JPH11346760A - Cultivation of microalga - Google Patents

Cultivation of microalga

Info

Publication number
JPH11346760A
JPH11346760A JP10165189A JP16518998A JPH11346760A JP H11346760 A JPH11346760 A JP H11346760A JP 10165189 A JP10165189 A JP 10165189A JP 16518998 A JP16518998 A JP 16518998A JP H11346760 A JPH11346760 A JP H11346760A
Authority
JP
Japan
Prior art keywords
culture
microalgae
concentration
culturing
organic carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10165189A
Other languages
Japanese (ja)
Inventor
Yuji Nakajima
祐二 中嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10165189A priority Critical patent/JPH11346760A/en
Publication of JPH11346760A publication Critical patent/JPH11346760A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/02Means for providing, directing, scattering or concentrating light located outside the reactor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cultivating a large quantity of microalgae in high productivity. SOLUTION: This method is conducted by cultivating microalgae by light irradiation in a cultivation reactor while keeping the content of microalgae in a cultivation liquid at a constant level. As the microalga, e.g. Synechocystis PCC6714 PDI (FERM P-14970) may be used, the cultivation is conducted by keeping the microalgal content in the cultivation liquid at a constant value falling within e.g. 100 to 300 mgC/L in terms of the content of the whole organic carbon.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は微細藻の培養方法に
関し、詳しくは微細藻の大量培養において生産性を向上
した培養方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing microalgae, and more particularly, to a method for culturing microalgae with improved productivity in mass cultivation.

【0002】[0002]

【従来の技術】陸上の高等植物, 海草などを含めた光合
成生物の中でも微細藻は、培養条件が好適であれば面積
当たりの光合成効率が最も高くなる類の生物であるとさ
れており、微細藻の大量培養による工業原料,飼料,フ
ァインケミカル原料等の生産が注目されている。しかし
実用化されているものは少なく、その原因の一つとして
生産性の低さが挙げられる。生産性向上を図るための手
段として、培養生産に適した微細藻の選択・スクリーニ
ングや、培養用リアクタの改良がなされている。培養用
リアクタは大きく2種に分けられ、一つは培養池などの
大規模、屋外、太陽光利用等を特徴とするオープンポン
ドシステム(open pond system)用のもの、他方は光フア
イバや温度制御などを巧みに組み合わせた培養方法であ
るクローズドシステム (Closed system)用のものであ
る。
2. Description of the Related Art Among photosynthetic organisms including terrestrial higher plants and seaweeds, microalgae are said to be the kind of organisms with the highest photosynthetic efficiency per area if culture conditions are suitable. Attention has been focused on the production of industrial raw materials, feed, fine chemical raw materials, etc. by mass culture of algae. However, few of them have been put to practical use, and one of the causes is low productivity. As means for improving productivity, selection and screening of microalgae suitable for culture production and improvement of a reactor for culture have been performed. Culture reactors are broadly divided into two types: one for open pond systems, which is characterized by large-scale applications such as culture ponds, outdoors, and sunlight, and the other for optical fibers and temperature control. It is for a closed system, which is a culture method that skillfully combines these methods.

【0003】微細藻を選択した例として、本発明者らが
先に特願平7−322966号において提案した「縮小
した集光部サイズを有する微細藻を、太陽光又は同等の
強光条件下において該微細藻の自己遮蔽効果が現れる濃
度以上の細胞濃度で培養することを特徴とする方法及び
縮小した集光部サイズを有する微細藻シネコシスティス
PCC6714 PD1(FERM P−1497
0)」が挙げられ、これにより屋外培養池での生産性を
向上させることができる。屋外培養池での培養とは、屋
外に例えば20cm,30cm〜数十cm深さの培養槽
(池)を堀りkm 2 オーダーの広さで粗放的に微細藻を
培養するものであり、細胞濃度の管理,温度管理、微生
物や微小動物の混入防止等の管理が難しいことが指摘さ
れている。
As an example of selecting microalgae, the present inventors
As previously proposed in Japanese Patent Application No. 7-322966,
Microalgae with a focused light collector size, sunlight or equivalent
Concentration that shows the self-shielding effect of the microalga under strong light conditions
And a method characterized by culturing at a cell concentration of more than
Microalgae Synechocystis with reduced condensing part size
 PCC6714 PD1 (FERM P-1497
0) "to increase productivity in outdoor culture ponds.
Can be improved. What is culture in an outdoor pond?
Outside, for example, a culture tank of 20 cm, 30 cm to several tens cm deep
Drilling (pond) km TwoProduce microalgae roughly in the order of size
To be cultured, control of cell concentration, temperature control, microbiology
It was pointed out that it was difficult to control the contamination of objects and small animals.
Have been.

