JP2014222785A - Semiconductor device and electronic device - Google Patents

Semiconductor device and electronic device Download PDF

Info

Publication number
JP2014222785A
JP2014222785A JP2014166413A JP2014166413A JP2014222785A JP 2014222785 A JP2014222785 A JP 2014222785A JP 2014166413 A JP2014166413 A JP 2014166413A JP 2014166413 A JP2014166413 A JP 2014166413A JP 2014222785 A JP2014222785 A JP 2014222785A
Authority
JP
Japan
Prior art keywords
hole
insulating film
semiconductor device
thickness
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014166413A
Other languages
Japanese (ja)
Other versions
JP5871038B2 (en
Inventor
好彦 横山
Yoshihiko Yokoyama
好彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014166413A priority Critical patent/JP5871038B2/en
Publication of JP2014222785A publication Critical patent/JP2014222785A/en
Application granted granted Critical
Publication of JP5871038B2 publication Critical patent/JP5871038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve the long-time reliability of a semiconductor device by increasing fixation strength of a through electrode portion.SOLUTION: A semiconductor device includes: a semiconductor substrate 10; a through hole 11 penetrating through the semiconductor substrate 10; an insulating film 20 covering a side wall 12 of the through hole 11; a wiring pattern 30 formed on one surface 13 side of the semiconductor substrate 10; an electrode pad 50 formed on the other surface 14 side of the semiconductor substrate 10; and a through electrode portion 60 filled in the through hole 11 so as to be in contact with the insulating film 20 and connecting the wiring pattern 30 and the electrode pad 50. The thickness T1 of the insulating film 20 at an end portion 15 of the through hole 11 on the one surface 13 side is formed thicker than the thickness T2 of the insulating film 20 at an end portion 16 on the other surface 14 side.

Description

本発明は、半導体基板を貫通する貫通孔を備えた半導体装置に関する。   The present invention relates to a semiconductor device having a through hole penetrating a semiconductor substrate.

従来、半導体基板を貫通する貫通孔と、上記貫通孔内に形成され、この貫通孔の軸方向に延在する金属プラグと、上記貫通孔内に形成され、上記金属プラグの外側に位置すると共に有機樹脂からなる絶縁層とを備えた貫通電極構造を有する半導体装置が知られている(例えば、特許文献1参照)。   Conventionally, a through-hole penetrating a semiconductor substrate, a metal plug formed in the through-hole and extending in the axial direction of the through-hole, and formed in the through-hole and positioned outside the metal plug A semiconductor device having a through electrode structure including an insulating layer made of an organic resin is known (see, for example, Patent Document 1).

特開2005−26405号公報JP 2005-26405 A

上記半導体装置においては、貫通孔内への絶縁層(以下、絶縁膜という)の成膜性や金属プラグ(以下、貫通電極部という)の形成のし易さを向上させるために、貫通孔の側壁を傾斜させ、貫通孔の一方の端部の径方向の大きさと他方の端部の径方向の大きさとが異なる場合がある。
この場合には、貫通孔の軸方向において、貫通孔の端部の径方向の大きさが小さい方から大きい方へ引っ張る外力に対する貫通電極部の固定強度が、貫通孔の側壁に傾斜がない場合と比較して僅かながら低くなる虞がある。
これにより、半導体装置は、通常の使用状態より過酷な使用状態を想定した温度サイクル試験などの長期信頼性評価試験において、僅かながら性能が低下する虞がある。
In the semiconductor device described above, in order to improve the film formability of an insulating layer (hereinafter referred to as an insulating film) in the through hole and the ease of forming a metal plug (hereinafter referred to as a through electrode portion), The side wall is inclined, and the radial size of one end of the through hole may differ from the radial size of the other end.
In this case, in the axial direction of the through hole, the fixing strength of the through electrode portion with respect to an external force that pulls the end portion of the through hole from the smaller radial direction to the larger is not inclined on the side wall of the through hole There is a possibility that it will be slightly lower than that.
As a result, the performance of the semiconductor device may slightly decrease in a long-term reliability evaluation test such as a temperature cycle test that assumes a severer use state than a normal use state.

また、半導体装置においては、貫通孔の側壁に傾斜がない場合であっても、貫通電極構造の長期信頼性の向上に資するべく、貫通孔の軸方向における貫通電極部の固定強度のさらなる向上が求められている。   Further, in the semiconductor device, even when the side wall of the through hole is not inclined, the fixing strength of the through electrode portion in the axial direction of the through hole can be further improved in order to improve the long-term reliability of the through electrode structure. It has been demanded.

本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]本適用例にかかる半導体装置は、半導体基板と、前記半導体基板を貫通する貫通孔と、前記貫通孔の側壁を覆う絶縁膜と、前記半導体基板の一方の面側に形成された配線パターンと、前記半導体基板の他方の面側に形成された電極パッドと、前記絶縁膜に接するように前記貫通孔に充填され、前記配線パターンと前記電極パッドとを接続する貫通電極部とを備え、前記絶縁膜は、前記貫通孔の前記一方の面側の端部における厚さが、前記他方の面側の端部における厚さより厚く形成されている、または前記両端部間に挟まれた中間部の一部における厚さが、前記一部を挟む前記両端部側の部分における厚さより薄くまたは厚く形成されていることを特徴とする。   Application Example 1 A semiconductor device according to this application example is formed on a semiconductor substrate, a through hole penetrating the semiconductor substrate, an insulating film covering a side wall of the through hole, and one surface side of the semiconductor substrate. A wiring pattern; an electrode pad formed on the other surface side of the semiconductor substrate; and a through electrode portion that fills the through hole so as to contact the insulating film and connects the wiring pattern and the electrode pad. The insulating film is formed such that a thickness at an end portion on the one surface side of the through hole is thicker than a thickness at an end portion on the other surface side, or is sandwiched between the both end portions. Further, the thickness of a part of the intermediate part is formed to be thinner or thicker than the thickness of the part on the both end sides sandwiching the part.

この構成によれば、半導体装置は、絶縁膜の、貫通孔の半導体基板の一方の面側の端部における厚さが、他方の面側の端部における厚さより厚く形成されている。または、半導体装置は、絶縁膜の、両端部間に挟まれた中間部の一部における厚さが、一部を挟む両端部側の部分における厚さより薄くまたは厚く形成されている。   According to this configuration, in the semiconductor device, the thickness of the insulating film at the end portion on the one surface side of the through hole of the semiconductor substrate is thicker than the thickness at the end portion on the other surface side. Alternatively, the semiconductor device is formed such that the thickness of a part of the intermediate portion sandwiched between both end portions of the insulating film is thinner or thicker than the thickness of the portion on both end portions sandwiching the portion.

