JP2014223024A - Culture method and culture apparatus of microalgae - Google Patents
Culture method and culture apparatus of microalgae Download PDFInfo
- Publication number
- JP2014223024A JP2014223024A JP2013102808A JP2013102808A JP2014223024A JP 2014223024 A JP2014223024 A JP 2014223024A JP 2013102808 A JP2013102808 A JP 2013102808A JP 2013102808 A JP2013102808 A JP 2013102808A JP 2014223024 A JP2014223024 A JP 2014223024A
- Authority
- JP
- Japan
- Prior art keywords
- culture
- microalgae
- salinity
- culture solution
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
本発明は、微細藻類の培養方法および培養装置に関するものである。 The present invention relates to a method for culturing microalgae and a culture apparatus.
近年、地球温暖化を抑制するため、温室効果ガスの一つである二酸化炭素の排出量の削減が課題とされている。
二酸化炭素を削減する手段として、植物の光合成を利用する方法がある。植物の中でも、特に微細藻類は、陸生植物と比較して高い増殖力を有するため、有望な二酸化炭素の削減手段として注目されている。例えば、特許文献1では、従来よりも増殖速度が速く大量培養が可能な微細藻類が報告されている。
In recent years, in order to suppress global warming, reduction of the emission amount of carbon dioxide, which is one of the greenhouse gases, has been an issue.
As a means for reducing carbon dioxide, there is a method using photosynthesis of plants. Among plants, microalgae in particular are attracting attention as a promising means for reducing carbon dioxide because they have a high growth potential compared to terrestrial plants. For example,
ここで藻類とは、一般に、光合成を行う生物のうち、陸上植物(コケ植物、シダ植物、種子植物)を除いたものの総称であり、このうち拡大鏡を使わなければ見えないような小さな藻類は「微細藻類」と呼ばれている。いわゆる植物プランクトンは微細藻類の一例である。 Here, algae is a general term for photosynthesis organisms excluding terrestrial plants (moss plants, fern plants, seed plants). Among them, small algae that cannot be seen without using a magnifying glass are It is called “microalgae”. So-called phytoplankton is an example of microalgae.
この微細藻類の光合成を利用した培養装置も検討されている。例えば、特許文献2では太陽光を間欠的に遮光することにより藻類の増殖による光阻害を防ぎ、藻類の光合成の効率をあげる装置の構成が提案されている。また、油成分を内部で生成し蓄積する微細藻類を用いて、発電所や工場で二酸化炭素の排出量を抑えながら燃料を合成するプロセス等も検討されている。 A culture apparatus using photosynthesis of microalgae has been studied. For example, Patent Document 2 proposes a configuration of an apparatus that intermittently blocks sunlight to prevent light inhibition due to algae growth and increases the efficiency of algae photosynthesis. In addition, a process for synthesizing fuel while suppressing emissions of carbon dioxide at power plants and factories using microalgae that generates and accumulates oil components is also being studied.
二酸化炭素の固定に用いられる微細藻類には淡水性のものと海産性のものがある。海産性の藻類では、たとえばクロロコッカムリトラーレのように高濃度の二酸化炭素でも培養可能で、かつ脂質を生成するものがある(非特許文献1参照)。二酸化炭素の耐性が高いと燃料電池などの高濃度二酸化炭素を排出する装置からの直接導入が可能となるばかりか、その濃度では生存できない他の微生物のコンタミネーションを避けることができるという利点がある。 Microalgae used for carbon dioxide fixation include freshwater and marine ones. Some marine algae can be cultured even with a high concentration of carbon dioxide, such as chlorococcum litorale (see Non-Patent Document 1). High resistance to carbon dioxide not only enables direct introduction from a device that emits high concentration carbon dioxide, such as fuel cells, but also has the advantage of avoiding contamination of other microorganisms that cannot survive at that concentration .
しかしながら、海産性の微細藻類は文字通り海水中で生息するため、培地には塩分が含まれる。一般に海水中には3.5%程度の塩分が含まれている。塩分は培養システムそのものの金属を腐食させるばかりか、培養システムを設置する周辺の他の機器類にも悪影響を及ぼしかねない。通常、海水に被爆する恐れのある装置にはチタンやSUS316Lなどの耐腐食性の高い金属性部品が使われるが、周辺の機器すべてに耐腐食性金属部品を用いることはコスト高になってしまい現実的ではない。 However, since marine microalgae literally live in seawater, the medium contains salt. Generally, seawater contains about 3.5% salinity. Salinity not only corrodes the metal of the culture system itself, but can also adversely affect other equipment around the culture system. Usually, metal parts with high corrosion resistance, such as titanium and SUS316L, are used in equipment that can be exposed to seawater. However, using corrosion-resistant metal parts for all peripheral equipment increases the cost. Not realistic.