【0004】そこで、近年では透明パイプ等を培養槽に
用いるなどのクローズドシステムでの培養により生産性
の向上を図ることが注目されており、クローズドシステ
ムとして様々な様式の培養用リアクタやその改良が提案
されている。このような培養用リアクタは比較的高濃度
の培養を目的として考案されたものが殆どであり、数〜
数十m3 程度と屋外培養池に比べその規模がはるかに小
さいだけに、培養条件を高度に管理することができる。
培養用リアクタにおいても、光エネルギーの供給源は屋
外培養池と同じ太陽光を用いることから、太陽光をいか
に効率よく利用するかがこのシステムの課題となってい
る。
Therefore, in recent years, attention has been paid to improving productivity by culturing in a closed system such as using a transparent pipe or the like for a culturing tank. As a closed system, various types of culturing reactors and improvements have been developed. Proposed. Most of such culture reactors are designed for the purpose of culturing at a relatively high concentration.
The culture conditions can be controlled to a high degree because the scale is much smaller than an outdoor culture pond of about several tens m 3 .
Even in the culture reactor, the same energy source as that of the outdoor culture pond is used as the light energy supply source. Therefore, how to efficiently use the sunlight has been an issue of this system.

【0005】ところで、培養の仕方として、いわゆるバ
ッチ式(回分式)培養と、連続培養が知られている。微
細藻の培養は装置コスト、光利用効率、培養液からの回
収処理のしやすさ等から高濃度で行なわれているが、培
養時に微細藻濃度があまりに高くなると、他の微細藻の
陰になる微細藻の割合が高くなり暗呼吸によるCO2
再放出等が起こるため、非常に高濃度で培養することは
避けられていた。具体的には、微細藻の増殖が進み培養
液中の割合が高くなった時点で微細藻を採取する等して
培地から除き、再び低い微細藻濃度から培養するバッチ
式の培養が行われていた。しかし、微細藻の生産性と微
細藻濃度管理の定量的な検討については報告されていな
かった。また微細藻の大量培養の場合に、従来のバッチ
式培養と連続培養のどちらが生産性が高いかについての
検討も報告されていない。本発明は、このような現状に
鑑み、微細藻の大量培養に有利で生産性の向上した培養
方法を提供することを課題としてなされたものである。
[0005] By the way, what is called a batch type (batch type) culture and a continuous culture are known as a culture method. Culture of microalgae is performed at a high concentration due to equipment cost, light utilization efficiency, ease of recovery from the culture solution, etc., but if the microalgae concentration becomes too high during culture, it may be shaded by other microalgae. Since the proportion of microalgae increases and CO 2 is re-released by dark breathing, culturing at a very high concentration has been avoided. Specifically, when the growth of microalgae has progressed and the ratio in the culture solution has increased, the microalgae is removed from the medium, for example, by collecting the microalgae, and a batch-type culture in which the microalgae is again cultured at a low microalgae concentration is performed. Was. However, there has been no report on quantitative examination of microalgal productivity and microalgal concentration management. In addition, in the case of mass culture of microalgae, there is no report on which of conventional batch culture and continuous culture has higher productivity. The present invention has been made in view of the above situation, and has as an object to provide a culture method which is advantageous for mass culture of microalgae and has improved productivity.

【0006】[0006]

【課題を解決するための手段】本発明は、 (1)培養用リ
アクタ内において光照射下で微細藻を培養する方法にお
いて、培養液中の微細藻濃度を一定に保ちつつ培養する
ことを特徴とする微細藻の培養方法、(2)上記微細藻濃
度を培養液中の全有機炭素量で100mg/リットル以
上300mg/リットル以下(C:有機炭素)とするこ
とを特徴とする上記(1) 記載の微細藻の培養方法、及び
(3)前記微細藻がシネコシスティス PCC6714
PD1(FERM P−14970)であることを特徴
とする上記(1) 又は(2) 記載の微細藻の培養方法、であ
る。
Means for Solving the Problems The present invention provides (1) a method for culturing microalgae under light irradiation in a culturing reactor, wherein the culturing is performed while keeping the microalgae concentration in the culture solution constant. (2) The microalgae concentration is set to 100 mg / L or more and 300 mg / L or less (C: organic carbon) in terms of the total amount of organic carbon in the culture solution. The method of culturing the microalgae described, and
(3) The microalga is Synechocystis PCC6714
The method for culturing microalgae according to the above (1) or (2), which is PD1 (FERM P-14970).

【0007】[0007]