前者により、半導体装置は、絶縁膜に接するように貫通孔に充填された貫通電極部の形状を、半導体基板の一方の面側の径方向の大きさが他方の面側の径方向の大きさより小さくなるように形成できることから、貫通孔の軸方向における他方の面側から一方の面側への引っ張り力に対する貫通電極部の固定強度を向上させることができる。
後者により、半導体装置は、絶縁膜に接するように貫通孔に充填された貫通電極部の形状を、貫通孔の中間部の一部における径方向の大きさが、この一部を挟む両端部側の部分における径方向の大きさより、大きくまたは小さくなるように形成できることから、貫通孔の軸方向における引っ張り力に対する貫通電極部の固定強度を、他方の面側から一方の面側へ、及び一方の面側から他方の面側への両方向において向上させることができる。
これらの結果、半導体装置は、長期信頼性の向上を図ることができる。
According to the former, in the semiconductor device, the shape of the through electrode portion filled in the through hole so as to be in contact with the insulating film is changed so that the radial size on one surface side of the semiconductor substrate is larger than the radial size on the other surface side. Since it can form so that it may become small, the fixed intensity | strength of the penetration electrode part with respect to the tensile force from the other surface side to the one surface side in the axial direction of a through-hole can be improved.
According to the latter, the semiconductor device has a shape of the through electrode portion filled in the through hole so as to be in contact with the insulating film, and the size in the radial direction of a part of the intermediate part of the through hole is on both end sides sandwiching the part. Therefore, the fixing strength of the through electrode portion against the tensile force in the axial direction of the through hole can be increased from the other surface side to the one surface side, and to the one surface side. It can be improved in both directions from the surface side to the other surface side.
As a result, the semiconductor device can improve long-term reliability.

[適用例2]上記適用例にかかる半導体装置において、前記絶縁膜の厚さが、前記一方の面側の端部から前記他方の面側の端部に向かうに連れて薄く形成されていることが好ましい。   Application Example 2 In the semiconductor device according to the application example described above, the insulating film is formed such that the thickness of the insulating film decreases from the end on the one surface side toward the end on the other surface side. Is preferred.

この構成によれば、半導体装置は、絶縁膜の厚さが、一方の面側の端部から他方の面側の端部に向かうに連れて薄く形成されている。
これにより、半導体装置は、絶縁膜に接するように貫通孔に充填された貫通電極部の形状を、半導体基板の一方の面側の径方向の大きさが他方の面側の径方向の大きさより小さくなるように、貫通電極部の側壁に傾斜を持たせて形成できる。
この結果、半導体装置は、貫通孔の軸方向における他方の面側から一方の面側への引っ張り力に対する貫通電極部の固定強度を向上させることができる。
According to this configuration, the semiconductor device is formed such that the thickness of the insulating film decreases from the end on one surface side to the end on the other surface side.
As a result, the semiconductor device has the shape of the through electrode portion filled in the through hole so as to be in contact with the insulating film, and the radial size on one surface side of the semiconductor substrate is larger than the radial size on the other surface side. The side wall of the through electrode portion can be formed with an inclination so as to be small.
As a result, the semiconductor device can improve the fixing strength of the through electrode portion against the tensile force from the other surface side to the one surface side in the axial direction of the through hole.

[適用例3]上記適用例1にかかる半導体装置において、前記絶縁膜の厚さが、前記中間部の途中から前記他方の面側の端部まで、前記一方の面側の端部における厚さより薄く形成されていることが好ましい。   Application Example 3 In the semiconductor device according to Application Example 1, the thickness of the insulating film is greater than the thickness at the end portion on the one surface side from the middle of the intermediate portion to the end portion on the other surface side. It is preferable to be formed thin.

この構成によれば、半導体装置は、絶縁膜の厚さが、中間部の途中から他方の面側の端部まで、一方の面側の端部における厚さより薄く形成されている。
これにより、半導体装置は、絶縁膜に接するように貫通孔に充填された貫通電極部の形状を、貫通孔の中間部の途中において、一方の面側の径方向の大きさが他方の面側の径方向の大きさより小さくなるように、貫通電極部に段差(くびれ)を形成できる。
この結果、半導体装置は、貫通孔の軸方向における他方の面側から一方の面側への引っ張り力に対する貫通電極部の固定強度を向上させることができる。
According to this configuration, the semiconductor device is formed such that the thickness of the insulating film is thinner than the thickness at the end portion on one surface side from the middle of the intermediate portion to the end portion on the other surface side.
As a result, the semiconductor device has a shape of the through electrode portion filled in the through hole so as to be in contact with the insulating film, and the radial size of one surface side is the other surface side in the middle of the through hole. A step (constriction) can be formed in the through electrode portion so as to be smaller than the size in the radial direction.
As a result, the semiconductor device can improve the fixing strength of the through electrode portion against the tensile force from the other surface side to the one surface side in the axial direction of the through hole.

[適用例4]上記適用例にかかる半導体装置において、前記絶縁膜が有機系樹脂を含んでなることが好ましい。   Application Example 4 In the semiconductor device according to the application example, it is preferable that the insulating film includes an organic resin.

この構成によれば、半導体装置は、絶縁膜が有機系樹脂を含んでなることから、その物性により絶縁膜の厚さの調整を容易に行うことができる。   According to this configuration, since the insulating film includes the organic resin, the semiconductor device can easily adjust the thickness of the insulating film due to its physical properties.

第1の実施形態の半導体装置の要部断面を示す模式断面図。FIG. 3 is a schematic cross-sectional view showing a cross-section of the main part of the semiconductor device of the first embodiment. 半導体装置の製造方法について順を追って示す模式断面図。The schematic cross section which shows order for the manufacturing method of a semiconductor device later on. 半導体装置の製造方法について順を追って示す模式断面図。The schematic cross section which shows order for the manufacturing method of a semiconductor device later on. 半導体装置の製造方法について順を追って示す模式断面図。The schematic cross section which shows order for the manufacturing method of a semiconductor device later on. 第2の実施形態の半導体装置の要部断面を示す模式断面図。FIG. 6 is a schematic cross-sectional view showing a main-portion cross section of a semiconductor device according to a second embodiment. 半導体装置の変形例を示す模式断面図。FIG. 10 is a schematic cross-sectional view illustrating a modified example of a semiconductor device.

以下、本発明を具体化した実施形態について図面に従って説明する。
(第1の実施形態)
図1は、第1の実施形態の半導体装置の要部断面を示す模式断面図である。なお、便宜的に各構成要素のサイズの比率は異ならせてある。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, embodiments of the invention will be described with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic cross-sectional view showing a cross-section of the main part of the semiconductor device of the first embodiment. For convenience, the ratios of the sizes of the constituent elements are varied.

