JP2006165112A - Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby - Google Patents

Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby Download PDF

Info

Publication number
JP2006165112A
JP2006165112A JP2004351493A JP2004351493A JP2006165112A JP 2006165112 A JP2006165112 A JP 2006165112A JP 2004351493 A JP2004351493 A JP 2004351493A JP 2004351493 A JP2004351493 A JP 2004351493A JP 2006165112 A JP2006165112 A JP 2006165112A
Authority
JP
Japan
Prior art keywords
hole
substrate
semiconductor substrate
electrode
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004351493A
Other languages
Japanese (ja)
Inventor
Masashi Ogawa
将志 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004351493A priority Critical patent/JP2006165112A/en
Publication of JP2006165112A publication Critical patent/JP2006165112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Abstract

<P>PROBLEM TO BE SOLVED: To provide a through-electrode formation method to stably form a through electrode which is superior in conductivity and has no change in conductivity. <P>SOLUTION: A non-through hole 24 is formed which has an opening 24a on one surface of a substrate 21 and a bottom 24b in the inside thereof, and an insulating film 26 is formed on the inner wall of the substrate 21 facing on the non-through hole 24. In this case, the non-through hole 24 is formed in a manner that an area of the substrate 21 being on the bottom 24b of the non-through hole 24 may be larger than that of the opening 24a. Then, a conductive plug 35a as a conductor is put into the non-through hole 24 with the insulating film 26, and the other surface of the substrate 21 is retreated until the conductive plug 35a as a conductor is exposed outside. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、貫通電極形成方法およびそれを用いる半導体装置の製造方法、ならびに該方法によって得られる半導体装置に関する。   The present invention relates to a through electrode forming method, a semiconductor device manufacturing method using the same, and a semiconductor device obtained by the method.

コンピュータ、通信機器などの電子機器には、多数のトランジスタ、抵抗などの素子が半導体基板上に集積形成される半導体装置が搭載される。このような半導体装置の性能は、電子機器全体としての性能に大きく影響する。   Electronic devices such as computers and communication devices are equipped with a semiconductor device in which a large number of elements such as transistors and resistors are integrated on a semiconductor substrate. The performance of such a semiconductor device greatly affects the performance of the entire electronic device.

近年では、半導体装置は携帯電話機などの携帯情報機器に代表される電子機器にも搭載される。このような携帯情報機器などの電子機器は、小型化および軽量化が要求されており、電子機器に搭載される半導体装置についても、小型化および高密度化が図られている。半導体装置を小型化および高密度化するために、複数の半導体装置を積層したマルチチップ半導体装置が提案されている(たとえば、特許文献1参照)。マルチチップ半導体装置は、平面面積が小さく、構造が単純で、かつ厚さが薄いので、さらに開発が進められている。   In recent years, semiconductor devices are also mounted in electronic devices typified by portable information devices such as mobile phones. Such electronic devices such as portable information devices are required to be reduced in size and weight, and semiconductor devices mounted on the electronic devices are also reduced in size and density. In order to reduce the size and density of a semiconductor device, a multi-chip semiconductor device in which a plurality of semiconductor devices are stacked has been proposed (for example, see Patent Document 1). Multi-chip semiconductor devices are being further developed because they have a small planar area, a simple structure, and a small thickness.

図12は、マルチチップ半導体装置1の構成の一例を簡略化して示す断面図である。マルチチップ半導体装置1は、複数(図12においては3つ)のチップ2が積層されて構成される。各チップ2は、それぞれ、表面に不図示の素子が集積形成された半導体基板3と、半導体基板3上に集積形成された素子の表面に形成される層間絶縁膜4と、半導体基板3を貫通する貫通孔内に形成され、チップ2同士を電気的に接続する貫通電極5とを含む。半導体基板3と貫通電極5との間には、側壁絶縁膜6が形成され、半導体基板3と貫通電極5とが絶縁されるようになっている。半導体基板3の層間絶縁膜4が設けられる側と反対側の表面には、裏面絶縁膜7および不図示の裏面配線が形成される。このようなマルチチップ半導体装置1では、各チップ2に設けられる貫通電極5と、貫通電極5同士を接続するバンプ電極8とによって、チップ2同士が電気的に接続される。   FIG. 12 is a simplified cross-sectional view showing an example of the configuration of the multichip semiconductor device 1. The multichip semiconductor device 1 is configured by stacking a plurality (three in FIG. 12) of chips 2. Each chip 2 passes through the semiconductor substrate 3, a semiconductor substrate 3 on which elements (not shown) are integrated, an interlayer insulating film 4 formed on the surface of elements integrated on the semiconductor substrate 3, and the semiconductor substrate 3. And a through electrode 5 that is formed in the through hole and electrically connects the chips 2 to each other. A sidewall insulating film 6 is formed between the semiconductor substrate 3 and the through electrode 5 so that the semiconductor substrate 3 and the through electrode 5 are insulated. On the surface of the semiconductor substrate 3 opposite to the side on which the interlayer insulating film 4 is provided, a back surface insulating film 7 and a back surface wiring (not shown) are formed. In such a multichip semiconductor device 1, the chips 2 are electrically connected to each other by the through electrodes 5 provided on each chip 2 and the bump electrodes 8 that connect the through electrodes 5 to each other.

このようなマルチチップ半導体装置1に含まれるチップ2は、次のような手順で製造される。まず、ウエーハ状の半導体基板3の一方の面に素子を集積形成し、該集積形成された素子の表面に層間絶縁膜4を形成し、半導体基板3の素子が形成される側の面(以後、主面と呼ぶことがある)側から、半導体基板3を貫通しない非貫通孔を形成する。次いで半導体基板3の非貫通孔に臨む内壁に側壁絶縁膜6を形成し、側壁絶縁膜6が形成された非貫通孔内部に導電性の材料を充填する。その後、半導体基板3の主面と反対側の面である他方の面(以後、裏面と呼ぶことがある)を機械研削などにより研磨して後退させ、充填した導電性の材料を半導体基板3の裏面において外方に露出させ、貫通電極5を形成する。次に、貫通電極5が形成された半導体基板3の裏面に、裏面絶縁膜7および裏面配線を形成する。このようにして電極、絶縁膜などが形成されたウエーハ状の半導体基板3を切断し、チップ2を切り出す。   The chip 2 included in such a multichip semiconductor device 1 is manufactured by the following procedure. First, an element is integratedly formed on one surface of a wafer-like semiconductor substrate 3, an interlayer insulating film 4 is formed on the surface of the integrated element, and the surface of the semiconductor substrate 3 on which the element is formed (hereinafter referred to as the element). A non-through hole that does not penetrate the semiconductor substrate 3 is formed from the side that may be referred to as a main surface. Next, a sidewall insulating film 6 is formed on the inner wall facing the non-through hole of the semiconductor substrate 3, and a conductive material is filled into the non-through hole in which the sidewall insulating film 6 is formed. Thereafter, the other surface (hereinafter also referred to as the back surface) opposite to the main surface of the semiconductor substrate 3 is polished and receded by mechanical grinding or the like, and the filled conductive material is removed from the semiconductor substrate 3. The through electrode 5 is formed by exposing the back surface outward. Next, the back surface insulating film 7 and the back surface wiring are formed on the back surface of the semiconductor substrate 3 on which the through electrode 5 is formed. In this way, the wafer-like semiconductor substrate 3 on which the electrode, the insulating film and the like are formed is cut, and the chip 2 is cut out.

ここで、側壁絶縁膜6は、たとえば、CVD法(Chemical Vapor Deposition:化学蒸着法)を用いてシリコン酸化膜またはシリコン窒化膜を半導体基板3の非貫通孔に臨む内壁に成膜することによって形成される。しかしながら、このようなCVD法による側壁絶縁膜6の形成は、成膜に時間がかかり、製造原価の増加につながる。したがって、低コストで容易に側壁絶縁膜6を形成する方法として、孔版印刷法、スプレー法などを用いて絶縁材料を半導体基板3の非貫通孔に臨む内壁に塗布する方法が用いられている。   Here, the sidewall insulating film 6 is formed by forming a silicon oxide film or a silicon nitride film on the inner wall facing the non-through hole of the semiconductor substrate 3 by using, for example, a CVD method (Chemical Vapor Deposition). Is done. However, the formation of the sidewall insulating film 6 by such a CVD method takes time for film formation, leading to an increase in manufacturing cost. Therefore, as a method of easily forming the sidewall insulating film 6 at a low cost, a method of applying an insulating material to the inner wall facing the non-through hole of the semiconductor substrate 3 using a stencil printing method, a spray method or the like is used.

図13は、非貫通孔11a,11bに、絶縁膜13a,13bおよび貫通電極14a,14bを形成する方法を説明するための図である。以下特定の非貫通孔および絶縁膜を指定して説明する場合を除いて、アルファベットを省略して記載する。孔版印刷法、スプレー法などによって絶縁材料を非貫通孔11に臨む半導体基板12の内壁に塗布する際、非貫通孔11は通常、図13(a)に示すように、開口部の面積と非貫通孔11の底部に臨む基板(以後、非貫通孔11の底部と呼ぶことがある)の面積とがほぼ等しくなるように形成される。   FIG. 13 is a diagram for explaining a method of forming the insulating films 13a and 13b and the through electrodes 14a and 14b in the non-through holes 11a and 11b. In the following description, alphabets are omitted except when a specific non-through hole and an insulating film are designated and described. When an insulating material is applied to the inner wall of the semiconductor substrate 12 facing the non-through hole 11 by a stencil printing method, a spray method, or the like, the non-through hole 11 generally has a non-opening area and a non-open area as shown in FIG. It is formed so that the area of the substrate facing the bottom of the through hole 11 (hereinafter sometimes referred to as the bottom of the non-through hole 11) is substantially equal.