【実施の形態】本発明者らは培養時の微細藻濃度と微細
藻の生産性の関係に着目し、培養条件の管理が容易なク
ローズドシステムを用い、A:微細藻濃度を一定範囲に
管理しつつ培養する連続培養(以下「連続培養」と略記
する)、B:微細藻濃度を管理しないバッチ培養(以下
「バッチ培養」と略記する)を試み、両者の生産性を比
較した。その結果、好適な微細藻濃度に管理した連続培
養により微細藻の生産性を高めることができることを確
認し、本発明に到達した。本発明の実施は、オープンポ
ンドシステムでもクローズドシステムでもよいが、クロ
ーズドシステムを用いれば微細藻の濃度管理はより容易
であり、また種々のパラメータについて高度に管理する
ことが可能である点で有利且つ実用的である。なお、微
細藻の生産性としては微細藻自体の増殖量と微細藻が細
胞内に生成する特定物質生産量等があるが、本発明では
微細藻自体の増殖量をもって生産性を比較した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present inventors paid attention to the relationship between microalgae concentration during culture and microalgae productivity, and used a closed system that allows easy control of culture conditions. Continuous cultivation (hereinafter abbreviated as "continuous cultivation") and B: batch cultivation without controlling the microalga concentration (hereinafter abbreviated as "batch cultivation") were attempted, and the productivity of both was compared. As a result, it was confirmed that the productivity of microalgae can be increased by continuous culture controlled to a suitable microalgae concentration, and the present invention has been achieved. The implementation of the present invention may be an open pond system or a closed system, but using a closed system is advantageous in that it is easier to control the concentration of microalgae and can highly control various parameters. It is practical. The productivity of the microalgae includes the growth amount of the microalga itself and the production amount of a specific substance produced in the cells. In the present invention, the productivity was compared based on the growth amount of the microalgae.

【0008】図1は本発明を模式的に説明する概略図で
あり、培養用リアクタ(通気・排気手段、加熱手段及び
/又は撹拌手段を設けてもよい)内に培地及び微細藻を
入れ、光源からの光照射下、所定雰囲気で培養を続けな
がら培養液の微細藻濃度を測定し、測定結果(濃度情
報)に基づき培地供給量及び培養液(微細藻)回収量を
調整して、培養液の微細藻濃度を設定値に制御する。即
ち、測定値が設定値より高い場合には培地を培養用リア
クタ内に供給し、測定値が設定値により低い場合には培
地の供給を停止して設定濃度にまで増殖するのを待つ。
これにより培養用リアクタ内の微細藻濃度は設定値に維
持され、最も好ましい微細藻濃度で培養を続けることが
できる。濃度測定をオンラインで行い微細藻濃度情報を
コンピュータ等の培養維持管理装置に入力し、濃度制御
信号(例えばポンプの流速制御信号等)を出力して培地
供給手段のポンプ流速と培養液回収手段のポンプ流速を
制御するように行えば、非常に高度の濃度管理が実現で
きる。
FIG. 1 is a schematic diagram for schematically explaining the present invention. A culture medium and microalgae are put in a reactor for culture (which may be provided with a ventilation / exhaust means, a heating means and / or a stirring means). Under the irradiation of light from a light source, the concentration of the microalgae in the culture solution is measured while culturing is continued in a predetermined atmosphere, and the culture medium supply amount and the culture solution (microalgae) recovery amount are adjusted based on the measurement result (concentration information), and the culture is performed. Control the concentration of microalgae in the liquid to the set value. That is, when the measured value is higher than the set value, the medium is supplied into the culture reactor, and when the measured value is lower than the set value, the supply of the medium is stopped to wait for the medium to grow to the set concentration.
Thereby, the microalgae concentration in the culture reactor is maintained at the set value, and the culture can be continued at the most preferable microalgae concentration. The concentration measurement is performed online, the microalgae concentration information is input to a culture maintenance device such as a computer, and a concentration control signal (for example, a pump flow rate control signal, etc.) is output to output the pump flow rate of the medium supply means and the culture medium recovery means. By controlling the pump flow rate, a very high degree of concentration control can be realized.

【0009】ところで微細藻濃度については、その測定
方法によって種々に表示できる。すなわち、顕微鏡及び
血球計算板を用いて細胞数を直接計数し培養液単位容積
(ml)当たりの細胞数で示す、あるいは市販の分光光
度計等を用いた濁度測定から濁度として表す、さらには
培養液単位容積(リットル)当たりの全有機炭素量とし
て表す等である。本発明は培養中の微細藻濃度を一定に
保ちつつ培養すればよいので、特に測定方法を限定する
ものではない。後記する実施例では、微細藻の生産性を
単位時間当たりの微細藻の増殖量、つまり単位時間当た
りの全有機炭素量増加量で比較し、微細藻濃度も培養液
1リットル中の全有機炭素量(mg)で示し、mgC/
リットルと表記する。
[0009] The concentration of microalgae can be displayed in various ways depending on the measurement method. That is, the number of cells is directly counted using a microscope and a hemocytometer, and is indicated as the number of cells per unit volume (ml) of the culture solution, or expressed as turbidity from turbidity measurement using a commercially available spectrophotometer. Represents the total amount of organic carbon per unit volume (liter) of the culture solution. In the present invention, since the culture may be performed while maintaining the concentration of the microalgae during the culture at a constant level, the measurement method is not particularly limited. In the examples described later, the productivity of microalgae is compared with the growth amount of microalgae per unit time, that is, the increase amount of total organic carbon per unit time. It is shown in the amount (mg), and mgC /
Expressed as liter.