図1に示すように、半導体装置1は、半導体基板10と、半導体基板10を貫通する貫通孔11と、貫通孔11の側壁12を覆う絶縁膜20と、半導体基板10の一方の面13側に絶縁膜20を介して形成された配線パターン30と、半導体基板10の他方の面(能動面)14側に絶縁層40を介して形成された電極パッド50と、絶縁膜20に接するように貫通孔11に充填され、配線パターン30と電極パッド50とを接続する貫通電極部60とを備えている。
加えて、半導体装置1は、配線パターン30を覆うレジスト層31と、電極パッド50を覆う樹脂層51とを備えている。
As shown in FIG. 1, the semiconductor device 1 includes a semiconductor substrate 10, a through hole 11 that penetrates the semiconductor substrate 10, an insulating film 20 that covers the side wall 12 of the through hole 11, and one surface 13 side of the semiconductor substrate 10. In contact with the insulating film 20, the wiring pattern 30 formed through the insulating film 20, the electrode pad 50 formed through the insulating layer 40 on the other surface (active surface) 14 side of the semiconductor substrate 10, and the insulating film 20. A through electrode portion 60 is provided that fills the through hole 11 and connects the wiring pattern 30 and the electrode pad 50.
In addition, the semiconductor device 1 includes a resist layer 31 that covers the wiring pattern 30 and a resin layer 51 that covers the electrode pad 50.

半導体基板10には、シリコン(Si)、ゲルマニウム(Ge)などの半導体材料が用いられている。半導体基板10を貫通する貫通孔11は、平面形状が略円形に形成され、一方の面13側の孔径が他方の面14側の孔径より大きくなるように形成されるのが好ましい。これにより、貫通孔11は、側壁12が傾斜して形成され、側壁12に傾斜がない場合と比較して、絶縁膜20の成膜性が向上する。
なお、貫通孔11は、側壁12に傾斜がないように、一方の面13側の孔径と他方の面14側の孔径とが略等しく形成されてもよい。
A semiconductor material such as silicon (Si) or germanium (Ge) is used for the semiconductor substrate 10. The through hole 11 penetrating the semiconductor substrate 10 is preferably formed so that the planar shape is substantially circular, and the hole diameter on one surface 13 side is larger than the hole diameter on the other surface 14 side. Thereby, the through-hole 11 is formed with the side wall 12 inclined, and the film formability of the insulating film 20 is improved as compared with the case where the side wall 12 is not inclined.
In addition, the through-hole 11 may be formed so that the hole diameter on the one surface 13 side and the hole diameter on the other surface 14 side are substantially equal so that the side wall 12 is not inclined.

絶縁膜20には、ポリイミド系、エポキシ系、アクリル系などの有機系樹脂などが用いられている。
絶縁膜20は、貫通孔11の一方の面13側の端部15における厚さT1が、他方の面14側の端部16における厚さT2より厚く形成されている。
詳述すると、絶縁膜20の厚さは、一方の面13側の端部15から他方の面14側の端部16に向かうに連れて、厚さT1から厚さT2になるように次第に薄く形成されている。
For the insulating film 20, an organic resin such as polyimide, epoxy, or acrylic is used.
The insulating film 20 is formed such that the thickness T1 at the end 15 on the one surface 13 side of the through hole 11 is larger than the thickness T2 on the end 16 on the other surface 14 side.
Specifically, the thickness of the insulating film 20 is gradually reduced from the thickness T1 to the thickness T2 from the end 15 on the one surface 13 side toward the end 16 on the other surface 14 side. Is formed.

絶縁膜20に接するように貫通孔11に充填されている貫通電極部60は、絶縁膜20の表面にTi/W合金、Cuの下地層が形成された後、Cuが電界めっきで貫通孔11に充填されることにより形成される。
貫通電極部60は、上記のように、絶縁膜20の厚さが一方の面13側の端部15から他方の面14側の端部16に向かうに連れて、厚さT1から厚さT2になるように次第に薄く形成されていることから、一方の面13側の端部15における径方向の大きさD1が、他方の面14側の端部16における径方向の大きさD2より小さく形成されている。
The through electrode portion 60 filled in the through hole 11 so as to be in contact with the insulating film 20 is formed by forming an underlayer of Ti / W alloy and Cu on the surface of the insulating film 20, and then Cu is electroplated to form the through hole 11. It is formed by filling.
As described above, the through electrode portion 60 has a thickness T1 to a thickness T2 as the thickness of the insulating film 20 moves from the end 15 on the one surface 13 side to the end 16 on the other surface 14 side. Therefore, the radial size D1 at the end 15 on the one surface 13 side is smaller than the radial size D2 at the end 16 on the other surface 14 side. Has been.

電極パッド50には、Al、Al合金などの金属が用いられている。電極パッド50は、一端が半導体基板10の他方の面(能動面)14側に形成された図示しない集積回路に接続されている。また、電極パッド50は、他端が他方の面14側の図示しない外部接続端子に接続されていてもよい。
配線パターン30には、Cuなどの金属が用いられている。配線パターン30は、一方の面13側の図示しない外部接続端子や外部素子実装用のランドなどに接続されている。なお、配線パターン30は、貫通電極部60の形成の際に、貫通電極部60と一体に形成されてもよい。
電極パッド50と配線パターン30とは、貫通電極部60を介して電気的に接続されている。
A metal such as Al or an Al alloy is used for the electrode pad 50. One end of the electrode pad 50 is connected to an integrated circuit (not shown) formed on the other surface (active surface) 14 side of the semiconductor substrate 10. The other end of the electrode pad 50 may be connected to an external connection terminal (not shown) on the other surface 14 side.
A metal such as Cu is used for the wiring pattern 30. The wiring pattern 30 is connected to an external connection terminal (not shown) on one surface 13 side, a land for mounting an external element, or the like. The wiring pattern 30 may be formed integrally with the through electrode part 60 when the through electrode part 60 is formed.
The electrode pad 50 and the wiring pattern 30 are electrically connected via the through electrode part 60.

レジスト層31には、ソルダーレジストなどの絶縁材料が用いられ、絶縁層40には、酸化シリコン(SiO2)などの絶縁材料が用いられ、樹脂層51には、ポリイミド系樹脂などの絶縁材料が用いられている。 An insulating material such as a solder resist is used for the resist layer 31, an insulating material such as silicon oxide (SiO 2 ) is used for the insulating layer 40, and an insulating material such as polyimide resin is used for the resin layer 51. It is used.