そこで、本発明は、培養装置の金属腐食を抑制しつつ効率的に二酸化炭素を固定化することができる海産性微細藻類の培養方法および培養装置を提供することを目的とする。 Then, an object of this invention is to provide the cultivation method and cultivation apparatus of marine microalgae which can fix a carbon dioxide efficiently, suppressing the metal corrosion of a cultivation apparatus.
上述したような課題を解決するために、本発明に係る微細藻類の培養方法は塩分濃度を海水塩分濃度よりも低く、かつ少なくとも海水塩分濃度の5%以上に設定した培地と微細藻類とからなる培養液を生成し、培養液に炭酸ガスを供給して微細藻類の培養を行うものである。 In order to solve the problems as described above, the method for culturing microalgae according to the present invention comprises a medium and a microalgae whose salinity is lower than seawater salinity and at least 5% of seawater salinity. A culture solution is generated, and carbon dioxide is supplied to the culture solution to culture microalgae.
上記微細藻類の培養方法における培地の塩分濃度は海水塩分濃度の50%以下にしてもよい。 The salinity of the medium in the above-described method for culturing microalgae may be 50% or less of the seawater salinity.
上記微細藻類の培養方法における培養液の全有機炭素量及び細胞濃度を測定し、測定した全有機炭素量及び細胞濃度に基づき所定の塩分濃度を有する培地の供給量を制御し、全有機炭素量の増加率を最大値付近に維持するようにしてもよい。 Measure the total organic carbon content and cell concentration of the culture solution in the above-mentioned microalgae cultivation method, and control the supply amount of the medium having a predetermined salinity based on the measured total organic carbon content and cell concentration. The increase rate may be maintained near the maximum value.
上記微細藻類の培養方法における微細藻類はクロロコッカムリトラーレとしてもよい。 The microalgae in the microalgae cultivation method may be chlorococcum litorale.
また、本発明にかかる微細藻類の培養装置は塩分濃度を海水塩分濃度よりも低く、かつ少なくとも海水塩分濃度の5%以上に設定した培地と微細藻類とからなる培養液を貯える培養容器と、培養液に炭酸ガスを供給する手段とを有するものである。 The apparatus for culturing microalgae according to the present invention includes a culture vessel for storing a culture solution composed of a medium and microalgae whose salinity is lower than seawater salinity and at least 5% of seawater salinity, and culture. And means for supplying carbon dioxide gas to the liquid.
上記微細藻類の培養装置における培地の塩分濃度は海水塩分濃度の50%以下にしてもよい。 The salinity of the medium in the microalgae culture apparatus may be 50% or less of the seawater salinity.
上記微細藻類の培養装置における培養液の全有機炭素量及び細胞濃度を測定する手段と
、測定した全有機炭素量及び細胞濃度に基づき所定の塩分濃度を有する培地の供給量を制御する手段とを有し、全有機炭素量の増加率を最大値付近に維持するようにしてもよい。
Means for measuring the total organic carbon content and cell concentration of the culture solution in the microalgae culture apparatus, and means for controlling the supply amount of the medium having a predetermined salinity based on the measured total organic carbon content and cell concentration And the increase rate of the total organic carbon amount may be maintained near the maximum value.
上記微細藻類の培養装置における微細藻類はクロロコッカムリトラーレとしてもよい。 The microalgae in the above-described microalgae culture apparatus may be chlorococcum litorale.
本発明によれば、塩分濃度を海水の塩分濃度よりも低く設定した状態でも二酸化炭素を効率よく固定化できる条件で微細藻類を培養し続けることができるので、塩分による金属腐食を抑制しつつ効率よく二酸化炭素を固定化することができる。 According to the present invention, microalgae can be continuously cultured under conditions where carbon dioxide can be efficiently immobilized even in a state where the salinity concentration is set lower than the salinity concentration of seawater. It can fix carbon dioxide well.
また、本発明によれば、微細藻類の培養液における全有機炭素量の増加率を最大値付近に維持しつつ微細藻類を培養し続けることができるので、塩分による金属腐食を抑制しつつ二酸化炭素を高い割合で固定化し続けることができる。 In addition, according to the present invention, since it is possible to continue culturing microalgae while maintaining the rate of increase of the total organic carbon content in the culture solution of microalgae in the vicinity of the maximum value, carbon dioxide while suppressing metal corrosion due to salt Can be fixed at a high rate.
以下、本発明の実施の形態について図面を参照して説明する。
<培養液>
図1は本発明の実施の形態に係る微細藻類の培養装置の概要を表す図面である。微細藻類が水等の培地中に分散したものが微細藻類の培養液であり、透明な材料からなる培養容器に貯留されている。この培養容器に自然光または照明光を照射しかつ二酸化炭素を供給して、微細藻類に光合成を行なわせることにより、微細藻類を培養して二酸化炭素の固定化を行う。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Culture solution>
FIG. 1 is a drawing showing an outline of a microalgae culture apparatus according to an embodiment of the present invention. A solution of microalgae dispersed in a medium such as water is a culture solution of microalgae, which is stored in a culture vessel made of a transparent material. By irradiating the culture vessel with natural light or illumination light and supplying carbon dioxide to cause the microalgae to perform photosynthesis, the microalgae are cultured and carbon dioxide is immobilized.
