記総電流経路が前記基準電位に短絡していることと、前記各個別電流経路のうちで断線している個別電流経路の数である断線本数とを、前記共通ラインの電圧に基づき判別する診断手段(45)と、
    を備えることを特徴とする電気負荷駆動装置。
  2. 請求項1に記載の電気負荷駆動装置において、
    前記第2の電位と前記第3の電位は、前記基準電位であること、
    を特徴とする電気負荷駆動装置。
JP2013105240A 2013-05-17 2013-05-17 電気負荷駆動装置 Pending JP2014224795A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013105240A JP2014224795A (ja) 2013-05-17 2013-05-17 電気負荷駆動装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013105240A JP2014224795A (ja) 2013-05-17 2013-05-17 電気負荷駆動装置

Publications (1)

Publication Number Publication Date
JP2014224795A true JP2014224795A (ja) 2014-12-04

Family

ID=52123553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013105240A Pending JP2014224795A (ja) 2013-05-17 2013-05-17 電気負荷駆動装置

Country Status (1)

Country Link
JP (1) JP2014224795A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807175A (zh) * 2016-03-14 2016-07-27 袁月春 信号注入方法以及查找单相接地故障的信号注入装置
CN112540278A (zh) * 2019-09-05 2021-03-23 泰瑞达亚洲股份有限公司 测试半导体器件的设备和方法
KR20210066469A (ko) * 2019-11-28 2021-06-07 주식회사 현대케피코 모터 구동 드라이버의 출력단 상태 진단 장치
WO2023136095A1 (ja) * 2022-01-13 2023-07-20 アルプスアルパイン株式会社 電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807175A (zh) * 2016-03-14 2016-07-27 袁月春 信号注入方法以及查找单相接地故障的信号注入装置
CN112540278A (zh) * 2019-09-05 2021-03-23 泰瑞达亚洲股份有限公司 测试半导体器件的设备和方法
KR20210066469A (ko) * 2019-11-28 2021-06-07 주식회사 현대케피코 모터 구동 드라이버의 출력단 상태 진단 장치
KR102276387B1 (ko) * 2019-11-28 2021-07-12 주식회사 현대케피코 모터 구동 드라이버의 출력단 상태 진단 장치
WO2023136095A1 (ja) * 2022-01-13 2023-07-20 アルプスアルパイン株式会社 電子機器

Similar Documents

Publication Publication Date Title
JP6183341B2 (ja) インジェクタ駆動装置
CN105191133B (zh) 驱动装置及开关电路的控制方法
CN102047368B (zh) 继电器控制器
JP5344056B2 (ja) スイッチング素子の駆動回路
US7548070B2 (en) Method and circuit arrangement for detecting a wire break
US10267253B2 (en) Fuel injection system for internal combustion engine
US10236816B2 (en) Motor inverter
JP2014224795A (ja) 電気負荷駆動装置
US9300207B2 (en) Switching control circuit and control method thereof
US20150162747A1 (en) Semiconductor abnormality detection circuit
US9429126B2 (en) System and method for detecting short-to-ground fault
US9419523B2 (en) Method for identifying a short-line fault or a line interruption for a switched inductive load
US7265958B2 (en) Overcurrent protection circuit and semiconductor apparatus
JP2015010555A (ja) 燃料噴射弁制御装置
US9353717B2 (en) Engine control unit for driving an electric circuit and method
US9739823B2 (en) Diagnostic circuit and method for the operation of a diagnostic circuit
JP5195896B2 (ja) 電気負荷駆動装置
US20110031978A1 (en) Apparatus and method for recognizing an error in a power bridge circuit
KR101836151B1 (ko) 인젝터로 적용되는 솔레노이드 밸브 고장 진단 방법 및 그 장치
CN110291286A (zh) 电子控制装置以及电子控制装置的异常正常判定方法
JP4186934B2 (ja) 電磁弁駆動装置
US20180041025A1 (en) Method for operating an active converter connected to an electric machine, and means for implementing same
JP2014239380A (ja) 電磁装置駆動装置の異常検出装置
CN104114851A (zh) 发动机启动装置
JP6724726B2 (ja) 電力供給装置