【0010】上記のように微細藻生産性を全有機炭素量
増加で比較する場合に、全有機炭素の計測をオンライン
で行なうことが理想であるが、現在の市販装置では不可
能である。そこで本発明者はオンライン計測が容易な濁
度計を試作し、この濁度計が一定の値を示す時には全有
機炭素量も一定の値を示すことを確認し、オンラインで
の細胞濃度の管理は該濁度計で行い、培養が安定に行わ
れていることを確認した時点での全有機炭素を測定し
た。またこの全有機炭素測定値から最終的な生産速度を
算出した。より具体的な手法は後記の実施例で説明す
る。
[0010] When the productivity of microalgae is compared with the increase in the amount of total organic carbon as described above, it is ideal to measure the total organic carbon online, but this is not possible with the current commercial equipment. Therefore, the present inventor prototyped a turbidity meter that allows easy online measurement, confirmed that when this turbidity meter showed a constant value, the total organic carbon content also showed a constant value, and managed the cell concentration online. Was performed with the turbidity meter, and the total organic carbon at the time when it was confirmed that the culture was performed stably was measured. The final production rate was calculated from the total organic carbon measurement value. A more specific method will be described in an example described later.

【0011】本発明の連続培養における微細藻濃度条件
は微細藻の種類その他の条件により微妙に異なるが、本
発明の一例においては光路長20cmの培養用リアクタ
において少なくとも100mgC/リットル以上300
mg/C以下である。微細藻濃度が100mgC/リッ
トル未満では強光阻害(光傷害photoinhibitionjともい
う) による生産性低下という不都合が、また300mg
C/リットルを超えると、夜間の暗呼吸量による光合成
産物の消費が増大するという不都合がでる。
The microalga concentration conditions in the continuous culture of the present invention are slightly different depending on the type of microalga and other conditions. In an example of the present invention, at least 100 mgC / liter or more in a culture reactor having an optical path length of 20 cm.
mg / C or less. When the concentration of microalgae is less than 100 mgC / liter, the disadvantage of reduced productivity due to strong light inhibition (also referred to as photoinhibition) is another 300 mg.
Above C / liter, there is the disadvantage that the consumption of photosynthetic products by dark respiratory volume at night increases.

【0012】(作用)図4はバッチ培養の一例における
培養時間と培養液の微細藻濃度〔Cppm/リットル
(Cは有機炭素を意味する)〕の関係を示すグラフ図で
ある。図4に示されるように、バッチ培養においては微
細藻濃度が低い段階において、微細藻の生産速度(単位
時間当たりの微細藻濃度の増加量)が一時的に低下す
る。これは一旦高い濃度まで増殖していた微細藻の殆ど
が回収され、その一部を新しい培地に植種して次のバッ
チの培養を始めるため、個々の微細藻にとっては光環境
の急激な変化が生じることになり、増殖に悪影響を及ぼ
すためと考えられる。本発明は、微細藻濃度を管理し
て、その増殖に最適な一定濃度範囲に保ちつつ連続培養
することにより、バッチ培養におけるような生産速度の
一時的低下の現象は発生せず、生産性を大幅に向上でき
るものと考えられる。
(Action) FIG. 4 is a graph showing the relationship between the culture time and the concentration of microalgae in the culture solution [Cppm / liter (C means organic carbon)] in an example of batch culture. As shown in FIG. 4, in the batch culture, at a stage where the concentration of microalgae is low, the production rate of microalgae (the amount of increase in microalgae concentration per unit time) temporarily decreases. This is because most of the microalgae that had once grown to a high concentration is recovered, and a part of the microalgae is inoculated on a new medium and the next batch of culture is started. This is considered to cause a bad influence on the growth. The present invention manages the concentration of microalgae and continuously cultures them while maintaining them at a certain concentration range that is optimal for the growth of the microalgae. It is thought that it can be greatly improved.

【0013】本発明に用いる培養用リアクタとしては特
に限定されるところはなく、オープンポンドシステム
用、クローズドシステム用のいずれであってもよく、こ
の種分野で公知のもののいずれをも使用できる。培養用
リアクタ内の微細藻濃度を測定し一定に管理する具体的
な手段は後記する実施例に示されるが、これに限定され
るものではない。また、微細藻濃度条件の他の培養条件
については、それぞれの微細藻に応じて適宜選択する。
The culture reactor used in the present invention is not particularly limited, and may be any of an open pond system and a closed system, and any of those known in this field can be used. Specific means for measuring the concentration of microalgae in the reactor for culture and controlling the concentration at a constant level will be described in Examples described later, but is not limited thereto. Other culture conditions other than the microalga concentration conditions are appropriately selected according to each microalga.