本実施の形態では微細藻類として、クロロコッカムリトラーレを用いた。クロロコッカムリトラーレは海産微細藻類の一つで高濃度の二酸化炭素でも培養可能で、かつ脂質を生成するものである。また、培地としては日本製薬(株)の人工海水SP「ダイゴ」とIMK培地「ダイゴ」を用いた。人工海水SP「ダイゴ」は塩化ナトリウムの20747mg/Lを筆頭に海水成分の無機塩を含む人工海水である。一方、IMK培地「ダイゴ」は窒素やリンなどの栄養塩を含む培地である。一般的にはこれら2種類の培地を混合して培養を行うが、本実施例においては、IMK培地ダイゴは通常濃度にして、人工海水SP「ダイゴ」の濃度を薄めることにより培養液の塩分濃度を調整し培養を行った。 In this embodiment, chlorococcum litorale is used as the microalgae. Chlorococcum litorale is one of the marine microalgae that can be cultivated even with high concentration of carbon dioxide and produces lipids. As the culture medium, artificial seawater SP “DAIGO” and IMK culture medium “DAIGO” from Nippon Pharmaceutical Co., Ltd. were used. Artificial seawater SP “DAIGO” is artificial seawater containing 20747mg / L of sodium chloride and containing inorganic salts of seawater components. On the other hand, IMK medium “Digo” is a medium containing nutrient salts such as nitrogen and phosphorus. In general, these two types of media are mixed and cultured. In this example, the concentration of the salinity of the culture solution is reduced by reducing the concentration of the artificial seawater SP “Digo” to the normal concentration of the IMK medium Daigo. Was adjusted and cultured.
<培養方法>
本発明の実施の形態に係る微細藻類の培養方法について説明する。本発明では塩分を含む培地の塩分濃度を極力抑えることにより塩分による培養装置や周辺機器に対する被爆を抑えるようにしている。すなわち、IMK培地「ダイゴ」と人工海水SP「ダイゴ」を混合する際の人工海水SP「ダイゴ」の濃度を薄めることにより塩分濃度を海水塩分濃度よりも低くなるように培養液を生成し培養を行う。人工海水SP「ダイゴ」の濃度を調整することにより海水よりも塩分濃度が低い所望の塩分濃度比(海水塩分濃度に対する塩分濃度の比率)の培養液を生成し、各塩分濃度比の培養液で培養を行い、全有機炭素量や細胞濃度の時間変化を測定することにより各塩分濃度比における培養の状況を把握することが可能である。ここで、全有機炭素量は培養液の一部を取り出すことにより直接測定可能であり、細胞濃度の変化は培養液の濁度を測定することにより測定することができる。
<Culture method>
A method for culturing microalgae according to an embodiment of the present invention will be described. In the present invention, the salinity of the culture medium and peripheral devices due to the salinity is suppressed by suppressing the salinity concentration of the medium containing the salinity as much as possible. In other words, the culture solution is produced by reducing the concentration of the artificial seawater SP “Daigo” when mixing the IMK medium “Daigo” with the artificial seawater SP “Daigo” so that the salinity is lower than the seawater salinity. Do. By adjusting the concentration of artificial seawater SP “Daigo”, a culture solution with a desired salinity ratio (ratio of salinity to seawater salinity), which is lower in salinity than seawater, is generated. It is possible to grasp the state of culture at each salinity ratio by culturing and measuring changes in the total organic carbon content and cell concentration over time. Here, the total amount of organic carbon can be directly measured by taking out a part of the culture solution, and the change in cell concentration can be measured by measuring the turbidity of the culture solution.
図2は培養液の塩分濃度比を変化させて比増殖速度を測定した結果である。ここで比増殖速度とは微細藻類の濃度が指数関数的に増加する対数増殖期における細胞濃度の対数軸での傾きであり、増殖の状態を測る尺度の一つである。塩分濃度比を約30%〜50%に下げた場合でも比増殖速度の低下は15%程度である。また、塩分濃度比を16%にした場合でも比増殖速度の低下は20%程度であり培養は順調に行なわれることがわかる。 FIG. 2 shows the results of measuring the specific growth rate by changing the salt concentration ratio of the culture solution. Here, the specific growth rate is the slope of the cell concentration in the logarithmic growth phase in the logarithmic growth phase in which the concentration of microalgae increases exponentially, and is one of the measures for measuring the state of growth. Even when the salt concentration ratio is lowered to about 30% to 50%, the decrease in the specific growth rate is about 15%. In addition, even when the salt concentration ratio is 16%, the specific growth rate decreases by about 20%, indicating that the culture is performed smoothly.