このような非貫通孔11に臨む半導体基板12の内壁(以後、非貫通孔11の内壁と呼ぶことがある)には、孔版印刷法、スプレー法などによって、樹脂などの絶縁材料が塗布される。ここで、絶縁材料は、その自重によって、非貫通孔11の内壁をつたって非貫通孔11の底部に流れようとする。また絶縁材料はその表面張力によって、非貫通孔11の底部の方に流れようとする絶縁材料と、非貫通孔11の内壁に留まろうとする絶縁材料との表面積が小さくなる状態に保持される。その結果、図13(b)に示すように、絶縁材料は開口部付近にはあまり塗布されず、非貫通孔11の内壁の底部付近に多量に塗布されることとなる。ここで、非貫通孔11の内壁に塗布された絶縁材料を硬化させた絶縁膜13の表面15の法線単位ベクトルv1と、半導体基板12の主面の法線単位ベクトルv2とが成す角度θ1は、60°〜88°である。また各法線単位ベクトルv1、v2の内積は、0.034〜0.5である。   An insulating material such as a resin is applied to the inner wall of the semiconductor substrate 12 facing the non-through hole 11 (hereinafter also referred to as the inner wall of the non-through hole 11) by stencil printing, spraying, or the like. . Here, the insulating material tends to flow through the inner wall of the non-through hole 11 to the bottom of the non-through hole 11 by its own weight. The insulating material is held in a state where the surface area of the insulating material that tends to flow toward the bottom of the non-through hole 11 and the insulating material that tries to stay on the inner wall of the non-through hole 11 is reduced by the surface tension. . As a result, as shown in FIG. 13B, the insulating material is not applied so much in the vicinity of the opening but is applied in a large amount near the bottom of the inner wall of the non-through hole 11. Here, an angle θ1 formed by the normal unit vector v1 of the surface 15 of the insulating film 13 obtained by curing the insulating material applied to the inner wall of the non-through hole 11 and the normal unit vector v2 of the main surface of the semiconductor substrate 12 is formed. Is between 60 ° and 88 °. The inner product of the respective normal unit vectors v1 and v2 is 0.034 to 0.5.

次いで図13(c)に示すように、上記のような状態で絶縁膜13が形成された非貫通孔11に導体16を充填し、図13(d)に示すように、機械研磨、エッチングなどの手法によって半導体基板12の裏面を後退させ、充填された導体16を半導体基板12の裏面に露出させ、貫通電極14を形成する。   Next, as shown in FIG. 13C, the conductor 16 is filled in the non-through hole 11 in which the insulating film 13 is formed in the above state, and mechanical polishing, etching, etc. are performed as shown in FIG. The back surface of the semiconductor substrate 12 is retracted by the method described above, and the filled conductor 16 is exposed on the back surface of the semiconductor substrate 12 to form the through electrode 14.

上記のような従来の方法によって貫通電極14を形成すると、外部に露出する貫通電極14の面積が、半導体基板12の主面側と裏面側とで異なってしまう。また、たとえば、図13に示すように、2つの貫通電極14a,14bが形成される場合、非貫通孔11aの形成される深さと非貫通孔11bの形成される深さとが異なると、それぞれの非貫通孔11a,11bにおいて、半導体基板12の裏面から露出する貫通電極14a,14bの面積も異なってしまう。   When the through electrode 14 is formed by the conventional method as described above, the area of the through electrode 14 exposed to the outside differs between the main surface side and the back surface side of the semiconductor substrate 12. Further, for example, as shown in FIG. 13, when two through electrodes 14a and 14b are formed, if the depth at which the non-through hole 11a is formed differs from the depth at which the non-through hole 11b is formed, In the non-through holes 11a and 11b, the areas of the through electrodes 14a and 14b exposed from the back surface of the semiconductor substrate 12 are also different.

このような貫通電極14が形成された半導体基板12は、裏面側で露出する貫通電極14の面積減少によって先細りし、抵抗値が増加するので安定な導電性を得ることができない。また、貫通電極14aと貫通電極14bとの間で、裏面から露出する面積が異なってしまい、各貫通電極の抵抗値にばらつきを生じてしまうという問題がある。   The semiconductor substrate 12 on which such a through electrode 14 is formed tapers due to a reduction in the area of the through electrode 14 exposed on the back surface side, and the resistance value increases, so that stable conductivity cannot be obtained. In addition, there is a problem in that the area exposed from the back surface is different between the through electrode 14a and the through electrode 14b, and the resistance value of each through electrode varies.

特開平10−223833号公報(第5−6頁、第1図)Japanese Patent Laid-Open No. 10-223833 (page 5-6, FIG. 1)

本発明の目的は、導電性に優れ、導電性にばらつきのない貫通電極を安定して形成することのできる貫通電極形成方法および半導体装置の製造方法、ならびにその製造方法で製造される半導体装置を提供することである。   An object of the present invention is to provide a through electrode forming method and a semiconductor device manufacturing method capable of stably forming a through electrode having excellent conductivity and no variation in conductivity, and a semiconductor device manufactured by the manufacturing method. Is to provide.

本発明は、基板を貫通する貫通電極の形成方法において、
基板の一方の面に開口部を有し、基板内部に底部を有する非貫通孔を形成する非貫通孔形成工程と、
非貫通孔に臨む基板の内壁に絶縁膜を形成する絶縁膜形成工程と、
絶縁膜が形成された非貫通孔に導体を充填する導体充填工程と、
基板の他方の面を、導体が外方に露出するまで後退させる貫通孔形成工程とを含み、
非貫通孔は、
非貫通孔の底部に臨む基板の面積が、開口部の面積よりも大きくなるように形成されることを特徴とする貫通電極の形成方法である。
The present invention relates to a method for forming a through electrode penetrating a substrate.
A non-through hole forming step of forming a non-through hole having an opening on one surface of the substrate and having a bottom inside the substrate;
An insulating film forming step of forming an insulating film on the inner wall of the substrate facing the non-through hole;
A conductor filling step of filling a non-through hole in which an insulating film is formed with a conductor;
A through hole forming step of retracting the other surface of the substrate until the conductor is exposed to the outside,
Non-through holes are
In the method of forming a through electrode, the area of the substrate facing the bottom of the non-through hole is formed to be larger than the area of the opening.

また本発明は、非貫通孔は、
非貫通孔の底部に臨む基板の面が、略円形状になるように形成されることを特徴とする。
In the present invention, the non-through hole is
The surface of the substrate facing the bottom of the non-through hole is formed to be substantially circular.

また本発明は、非貫通孔は、
非貫通孔に臨む基板の内壁から非貫通孔内部に向かうベクトルであって、基板の一方の面に垂直な仮想断面において、非貫通孔の底部周縁部と、前記非貫通孔の底部周縁部と連なって形成される基板の内壁面の非貫通孔の開口部周縁部とを結ぶ仮想平面の法線単位ベクトルと、
基板の一方の面から外方に向かうベクトルであって、基板の一方の面の法線単位ベクトルとの内積が、−0.5以上−0.034以下となるように形成されることを特徴とする。
In the present invention, the non-through hole is
A vector directed from the inner wall of the substrate facing the non-through hole to the inside of the non-through hole, and in a virtual cross section perpendicular to one surface of the substrate, the bottom peripheral edge of the non-through hole, and the bottom peripheral edge of the non-through hole A normal unit vector of a virtual plane connecting the peripheral edge of the opening of the non-through hole on the inner wall surface of the substrate formed in a row,
A vector directed outward from one surface of the substrate, wherein an inner product with a normal unit vector of one surface of the substrate is −0.5 or more and −0.034 or less. And

また本発明は、前記いずれか1つに記載の貫通電極の形成方法を用いる半導体装置の製造方法である。   Moreover, this invention is a manufacturing method of the semiconductor device using the formation method of the penetration electrode as described in any one of the above.

また本発明は、前記半導体装置の製造方法によって製造される半導体装置であって、
半導体基板の半導体素子が形成される側の面である一方の面から一方の面と反対側の他方の面に向かって半導体基板を貫通する貫通電極と、
貫通電極と半導体基板との間に設けられる絶縁膜とを含み、
絶縁膜は、
半導体基板の厚み方向に垂直な仮想平面における断面積が、半導体基板の一方の面から他方の面に向かうのに伴って大きくなり、
貫通電極は、
半導体基板の一方の面を含む仮想平面における面積と、半導体基板の他方の面を含む仮想平面における面積とが略等しいことを特徴とする半導体装置である。
Moreover, this invention is a semiconductor device manufactured by the manufacturing method of the said semiconductor device,
A through electrode penetrating the semiconductor substrate from one surface, which is a surface on which the semiconductor element is formed, of the semiconductor substrate toward the other surface opposite to the one surface;
Including an insulating film provided between the through electrode and the semiconductor substrate,
Insulating film
The cross-sectional area in a virtual plane perpendicular to the thickness direction of the semiconductor substrate increases as it goes from one surface of the semiconductor substrate to the other surface,
The through electrode is
The semiconductor device is characterized in that an area in a virtual plane including one surface of the semiconductor substrate is substantially equal to an area in a virtual plane including the other surface of the semiconductor substrate.

本発明によれば、貫通電極の形成方法は、基板の一方の面に開口部を有し、基板内部に底部を有する非貫通孔を形成する非貫通孔形成工程と、非貫通孔に臨む基板の内壁に絶縁膜を形成する絶縁膜形成工程と、絶縁膜が形成された非貫通孔に導体を充填する導体充填工程と、基板の他方の面を導体が外方に露出するまで後退させる貫通孔形成工程とを含み、非貫通孔は、非貫通孔の底部に臨む基板の面積が、開口部の面積よりも大きくなるように形成される。このような非貫通孔が形成されると、非貫通孔に臨む基板の内壁に形成される絶縁膜の形状が好適となり、充填された導体は、基板の一方の面(以後、主面と呼ぶことがある)を含む仮想平面における面積と、基板の他方の面(以後、裏面と呼ぶことがある)を含む仮想平面における面積とが略等しくなる。このことによって、主面と裏面とで露出する面積が異なり、貫通電極が先細りの形状になることに起因する電極の抵抗値の増加を防止することができる。また複数の貫通電極を形成する場合においても、各電極間での電極の主面および裏面を含む仮想平面における面積にばらつきがない。したがって、導電性に優れ、複数の電極間で導電性にばらつきのない貫通電極を得ることができる。   According to the present invention, a through electrode forming method includes a non-through hole forming step of forming a non-through hole having an opening on one surface of a substrate and having a bottom inside the substrate, and a substrate facing the non-through hole. An insulating film forming step for forming an insulating film on the inner wall of the substrate, a conductor filling step for filling the non-through hole in which the insulating film is formed with a conductor, and a penetration for retreating the other surface of the substrate until the conductor is exposed to the outside. A non-through hole is formed such that the area of the substrate facing the bottom of the non-through hole is larger than the area of the opening. When such a non-through hole is formed, the shape of the insulating film formed on the inner wall of the substrate facing the non-through hole is suitable, and the filled conductor is one side of the substrate (hereinafter referred to as the main surface). And the area on the virtual plane including the other surface of the substrate (hereinafter sometimes referred to as the back surface) is substantially equal. As a result, the exposed areas are different between the main surface and the back surface, and an increase in the resistance value of the electrode due to the tapered shape of the through electrode can be prevented. Even when a plurality of through electrodes are formed, there is no variation in the area on the virtual plane including the main surface and the back surface of the electrode between the electrodes. Therefore, it is possible to obtain a through electrode having excellent conductivity and having no variation in conductivity between the plurality of electrodes.