【0014】[0014]

【実施例】〔実施例〕本発明に従い、図2の装置で微細
藻シネコシスティス PCC6714の集光部色素減少
株PD−1(FERM P−14970)を連続培養し
た。該PD−1株は国立岡崎共同研究機構基礎生物学研
究所より分譲を受けた野性株シネコシスティス PCC
6714を人工的に突然変異させて遺伝的に集光部サイ
ズを縮小させた突然変異株であり、工業技術院生命工業
技術研究所に受託番号FERMP−14970として受
託されている。
EXAMPLES In accordance with the present invention, a light-harvesting pigment-reducing strain PD-1 (FERM P-14970) of the microalga Synechocystis PCC6714 was continuously cultured using the apparatus shown in FIG. The PD-1 strain was a wild strain Synechocystis PCC obtained from the National Institute of Basic Research, Okazaki Collaborative Research Organization.
It is a mutant strain in which the light-collecting portion size is genetically reduced by artificially mutating 6714, and is deposited with the National Institute of Advanced Industrial Science and Technology under the accession number FERMP-14970.

【0015】図2において、光源1からの照射光を透過
できる透明な材質で形成された培養用リアクタ本体2は
撹拌手段としてスタラー3を備えており、同様に透明な
材質で形成された培養恒温槽4内に配置されている。培
地タンク5内の培地6は、培地注入用定量ポンプ7によ
り培地供給ライン8を経由して培養用リアクタ本体2内
に供給される。また、培養用リアクタ本体2内の培地6
中に微細藻9を所定の濃度となるように添加(植種)し
ておく。10は培地6と微細藻9からなる培養液であ
る。雰囲気ガス導入口11より導入される雰囲気ガス
(1%CO2 添加空気)12を培養液10中に供給し、
排気は排気口13より排出する。光源1として白熱電球
を用い、2000μM photone m-2sec -1( 真昼レベル
の太陽光強度)の光強度の条件で照射しながら、培地6
として表1及び表2に組成を示すMDM培地を用い、培
養用リアクタ本体2内を培養恒温槽4により25℃に保
持し、スタラー3で撹拌しつつ培養した。微細藻濃度の
設定は高濃度:300mgC/リットル、低濃度:10
0mgC/リットルの二例を行った。
In FIG. 2, a culture reactor body 2 formed of a transparent material capable of transmitting irradiation light from a light source 1 is provided with a stirrer 3 as a stirring means, and a culture thermostat similarly formed of a transparent material. It is arranged in the tank 4. The culture medium 6 in the culture medium tank 5 is supplied into the culture reactor main body 2 via the culture medium supply line 8 by the culture medium infusion pump 7. Also, the medium 6 in the culture reactor body 2
Microalgae 9 is added (seeded) therein to a predetermined concentration. Reference numeral 10 denotes a culture solution comprising the medium 6 and the microalga 9. An atmosphere gas (air with 1% CO 2 added) 12 introduced from an atmosphere gas inlet 11 is supplied into the culture solution 10,
Exhaust gas is exhausted from the exhaust port 13. While using an incandescent light bulb as the light source 1 and irradiating it under the condition of a light intensity of 2000 μM photone m -2 sec -1 (sunlight level at noon level), the culture medium 6 was irradiated.
Using an MDM medium having the composition shown in Tables 1 and 2, the inside of the culture reactor main body 2 was maintained at 25 ° C. by a culture thermostat 4, and cultured with stirring by a stirrer 3. Microalgae concentration setting: high concentration: 300 mgC / liter, low concentration: 10
Two cases of 0 mgC / liter were performed.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】培養を続けながら、培養液吸引ポンプ14
を作動させて培養液10を培養液溜20に回収するが、
培養液回収ライン15の途中に設けた濁度計16により
培養液10の濁度を測定し、濁度計16から得られる濁
度データ信号17をコンピュータ18に入力し、該入力
信号17から設定値の微細藻濃度とするために調整すべ
き培地量を計算させ、計算の結果得られた培地注入ポン
プ7の流速を制御するポンプ制御データ信号19を培地
注入用定量ポンプ7の制御系に出力してポンプ流速を制
御し、培養液10の微細藻濃度を設定値に管理した。な
お培養液吸引ポンプ14の流量は常に培地注入用定量ポ
ンプ7の流量を上回るようにセットしている。また、測
定した濁度が設定値より低い場合には培地6の注入を停
止して設定濃度に達するのを待つ。
While continuing the culture, the culture solution suction pump 14
Is operated to collect the culture solution 10 into the culture solution reservoir 20,
The turbidity of the culture solution 10 is measured by a turbidity meter 16 provided in the middle of the culture solution recovery line 15, and a turbidity data signal 17 obtained from the turbidimeter 16 is input to a computer 18 and set from the input signal 17. The amount of medium to be adjusted to obtain the microalga concentration of the value is calculated, and a pump control data signal 19 for controlling the flow rate of the medium injection pump 7 obtained as a result of the calculation is output to the control system of the medium injection quantitative pump 7. The pump flow rate was controlled to control the concentration of microalgae in the culture solution 10 at a set value. The flow rate of the culture solution suction pump 14 is set so as to always exceed the flow rate of the culture medium injecting constant pump 7. If the measured turbidity is lower than the set value, the injection of the culture medium 6 is stopped and it waits until the set concentration is reached.