次に、培養液の塩分濃度比をパラメータとして全有機炭素量の時間変化を測定した結果を図3に示す。ここで、全有機炭素量とは、微細藻類を含む培養液中に含まれる有機炭素を直接測定したものであり、微細藻類が固定した二酸化炭素の総量を表している。190時間経過した場合でも塩分濃度比50%における全有機炭素量は塩分濃度比が100%の場合より10%程度低いだけであり、培養が順調に行われていることが確認できる。 Next, FIG. 3 shows the results of measuring the time variation of the total organic carbon content using the salinity ratio of the culture solution as a parameter. Here, the total amount of organic carbon is obtained by directly measuring organic carbon contained in a culture solution containing microalgae, and represents the total amount of carbon dioxide fixed by microalgae. Even when 190 hours have passed, the total organic carbon amount at a salt concentration ratio of 50% is only about 10% lower than that when the salt concentration ratio is 100%, and it can be confirmed that the culture is proceeding smoothly.
図3において、塩分濃度比が5%の場合の190時間経過時の全有機炭素量は塩分濃度比が100%の場合の半分程度である。しかし、100時間から200時間の間では全有機炭素量が順調に増加しており、この時間帯における全有機炭素量の増加率は全時間帯におけるほぼ最大値を示していることがわかる。したがって、この時間帯における細胞濃度を維持するように培養液の調整、すなわち培地の供給を行なえば、全有機炭素量の増加率を最大値付近に維持しつつ連続培養を行うことが可能である。 In FIG. 3, the total amount of organic carbon after 190 hours when the salt concentration ratio is 5% is about half that when the salt concentration ratio is 100%. However, it can be seen that the total organic carbon amount increases smoothly between 100 hours and 200 hours, and the increase rate of the total organic carbon amount in this time zone shows a substantially maximum value in the entire time zone. Therefore, if the culture solution is adjusted so as to maintain the cell concentration in this time zone, that is, the medium is supplied, it is possible to perform continuous culture while maintaining the increase rate of the total organic carbon amount near the maximum value. .
図3では、塩分濃度比が5%の場合の経過時間が100時間から200時間の時間領域における全有機炭素量の増加率は、塩分濃度比100%の場合の50時間から100時間の時間領域における増加率の半分程度にはなるが、塩分濃度比が5%の場合でも経過時間が100時間から200時間の時間領域における細胞濃度を維持するように培地の供給量を制御すれば連続培養により二酸化炭素の固定化が可能であることがわかる。 In FIG. 3, the increase rate of the total organic carbon amount in the time region where the elapsed time when the salinity ratio is 5% is 100 hours to 200 hours is 50 hours to 100 hours when the salinity concentration ratio is 100%. However, even if the salinity ratio is 5%, continuous culture can be performed by controlling the supply amount of the medium so as to maintain the cell concentration in the time range of 100 hours to 200 hours even when the salt concentration ratio is 5%. It can be seen that carbon dioxide can be immobilized.
細胞濃度の測定は培養液の濁度を測定することにより行う。図4は全有機炭素量の測定と並行して行った培養液の濁度の時間変化を細胞濃度の時間変化に変換したグラフである。培養液の濁度と細胞濃度は培養が進むと時間とともに変化しており、この濁度と細胞濃度の相関関係を利用して、全有機炭素量の増加率が最大値付近を維持するような濁度の範囲を測定する。例えば、全有機炭素量の増加率を図3における塩分濃度比が5%の場合の経過時間が100時間から200時間の時間領域の値に維持したければ、培養液の濁度がその時間領域の間になるように培養液の調整を行えばいいことになる。他の塩分濃度比でも同様に全有機炭素量の増加率が最大値付近を維持するような濁度の範囲を決定することができる。このように培養液の濁度を用いれば細胞濃度を全有機炭素量の増加率が最大値付近を維持するような所望の値に維持することが可能となる。 The cell concentration is measured by measuring the turbidity of the culture solution. FIG. 4 is a graph obtained by converting the time change of the turbidity of the culture solution performed in parallel with the measurement of the total amount of organic carbon into the time change of the cell concentration. The turbidity and cell concentration of the culture solution change with time as the culture progresses, and using this correlation between turbidity and cell concentration, the rate of increase in the total organic carbon content is maintained near the maximum value. Measure the turbidity range. For example, if the rate of increase in the total organic carbon content is to be maintained in the time domain value from 100 hours to 200 hours when the salinity ratio in FIG. The culture solution should be adjusted so that it is between. Similarly, the turbidity range in which the rate of increase in the total organic carbon amount is maintained near the maximum value can be determined at other salinity ratios. As described above, when the turbidity of the culture solution is used, it is possible to maintain the cell concentration at a desired value so that the increase rate of the total organic carbon amount maintains around the maximum value.