また本発明によれば、非貫通孔は、非貫通孔の底部に臨む基板の面が、略円形状になるように形成される。非貫通孔の底部に臨む基板の面が、たとえば矩形状に形成されると、非貫通孔に臨む基板の内壁に絶縁膜を形成する絶縁膜形成工程の際、非貫通孔底部の矩形の角部分に、絶縁膜材料が多量に貯留してしまう。このように絶縁膜材料が多量に貯留してしまうと、貫通孔形成工程が行われた後の充填された導体の基板の裏面で露出される面積が、基板の主面で露出される面積よりも小さくなってしまい、抵抗値の増加を招く恐れがある。非貫通孔の底部に臨む基板の面が、角のない形状、すなわち略円形状になるように形成されると、このような底部の角部分における絶縁膜材料の貯留が防止できるので、非貫通孔の底部に臨む基板の面は略円形状に形成されることが好ましい。   According to the invention, the non-through hole is formed so that the surface of the substrate facing the bottom of the non-through hole has a substantially circular shape. When the surface of the substrate facing the bottom of the non-through hole is formed in, for example, a rectangular shape, the rectangular corner of the bottom of the non-through hole is formed during the insulating film forming step of forming an insulating film on the inner wall of the substrate facing the non-through hole. A large amount of insulating film material is stored in the portion. If a large amount of the insulating film material is stored in this way, the area exposed on the back surface of the substrate of the filled conductor after the through hole forming step is performed is larger than the area exposed on the main surface of the substrate. May also be reduced, leading to an increase in resistance. If the surface of the substrate facing the bottom of the non-through hole is formed to have a cornerless shape, that is, a substantially circular shape, it is possible to prevent storage of the insulating film material in the corner portion of the bottom portion. The surface of the substrate facing the bottom of the hole is preferably formed in a substantially circular shape.

また本発明によれば、非貫通孔は、非貫通孔に臨む基板の内壁から非貫通孔内部に向かうベクトルであって、基板の主面に垂直な仮想断面において、非貫通孔の底部周縁部と、前記非貫通孔の底部周縁部と連なって形成される基板の内壁面の非貫通孔の開口部周縁部とを結ぶ仮想平面の法線単位ベクトルと、基板の主面から外方に向かうベクトルであって、基板の主面の法線単位ベクトルとの内積が、−0.5以上−0.034以下となるように形成される。このように非貫通孔が形成されると、非貫通孔に臨む基板の内壁に形成される絶縁膜は、絶縁膜の非貫通孔中心に臨む面が、基板の主面に対して略垂直となるように形成される。したがって、基板との間にこのような絶縁膜が形成される非貫通孔に導体を充填すると、導体の絶縁膜に接する面についても基板の主面に対して略垂直とすることができる。その結果、貫通孔形成工程後において、基板の主面と裏面とで同じ面積の導体が露出されることとなり、導電性に優れ、複数の電極間で導電性にばらつきのない貫通電極を形成することができる。   Further, according to the present invention, the non-through hole is a vector directed from the inner wall of the substrate facing the non-through hole to the inside of the non-through hole, and in a virtual cross section perpendicular to the main surface of the substrate, the bottom peripheral edge of the non-through hole And a normal unit vector of a virtual plane that connects the peripheral edge of the bottom of the non-through hole to the peripheral edge of the opening of the non-through hole on the inner wall surface of the substrate, and outward from the main surface of the substrate The inner product of the vector and the normal unit vector of the main surface of the substrate is -0.5 or more and -0.034 or less. When the non-through hole is formed in this way, the insulating film formed on the inner wall of the substrate facing the non-through hole has a surface facing the center of the non-through hole of the insulating film substantially perpendicular to the main surface of the substrate. Formed to be. Therefore, when a conductor is filled in a non-through hole in which such an insulating film is formed between the substrate and the substrate, the surface of the conductor in contact with the insulating film can also be made substantially perpendicular to the main surface of the substrate. As a result, after the through-hole forming step, a conductor having the same area is exposed on the main surface and the back surface of the substrate, and a through electrode having excellent conductivity and no variation in conductivity between the plurality of electrodes is formed. be able to.

また本発明によれば、前記のような貫通電極の形成方法を用いて半導体装置を製造することができるので、導電性に優れ、複数の電極間で導電性にばらつきのない貫通電極を形成することができる。したがって製造される半導体装置としても、信号の遅延などが防止され、その性能が向上する。   Further, according to the present invention, since the semiconductor device can be manufactured using the through electrode forming method as described above, a through electrode having excellent conductivity and having no variation in conductivity among a plurality of electrodes is formed. be able to. Therefore, also in the manufactured semiconductor device, signal delay and the like are prevented, and the performance is improved.

また本発明によれば、前記のような半導体装置の製造方法によって製造され、半導体基板の主面から裏面に向かって半導体基板を貫通する貫通電極と、貫通電極と半導体基板との間に設けられる絶縁膜とを含み、絶縁膜は、半導体基板の厚み方向に垂直な仮想平面における断面積が、半導体基板の主面から裏面に向かうのに伴って大きくなり、貫通電極は、半導体基板の主面を含む仮想平面における面積と、半導体基板の裏面を含む仮想平面における面積とが略等しい。このような貫通電極を備える半導体装置は、導電性に優れ、導電性にばらつきのない貫通電極を備えるので、優れた性能を有する。   According to the invention, the semiconductor device is manufactured by the method for manufacturing a semiconductor device as described above, and is provided between the through electrode penetrating the semiconductor substrate from the main surface to the back surface of the semiconductor substrate, and between the through electrode and the semiconductor substrate. The cross-sectional area in a virtual plane perpendicular to the thickness direction of the semiconductor substrate increases from the main surface of the semiconductor substrate to the back surface, and the through electrode is formed on the main surface of the semiconductor substrate. And the area in the virtual plane including the back surface of the semiconductor substrate are substantially equal. A semiconductor device provided with such a through electrode has excellent performance because it has a through electrode with excellent conductivity and no variation in conductivity.

図1は、本発明の実施の一態様である半導体装置の製造方法の概要を説明するための図である。本実施態様の半導体装置の製造方法は、本発明の貫通電極の形成方法を用いて半導体基板21を貫通する貫通電極27を形成する工程を含む。本実施態様における貫通電極27の形成方法は、半導体基板21の一方の面に開口部24aを有し、半導体基板21内部に底部24bを有する非貫通孔24を形成する非貫通孔形成工程と、非貫通孔24に臨む半導体基板21の内壁に側壁絶縁膜26を形成する絶縁膜形成工程と、側壁絶縁膜26が形成された非貫通孔24に導体35を充填する導体充填工程と、半導体基板21の他方の面を、導体33が外方に露出するまで後退させる貫通孔形成工程とを含み、非貫通孔24は、非貫通孔24の底部24bに臨む半導体基板21の面積が、開口部24aの面積よりも大きくなるように形成されることを特徴とする。   FIG. 1 is a diagram for explaining an outline of a semiconductor device manufacturing method according to an embodiment of the present invention. The manufacturing method of the semiconductor device of this embodiment includes a step of forming the through electrode 27 that penetrates the semiconductor substrate 21 using the through electrode forming method of the present invention. The method of forming the through electrode 27 in this embodiment includes a non-through hole forming step of forming a non-through hole 24 having an opening 24a on one surface of the semiconductor substrate 21 and a bottom 24b inside the semiconductor substrate 21; An insulating film forming step of forming a sidewall insulating film on the inner wall of the semiconductor substrate 21 facing the non-through hole 24; a conductor filling step of filling the non-through hole 24 in which the sidewall insulating film 26 is formed with a conductor 35; A through hole forming step of retracting the other surface of the semiconductor substrate 21 until the conductor 33 is exposed to the outside. The non-through hole 24 has an area of the semiconductor substrate 21 facing the bottom portion 24b of the non-through hole 24. It is formed so as to be larger than the area of 24a.

以下、図1に基づいて上記の本実施態様の半導体装置の製造方法を説明する。まず半導体基板21の一方の面に、不図示の半導体素子を集積形成し、半導体回路を形成する。以後、この不図示の半導体素子が集積される側の面である一方の面を主面と呼ぶことがある。次いで半導体基板21の主面に、層間絶縁膜22を形成し、その表面に不図示の表面電極を形成する。半導体基板21は、たとえば単結晶ケイ素であり、特にその面方位は限定されるものではない。半導体基板21の厚さとしては、たとえば、700μmのものが用いられる。   A method for manufacturing the semiconductor device according to the present embodiment will be described below with reference to FIG. First, semiconductor elements (not shown) are integrated and formed on one surface of the semiconductor substrate 21 to form a semiconductor circuit. Hereinafter, one surface, which is a surface on which semiconductor elements (not shown) are integrated, may be referred to as a main surface. Next, an interlayer insulating film 22 is formed on the main surface of the semiconductor substrate 21, and a surface electrode (not shown) is formed on the surface thereof. The semiconductor substrate 21 is, for example, single crystal silicon, and the plane orientation is not particularly limited. As the thickness of the semiconductor substrate 21, for example, a thickness of 700 μm is used.