ここで、半導体装置1の製造方法について、貫通電極部60周りを中心に説明する。
図2、図3、図4は、半導体装置の製造方法について、順を追って示す模式断面図である。
[再配置配線層形成工程]
ここでは、絶縁層40、電極パッド50、樹脂層51を含んで再配置配線層といい、まず、図2(a)に示すように、半導体基板10の他方の面14側に再配置配線層を形成する。なお、この際、半導体基板10は、個片状態、ウエハー状態のいずれでもよい。
Here, the manufacturing method of the semiconductor device 1 will be described focusing on the periphery of the through electrode portion 60.
2, 3, and 4 are schematic cross-sectional views sequentially showing a method for manufacturing a semiconductor device.
[Relocation wiring layer formation process]
Here, the insulating layer 40, the electrode pad 50, and the resin layer 51 are referred to as a rearrangement wiring layer. First, as shown in FIG. 2A, the rearrangement wiring layer is formed on the other surface 14 side of the semiconductor substrate 10. Form. At this time, the semiconductor substrate 10 may be in an individual state or a wafer state.

[研磨工程]
ついで、図2(b)に示すように、再配置配線層の樹脂層51に、ガラスなどの剛性の高いサポート部材70を貼付し、半導体基板10の一方の面13側を所望の厚さ(一例として、100μm程度)になるまで研磨する。
[Polishing process]
Next, as shown in FIG. 2B, a support member 70 having high rigidity such as glass is attached to the resin layer 51 of the rearrangement wiring layer, and the one surface 13 side of the semiconductor substrate 10 has a desired thickness ( As an example, polishing is performed until the thickness reaches about 100 μm.

[貫通孔形成工程]
ついで、図2(c)に示すように、半導体基板10を反転して、半導体基板10の一方の面13にレジスト17を塗布し、露光して貫通孔11の平面形状パターンを形成し、半導体基板10をエッチングして貫通孔11を形成する。
この際、エッチングには、ドライエッチングを用いるのが好ましい。また、ドライエッチングのプロセスは、反応性イオンエッチング(RIE:Reactive Ion Etching)で行うのが好ましい。さらに具体的には、深堀RIE(DeepRIE)を行うためのボッシュプロセス(Bosch Process)を用いることが好ましい。
[Through hole forming step]
Next, as shown in FIG. 2C, the semiconductor substrate 10 is turned over, a resist 17 is applied to one surface 13 of the semiconductor substrate 10, and exposed to form a planar shape pattern of the through-holes 11, so that the semiconductor The substrate 10 is etched to form the through holes 11.
At this time, dry etching is preferably used for etching. The dry etching process is preferably performed by reactive ion etching (RIE). More specifically, it is preferable to use a Bosch process for performing Deep RIE (Deep RIE).

ボッシュプロセスは、エッチングとエッチングにより形成した開口部の側壁保護とを交互に繰り返しながら行うエッチングプロセスであり、アスペクト比の高いエッチングが可能となる。なお、エッチングには、他の公知の方法を用いてもよい。
貫通孔11は、一方の面13側の孔径が他方の面14側の孔径より大きくなるように形成されるのが好ましい。これにより、貫通孔11は、側壁12が傾斜して形成され、絶縁膜20の成膜性が向上する。
なお、貫通孔11は、側壁12に傾斜がないように、一方の面13側の孔径と他方の面14側の孔径とが略等しく形成されてもよい。
なお、貫通孔11は、所望の個数を所望の径寸法で一括して形成可能である。
The Bosch process is an etching process in which etching and sidewall protection of the opening formed by etching are alternately repeated, and etching with a high aspect ratio is possible. Note that other known methods may be used for etching.
The through hole 11 is preferably formed such that the hole diameter on the one surface 13 side is larger than the hole diameter on the other surface 14 side. Thereby, the through hole 11 is formed with the side wall 12 inclined, and the film formability of the insulating film 20 is improved.
In addition, the through-hole 11 may be formed so that the hole diameter on the one surface 13 side and the hole diameter on the other surface 14 side are substantially equal so that the side wall 12 is not inclined.
Note that a desired number of through holes 11 can be collectively formed with a desired diameter.

[絶縁層エッチング工程]
ついで、図3(d)に示すように、貫通孔11の形成により露出した絶縁層40をエッチングして、電極パッド50を露出させる。この際、エッチングには、CF系ガス(例えば、CF4ガス)によるドライエッチングを用いるのが好ましい。この後、レジスト17(図2(c)参照)を剥離する。
なお、絶縁層40のエッチングには、ウエットエッチングを用いてもよい。
[Insulating layer etching process]
Next, as shown in FIG. 3D, the insulating layer 40 exposed by the formation of the through hole 11 is etched to expose the electrode pad 50. At this time, it is preferable to use dry etching with a CF-based gas (for example, CF 4 gas) for the etching. Thereafter, the resist 17 (see FIG. 2C) is peeled off.
Note that wet etching may be used for etching the insulating layer 40.

[絶縁膜形成工程]
ついで、図3(e)に示すように、半導体基板10の一方の面13、及び貫通孔11の側壁12を覆うように絶縁膜20を形成する。絶縁膜20の形成方法には、スピンコートを用いる。
詳述すると、有機系樹脂を含んでなるコート液をスピンコートする。このとき、コート液の濃度は、一方の面13側の端部15から有機系樹脂を含んでなるコート液内の溶剤が滞留し易い貫通孔11の他方の面14側の端部16に行くに連れて、次第に薄くなっていく。
[Insulating film formation process]
Next, as shown in FIG. 3E, an insulating film 20 is formed so as to cover one surface 13 of the semiconductor substrate 10 and the side wall 12 of the through hole 11. As a method for forming the insulating film 20, spin coating is used.
More specifically, a coating solution containing an organic resin is spin-coated. At this time, the concentration of the coating liquid goes from the end 15 on the one surface 13 side to the end 16 on the other surface 14 side of the through hole 11 where the solvent in the coating liquid containing the organic resin tends to stay. It gradually gets thinner.

ついで、プリベークを行い溶剤を蒸発させる。この際、絶縁膜20は、コート液の濃度の違いにより、貫通孔11の一方の面13側の端部15における厚さT1が、他方の面14側の端部16における厚さT2より厚く形成される。
詳述すると、絶縁膜20の厚さは、一方の面13側の端部15から他方の面14側の端部16に向かうに連れて、厚さT1から厚さT2になるように次第に薄く形成されている。
換言すれば、絶縁膜20を含んだ貫通孔11の一方の面13側の端部15における径方向の大きさD1が、他方の面14側の端部16における径方向の大きさD2より小さく形成されていることになる。
Next, pre-baking is performed to evaporate the solvent. At this time, the insulating film 20 has a thickness T1 at the end 15 on the one surface 13 side of the through hole 11 larger than a thickness T2 on the end 16 on the other surface 14 side due to the difference in the concentration of the coating liquid. It is formed.
Specifically, the thickness of the insulating film 20 is gradually reduced from the thickness T1 to the thickness T2 from the end 15 on the one surface 13 side toward the end 16 on the other surface 14 side. Is formed.
In other words, the radial size D1 at the end 15 on the one surface 13 side of the through hole 11 including the insulating film 20 is smaller than the radial size D2 at the end 16 on the other surface 14 side. It will be formed.