【0019】前述のように微細藻濃度として全有機炭素
量をオンラインで計測することが現在の技術水準では不
可能であることに加え、市販の濁度計では適切な濃度管
理を行えないため、細胞中のクロロフィルの吸収ピーク
に近い光を放つ発光ダイオードとフォトダイオードを組
み合わせ簡単に吸光度を測定できるようにした試作濁度
計を用いてオンラインでの濃度管理を行った。
As described above, it is impossible to measure the total organic carbon content online as the concentration of microalgae with the current technical level, and in addition, since the commercially available turbidity meter cannot perform appropriate concentration management, On-line concentration control was performed using a prototype turbidimeter that was able to easily measure absorbance by combining a light emitting diode and a photodiode that emit light near the absorption peak of chlorophyll in cells.

【0020】ここで注意すべきは、該濁度計の値と全有
機炭素の値の関係は常に一定値を示す訳ではないことで
ある。つまり、培養条件(光強度や細胞濃度)あるいは
微細藻の状態(着色その他)により濁度計と全有機炭素
の指示値の関係がずれると言うことである。従って、微
細藻濃度のオンライン管理は該濁度計で行い、培養が安
定に行われていることを確認し、その時点での全有機炭
素を測定した。すなわち培養条件が変わるごとに顕微鏡
及び血球計算板による直接カウントを行い、濁度計のキ
ャリブレーションをした。この直接カウントの他の目的
として、バクテリア等によるコンタミネイションのチェ
ックやその他培養状態の管理において重要な情報を得る
ことが挙げられる。
It should be noted here that the relationship between the value of the turbidimeter and the value of total organic carbon does not always show a constant value. In other words, the relationship between the turbidimeter and the indicated value of total organic carbon varies depending on the culture conditions (light intensity and cell concentration) or the state of the microalgae (coloring and the like). Therefore, the on-line management of the microalgae concentration was performed by the turbidimeter, and it was confirmed that the culture was performed stably, and the total organic carbon at that time was measured. That is, every time the culture conditions were changed, direct counting was performed using a microscope and a hemocytometer, and the turbidimeter was calibrated. Another purpose of the direct counting is to obtain important information in checking contamination by bacteria or the like and other management of culture conditions.

【0021】また、微細藻の培養状態を知るためには色
素含有量も重要であり、該濁度計はクロロフィルの吸収
ピークに近い光の発光ダイオードを用いるものの正確な
光吸収特性まではわからないので、適時サンプリングし
て分光光度計〔(株)島津製作所製UV3000〕を用
いてA680-A750 の吸光度測定も行い、濁度計指示値と
680-A750 の吸光度の関係を調べ、このA680-A750
の測定値が目的濃度に対応する値となるように培養シス
テムを操作した。また、培養条件が変わる毎にA680-A
750 の吸光度測定によるキャリブレーションを実施し
た。本実施例においては、微細藻濃度が高濃度の300
mgC/リットルは濁度:A680-A750 で0.45に、
低濃度の100mgC/リットルは濁度:A680-A 750
で0.15に相当した。
In order to know the culture state of microalgae, color
Element content is also important, and the turbidity meter
Use light-emitting diodes for near-peak light but accurate
Since we do not know the light absorption characteristics,
Using a spectrophotometer [UV3000 manufactured by Shimadzu Corporation]
A680-A750Of the turbidimeter, and
A680-A750The relationship between the absorbances of the A680-A750
Culture system so that the measured value of
Operated the system. Each time the culture conditions change, A680-A
750Calibration by absorbance measurement
Was. In this embodiment, the microalgae concentration is 300
mgC / liter is turbidity: A680-A750To 0.45,
Turbidity: A for 100 mgC / liter of low concentration680-A 750
Was equal to 0.15.

【0022】このように本発明に従い培養を開始し数日
〜十数日間、培地供給量、培養液回収量、微細藻濃度
(試作濁度計と直接カウント及びA680-A750 吸光度)
のすべての点で本システムが安定していることが確認さ
れた時点で、微細藻の全有機炭素量をTOC(Total Or
aganic carbon)分析計〔(株)島津製作所製、TOC5
00〕で測定し、得られた全有機炭素量に流量をかけて
増殖量を算出し、生産性を生産速度(単位時間当たりの
増殖量:mgC/h)として評価した。
[0022] Thus started several days to several tens days of culture in accordance with the present invention, the medium supply amount, the culture liquid recovery amount, microalga concentration (Prototype turbidimeter direct counting and A 680 -A 750 absorbance)
When it was confirmed that the system was stable at all points, the total organic carbon content of the microalgae was determined by TOC (Total Or
aganic carbon) analyzer [TOC5, manufactured by Shimadzu Corporation]
00], the flow rate was multiplied by the obtained total organic carbon amount to calculate the growth amount, and the productivity was evaluated as the production rate (growth amount per unit time: mgC / h).