層間絶縁膜22は、たとえば二酸化ケイ素で構成され、半導体基板21および半導体基板21に形成される半導体回路と、不図示の表面電極とを絶縁するために設けられる。不図示の表面電極は、たとえば、銅−アルミニウム合金膜、チタン膜、窒化チタン膜などで構成され、半導体回路と外部装置との接続端子として設けられる。   Interlayer insulating film 22 is made of, for example, silicon dioxide, and is provided to insulate semiconductor substrate 21 and the semiconductor circuit formed on semiconductor substrate 21 from a surface electrode (not shown). A surface electrode (not shown) is formed of, for example, a copper-aluminum alloy film, a titanium film, a titanium nitride film, or the like, and is provided as a connection terminal between the semiconductor circuit and an external device.

上記のように不図示の半導体素子、層間絶縁膜22および表面電極が主面に形成された半導体基板21に、図1(a)に示すように半導体基板21の主面に開口部24aを有し、半導体基板21内部に底部24bを有する非貫通孔24を形成する。非貫通孔24は、たとえば反応性イオンエッチング(RIE:Reactive Ion Etching)法によって、半導体基板21の主面と反対側の面(以後、裏面と呼ぶことがある)を貫通しないように形成される。以下、非貫通孔24を形成する非貫通孔形成工程について説明する。   As shown in FIG. 1A, the semiconductor substrate 21 on which the semiconductor element (not shown), the interlayer insulating film 22 and the surface electrode are formed on the main surface has an opening 24a on the main surface of the semiconductor substrate 21. Then, the non-through hole 24 having the bottom 24 b is formed inside the semiconductor substrate 21. The non-through hole 24 is formed so as not to penetrate the surface opposite to the main surface of the semiconductor substrate 21 (hereinafter sometimes referred to as the back surface) by, for example, reactive ion etching (RIE) method. . Hereinafter, the non-through hole forming step for forming the non-through hole 24 will be described.

図2は、非貫通孔24の形成方法を説明する図である。本発明で最も特徴とする底部24bに臨む半導体基板21の面積が開口部24aの面積よりも大きくなるような非貫通孔24は、次のようにして形成される。なお図2では、図1に示す層間絶縁膜22の記載を省略する。   FIG. 2 is a diagram illustrating a method for forming the non-through hole 24. The non-through hole 24 in which the area of the semiconductor substrate 21 facing the bottom 24b, which is the most characteristic feature of the present invention, is larger than the area of the opening 24a is formed as follows. In FIG. 2, the description of the interlayer insulating film 22 shown in FIG. 1 is omitted.

まず、図2(a)に示すように、層間絶縁膜22および表面電極が形成された半導体基板21に、フォトレジスト液を塗布して露光現像を行い、ハードベークを行うことによって、非貫通孔24を形成するべく位置に予め定められる位置にレジスト開口部を有するパターンマスク23を得る。パターンマスク23を形成するためのフォトレジスト液には、一般的なポジ型レジストを用いることができる。ポジ型レジストとしては、たとえば、ノボラック・ジアゾナフトキノン系のものが挙げられる。フォトレジスト液は、スピンコート法などを用いて半導体基板21に塗布される。スピンコート法などで塗布されて形成されるパターンマスク23は、たとえば8μm程度の厚みを有する。レジスト開口部は、たとえば直径40μmの円形に形成される。   First, as shown in FIG. 2A, a photoresist solution is applied to the semiconductor substrate 21 on which the interlayer insulating film 22 and the surface electrode are formed, exposure and development are performed, and hard baking is performed. A pattern mask 23 having a resist opening at a position predetermined to form 24 is obtained. As the photoresist liquid for forming the pattern mask 23, a general positive resist can be used. Examples of the positive resist include novolak and diazonaphthoquinone type resists. The photoresist liquid is applied to the semiconductor substrate 21 using a spin coating method or the like. The pattern mask 23 formed by applying by spin coating or the like has a thickness of about 8 μm, for example. The resist opening is formed in a circular shape having a diameter of 40 μm, for example.

このようなパターンマスク23を形成後、表面電極のエッチングを行う。具体的には、パターンマスク23のレジスト開口部を介して露出する部分の表面電極を、ウエットエッチングによって除去する。ウエットエッチングでは、たとえば、銅−アルミニウム合金膜の除去には、一般的なリン酸、酢酸、硝酸の混合水溶液を用いることができる。チタン膜および窒化チタン膜の除去には、一般的な過酸化水素とフッ酸との混合液を用いることができる。なお窒化チタン膜の除去については、水酸化ナトリウム、過酸化水素および有機化合物の混合水溶液を用いてもよい。また、表面電極のエッチングは、上記のウエットエッチングに限定されることなく、ドライエッチングの手法を用いることも可能である。   After the pattern mask 23 is formed, the surface electrode is etched. Specifically, a portion of the surface electrode exposed through the resist opening of the pattern mask 23 is removed by wet etching. In wet etching, for example, a general mixed aqueous solution of phosphoric acid, acetic acid, and nitric acid can be used to remove the copper-aluminum alloy film. For removing the titanium film and the titanium nitride film, a general liquid mixture of hydrogen peroxide and hydrofluoric acid can be used. For removal of the titanium nitride film, a mixed aqueous solution of sodium hydroxide, hydrogen peroxide and an organic compound may be used. Further, the etching of the surface electrode is not limited to the above-described wet etching, and a dry etching method can also be used.

レジスト開口部を介して露出する部分の表面電極を除去すると、次いでレジスト開口部を介して露出する部分の層間絶縁膜22の除去を行う。層間絶縁膜22の除去は、ドライエッチングまたはウエットエッチングなどの公知の手法で実現することができ、たとえばフッ酸緩衝溶液を用いたウエットエッチングなどが好適に用いられる。層間絶縁膜22の除去によって、レジスト開口部を通して半導体基板21が図2(a)に示すように露出される。   When the portion of the surface electrode exposed through the resist opening is removed, the portion of the interlayer insulating film 22 exposed through the resist opening is removed. The removal of the interlayer insulating film 22 can be realized by a known method such as dry etching or wet etching. For example, wet etching using a hydrofluoric acid buffer solution is preferably used. By removing the interlayer insulating film 22, the semiconductor substrate 21 is exposed through the resist opening as shown in FIG.

次に半導体基板21に非貫通孔24を形成する。半導体基板21に対する非貫通孔24の形成は、反応性イオンエッチング法などのドライエッチング法で行うことができる。反応性イオンエッチングに用いるエッチングガスとしては、フッ化物を含むガスを用いることが好ましい。フッ化物を含むガスとしては、たとえば六フッ化硫黄と、垂直入射性の高いアルゴンとの混合ガスが好適に用いられる。図2(b)に示す工程では、半導体基板21を構成するケイ素を、六フッ化硫黄ガスと反応させて四フッ化ケイ素とすることによって揮発させる。   Next, non-through holes 24 are formed in the semiconductor substrate 21. The non-through holes 24 can be formed in the semiconductor substrate 21 by a dry etching method such as a reactive ion etching method. As an etching gas used for reactive ion etching, a gas containing fluoride is preferably used. As the gas containing fluoride, for example, a mixed gas of sulfur hexafluoride and argon having high normal incidence is preferably used. In the step shown in FIG. 2B, silicon constituting the semiconductor substrate 21 is volatilized by reacting with sulfur hexafluoride gas to form silicon tetrafluoride.

図2(c)に示す工程では、たとえば八フッ化四炭素ガスなどによって、非貫通孔24に臨む半導体基板21の内壁(以後、非貫通孔24の内壁と呼ぶことがある)および非貫通孔24の底部24bに臨む半導体基板21の表面(以後、非貫通孔24の底部24bまたは底部24bと呼ぶことがある)に保護膜25を形成する。図2(d)に示す工程では、保護膜25が形成された非貫通孔24に対して、垂直入射性の高いアルゴンガスによって、保護膜25のうち非貫通孔24の底部24bに形成された保護膜25のみを除去する。次いで六フッ化硫黄ガスによってエッチングを行い、非貫通孔24を掘り下げる。   In the step shown in FIG. 2C, the inner wall of the semiconductor substrate 21 facing the non-through hole 24 (hereinafter, may be referred to as the inner wall of the non-through hole 24) and the non-through hole, for example, with tetrafluorocarbon gas. A protective film 25 is formed on the surface of the semiconductor substrate 21 facing the bottom 24 b of 24 (hereinafter sometimes referred to as the bottom 24 b or the bottom 24 b of the non-through hole 24). In the step shown in FIG. 2D, the non-through hole 24 in which the protective film 25 is formed is formed on the bottom 24b of the non-through hole 24 in the protective film 25 by argon gas having high perpendicular incidence. Only the protective film 25 is removed. Next, etching is performed with sulfur hexafluoride gas, and the non-through holes 24 are dug down.

以上のような図2(d)に示す非貫通孔24の掘り下げと、図2(c)に示す保護膜25の形成とを、たとえば、5〜6秒ごとに複数回繰返すことによって、非貫通孔24を所望の大きさに形成する。このように各工程を繰返す際、図2(c)に示す保護膜25の形成工程では八フッ化四炭素ガスの使用量を徐々に少なくし、図2(d)に示す非貫通孔24の掘り下げ工程では六フッ化硫黄ガスの使用量を徐々に多くする。このことによって、底部24bの面積が開口部24aの面積よりも大きくなるような非貫通孔24を形成することができる。   By repeating the dug-down of the non-through hole 24 shown in FIG. 2D and the formation of the protective film 25 shown in FIG. 2C, for example, a plurality of times every 5 to 6 seconds, non-penetration is performed. The hole 24 is formed in a desired size. When each step is repeated in this manner, the amount of tetrafluorocarbon gas used is gradually reduced in the formation step of the protective film 25 shown in FIG. 2C, and the non-through holes 24 shown in FIG. In the drilling process, the amount of sulfur hexafluoride gas used is gradually increased. As a result, the non-through hole 24 in which the area of the bottom 24b is larger than the area of the opening 24a can be formed.

上記のような非貫通孔形成工程によって、図1A(a)に示すような非貫通孔24が形成される。なお、非貫通孔24の内壁は、実際には図2(d)に示すように半導体基板21の主面から裏面にいくにしたがって底部24bが段階的に大きく形成されるけれども、図面の煩雑化を避けるために、図2を除く各図の断面図において非貫通孔24の内壁を直線に近似して表す。   By the non-through hole forming step as described above, the non-through hole 24 as shown in FIG. 1A (a) is formed. The inner wall of the non-through hole 24 actually has a bottom portion 24b that is gradually increased from the main surface to the back surface of the semiconductor substrate 21 as shown in FIG. In order to avoid this, the inner wall of the non-through hole 24 is approximated to a straight line in the cross-sectional views of the drawings except for FIG.