<培養装置>
次に、本実施の形態に係る培養装置の構成例について図5を用いて詳細に説明する。本構成例における培養装置は、光合成をおこなうための光源10及び塩分を含む培地12と微細藻類からなる培養液11とそれを保持する培養容器13、二酸化炭素を供給する二酸化炭素供給装置20、塩分を含む培地を供給する培地供給装置30、培養液の一部を回収する培養液回収装置40、有機炭素量を測定する有機炭素量測定装置50、培養液の濁度を測定する濁度測定装置60、及び培地の供給量や回収する培養液の量を制御する培養液制御装置70から構成されている。
<Culture equipment>
Next, a configuration example of the culture apparatus according to the present embodiment will be described in detail with reference to FIG. The culture apparatus in this configuration example includes a
(1)培養液、培養容器
本実施の形態において用いる培養液11は塩分を含む培地12と微細藻類から構成されており、微細藻類として、海産微細藻類の一つで、高濃度二酸化炭素でも培養可能なクロロコッカムリトラーレを用いた。培養液の塩分濃度は金属腐敗を極力抑制するために海水塩分濃度よりも低い値になるように設定し、少なくとも海水塩分濃度の5%以上の値になるように設定され、培養容器13に貯留されている。光源10からの光と二酸化炭素供給装置から供給される二酸化炭素を用いて光合成を行い二酸化炭素を固定化する。
(1) Culture solution, culture vessel The culture solution 11 used in the present embodiment is composed of a medium 12 containing salt and microalgae, and is one of the marine microalgae as a microalgae and is cultured even in high-concentration carbon dioxide. A possible chlorococcum litorale was used. The salinity of the culture solution is set to be lower than the seawater salinity in order to suppress metal spoilage as much as possible, and is set to be at least 5% of the seawater salinity and stored in the
(2)二酸化炭素供給装置
本構成例の二酸化炭素供給装置20は燃料電池や発電設備等の二酸化炭素供給元21とバルブ22から構成される。二酸化炭素供給装置20が二酸化炭素を培養液に供給することにより二酸化炭素の固定化を行う。今回用いたクロロコッカムリトラーレは高濃度の二酸化炭素濃度下でも培養が可能で燃料電池や火力発電所等の高濃度二酸化炭素を排出する装置から直接二酸化炭素を供給することも可能である。
(2) Carbon dioxide supply device The carbon
(3)培地供給装置
本構成例の培地供給装置30は所定の塩分濃度の培地12及び培地を保管する培地容器31、培地容器から培地をくみ上げて培養容器13に供給するポンプ32から構成され、ポンプ32の流量はコンピュータ(培養液制御装置70)からの制御信号71により制御可能に構成されている。ポンプ32の流量を制御することにより培養容器13中の培養液11の細胞濃度が所望の値になるように制御することが可能である。また、培地容器31中の培地12の塩分濃度を調整することにより、培養容器13中の培養液11の塩分濃度を最初に設定した塩分濃度を維持するように設定することも、また、塩分濃度を所望の値に変更することも可能である。
(3) Medium supply apparatus The
(4)培養液回収装置
連続培養を行う場合には微細藻類の濃度を所定の値に維持するために培地の供給を行うので、必要に応じて培養液の回収を行う。本構成例の培養液回収装置40は培養液を保管する培養液容器41と培養容器から培養液をくみ上げるポンプ42から構成されている。培地供給装置と同様にポンプの流量はコンピュータ(培養液制御装置70)からの制御信号71により制御可能である。また、有機炭素量を直接測定するために後述する有機炭素量測定装置50に回収した培養液の一部を供給する機能も有する。
(4) Culture medium recovery device When continuous culture is performed, the culture medium is supplied to maintain the concentration of microalgae at a predetermined value, and thus the culture medium is recovered as necessary. The culture
(5)有機炭素量測定装置
有機炭素量測定装置50は全有機炭素量の増加率の変化を把握するために培養液の全有機炭素量の時間変化を測定する。全有機炭素量は培養液回収装置40で得られた培養液の一部を用いて直接測定することができる。測定した全有機炭素量の情報51は後述する培養液制御装置70に送られて、全有機炭素量の増加率が最大値付近となるように制御するための基礎データとなる。
(5) Organic carbon content measuring device The organic carbon
(6)濁度測定装置
濁度測定装置60は全有機炭素量の時間変化の測定と並行して培養液11の濁度を測定する。培養器の濁度は培養液回収装置40で得られた培養液の一部を用いて固定波長の吸収度を測ることにより測定することができる。全有機炭素量の時間変化と培養液の濁度を並行して測定することにより、全有機炭素量の増加率が最大値付近となるような濁度の範囲を把握することができる。測定した培養液の濁度データ61は後述する培養液制御装置70に送られて、全有機炭素量の増加率が最大値付近となる濁度を特定するための基礎データとなる。
(6) Turbidity measuring device The
(7)培養液制御装置
培養液制御装置70は、有機炭素量測定装置50で測定された培養液の全有機炭素量51および培養液の濁度データ61に基づき全有機炭素量の増加率が最大値付近を維持するように培地の供給量及び培養液の回収量を制御する。
(7) Culture Solution Control Device The culture
<培養液の制御>
以下では培養液制御装置70の動作を含めた培養液の制御方法について説明する。図6は本発明の培養液制御方法を説明するためのフローチャートである。
まず、所定の塩分濃度になるように培地を混合する際の人工海水SP「ダイゴ」の混合比を下げることにより塩分濃度を海水塩分濃度よりも低くなるように培養液を生成し(S1)、培養液を培養容器13に貯留する(S2)。そこに二酸化炭素供給装置20により二酸化炭素を供給し二酸化炭素の固定化を開始する(S3)。
<Control of culture solution>
Hereinafter, a method for controlling the culture solution including the operation of the culture