ついで、ポストキュアにより絶縁膜20を焼き付ける。なお、絶縁膜20にパターン形成などを施す場合は、ポストキュアの前に露光、現像を行い、パターンを形成する。
なお、絶縁膜20において、一方の面13側の端部15の貫通電極部60側の角部には、丸みがついていてもよい。
Next, the insulating film 20 is baked by post cure. In addition, when patterning etc. are given to the insulating film 20, exposure and development are performed before post-cure to form a pattern.
In the insulating film 20, the corner portion on the through electrode portion 60 side of the end portion 15 on the one surface 13 side may be rounded.

[貫通電極部形成工程]
ついで、図3(f)に示すように、貫通孔11内を含む絶縁膜20の表面及び電極パッド50の露出面に、貫通電極部60の下地層(導電層)60’をTiNまたはTi/W合金、Cuを用いてスパッタなどにより形成する。
ついで、図4(g)に示すように、下地層60’にレジスト18を塗布し、所望の配線パターン形状にパターニングし、下地層60’の貫通電極部60相当部分と配線パターン30相当部分とを露出させる。
[Through electrode part forming step]
Next, as shown in FIG. 3 (f), a base layer (conductive layer) 60 ′ of the through electrode portion 60 is formed on the surface of the insulating film 20 including the inside of the through hole 11 and the exposed surface of the electrode pad 50 with TiN or Ti / Ti / It is formed by sputtering using W alloy or Cu.
Next, as shown in FIG. 4G, a resist 18 is applied to the underlying layer 60 ′ and patterned into a desired wiring pattern shape, and the portion corresponding to the through electrode portion 60 and the portion corresponding to the wiring pattern 30 of the underlying layer 60 ′. To expose.

ついで、下地層60’を電極として電界めっきでCuを貫通孔11に充填させる。これにより、絶縁膜20に接するようにして貫通電極部60が形成され、貫通電極部60と一緒に周辺の配線パターン30が形成される。
なお、配線パターン30は、後工程で貫通電極部60に積層されるように形成されてもよい。
Next, Cu is filled into the through hole 11 by electroplating using the base layer 60 ′ as an electrode. Thereby, the through electrode portion 60 is formed so as to be in contact with the insulating film 20, and the peripheral wiring pattern 30 is formed together with the through electrode portion 60.
Note that the wiring pattern 30 may be formed so as to be stacked on the through electrode portion 60 in a later step.

このとき、上記のように、絶縁膜20の厚さが一方の面13側の端部15から他方の面14側の端部16に向かうに連れて、厚さT1から厚さT2になるように次第に薄く形成され、絶縁膜20を含んだ貫通孔11の一方の面13側の端部15における径方向の大きさD1は、他方の面14側の端部16における径方向の大きさD2より小さく形成されている。
これにより、貫通孔11に充填された貫通電極部60は、一方の面13側の端部15における径方向の大きさD1が、他方の面14側の端部16における径方向の大きさD2より小さく形成される。
At this time, as described above, the thickness of the insulating film 20 is changed from the thickness T1 to the thickness T2 from the end 15 on the one surface 13 side toward the end 16 on the other surface 14 side. The diameter D1 of the end 15 on the one surface 13 side of the through-hole 11 including the insulating film 20 that is gradually thinner is the size D2 in the radial direction of the end 16 on the other surface 14 side. It is formed smaller.
As a result, the through electrode portion 60 filled in the through hole 11 has a radial size D1 at the end 15 on the one surface 13 side and a radial size D2 at the end 16 on the other surface 14 side. Formed smaller.

[レジスト層形成工程]
ついで、図4(h)に示すように、レジスト18を剥離し、エッチングにより不要な箇所の下地層60’を除去する。この際、配線パターン30も一緒にエッチングされるが、Cuが厚付けされていることから、エッチング終了時点で所望の厚さに収まる。
ついで、レジスト層31をソルダーレジストなどを用いて形成し、貫通電極部60及び配線パターン30の必要部分を覆い保護する。
その後、サポート部材70を剥離して、ウエハー状態であれば個片に分割することで、図1に示すような、半導体装置1が得られる。
[Resist layer forming step]
Next, as shown in FIG. 4 (h), the resist 18 is peeled off, and the underlying layer 60 ′ is removed by unnecessary etching. At this time, the wiring pattern 30 is also etched together, but since Cu is thickened, the wiring pattern 30 falls within a desired thickness at the end of etching.
Next, the resist layer 31 is formed using a solder resist or the like, and covers and protects the necessary portions of the through electrode portion 60 and the wiring pattern 30.
Thereafter, the support member 70 is peeled off, and if it is in a wafer state, it is divided into individual pieces, whereby the semiconductor device 1 as shown in FIG. 1 is obtained.

上述したように、第1の実施形態の半導体装置1は、絶縁膜20の厚さが一方の面13側の端部15から他方の面14側の端部16に向かうに連れて、厚さT1から厚さT2になるように次第に薄く形成され、絶縁膜20を含んだ貫通孔11の一方の面13側の端部15における径方向の大きさD1は、他方の面14側の端部16における径方向の大きさD2より小さく形成されている。   As described above, in the semiconductor device 1 of the first embodiment, the thickness of the insulating film 20 increases from the end 15 on the one surface 13 side toward the end 16 on the other surface 14 side. The diameter D1 of the end portion 15 on the one surface 13 side of the through-hole 11 including the insulating film 20 that is formed so as to become the thickness T2 from T1 is the end portion on the other surface 14 side. 16 is smaller than the radial size D2.

これにより、貫通孔11に充填された貫通電極部60は、側壁12が傾斜して形成され、一方の面13側の端部15における径方向の大きさD1が、他方の面14側の端部16における径方向の大きさD2より小さく形成される。
この結果、半導体装置1は、貫通孔11の軸方向における他方の面14側から一方の面13側への引っ張り力に対する貫通電極部60の固定強度を向上させることができる。
これにより、半導体装置1は、長期信頼性の向上を図ることができる。
Accordingly, the through electrode portion 60 filled in the through hole 11 is formed with the side wall 12 inclined, and the radial size D1 at the end portion 15 on the one surface 13 side is the end on the other surface 14 side. The portion 16 is formed to be smaller than the radial size D2.
As a result, the semiconductor device 1 can improve the fixing strength of the through electrode portion 60 against the tensile force from the other surface 14 side to the one surface 13 side in the axial direction of the through hole 11.
As a result, the semiconductor device 1 can improve long-term reliability.