図3は図2に示す方法によって円錐台形状に形成された非貫通孔24を有する半導体基板21の断面図であり、図4は非貫通孔24を有する半導体基板21を主面側から見た平面図である。非貫通孔24は、開口部24aおよび底部24bが円形状である円錐台形状に形成され、底部24bの直径rbが開口部24aの直径raよりも大きい。したがって、非貫通孔24は、底部24bの面積が、開口部24aの面積よりも大きくなるように形成される。また非貫通孔24は、底部24bから開口部24aまで面積が収束するように形成される。   3 is a cross-sectional view of the semiconductor substrate 21 having the non-through holes 24 formed in a truncated cone shape by the method shown in FIG. 2, and FIG. 4 is a view of the semiconductor substrate 21 having the non-through holes 24 from the main surface side. It is a top view. The non-through hole 24 is formed in a truncated cone shape in which the opening 24a and the bottom 24b are circular, and the diameter rb of the bottom 24b is larger than the diameter ra of the opening 24a. Therefore, the non-through hole 24 is formed such that the area of the bottom 24b is larger than the area of the opening 24a. The non-through hole 24 is formed so that the area converges from the bottom 24b to the opening 24a.

非貫通孔24の大きさについて例示すると、開口部24aの直径raが40μm、底部24bの直径rbが51μm、深さdが100μmである。このような大きさの非貫通孔24を形成すると、非貫通孔24の底部24b周縁部と非貫通孔24の開口部24a周縁部とを結ぶ面の法線単位ベクトルvaと、半導体基板21主面の法線単位ベクトルvbとの内積が、−0.054(θ2=93.1°)となる。   Exemplifying the size of the non-through hole 24, the diameter ra of the opening 24a is 40 μm, the diameter rb of the bottom 24b is 51 μm, and the depth d is 100 μm. When the non-through-hole 24 having such a size is formed, the normal unit vector va of the surface connecting the peripheral edge of the bottom 24b of the non-through-hole 24 and the peripheral edge of the opening 24a of the non-through-hole 24, and the semiconductor substrate 21 main The inner product of the surface and the normal unit vector vb is −0.054 (θ2 = 93.1 °).

ここで非貫通孔24は、非貫通孔24に臨む半導体基板21の内壁から非貫通孔24内部に向かうベクトルであって、半導体基板21の一方の面に垂直な仮想断面において、非貫通孔24の底部24b周縁部と、非貫通孔24の底部24b周縁部と連なって形成される半導体基板21の内壁面の非貫通孔24の開口部24a周縁部とを結ぶ仮想平面の法線単位ベクトル(以後、単に非貫通孔24の内壁面の法線単位ベクトルvaと称する)をvaとし、半導体基板21の一方の面から外方に向かうベクトルであって、半導体基板21の一方の面の法線単位ベクトル(以後、単に半導体基板21主面の法線単位ベクトルvbと称する)をvbとするとき、vaとvbとの内積が、−0.5以上−0.034以下となるように形成されることが好ましい。すなわち、非貫通孔24の内壁面の法線単位ベクトルvaと、半導体基板21主面の法線単位ベクトルvbとが成す角度θ2が、92°以上120°以下であることが好ましい。この角度θ2の限定理由については後ほど説明する。   Here, the non-through hole 24 is a vector from the inner wall of the semiconductor substrate 21 facing the non-through hole 24 toward the inside of the non-through hole 24, and in a virtual cross section perpendicular to one surface of the semiconductor substrate 21, the non-through hole 24. A normal unit vector of a virtual plane connecting the peripheral portion of the bottom 24b of the base plate 24 and the peripheral portion of the opening 24a of the non-through hole 24 of the inner wall surface of the semiconductor substrate 21 formed continuously with the peripheral portion of the bottom 24b of the non-through hole 24. Hereinafter, simply referred to as a normal unit vector va of the inner wall surface of the non-through hole 24), va is a vector directed outward from one surface of the semiconductor substrate 21, and is a normal line of one surface of the semiconductor substrate 21. When the unit vector (hereinafter simply referred to as the normal unit vector vb of the main surface of the semiconductor substrate 21) is vb, the inner product of va and vb is −0.5 or more and −0.034 or less. Like to Arbitrariness. That is, the angle θ2 formed by the normal unit vector va of the inner wall surface of the non-through hole 24 and the normal unit vector vb of the main surface of the semiconductor substrate 21 is preferably 92 ° or more and 120 ° or less. The reason for limiting the angle θ2 will be described later.

前述のように底部の面積が開口部の面積よりも大きくなるような非貫通孔が形成されると、非貫通孔の開口部の面積を増加させることなく底部の面積を増加させることができるので、半導体基板主面における貫通電極による占有面積の増加はなく、半導体基板主面の面積を減少させることはない。したがって、半導体基板主面に形成される表面電極を形成できる面積は変化せず、表面電極の微細化を達成することができ、安定した導電性を有する半導体装置を製造することができる。   As described above, when the non-through hole is formed such that the area of the bottom is larger than the area of the opening, the area of the bottom can be increased without increasing the area of the opening of the non-through hole. There is no increase in the area occupied by the through electrodes on the main surface of the semiconductor substrate, and the area of the main surface of the semiconductor substrate is not reduced. Therefore, the area where the surface electrode formed on the main surface of the semiconductor substrate can be formed does not change, the surface electrode can be miniaturized, and a semiconductor device having stable conductivity can be manufactured.

以上のようにして非貫通孔24を形成した後、図1A(b)に示すように、非貫通孔24が形成された半導体基板21の主面に形成されたパターンマスク23を剥離する。パターンマスク23の剥離は、公知の手法により実現することができ、たとえば、市販のレジスト剥離液を用いて行うことができる。パターンマスク23の剥離後、図1A(c)に示すように、非貫通孔24に臨む半導体基板21の内壁に側壁絶縁膜26を形成する絶縁膜形成工程を行う。   After forming the non-through holes 24 as described above, the pattern mask 23 formed on the main surface of the semiconductor substrate 21 in which the non-through holes 24 are formed is peeled off as shown in FIG. 1A (b). The pattern mask 23 can be peeled off by a known method, for example, using a commercially available resist stripper. After the pattern mask 23 is peeled off, as shown in FIG. 1A (c), an insulating film forming step is performed in which a sidewall insulating film 26 is formed on the inner wall of the semiconductor substrate 21 facing the non-through hole 24.

図5は、孔版印刷法によって側壁絶縁膜26を形成する絶縁膜形成工程を説明する図である。図5に示す絶縁膜形成工程では、孔版印刷法を用いて非貫通孔24に臨む半導体基板21の内壁に絶縁材料32を塗布する。孔版印刷法を用いる絶縁膜形成工程では、まず不図示のチャンバ内に設けられる印刷用ステージ上に半導体基板21を固定し、非貫通孔24の中心が、印刷マスク31のマスク開口部の中心と略一致するように、印刷マスク31と印刷用ステージとの位置を調整する。   FIG. 5 is a diagram for explaining an insulating film forming process for forming the sidewall insulating film 26 by stencil printing. In the insulating film forming step shown in FIG. 5, an insulating material 32 is applied to the inner wall of the semiconductor substrate 21 facing the non-through hole 24 using a stencil printing method. In the insulating film forming process using the stencil printing method, first, the semiconductor substrate 21 is fixed on a printing stage provided in a chamber (not shown), and the center of the non-through hole 24 is the center of the mask opening of the printing mask 31. The positions of the printing mask 31 and the printing stage are adjusted so as to substantially match.

印刷マスク31は、たとえば厚さ60μmのステンレス鋼製であり、テープとスクリーンとを介して、ステンレス鋼の版枠に取り付けられた構造であるので、弾性変形が可能である。印刷マスク31のマスク開口部は、印刷マスク31を厚さ方向に貫通して円柱形状に形成され、開口部の直径が、非貫通孔24の開口部24aの直径と略等しく、たとえば40μmである。なお、印刷マスク31は、上記のようなステンレス鋼からなるメタルマスクに限定されることなく、スクリーンマスクであってもよい。   The printing mask 31 is made of, for example, stainless steel having a thickness of 60 μm, and has a structure attached to a stainless steel plate frame via a tape and a screen, so that it can be elastically deformed. The mask opening of the printing mask 31 is formed in a cylindrical shape penetrating the printing mask 31 in the thickness direction, and the diameter of the opening is substantially equal to the diameter of the opening 24a of the non-through hole 24, for example, 40 μm. . The printing mask 31 is not limited to the metal mask made of stainless steel as described above, and may be a screen mask.

次に、印刷マスク31と半導体基板21に形成される不図示の半導体素子および層間絶縁膜22とが接触せず、10〜200μmの間隔が得られるように印刷用ステージの高さを調整する。絶縁材料32の供給はチャンバ内で行われ、このときのチャンバ内の圧力は、本実施態様においては大気圧(101.3kPa)よりも低い1.0kPa以上5.0kPa以下とする。   Next, the height of the printing stage is adjusted so that the print mask 31 and the semiconductor element (not shown) formed on the semiconductor substrate 21 and the interlayer insulating film 22 do not come into contact with each other, and an interval of 10 to 200 μm is obtained. The insulating material 32 is supplied in the chamber, and the pressure in the chamber at this time is 1.0 kPa or more and 5.0 kPa or less which is lower than the atmospheric pressure (101.3 kPa) in this embodiment.

印刷に用いられる絶縁材料32としては、たとえば、芳香族アミン系硬化剤または酸無水物硬化剤を添加したビスフェノールA型樹脂などのエポキシ系樹脂であり、平均粒径が約5μmの二酸化ケイ素がフィラとして含まれるものなどを用いることができる。   The insulating material 32 used for printing is, for example, an epoxy resin such as a bisphenol A resin to which an aromatic amine curing agent or an acid anhydride curing agent is added, and silicon dioxide having an average particle diameter of about 5 μm is a filler. Can be used.