First, a culture solution is generated so that the salinity concentration is lower than the seawater salinity concentration by lowering the mixing ratio of the artificial seawater SP “DAIGO” when mixing the culture medium to a predetermined salinity concentration (S1), The culture solution is stored in the culture vessel 13 (S2). Carbon dioxide is supplied thereto by the carbon
二酸化炭素の固定化が進み培養が順調に進むと微細藻類の細胞濃度が増大するがやがて増殖速度が低下するので適宜培地を供給して細胞濃度を調整する。前述したように、培養装置の所定の塩分濃度における全有機炭素量の時間変化とその増加率が最大値付近となる培養液の濁度の範囲をあらかじめ測定しておき、濁度がその範囲を維持するように培養液を調整する。 When the fixation of carbon dioxide progresses and the culture progresses smoothly, the cell concentration of microalgae increases, but the growth rate decreases over time. As described above, the turbidity range of the culture solution in which the change over time of the total organic carbon amount at the predetermined salinity concentration of the culture apparatus and the rate of increase thereof is near the maximum value is measured in advance, and the turbidity is within the range. Adjust the culture to maintain.
まず、図3のように使用する培養装置の所定の塩分濃度における全有機炭素量の時間変化を有機炭素量測定装置50により測定し、並行して濁度測定装置60により培養液の濁度を測定し濁度データを得る(S4)。そして、この全有機炭素量の情報51と濁度データ61は培養液制御装置70に提供される。培養液制御装置70は得られた濁度データ61から、全有機炭素量の増加率が最大値付近となる濁度の範囲を決定しそのデータを保存する(S5)。例えば、塩分濃度比が5%の場合は経過時間が100時間から200時間の時間領域における濁度の範囲である。
First, the time variation of the total organic carbon amount at a predetermined salinity concentration of the culture apparatus used as shown in FIG. Measure turbidity data (S4). The total organic
次に、培地の供給と培養液の回収を行いながら連続培養を行う(S6)。連続培養においては培養液の濁度のみを測定し濁度データ61を培養液制御装置70に提供する(S7)。培養液制御装置70は、培養液の濁度が上記で決定した濁度の範囲であるか判定し(S8)、その範囲から逸脱しないように培地供給装置30、培養液回収装置40に制御信号71を送り、培地の供給量及び培養液の回収量を制御する(S9)。
Next, continuous culture is performed while supplying the culture medium and collecting the culture solution (S6). In continuous culture, only the turbidity of the culture solution is measured, and
図3に示したように全有機炭素量の増加率の時間変化は培養液の塩分濃度によって異なるので、測定した濁度の値があらかじめ測定しておいたデータに基づく所定の範囲を逸脱しないように、所望の塩分濃度の培地を供給するように制御すれば塩分濃度を所望の値に保ちながら、金属腐食を抑制しつつ連続培養を行うことができる。 As shown in FIG. 3, the time change of the rate of increase in the total organic carbon amount varies depending on the salinity of the culture solution, so that the measured turbidity value does not deviate from the predetermined range based on the data measured in advance. In addition, if control is performed so that a medium having a desired salinity concentration is supplied, continuous culture can be performed while suppressing the metal corrosion while maintaining the salinity concentration at a desired value.
尚、上述したように連続培養においては培養液の濁度のみを測定して制御を行うが、必要に応じて全有機炭素量測定装置50により全有機炭素量を測定し、全有機炭素量の増加率が最大値付近となるように制御されているか確認するようにしてもよい。
In addition, as described above, in continuous culture, control is performed by measuring only the turbidity of the culture solution. If necessary, the total organic carbon content is measured by the total organic carbon
以上説明したように、本発明の実施形態によれば、塩分濃度を海水の塩分濃度よりも低く設定した状態、例えば海水塩分濃度の50%以下に設定した場合でも二酸化炭素を効率よく固定化できる条件で微細藻類を培養することができるので、塩分による金属腐食を抑制しつつ効率よく二酸化炭素を固定化することができる。 As described above, according to the embodiment of the present invention, carbon dioxide can be efficiently immobilized even when the salinity concentration is set lower than the salinity concentration of seawater, for example, when it is set to 50% or less of the seawater salinity concentration. Since microalgae can be cultured under conditions, carbon dioxide can be efficiently immobilized while suppressing metal corrosion due to salt.