【0023】〔比較例〕図2の連続装置において微細藻
濃度制御を行わず、バッチ式の培養を行った。即ち、最
初に実施例と同じMDM培地3リットルを培養用リアク
タ本体2内に入れ、濁度:A680-A750 で0.15とな
るように微細藻シネコシスティス PCC6714の集
光部色素減少株PD−1FERM P−14970を植
種して培養を開始し、培養液回収及び培地供給を行わな
いこと以外は実施例1と同条件で培養を続け、濁度:A
680-A750 で1.0まで微細藻が増殖したところで培養
液10を回収し、初発の濁度になるように培地タンク5
から培地6を培養用リアクタ本体2内に供給した。
COMPARATIVE EXAMPLE In the continuous apparatus of FIG. 2, a batch culture was performed without controlling the concentration of microalgae. That is, first the same MDM medium 3 liters Example placed in culture reactor body 2, turbidity: condensing portion of such fine algae Synechocystis PCC6714 a 0.15 A 680 -A 750 dye reduces strain PD -1FERM P-14970 was inoculated, culture was started, culture was continued under the same conditions as in Example 1 except that the culture solution was not collected and the medium was not supplied. Turbidity: A
680 -A 750 in microalgae until 1.0 the culture liquid 10 is recovered at grown, medium tank 5 so that the turbidity of the initial
Was supplied into the reactor main body 2 for culture.

【0024】(実施例と比較例の結果の比較)図3に微
細藻を本発明に従い低濃度(濁度:A680-A750 で0.
15)と高濃度(濁度:A680-A750 で0.45)に管
理した連続培養(実施例)での生産速度の測定結果と、
濁度0.15から1.0までバッチ培養を行った(比較
例)ときの生産速度測定結果を示す。図3では生産速度
を単位時間(h)当たりの全有機炭素量Cppmで表示
してあるが、Cppm≒mgC/リットル(C:全有機
炭素)である。図3から、バッチ培養を行った場合よ
り、連続培養を行った場合のほうが生産性が1.1〜
1.3倍高くなることがわかる。
(Comparison of the results of Examples and Comparative Examples) FIG. 3 shows that the microalgae were prepared at a low concentration (turbidity: A 680 -A 750 ) according to the present invention.
15) and high concentration (turbidity: the measurement result of the production rate in continuous culture was managed with A 680 -A 750 0.45) (Example)
The production rate measurement results when batch cultivation was performed from 0.15 to 1.0 turbidity (Comparative Example) are shown. In FIG. 3, the production rate is indicated by the total organic carbon amount Cppm per unit time (h), but Cppm ≒ mgC / liter (C: total organic carbon). From FIG. 3, the productivity is 1.1 to 1.1 in the case of continuous culture compared to the case of performing batch culture.
It turns out that it becomes 1.3 times higher.

【0025】図4に比較例のバッチ培養における培養液
の微細藻濃度変化を示す。横軸は培養開始時からの経過
時間、縦軸は微細藻の濃度Cppm≒mgC/リットル
(C:全有機炭素)である。これより培養初期(〜約4
0時間)の低濃度時に、微細藻の生産速度が一時的に低
下していることがわかる。上記連続培養での生産性向上
はこのような一時的生産速度低下がなくなるためと考え
られる。
FIG. 4 shows the change in the concentration of microalgae in the culture solution in the batch culture of the comparative example. The horizontal axis represents the elapsed time from the start of the culture, and the vertical axis represents the concentration of microalgae Cppm @ mgC / liter (C: total organic carbon). From this, the initial stage of culture (~ about 4
It can be seen that the production rate of microalgae is temporarily reduced at a low concentration (0 hour). It is considered that the productivity improvement in the continuous culture is because such a temporary decrease in the production rate is eliminated.

【0026】[0026]

【発明の効果】上記実施例での結果より、培養用リアク
タ内の微細藻濃度を一定に保持して培養することによ
り、明らかに微細藻生産速度の向上効果が得られるもの
であり、大量培養における経済性向上手段として効果を
奏する。
From the results of the above examples, it can be seen that the microalgae production rate can be clearly improved by culturing while maintaining the microalgae concentration in the culture reactor at a constant level. This is effective as a means of improving economic efficiency in

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の概略説明図である。FIG. 1 is a schematic explanatory view of the present invention.

【図2】 本発明の一実施例の説明図である。FIG. 2 is an explanatory diagram of one embodiment of the present invention.

【図3】 本発明の実施例と比較例における微細藻の生
産速度を比較して示したグラフ図である。
FIG. 3 is a graph showing a comparison of production rates of microalgae in Examples of the present invention and Comparative Examples.