このような絶縁材料32は、スキージ33によって印刷マスク31の開口部に移動される。スキージ33は、たとえばウレタンゴムからなり、印刷マスク31に臨む先端部と印刷マスク31とが成す傾斜角度がたとえば45°になるように設けられる。なおスキージ33は、ウレタンゴム製のものに限定されることなく、他の材料からなるものであってもよい。またスキージ33の印刷マスク31を臨む側の先端部の傾斜角度は、45°に限定されることなく、絶縁材料32の種類などに応じて適宜変更できる。   Such an insulating material 32 is moved to the opening of the printing mask 31 by the squeegee 33. The squeegee 33 is made of, for example, urethane rubber, and is provided so that an inclination angle formed by the front end portion facing the print mask 31 and the print mask 31 is 45 °, for example. The squeegee 33 is not limited to the one made of urethane rubber, and may be made of other materials. Further, the inclination angle of the tip of the squeegee 33 facing the printing mask 31 is not limited to 45 °, and can be appropriately changed according to the type of the insulating material 32 and the like.

以下、図5を用いて絶縁材料32を非貫通孔24の内壁に塗布することによって側壁絶縁膜26を形成する絶縁膜形成工程について説明する。本実施態様においては、絶縁膜の形成は非貫通孔24の内壁および底部24bに対して行う。   Hereinafter, the insulating film forming process for forming the sidewall insulating film 26 by applying the insulating material 32 to the inner wall of the non-through hole 24 will be described with reference to FIG. In the present embodiment, the insulating film is formed on the inner wall and the bottom 24b of the non-through hole 24.

まず、絶縁材料32を印刷マスク31上に供給し、絶縁材料32が供給された印刷マスク31をスキージ33による押圧力によって半導体基板21に向かって下降させる。さらにスキージ33によって絶縁材料32を印刷マスク31の開口部に向かって移動させる。   First, the insulating material 32 is supplied onto the print mask 31, and the print mask 31 supplied with the insulating material 32 is lowered toward the semiconductor substrate 21 by the pressing force of the squeegee 33. Further, the squeegee 33 moves the insulating material 32 toward the opening of the printing mask 31.

スキージ33が非貫通孔24の開口部を通過すると、弾性変形可能な印刷マスク31は上昇して半導体基板21から離反する。絶縁材料32の印刷が終了すると、印刷用ステージを下降させる。このとき絶縁材料32は、図5(a)に示すように、表面張力の作用によって非貫通孔32の開口部に残留し、非貫通孔32の開口部をキャップ状に閉塞する。ここで、キャップ状に塞がれた非貫通孔24の内部空間34は、大気圧よりも低い圧力となっている。   When the squeegee 33 passes through the opening of the non-through hole 24, the elastically deformable printing mask 31 is raised and separated from the semiconductor substrate 21. When the printing of the insulating material 32 is completed, the printing stage is lowered. At this time, as shown in FIG. 5A, the insulating material 32 remains in the opening of the non-through hole 32 due to the action of surface tension, and closes the opening of the non-through hole 32 in a cap shape. Here, the internal space 34 of the non-through hole 24 closed in a cap shape has a pressure lower than the atmospheric pressure.

このように絶縁材料32を非貫通孔24に供給した後、チャンバ内の圧力を大気圧に戻す。チャンバ内の圧力を大気圧に戻すことによって、絶縁材料32によって閉塞された非貫通孔24の内部空間34の圧力が、チャンバ内の圧力よりも小さくなることで生じるチャンバ内と内部空間34との圧力差を利用して、図5(b)に示すように、絶縁材料32を非貫通孔24の底部に向かって吸引する。このようにチャンバ内の圧力と非貫通孔24の内部空間34の圧力との差によって絶縁材料32が非貫通孔24の内部へ吸引されると、ボイドなどを生じさせることなく非貫通孔24に絶縁材料32を充填することができる。このような絶縁材料32の非貫通孔24への充填は、絶縁材料32の充填量に応じて複数回繰返されてもよい。   After supplying the insulating material 32 to the non-through hole 24 in this way, the pressure in the chamber is returned to atmospheric pressure. By returning the pressure in the chamber to the atmospheric pressure, the pressure in the inner space 34 of the non-through hole 24 closed by the insulating material 32 becomes smaller than the pressure in the chamber. Using the pressure difference, the insulating material 32 is sucked toward the bottom of the non-through hole 24 as shown in FIG. As described above, when the insulating material 32 is sucked into the non-through hole 24 due to the difference between the pressure in the chamber and the pressure in the internal space 34 of the non-through hole 24, the non-through hole 24 is formed without causing a void or the like. Insulating material 32 can be filled. Such filling of the non-through holes 24 with the insulating material 32 may be repeated a plurality of times according to the filling amount of the insulating material 32.

非貫通孔24に絶縁材料32が充填されると、非貫通孔24に絶縁材料32が充填された半導体基板21を、絶縁材料32の硬化温度以上(たとえば150℃程度)に加熱したオーブンに投入し、所定時間(たとえば1時間)加熱して絶縁材料32を硬化させる。このように絶縁材料32を硬化させると、硬化後の体積が、硬化させる前の非貫通孔27に充填された絶縁材料の20〜30%となり、図1A(c)および図5(c)に示すように側壁絶縁膜26が形成される。   When the non-through hole 24 is filled with the insulating material 32, the semiconductor substrate 21 with the non-through hole 24 filled with the insulating material 32 is put into an oven heated to a temperature higher than the curing temperature of the insulating material 32 (for example, about 150 ° C.). Then, the insulating material 32 is cured by heating for a predetermined time (for example, 1 hour). When the insulating material 32 is cured in this way, the volume after curing becomes 20 to 30% of the insulating material filled in the non-through hole 27 before being cured, as shown in FIGS. 1A (c) and 5 (c). As shown, a sidewall insulating film 26 is formed.

ここで、前述の非貫通孔形成時における角度θ2の限定理由について説明する。絶縁材料32を供給および硬化する際、絶縁材料32は、その自重によって非貫通孔24の内壁をつたって非貫通孔24の底部24bのほうに流れようとする。また絶縁材料32は、その表面張力によって、非貫通孔24の底部のほうに流れようとする絶縁材料32と、非貫通孔24の内壁に留まろうとする絶縁材料との表面積が小さくなる状態に保持される。   Here, the reason for limiting the angle θ2 when the above-described non-through hole is formed will be described. When supplying and curing the insulating material 32, the insulating material 32 tends to flow toward the bottom 24 b of the non-through hole 24 through the inner wall of the non-through hole 24 due to its own weight. In addition, the surface area of the insulating material 32 that tends to flow toward the bottom of the non-through hole 24 and the insulating material that tries to stay on the inner wall of the non-through hole 24 are reduced by the surface tension of the insulating material 32. Retained.

本実施形態においては、前述の図3に示すように、非貫通孔24の内壁面の法線単位ベクトルvaと、半導体基板21主面の法線単位ベクトルvbとが成す角度θ2が、92°以上120°以下である。すなわち、断面図において直線に近似される非貫通孔24の内壁が、半導体基板21の主面に対して92°から120°の範囲で傾斜するように形成される。したがって、非貫通孔24の底部のほうに流れようとする絶縁材料32と、非貫通孔24の内壁に留まろうとする絶縁材料32との表面積が小さくなる状態は、側壁絶縁膜26の非貫通孔24中心に臨む側の面が半導体基板21の主面に対して略垂直となる状態において達成される。   In the present embodiment, as shown in FIG. 3 described above, the angle θ2 formed by the normal unit vector va of the inner wall surface of the non-through hole 24 and the normal unit vector vb of the main surface of the semiconductor substrate 21 is 92 °. It is 120 degrees or less. That is, the inner wall of the non-through hole 24 approximated to a straight line in the cross-sectional view is formed so as to be inclined in the range of 92 ° to 120 ° with respect to the main surface of the semiconductor substrate 21. Therefore, the state in which the surface area of the insulating material 32 that tends to flow toward the bottom of the non-through hole 24 and the insulating material 32 that tries to stay on the inner wall of the non-through hole 24 is small is the non-penetration of the sidewall insulating film 26. This is achieved in a state where the surface facing the center of the hole 24 is substantially perpendicular to the main surface of the semiconductor substrate 21.

したがって、前述のように非貫通孔24は、非貫通孔24の内壁面の法線単位ベクトルをvaとし、半導体基板21の主面の法線単位ベクトルをvbとするとき、vaとvbとの内積が、−0.5以上−0.034以下となるように形成されることが好ましい。   Therefore, as described above, when the normal unit vector of the inner wall surface of the non-through hole 24 is va and the normal unit vector of the main surface of the semiconductor substrate 21 is vb, the non-through hole 24 has a relationship between va and vb. The inner product is preferably formed to be −0.5 or more and −0.034 or less.

ここで、θ2が92°よりも小さいと、すなわち、vaとvbとの内積が−0.034より大きいと、側壁絶縁膜26の非貫通孔24中心に臨む側の面が、半導体基板21の主面の法線と比べて非貫通孔24の底部24b中心側に傾斜してしまう。一方、θ2が120°を超えると、すなわち、vaとvbとの内積が−0.5未満であると、側壁絶縁膜26の非貫通孔24中心に臨む側の面が、半導体基板21の主面の法線と比べて非貫通孔24の底部24b周縁部側に傾斜してしまう。   Here, when θ2 is smaller than 92 °, that is, when the inner product of va and vb is larger than −0.034, the surface of the side wall insulating film 26 facing the center of the non-through hole 24 is formed on the semiconductor substrate 21. As compared with the normal line of the main surface, the bottom portion 24b of the non-through hole 24 is inclined toward the center side. On the other hand, when θ2 exceeds 120 °, that is, when the inner product of va and vb is less than −0.5, the surface of the side wall insulating film 26 facing the center of the non-through hole 24 is the main surface of the semiconductor substrate 21. Compared with the normal of the surface, the bottom 24b of the non-through hole 24 is inclined toward the peripheral side.

以上のようにして側壁絶縁膜26を形成した後、側壁絶縁膜26を形成した非貫通孔24に対して、図1B(d)に示すように貫通電極27の材料となる導体35を充填して導電プラグ35aを得る導体充填工程を行う。   After the sidewall insulating film 26 is formed as described above, the conductor 35 serving as the material of the through electrode 27 is filled in the non-through hole 24 in which the sidewall insulating film 26 is formed as shown in FIG. Then, a conductor filling step for obtaining the conductive plug 35a is performed.