また、本発明の実施形態によれば、微細藻類の培養液における全有機炭素量の増加率を最大値付近に維持しつつ微細藻類を培養し続けることができるので、例えば培養液の塩分濃度を海水塩分濃度の5%に設定した場合でも、塩分による金属腐食を抑制しつつ二酸化炭素を高い割合で固定化することができる。 Further, according to the embodiment of the present invention, it is possible to continue culturing microalgae while maintaining the increase rate of the total organic carbon content in the culture solution of microalgae near the maximum value. Even when the seawater salt concentration is set to 5%, carbon dioxide can be immobilized at a high rate while suppressing metal corrosion due to salt.
なお、上述した発明の実施形態においては、培養液の塩分濃度を一定に保ちながら培養を行うようにしたが、塩分による金属腐食を抑制できる範囲で塩分濃度を変更するように構成してもよい。すなわち、培地供給手段により供給される培地の塩分濃度を所望の塩分濃度に調整することにより培養液の塩分濃度を最初の塩分濃度から所望の塩分濃度に変更するようにしてもよい。 In the embodiment of the invention described above, the culture is performed while keeping the salinity concentration of the culture solution constant. However, the salinity concentration may be changed within a range in which metal corrosion due to the salinity can be suppressed. . That is, the salinity concentration of the culture medium supplied by the medium supply means may be adjusted to a desired salinity concentration to change the salinity concentration of the culture solution from the initial salinity concentration to the desired salinity concentration.
本発明は、海産性微細藻類を培養するシステムや火力発電所等の高濃度の二酸化炭素を吸収するシステム等に適用することができる。 The present invention can be applied to a system for culturing marine microalgae, a system for absorbing high-concentration carbon dioxide such as a thermal power plant, and the like.
10…光源、11…培養液、12…培地、13…培養容器、20…二酸化炭素供給装置、21…二酸化炭素供給元、22…バルブ、30…培地供給装置、31…培地容器、32…ポンプ、40…培養液回収装置、41…培養液容器、42…ポンプ、50…有機炭素量測定装置、51…有機炭素量情報、60…濁度測定装置、61…濁度データ、70…培養液制御装置、71…制御信号。
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102808A JP2014223024A (en) | 2013-05-15 | 2013-05-15 | Culture method and culture apparatus of microalgae |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102808A JP2014223024A (en) | 2013-05-15 | 2013-05-15 | Culture method and culture apparatus of microalgae |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014223024A true JP2014223024A (en) | 2014-12-04 |
Family
ID=52122278
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013102808A Pending JP2014223024A (en) | 2013-05-15 | 2013-05-15 | Culture method and culture apparatus of microalgae |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014223024A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2611194A (en) * | 2020-11-24 | 2023-03-29 | Micropropagation Services E M Ltd | Apparatus and methods for culturing Sphagnum |
JP7523713B1 (en) | 2023-08-01 | 2024-07-26 | 三菱電機株式会社 | Algae culture device and gas supply method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196086A (en) * | 1983-04-21 | 1984-11-07 | Nisshin Oil Mills Ltd:The | Preparation of marine chlorella |
JPS61249384A (en) * | 1985-04-27 | 1986-11-06 | Nisshin Oil Mills Ltd:The | Method of cultivating marine tetraselmis |
JPH04271775A (en) * | 1991-02-26 | 1992-09-28 | Kaiyo Bio Technol Kenkyusho:Kk | Novel alga and carbon dioxide fixation using the same |
JPH08322553A (en) * | 1995-05-29 | 1996-12-10 | Kawasaki Heavy Ind Ltd | Cultivation of fine algae and equipment therefor |
JPH10108565A (en) * | 1996-10-02 | 1998-04-28 | Taisei Corp | Culture device for microalgae by photosynthesis |
JPH11346760A (en) * | 1998-06-12 | 1999-12-21 | Mitsubishi Heavy Ind Ltd | Cultivation of microalga |
WO2002099032A1 (en) * | 2001-06-01 | 2002-12-12 | Yamaha Hatsudoki Kabushiki Kaisha | Device and method for cultivating micro algae |
JP2010022331A (en) * | 2008-07-24 | 2010-02-04 | Takenaka Komuten Co Ltd | System and method for regenerating carbon dioxide |
JP2010187645A (en) * | 2009-02-20 | 2010-09-02 | Electric Power Dev Co Ltd | Microalga belonging to scenedesmus, oil manufacturing method including process for culturing the microalgae, and oil collected from microalga |
JP2011036261A (en) * | 2003-10-02 | 2011-02-24 | Martek Biosciences Corp | Production of high level of dha in microalgae using modified amount of chloride and potassium |
-
2013
- 2013-05-15 JP JP2013102808A patent/JP2014223024A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59196086A (en) * | 1983-04-21 | 1984-11-07 | Nisshin Oil Mills Ltd:The | Preparation of marine chlorella |
JPS61249384A (en) * | 1985-04-27 | 1986-11-06 | Nisshin Oil Mills Ltd:The | Method of cultivating marine tetraselmis |
JPH04271775A (en) * | 1991-02-26 | 1992-09-28 | Kaiyo Bio Technol Kenkyusho:Kk | Novel alga and carbon dioxide fixation using the same |
JPH08322553A (en) * | 1995-05-29 | 1996-12-10 | Kawasaki Heavy Ind Ltd | Cultivation of fine algae and equipment therefor |