また、半導体装置1は、絶縁膜20が有機系樹脂を含んでなることから、その物性により厚膜化(例えば、1μm以上)が容易であり、絶縁膜20の厚さ(T1,T2)の調整を容易に行うことができる。   In addition, since the insulating film 20 includes an organic resin, the semiconductor device 1 can be easily thickened (for example, 1 μm or more) due to its physical properties, and the thickness (T1, T2) of the insulating film 20 can be easily increased. Adjustment can be performed easily.

(第2の実施形態)
図5は、第2の実施形態の半導体装置の要部断面を示す模式断面図である。なお、便宜的に各構成要素のサイズの比率は異ならせてある。また、第1の実施形態との共通部分については、同一符号を付して説明を省略し、第1の実施形態と異なる部分を中心に説明する。
(Second Embodiment)
FIG. 5 is a schematic cross-sectional view showing a cross-section of the main part of the semiconductor device of the second embodiment. For convenience, the ratios of the sizes of the constituent elements are varied. Moreover, about the common part with 1st Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted and it demonstrates centering on a different part from 1st Embodiment.

図5に示すように、第2の実施形態の半導体装置101は、絶縁膜120の厚さが、両端部15,16に挟まれた中間部の途中から他方の面14側の端部16まで、一方の面13側の端部15における厚さT11より薄い厚さT12で形成されている。
これにより、半導体装置101は、貫通孔11の中間部の途中において、貫通電極部160の、一方の面13側の径方向の大きさD11が、他方の面14側の径方向の大きさD12より小さくなるように、貫通電極部160に段差(くびれ)を形成できる。
この結果、半導体装置101は、貫通孔11の軸方向における他方の面14側から一方の面13側への引っ張り力に対する貫通電極部160の固定強度を向上させることができる。
これにより、半導体装置101は、長期信頼性の向上を図ることができる。
As shown in FIG. 5, in the semiconductor device 101 of the second embodiment, the thickness of the insulating film 120 is from the middle of the intermediate portion sandwiched between both end portions 15 and 16 to the end portion 16 on the other surface 14 side. The thickness T12 is smaller than the thickness T11 at the end 15 on the one surface 13 side.
Thus, in the semiconductor device 101, in the middle of the through hole 11, the radial size D11 on the one surface 13 side of the through electrode portion 160 is the radial size D12 on the other surface 14 side. A step (necking) can be formed in the through electrode portion 160 so as to be smaller.
As a result, the semiconductor device 101 can improve the fixing strength of the through electrode portion 160 against the tensile force from the other surface 14 side to the one surface 13 side in the axial direction of the through hole 11.
Thereby, the semiconductor device 101 can improve long-term reliability.

なお、絶縁膜120の上記形状は、上述の絶縁膜形成工程において、プリベークの温度を第1の実施形態より下げて行うことにより形成可能となる。つまり、プリベークの温度を下げることにより、有機系樹脂を含んでなるコート液内の溶剤の蒸発に要する時間が長くなり、コート液が貫通孔11の中間部の途中から他方の面14側に長時間滞留することによって、絶縁膜120に段差(くびれ)が形成される。   The shape of the insulating film 120 can be formed by lowering the pre-baking temperature from the first embodiment in the above-described insulating film forming step. That is, by lowering the pre-baking temperature, the time required for evaporation of the solvent in the coating liquid containing the organic resin is lengthened, and the coating liquid extends from the middle of the through hole 11 to the other surface 14 side. By staying for a period of time, a step (necking) is formed in the insulating film 120.

(変形例)
ここで、第2の実施形態の半導体装置の変形例について説明する。
図6は、半導体装置の変形例を示す模式断面図である。なお、便宜的に各構成要素のサイズの比率は異ならせてある。また、第2の実施形態との共通部分については、同一符号を付して説明を省略し、第2の実施形態と異なる部分を中心に説明する。
(Modification)
Here, a modification of the semiconductor device of the second embodiment will be described.
FIG. 6 is a schematic cross-sectional view showing a modification of the semiconductor device. For convenience, the ratios of the sizes of the constituent elements are varied. Moreover, about a common part with 2nd Embodiment, the same code | symbol is attached | subjected and description is abbreviate | omitted and it demonstrates centering on a different part from 2nd Embodiment.

図6(a)に示すように、変形例の半導体装置201は、貫通孔11の側壁12に傾斜がない場合に、より好適な例である。
つまり、半導体装置201は、貫通孔11の両端部15,16間に挟まれた中間部の一部における絶縁膜220の厚さT22が、中間部の一部を挟む両端部15,16側の部分における絶縁膜220の厚さT21,T23より薄く形成されている。
As shown in FIG. 6A, the modified semiconductor device 201 is a more preferable example when the side wall 12 of the through hole 11 is not inclined.
That is, in the semiconductor device 201, the thickness T22 of the insulating film 220 in a part of the intermediate part sandwiched between the both end parts 15 and 16 of the through-hole 11 is on the side of the both end parts 15 and 16 side of the part of the intermediate part. The insulating film 220 in the portion is formed thinner than the thicknesses T21 and T23.

これによれば、半導体装置201は、貫通孔11の中間部の一部における貫通電極部260の径方向の大きさD22を、中間部の一部を挟む両端部15,16側の部分における貫通電極部260の径方向の大きさD21,D23より、大きくすることができる。
この結果、半導体装置201は、貫通孔11の軸方向における引っ張り力に対する貫通電極部260の固定強度を、他方の面14側から一方の面13側へ、及び一方の面13側から他方の面14側への両方向において向上させることができる。
これにより、半導体装置201は、長期信頼性の向上を図ることができる。
According to this, in the semiconductor device 201, the size D22 in the radial direction of the through electrode part 260 in a part of the intermediate part of the through hole 11 is made to penetrate in the part on the both end parts 15 and 16 side sandwiching the part of the intermediate part. It can be made larger than the sizes D21 and D23 of the electrode portion 260 in the radial direction.
As a result, in the semiconductor device 201, the fixing strength of the through electrode portion 260 against the tensile force in the axial direction of the through hole 11 is increased from the other surface 14 side to the one surface 13 side and from the one surface 13 side to the other surface. It can be improved in both directions toward the 14 side.
Thereby, the semiconductor device 201 can improve long-term reliability.