なお導体35が充填されて形成される導電プラグ35aは、非貫通孔24の底部24bに臨む端部が後述する工程によって露出されて、半導体基板21を貫通する貫通電極27となる。このように半導体基板を貫通する状態になった導電プラグを、本発明では共通して貫通電極と呼ぶ。   The conductive plug 35 a formed by being filled with the conductor 35 is exposed at the end facing the bottom 24 b of the non-through hole 24 by a process described later, and becomes a through electrode 27 that penetrates the semiconductor substrate 21. In the present invention, the conductive plug that is in a state of penetrating through the semiconductor substrate is commonly referred to as a through electrode in the present invention.

図6は、導体充填工程の一例の概要を説明する図である。図6(a)では、貫通電極27の形成を行うために、側壁絶縁膜26が形成された非貫通孔24内部の空隙へ導体35を充填する。導体35としては、たとえば数μmから数十μm程度の粒径を有する銀などの金属ボールが用いられる。金属ボールを非貫通孔24内部の空隙へ埋込み、160℃程度の温度で熱処理を行うことによって、図6(b)に示すように側壁絶縁膜26が形成された非貫通孔24に導体35を充填し、導電プラグ35aを形成する。   FIG. 6 is a diagram for explaining an outline of an example of the conductor filling step. In FIG. 6A, in order to form the through electrode 27, the conductor 35 is filled into the gap inside the non-through hole 24 in which the sidewall insulating film 26 is formed. As the conductor 35, for example, a metal ball such as silver having a particle diameter of about several μm to several tens of μm is used. A metal ball is embedded in the void inside the non-through hole 24 and heat treatment is performed at a temperature of about 160 ° C., whereby the conductor 35 is placed in the non-through hole 24 in which the sidewall insulating film 26 is formed as shown in FIG. The conductive plug 35a is formed by filling.

このように側壁絶縁膜26が形成された非貫通孔24内部の空隙へ導体35を充填すると、側壁絶縁膜26の非貫通孔24中心に臨む面が半導体基板21の主面に対して略垂直となる。したがって、導電プラグ35aは、非貫通孔24の開口部24aを含む仮想平面における面積と、非貫通孔24の底部24bを含む仮想平面における面積とが略等しくなる。   When the conductor 35 is filled in the gap inside the non-through hole 24 in which the side wall insulating film 26 is formed in this way, the surface of the side wall insulating film 26 facing the center of the non-through hole 24 is substantially perpendicular to the main surface of the semiconductor substrate 21. It becomes. Therefore, the conductive plug 35 a has substantially the same area in the virtual plane including the opening 24 a of the non-through hole 24 and the area in the virtual plane including the bottom 24 b of the non-through hole 24.

次に、導電プラグ35aが形成された半導体基板21の裏面を、図1B(e)に示すように、導電プラグ35aが外方に露出するまで後退させる貫通孔形成工程を行う。本実施態様では、非貫通孔24の深さが100μm程度であるので、貫通孔形成工程において、裏面研削によって半導体基板21の厚さを80μm程度にして導電プラグ35aを外方に露出させ、貫通電極27を形成する。   Next, as shown in FIG. 1B (e), a through hole forming step is performed in which the back surface of the semiconductor substrate 21 on which the conductive plug 35a is formed is retracted until the conductive plug 35a is exposed to the outside. In the present embodiment, since the depth of the non-through hole 24 is about 100 μm, in the through hole forming step, the thickness of the semiconductor substrate 21 is set to about 80 μm by backside grinding to expose the conductive plug 35a to the outside. An electrode 27 is formed.

半導体基板の裏面を後退させる方法としては、公知の方法を用いることができる。貫通孔形成工程を行う方法としては、たとえば、反応性イオンエッチング法、プラズマエッチング法などのドライエッチング法、フッ酸、硝酸などによるウェットエッチング法、機械研磨法などを用いることができる。またこれらの手法を組合わせて用いることもできる。   As a method for retracting the back surface of the semiconductor substrate, a known method can be used. As a method for performing the through hole forming step, for example, a dry etching method such as a reactive ion etching method or a plasma etching method, a wet etching method using hydrofluoric acid or nitric acid, a mechanical polishing method, or the like can be used. A combination of these techniques can also be used.

上記のようにして、導電プラグ35aが半導体基板21の外方に露出することによって形成された貫通電極27は、半導体基板21の一方の面である主面を含む仮想平面における面積と、半導体基板21の他方の面である裏面を含む仮想平面における面積とが略等しくなる。このような貫通電極27は、主面と裏面とで露出する面積が略等しいので、主面と裏面とで露出する面積が異なることに起因する貫通電極27の抵抗値の増加を防止することができる。また複数の貫通電極27を形成する場合においても、各電極間での貫通電極27の露出面積にばらつきがない。したがって、本発明の貫通電極の形成方法を用いると、導電性に優れ、複数の電極間で導電性にばらつきのない貫通電極を形成することができる。   As described above, the through electrode 27 formed by exposing the conductive plug 35a to the outside of the semiconductor substrate 21 has an area in a virtual plane including the main surface, which is one surface of the semiconductor substrate 21, and the semiconductor substrate. The area on the virtual plane including the back surface which is the other surface of 21 is substantially equal. In such a through electrode 27, since the exposed area is substantially equal between the main surface and the back surface, it is possible to prevent an increase in the resistance value of the through electrode 27 due to the difference in the exposed area between the main surface and the back surface. it can. Even when a plurality of through electrodes 27 are formed, there is no variation in the exposed area of the through electrodes 27 between the electrodes. Therefore, by using the through electrode forming method of the present invention, it is possible to form a through electrode having excellent conductivity and having no variation in conductivity between a plurality of electrodes.

また、非貫通孔の形成される深さが小さくても、各電極間での貫通電極27の露出面積にばらつきがない。したがって、厚みのある半導体基板を用いる場合であっても非貫通孔を深く掘り下げる必要がないので、製造時間を短縮化できるとともに製造原価の増加が防止できる。   Even if the depth at which the non-through hole is formed is small, there is no variation in the exposed area of the through electrode 27 between the electrodes. Therefore, even when a thick semiconductor substrate is used, it is not necessary to dig deeply into the non-through hole, so that the manufacturing time can be shortened and the manufacturing cost can be prevented from increasing.

ここで、非貫通孔24の形状としては、図3および図4に示すような円錐台形状に限定されることなく、他の形状であってもよい。非貫通孔は、たとえば、底部および開口部が矩形状に形成されるものであってもよい。   Here, the shape of the non-through hole 24 is not limited to the truncated cone shape as shown in FIGS. 3 and 4 and may be other shapes. For example, the non-through hole may have a bottom and an opening formed in a rectangular shape.

図7は、底部41aおよび開口部41bが矩形状に形成される非貫通孔41が形成される半導体基板42の断面図であり、図8は非貫通孔41が形成される半導体基板42を主面側から見た平面図である。非貫通孔41は、開口部41aおよび底部41bが略正方形状に形成され、底部41bの一辺の長さxbが開口部41aの一辺の長さxaよりも長い。したがって、非貫通孔41は、底部41bの面積が、開口部41aの面積よりも大きくなるように形成される。   FIG. 7 is a cross-sectional view of a semiconductor substrate 42 in which a non-through hole 41 in which a bottom 41a and an opening 41b are formed in a rectangular shape, and FIG. 8 mainly shows the semiconductor substrate 42 in which the non-through hole 41 is formed. It is the top view seen from the surface side. In the non-through hole 41, the opening 41a and the bottom 41b are formed in a substantially square shape, and the length xb of one side of the bottom 41b is longer than the length xa of one side of the opening 41a. Therefore, the non-through hole 41 is formed such that the area of the bottom 41b is larger than the area of the opening 41a.

非貫通孔41の大きさについて例示すると、開口部41aの一辺の長さxaが40μm、底部41bの一辺の長さxbが49μm、深さdが100μmである。このような大きさの非貫通孔41を形成すると、非貫通孔41の底部41b周縁部と非貫通孔41の開口部41a周縁部とを結ぶ面の法線単位ベクトルvaと、半導体基板42主面の法線単位ベクトルvbとの内積が、−0.045(θ2=92.6°)となる。   Exemplifying the size of the non-through hole 41, the length xa of one side of the opening 41a is 40 μm, the length xb of one side of the bottom 41b is 49 μm, and the depth d is 100 μm. When the non-through hole 41 having such a size is formed, the normal unit vector va of the surface connecting the peripheral portion of the bottom 41b of the non-through hole 41 and the peripheral portion of the opening 41a of the non-through hole 41, and the semiconductor substrate 42 main The inner product of the surface with the normal unit vector vb is −0.045 (θ2 = 92.6 °).

このように非貫通孔の底部の形状は、円錐台形状に形成されることに限定されることなく、他の形状に形成されてもよい。しかしながら、底部が矩形状に形成された非貫通孔の内壁に絶縁材料を塗布すると、矩形状の底部の角部分において絶縁材料が多量に堆積してしまう恐れがある。絶縁材料によって形成された側壁絶縁膜の非貫通孔中心に臨む面が、底部の角部分付近において、角部分以外の部分に比べて中心寄りに広がって形成される。このような場合、底部付近における側壁絶縁膜の非貫通孔中心に臨む面は、半導体基板の主面の法線と比べて非貫通孔の底部中心側に傾斜する可能性がある。このような非貫通孔に導体を充填して貫通電極とすると、半導体基板の主面で露出する貫通電極の面積と、裏面で露出する貫通電極の面積とで大きさが異なってしまう可能性がある。したがって、非貫通孔の底部は角がない形状、すなわち略円形状に形成されることが最も好ましい。なお本発明においては、略円形状は円形状を含む。   Thus, the shape of the bottom of the non-through hole is not limited to being formed in a truncated cone shape, and may be formed in another shape. However, when an insulating material is applied to the inner wall of the non-through hole whose bottom is formed in a rectangular shape, a large amount of the insulating material may be deposited at the corners of the rectangular bottom. A surface of the side wall insulating film formed of an insulating material that faces the center of the non-through hole is formed in the vicinity of the corner portion of the bottom portion so as to be closer to the center than the portion other than the corner portion. In such a case, the surface facing the center of the non-through hole of the side wall insulating film in the vicinity of the bottom may be inclined toward the center of the bottom of the non-through hole compared to the normal line of the main surface of the semiconductor substrate. When such a non-through hole is filled with a conductor to form a through electrode, the size of the through electrode exposed on the main surface of the semiconductor substrate may be different from the size of the through electrode exposed on the back surface. is there. Therefore, it is most preferable that the bottom of the non-through hole is formed in a shape having no corners, that is, a substantially circular shape. In the present invention, the substantially circular shape includes a circular shape.