【図4】 比較例のバッチ式培養における培養液の微細
藻濃度変化を示すグラフ図である。
FIG. 4 is a graph showing changes in the concentration of microalgae in a culture solution in a batch culture of a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 培養用リアクタ内において光照射下で微
細藻を培養する方法において、培養液中の微細藻濃度を
一定に保ちつつ培養することを特徴とする微細藻の培養
方法。
1. A method for culturing microalgae under light irradiation in a culturing reactor, comprising culturing the microalgae while maintaining a constant concentration of the microalgae in a culture solution.
【請求項2】 上記微細藻濃度が培養液中の全有機炭素
量で100mgC/リットル以上300mgC/リット
ル以下(C:有機炭素)であることを特徴とする請求項
1記載の培養方法。
2. The culture method according to claim 1, wherein the concentration of the microalgae is 100 mgC / L or more and 300 mgC / L or less (C: organic carbon) in total organic carbon in the culture solution.
【請求項3】 前記微細藻がシネコシスティス PCC
6714 PD1(FERM P−14970)である
ことを特徴とする請求項1又は請求項2記載の微細藻の
培養方法。
3. The microalgae is Synechocystis PCC.
The method for culturing a microalga according to claim 1 or 2, wherein the method is 6714 PD1 (FERM P-14970).
JP10165189A 1998-06-12 1998-06-12 Cultivation of microalga Withdrawn JPH11346760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10165189A JPH11346760A (en) 1998-06-12 1998-06-12 Cultivation of microalga

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10165189A JPH11346760A (en) 1998-06-12 1998-06-12 Cultivation of microalga

Publications (1)

Publication Number Publication Date
JPH11346760A true JPH11346760A (en) 1999-12-21

Family

ID=15807537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10165189A Withdrawn JPH11346760A (en) 1998-06-12 1998-06-12 Cultivation of microalga

Country Status (1)

Country Link
JP (1) JPH11346760A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195162A (en) * 2008-02-21 2009-09-03 Ccs Inc Culture apparatus for algae
JP2014200211A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Culture method and culture controller of microalgae
JP2014223024A (en) * 2013-05-15 2014-12-04 日本電信電話株式会社 Culture method and culture apparatus of microalgae
JP2014226123A (en) * 2013-05-27 2014-12-08 株式会社デンソー Algae culture method
JP2015008683A (en) * 2013-06-28 2015-01-19 株式会社日本医化器械製作所 Algae culture lighting device
JP2018088916A (en) * 2016-12-01 2018-06-14 日本曹達株式会社 Algae growing method and algae culturing device
EP3788133A4 (en) * 2018-05-03 2022-01-19 Vaxa Technologies Ltd. Device and method for storing live microalgae

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009195162A (en) * 2008-02-21 2009-09-03 Ccs Inc Culture apparatus for algae
JP2014200211A (en) * 2013-04-08 2014-10-27 日本電信電話株式会社 Culture method and culture controller of microalgae
JP2014223024A (en) * 2013-05-15 2014-12-04 日本電信電話株式会社 Culture method and culture apparatus of microalgae
JP2014226123A (en) * 2013-05-27 2014-12-08 株式会社デンソー Algae culture method
JP2015008683A (en) * 2013-06-28 2015-01-19 株式会社日本医化器械製作所 Algae culture lighting device
JP2018088916A (en) * 2016-12-01 2018-06-14 日本曹達株式会社 Algae growing method and algae culturing device
EP3788133A4 (en) * 2018-05-03 2022-01-19 Vaxa Technologies Ltd. Device and method for storing live microalgae

Similar Documents

Publication Publication Date Title
Wang et al. The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae
Hu et al. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs
Tredici et al. Efficiency of sunlight utilization: tubular versus flat photobioreactors
Ogbonna et al. Sequential heterotrophic/autotrophic cultivation–an efficient method of producing Chlorella biomass for health food and animal feed
Grobbelaar Physiological and technological considerations for optimising mass algal cultures
Morita et al. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae
Sukenik et al. Optimizing algal biomass production in an outdoor pond: a simulation model
ES2645251T3 (en) Continuous or discontinuous flow photobioreactor and use procedure
CN104328044B (en) A kind of illumination carbon dioxide combined regulating bioreactor
CN105316217B (en) Artificial light source both culturing microalgae equipment
CN100500828C (en) Liquid containing diatom, diatom and method for culturing diatom
Liang et al. Growth rate and biomass productivity of Chlorella as affected by culture depth and cell density in an open circular photobioreactor
CN103314096A (en) Optofluidic photobioreactor apparatus, method, and applications
CN105316235A (en) Freshwater eukaryoticmicroalgae culture method
Lee et al. Light emitting diode-based algal photobioreactor with external gas exchange
CN104560637A (en) Rotatable film-forming type microalgae photosynthetic reactor
Magdaong et al. Effect of aeration rate and light cycle on the growth characteristics of Chlorella sorokiniana in a photobioreactor
JPH11346760A (en) Cultivation of microalga
CN102918159A (en) Methods of generating hydrogen
Rusch et al. The hydraulically integrated serial turbidostat algal reactor (HISTAR) for microalgal production
Javanmardian et al. Design and operation of an algal photobioreactor system
Skipnes et al. Cage culture turbidostat: a device for rapid determination of algal growth rate
Grobbelaar Influence of areal density on β-carotene production by Dunaliella salina
US20120077253A1 (en) Methods and Systems for Controlled Illumination
Lelekov et al. Production characteristics of Phaeodactylum tricornutum Bohlin grown on medium with artificial sea water

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906