図6(b)に示すように、他の変形例の半導体装置301は、半導体装置201と同様に、貫通孔11の側壁12に傾斜がない場合に、より好適な例である。
つまり、半導体装置301は、貫通孔11の両端部15,16間に挟まれた中間部の一部における絶縁膜320の厚さT32が、中間部の一部を挟む両端部15,16側の部分における絶縁膜320の厚さT31,T33より厚く形成されている。
As shown in FIG. 6B, the semiconductor device 301 of another modified example is a more preferable example when the side wall 12 of the through hole 11 is not inclined, like the semiconductor device 201.
That is, in the semiconductor device 301, the thickness T32 of the insulating film 320 in a part of the intermediate part sandwiched between the both end parts 15 and 16 of the through-hole 11 is on the both end part 15 and 16 side sandwiching part of the intermediate part. The insulating film 320 in the portion is formed thicker than the thicknesses T31 and T33.

これによれば、半導体装置301は、貫通孔11の中間部の一部における貫通電極部360の径方向の大きさD32を、中間部の一部を挟む両端部15,16側の部分における貫通電極部360の径方向の大きさD31,D33より、小さくすることができる。
この結果、半導体装置301は、貫通孔11の軸方向における引っ張り力に対する貫通電極部360の固定強度を、他方の面14側から一方の面13側へ、及び一方の面13側から他方の面14側への両方向において向上させることができる。
これにより、半導体装置301は、長期信頼性の向上を図ることができる。
According to this, the semiconductor device 301 has the radial size D32 of the through electrode part 360 in a part of the intermediate part of the through hole 11 and the penetration in the part on the both end parts 15 and 16 side of the part of the intermediate part. It can be made smaller than the sizes D31 and D33 of the electrode portion 360 in the radial direction.
As a result, in the semiconductor device 301, the fixing strength of the through electrode portion 360 against the tensile force in the axial direction of the through hole 11 is increased from the other surface 14 side to the one surface 13 side and from the one surface 13 side to the other surface. It can be improved in both directions toward the 14 side.
Thereby, the semiconductor device 301 can improve long-term reliability.

なお、上記変形例における絶縁膜220,320の形状は、上述の絶縁膜形成工程において、絶縁膜形成条件(例えば、コート液の濃度、スピンコートの回数、スピンコートの速度、プリベーク温度、プリベーク時間など)を適宜設定することにより形成可能となる。
なお、上記変形例は、貫通孔11の側壁12に傾斜があっても適用可能であり、第1の実施形態にも適用できる。
また、上記各半導体装置(1など)は、一方の面13側に配線パターン30を経由して電歪素子などの外部素子を実装することにより、長期信頼性に優れた電子デバイスを提供することができる。
Note that the shapes of the insulating films 220 and 320 in the above modification are the same as the insulating film forming conditions (for example, the concentration of the coating liquid, the number of spin coatings, the spin coating speed, the pre-baking temperature, and the pre-baking time) Etc.) can be appropriately set.
In addition, the said modification is applicable even if the side wall 12 of the through-hole 11 has an inclination, and can also be applied to 1st Embodiment.
Further, each of the semiconductor devices (1 and the like) provides an electronic device having excellent long-term reliability by mounting an external element such as an electrostrictive element via the wiring pattern 30 on one surface 13 side. Can do.

1…半導体装置、10…半導体基板、11…貫通孔、12…側壁、13…一方の面、14…他方の面、15…一方の面側の端部、16…他方の面側の端部、20…絶縁膜、30…配線パターン、31…レジスト層、40…絶縁層、50…電極パッド、51…樹脂層、60…貫通電極部、T1,T2…絶縁膜の厚さ、D1,D2…貫通電極部の径方向の大きさ。   DESCRIPTION OF SYMBOLS 1 ... Semiconductor device, 10 ... Semiconductor substrate, 11 ... Through-hole, 12 ... Side wall, 13 ... One side, 14 ... The other side, 15 ... End part on one side, 16 ... End part on the other side 20 ... insulating film, 30 ... wiring pattern, 31 ... resist layer, 40 ... insulating layer, 50 ... electrode pad, 51 ... resin layer, 60 ... penetrating electrode portion, T1, T2 ... thickness of insulating film, D1, D2 ... The size of the through electrode in the radial direction.

本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
本発明の一態様の半導体装置は、第1面と、前記第1面に対向するように配置される第2面と、を有する半導体基板と、前記第1面の側から前記第2面の側に向かう第1の方向に前記半導体基板を貫通するように配置される貫通孔と、前記貫通孔の内部に配置される貫通電極と、前記貫通電極と前記半導体基板との間に配置される絶縁層と、を含み、前記第1の方向に交差する第2の方向から見たとき、前記貫通電極及び前記絶縁層が配置される前記半導体基板の貫通孔の幅は、前記第1面の側の前記貫通孔の幅は、前記第2面の側の前記貫通孔の幅より広く、前記第1面の側の前記絶縁層の厚みは、前記第2面の側の前記絶縁層の厚みより厚いことを特徴とする。
また、本発明の一態様の電子デバイスは、上記の半導体装置を含むことを特徴とする。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
A semiconductor device of one embodiment of the present invention includes a semiconductor substrate having a first surface and a second surface disposed so as to face the first surface, and the second surface from the first surface side. A through hole arranged to penetrate the semiconductor substrate in a first direction toward the side, a through electrode arranged inside the through hole, and arranged between the through electrode and the semiconductor substrate The through hole of the semiconductor substrate in which the through electrode and the insulating layer are disposed when viewed from a second direction intersecting the first direction. The width of the through hole on the side is wider than the width of the through hole on the second surface side, and the thickness of the insulating layer on the first surface side is the thickness of the insulating layer on the second surface side. It is characterized by being thicker.
An electronic device of one embodiment of the present invention includes the above semiconductor device.