JPH10108565A (en) * | 1996-10-02 | 1998-04-28 | Taisei Corp | Culture device for microalgae by photosynthesis |
JPH11346760A (en) * | 1998-06-12 | 1999-12-21 | Mitsubishi Heavy Ind Ltd | Cultivation of microalga |
WO2002099032A1 (en) * | 2001-06-01 | 2002-12-12 | Yamaha Hatsudoki Kabushiki Kaisha | Device and method for cultivating micro algae |
JP2011036261A (en) * | 2003-10-02 | 2011-02-24 | Martek Biosciences Corp | Production of high level of dha in microalgae using modified amount of chloride and potassium |
JP2010022331A (en) * | 2008-07-24 | 2010-02-04 | Takenaka Komuten Co Ltd | System and method for regenerating carbon dioxide |
JP2010187645A (en) * | 2009-02-20 | 2010-09-02 | Electric Power Dev Co Ltd | Microalga belonging to scenedesmus, oil manufacturing method including process for culturing the microalgae, and oil collected from microalga |
Non-Patent Citations (2)
Title |
---|
CANADIAN JOURNAL OF MICROBIOLOGY, vol. 7(3), JPN6016032845, 1961, pages 399 - 406, ISSN: 0003388528 * |
JOURNAL OF MARINE BIOTECHNOLOGY, vol. 1, JPN6016032841, 1993, pages 21 - 25, ISSN: 0003388527 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2611194A (en) * | 2020-11-24 | 2023-03-29 | Micropropagation Services E M Ltd | Apparatus and methods for culturing Sphagnum |
GB2611194B (en) * | 2020-11-24 | 2023-11-01 | Micropropagation Services E M Ltd | Apparatus and methods for culturing Sphagnum |
JP7523713B1 (en) | 2023-08-01 | 2024-07-26 | 三菱電機株式会社 | Algae culture device and gas supply method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
De Vree et al. | Comparison of four outdoor pilot-scale photobioreactors | |
Dogaris et al. | A novel horizontal photobioreactor for high-density cultivation of microalgae | |
Moheimani | Inorganic carbon and pH effect on growth and lipid productivity of Tetraselmis suecica and Chlorella sp (Chlorophyta) grown outdoors in bag photobioreactors | |
Jin et al. | Influence of nitrate feeding on carbon dioxide fixation by microalgae | |
Langley et al. | A critical evaluation of CO2 supplementation to algal systems by direct injection | |
Hindersin et al. | Irradiance optimization of outdoor microalgal cultures using solar tracked photobioreactors | |
Solimeno et al. | Mechanistic model for design, analysis, operation and control of microalgae cultures: calibration and application to tubular photobioreactors | |
Kim et al. | Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris | |
Kishi et al. | Carbon fixation properties of three alkalihalophilic microalgal strains under high alkalinity | |
Gao | Approaches and involved principles to control pH/pCO2 stability in algal cultures | |
KR101122986B1 (en) | Method for reducing co2 in exhaust gas using microalgae | |
Robles et al. | Performance of a membrane-coupled high-rate algal pond for urban wastewater treatment at demonstration scale | |
CN103112993B (en) | Method for processing oilfield wastewater and fixing CO2 (carbon dioxide) by using microalgae | |
Nedbal et al. | Experimental validation of a nonequilibrium model of CO2 fluxes between gas, liquid medium, and algae in a flat-panel photobioreactor | |
de los Cobos-Vasconcelos et al. | Short-term evaluation of the photosynthetic activity of an alkaliphilic microalgae consortium in a novel tubular closed photobioreactor | |
Eustance et al. | Improved CO2 utilization efficiency using membrane carbonation in outdoor raceways | |
CN102191179A (en) | Method for culturing marine oil-producing microalgae | |
JP2012147717A (en) | Method for inhibiting algae, and algae inhibitor | |
JP2011177047A (en) | Apparatus for culturing algae | |
JP2014223024A (en) | Culture method and culture apparatus of microalgae | |
Han et al. | Treating wastewater by indigenous microalgae strain in pilot platform located inside a municipal wastewater treatment plant | |
Nakano et al. | A usage of CO2 hydrate: Convenient method to increase CO2 concentration in culturing algae | |
Tang et al. | CO2 Bubbling to Improve Algal Growth, Nutrient Removal, and Membrane Performance in an Algal Membrane Bioreactor: Tang et al. | |
Martínez et al. | Selection of native freshwater microalgae and cyanobacteria for CO2 biofixation | |
Dębowski et al. | Suitability of pre-digested dairy effluent for mixotrophic cultivation of the hydrogen-producing microalgae Tetraselmis subcordiformis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20151020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20151020 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160906 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20170704 |