Claims (4)

半導体基板と、
前記半導体基板を貫通する貫通孔と、
前記貫通孔の側壁を覆う絶縁膜と、
前記半導体基板の一方の面側に形成された配線パターンと、
前記半導体基板の他方の面側に形成された電極パッドと、
前記絶縁膜に接するように前記貫通孔に充填され、前記配線パターンと前記電極パッドとを接続する貫通電極部とを備え、
前記絶縁膜は、前記貫通孔の前記一方の面側の端部における厚さが、前記他方の面側の端部における厚さより厚く形成されている、または前記両端部間に挟まれた中間部の一部における厚さが、前記一部を挟む前記両端部側の部分における厚さより薄くまたは厚く形成されていることを特徴とする半導体装置。
A semiconductor substrate;
A through hole penetrating the semiconductor substrate;
An insulating film covering the side wall of the through hole;
A wiring pattern formed on one surface side of the semiconductor substrate;
An electrode pad formed on the other surface side of the semiconductor substrate;
A through-electrode portion that fills the through-hole so as to be in contact with the insulating film and connects the wiring pattern and the electrode pad;
The insulating film is formed such that a thickness at an end portion on the one surface side of the through hole is thicker than a thickness at an end portion on the other surface side, or an intermediate portion sandwiched between the both end portions. A thickness of a part of the semiconductor device is formed to be thinner or thicker than a thickness of a part on the both end sides sandwiching the part.
請求項1に記載の半導体装置において、前記絶縁膜の厚さが、前記一方の面側の端部から前記他方の面側の端部に向かうに連れて薄く形成されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein the insulating film is formed so that a thickness thereof decreases from an end on the one surface side toward an end on the other surface side. 3. Semiconductor device. 請求項1に記載の半導体装置において、前記絶縁膜の厚さが、前記中間部の途中から前記他方の面側の端部まで、前記一方の面側の端部における厚さより薄く形成されていることを特徴とする半導体装置。   2. The semiconductor device according to claim 1, wherein a thickness of the insulating film is formed to be thinner than a thickness at an end portion on the one surface side from an intermediate portion of the intermediate portion to an end portion on the other surface side. A semiconductor device. 請求項1〜3のいずれか一項に記載の半導体装置において、前記絶縁膜が有機系樹脂を含んでなることを特徴とする半導体装置。   4. The semiconductor device according to claim 1, wherein the insulating film includes an organic resin.
JP2014166413A 2014-08-19 2014-08-19 Semiconductor device and electronic device Active JP5871038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014166413A JP5871038B2 (en) 2014-08-19 2014-08-19 Semiconductor device and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014166413A JP5871038B2 (en) 2014-08-19 2014-08-19 Semiconductor device and electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009232333A Division JP5600919B2 (en) 2009-10-06 2009-10-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014222785A true JP2014222785A (en) 2014-11-27
JP5871038B2 JP5871038B2 (en) 2016-03-01

Family

ID=52122144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014166413A Active JP5871038B2 (en) 2014-08-19 2014-08-19 Semiconductor device and electronic device

Country Status (1)

Country Link
JP (1) JP5871038B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150864A (en) * 2016-02-23 2017-08-31 日本電子材料株式会社 Probe guide, probe card, and method for manufacturing probe guide
CN113782507A (en) * 2017-03-17 2021-12-10 东芝存储器株式会社 Semiconductor device with a plurality of semiconductor chips

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050738A (en) * 2000-08-04 2002-02-15 Seiko Epson Corp Semiconductor device and method of manufacturing the same, circuit board, and electronic apparatus
JP2006032695A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Method for manufacturing semiconductor device
JP2006165112A (en) * 2004-12-03 2006-06-22 Sharp Corp Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby
JP2006237594A (en) * 2005-01-31 2006-09-07 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006261323A (en) * 2005-03-16 2006-09-28 Sharp Corp Semiconductor device and its manufacturing method
JP2006269968A (en) * 2005-03-25 2006-10-05 Sharp Corp Semiconductor device and its manufacturing method
JP2009016773A (en) * 2007-07-02 2009-01-22 Spansion Llc Semiconductor device, and manufacturing method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050738A (en) * 2000-08-04 2002-02-15 Seiko Epson Corp Semiconductor device and method of manufacturing the same, circuit board, and electronic apparatus
JP2006032695A (en) * 2004-07-16 2006-02-02 Sanyo Electric Co Ltd Method for manufacturing semiconductor device
JP2006165112A (en) * 2004-12-03 2006-06-22 Sharp Corp Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby
JP2006237594A (en) * 2005-01-31 2006-09-07 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2006261323A (en) * 2005-03-16 2006-09-28 Sharp Corp Semiconductor device and its manufacturing method
JP2006269968A (en) * 2005-03-25 2006-10-05 Sharp Corp Semiconductor device and its manufacturing method
JP2009016773A (en) * 2007-07-02 2009-01-22 Spansion Llc Semiconductor device, and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150864A (en) * 2016-02-23 2017-08-31 日本電子材料株式会社 Probe guide, probe card, and method for manufacturing probe guide
KR20170099383A (en) * 2016-02-23 2017-08-31 재팬 일렉트로닉 메트리얼스 코오포레이숀 Probe guide, probe card and method for probe guide manufacturing
KR102620402B1 (en) 2016-02-23 2024-01-03 재팬 일렉트로닉 메트리얼스 코오포레이숀 Probe guide, probe card and method for probe guide manufacturing
CN113782507A (en) * 2017-03-17 2021-12-10 东芝存储器株式会社 Semiconductor device with a plurality of semiconductor chips
CN113782507B (en) * 2017-03-17 2024-02-13 铠侠股份有限公司 Semiconductor device with a semiconductor device having a plurality of semiconductor chips

Also Published As

Publication number Publication date
JP5871038B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
US6667551B2 (en) Semiconductor device and manufacturing thereof, including a through-hole with a wider intermediate cavity
JP5289830B2 (en) Semiconductor device
US8058732B2 (en) Semiconductor die structures for wafer-level chipscale packaging of power devices, packages and systems for using the same, and methods of making the same
CN107360729B (en) Semiconductor device and method for manufacturing the same
JP2010147281A (en) Semiconductor device and method of manufacturing the same
JP6606331B2 (en) Electronic equipment
JP2005294577A (en) Semiconductor device and its manufacturing method
JP5423572B2 (en) Wiring board, piezoelectric oscillator, gyro sensor, and manufacturing method of wiring board
JP2010103467A (en) Semiconductor package and method of manufacturing the same
JP5600919B2 (en) Semiconductor device
JP6058268B2 (en) Interposer and method for forming the same
TWI591764B (en) Chip package and manufacturing method thereof
US9076796B2 (en) Interconnection structure for package and fabrication method thereof
JP5871038B2 (en) Semiconductor device and electronic device
TW202027245A (en) Semiconductor package
TWI437689B (en) Semiconductor device
JP2012248754A (en) Method of manufacturing semiconductor device and semiconductor device
JP4506767B2 (en) Manufacturing method of semiconductor device
JP7230462B2 (en) Semiconductor device and its manufacturing method
JP2006080149A (en) Lamination structure of semiconductor device
JP2012099518A (en) Through-hole electrode substrate
JP2008085238A (en) Substrate having through electrode, and manufacturing method thereof
JP6730495B2 (en) Electronic device
JP3003394B2 (en) Method of manufacturing bump electrode
JP2015079827A (en) Semiconductor device and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151228

R150 Certificate of patent or registration of utility model

Ref document number: 5871038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350