また絶縁材料32の非貫通孔24への供給は、前述の図5に示すような孔版印刷法を用いる方法だけに限定されることなく、たとえば、スプレー法などによる絶縁材料の滴下などの方法によって行われてもよい。また側壁絶縁膜26の形成は、上記のようにチャンバ内と内部空間34との圧力差を利用する方法に限定されない。   Further, the supply of the insulating material 32 to the non-through holes 24 is not limited to the method using the stencil printing method as shown in FIG. 5 described above. It may be done. The formation of the sidewall insulating film 26 is not limited to the method using the pressure difference between the inside of the chamber and the internal space 34 as described above.

図9は、スプレー法によって側壁絶縁膜26を形成する絶縁膜形成工程を説明する図である。スプレー法では、半導体基板21主面の上方から、スプレー51を用いて非貫通孔24内部へ粒子状の絶縁材料52を塗布することによって非貫通孔24の内壁に絶縁膜を形成する。スプレー51のノズル径は1〜2mm程度、粒子状の絶縁材料52の粒径は5μm程度とすることが好ましい。またスプレー51と半導体基板21主面との距離hを30〜100mm程度とすることが好ましい。   FIG. 9 is a diagram illustrating an insulating film forming process for forming the sidewall insulating film 26 by a spray method. In the spray method, an insulating film is formed on the inner wall of the non-through hole 24 by applying a particulate insulating material 52 into the non-through hole 24 using the spray 51 from above the main surface of the semiconductor substrate 21. The nozzle diameter of the spray 51 is preferably about 1 to 2 mm, and the particle diameter of the particulate insulating material 52 is preferably about 5 μm. The distance h between the spray 51 and the main surface of the semiconductor substrate 21 is preferably about 30 to 100 mm.

粒子状の絶縁材料52は、非貫通孔24の内壁をつたって非貫通孔24の底部に浸入していき、非貫通孔24底部の周縁部から堆積していく。ここで、非貫通孔24は、底部24bの面積が開口部24aの面積より大きいので、スプレー51によって供給された絶縁材料52が形成する側壁絶縁膜26の非貫通孔24中心に臨む面は、半導体基板21の主面に対して略垂直となる。   The particulate insulating material 52 enters the bottom of the non-through hole 24 through the inner wall of the non-through hole 24 and is deposited from the peripheral edge of the bottom of the non-through hole 24. Here, since the area of the bottom 24b of the non-through hole 24 is larger than the area of the opening 24a, the surface of the sidewall insulating film 26 formed by the insulating material 52 supplied by the spray 51 faces the center of the non-through hole 24. It is substantially perpendicular to the main surface of the semiconductor substrate 21.

ただし、絶縁材料32の非貫通孔24への供給が、前述の図5に示すような孔版印刷法によって行われると、開口部が40μm程度の直径である微細な非貫通孔24への絶縁材料32の供給が、容易かつ経済的に行える。また、絶縁材料32の供給量を制御しやすいので、形成する側壁絶縁膜26の膜厚の精度を高くすることができる。したがって、絶縁材料の非貫通孔への供給は、孔版印刷法が用いられるのが好ましい。   However, when the insulating material 32 is supplied to the non-through holes 24 by the stencil printing method as shown in FIG. 5, the insulating material to the fine non-through holes 24 having a diameter of about 40 μm. The supply of 32 can be performed easily and economically. Further, since the supply amount of the insulating material 32 can be easily controlled, the accuracy of the film thickness of the sidewall insulating film 26 to be formed can be increased. Therefore, the stencil printing method is preferably used for supplying the insulating material to the non-through holes.

また導体充填工程を行う方法としては、金属ボールを非貫通孔24内部の空隙へ埋込む方法に限定されることなく、他の公知の方法を用いることもできる。導体の充填方法としては、たとえば、CVD法、めっき法などを用いることができる。また、図5に示す絶縁膜形成工程と同様に、孔版印刷法によって銀、銅などのペーストを充填することもできる。孔版印刷法を用いて印刷時と充填時との圧力差を利用すると、ボイドなどを含まない導電プラグ35aを形成することができる。   Further, the method of performing the conductor filling step is not limited to the method of embedding the metal ball in the gap inside the non-through hole 24, and other known methods can also be used. As a method for filling the conductor, for example, a CVD method, a plating method, or the like can be used. Further, similarly to the insulating film forming step shown in FIG. 5, a paste such as silver or copper can be filled by stencil printing. When the pressure difference between printing and filling is used by using the stencil printing method, the conductive plug 35a containing no voids can be formed.

以上のようにして本発明の貫通電極の形成方法を用いて貫通電極27が形成されると、図1B(f)に示すように、半導体基板21の裏面に裏面絶縁膜28を形成する絶縁膜形成工程が行われる。絶縁膜形成工程は、公知の方法を用いて実行することができ、その概要を説明する図を省略する。絶縁膜形成工程では、たとえば、半導体基板21裏面全面に二酸化ケイ素などの裏面絶縁膜材料を塗布し、貫通電極27の部分を開口するようにフォトリソグラフィーによってパターンニングを行った後、残存するフォトレジストを除去するアッシングを行い、ベークを行って半導体基板21を乾燥することによって裏面絶縁膜28を形成する。   When the through electrode 27 is formed by using the through electrode forming method of the present invention as described above, as shown in FIG. 1B (f), an insulating film for forming a back surface insulating film 28 on the back surface of the semiconductor substrate 21. A forming step is performed. The insulating film forming step can be performed using a known method, and a diagram for explaining the outline thereof is omitted. In the insulating film forming step, for example, a back surface insulating film material such as silicon dioxide is applied to the entire back surface of the semiconductor substrate 21 and patterned by photolithography so as to open a portion of the through electrode 27, and then the remaining photoresist. The back insulating film 28 is formed by performing ashing for removing the substrate, baking the substrate, and drying the semiconductor substrate 21.

裏面絶縁膜28が形成されると、図1B(g)に示すように、貫通電極27と外部回路との電気的接続を行うための裏面配線29を、たとえば、めっき法によって形成する。めっき法による裏面配線形成工程では、スパッタによって半導体基板21裏面に導電性材料を用いて導電膜を形成し、導電膜上にめっきレジストを塗布し、配線パターン以外の部分にめっきレジストが残存するようにパターンニングする。次いで、めっきレジストの形成されていない部分である配線パターン部分に電界めっきなどによってめっきを施す裏面配線めっきを行う。その後、アルカリ剥離液などの剥離液を用いる剥離法などによって、めっきレジストを剥離し、露出している導電膜をエッチングで除去して、裏面配線29が形成される。以上のようにして、本発明の半導体装置が製造される。   When the back surface insulating film 28 is formed, as shown in FIG. 1B (g), the back surface wiring 29 for electrically connecting the through electrode 27 and the external circuit is formed by, for example, a plating method. In the back surface wiring formation step by plating, a conductive film is formed on the back surface of the semiconductor substrate 21 by sputtering using a conductive material, a plating resist is applied on the conductive film, and the plating resist remains on portions other than the wiring pattern. To pattern. Next, backside wiring plating is performed in which the wiring pattern portion, which is a portion where no plating resist is formed, is plated by electric field plating or the like. Thereafter, the plating resist is stripped by a stripping method using a stripping solution such as an alkaline stripping solution, and the exposed conductive film is removed by etching, whereby the back surface wiring 29 is formed. As described above, the semiconductor device of the present invention is manufactured.

図10は、本発明の製造方法によって製造される半導体装置62を積層して得られるマルチチップ半導体装置61を示す概略断面図である。上記のようにして製造した本発明の半導体装置62を、裏面配線を用いてめっき法などによって形成したバンプ電極63を用いて積層し、半導体装置62間の電気的な接続を行い、マルチチップ半導体装置61を形成する。ここでバンプ電極63は、貫通電極27の直下に形成されることに限定されない。   FIG. 10 is a schematic cross-sectional view showing a multichip semiconductor device 61 obtained by stacking semiconductor devices 62 manufactured by the manufacturing method of the present invention. The semiconductor device 62 of the present invention manufactured as described above is laminated using bump electrodes 63 formed by plating or the like using backside wiring, and electrical connection between the semiconductor devices 62 is performed, so that a multichip semiconductor is provided. A device 61 is formed. Here, the bump electrode 63 is not limited to being formed immediately below the through electrode 27.

図11は、裏面配線を用いずにバンプ電極11を形成する方法を示す図である。半導体装置62同士の電気的な接続は、裏面配線29を形成した後、バンプ電極63を形成することによって行われることに限定されない。たとえば、図11に示す方法のように、裏面配線29を形成せずに、半導体基板21裏面にバンプ電極73を形成する方法を用いてもよい。このような方法では、図1B(g)に示す裏面配線形成工程を行う代わりに、図11(a)に示すようなサポートガラス71および保護テープ72を使用する。サポートガラス71は、たとえば、石英ガラスからなり、裏面研削によって、薄型化された半導体装置の取扱性を向上させる。保護テープ72には、導電ペーストが埋込まれ、該保護テープ72を給電層として電気めっきにより、図11(b)に示すように半導体基板裏面側にバンプ電極73を形成することができる。なお無電解めっきによりバンプ電極73を形成してもよい。   FIG. 11 is a diagram showing a method of forming the bump electrode 11 without using the back surface wiring. The electrical connection between the semiconductor devices 62 is not limited to being performed by forming the bump electrode 63 after forming the back surface wiring 29. For example, a method of forming the bump electrode 73 on the back surface of the semiconductor substrate 21 without forming the back surface wiring 29 as in the method shown in FIG. In such a method, a support glass 71 and a protective tape 72 as shown in FIG. 11A are used instead of performing the back surface wiring forming step shown in FIG. 1B (g). The support glass 71 is made of, for example, quartz glass, and improves the handleability of the thinned semiconductor device by back grinding. A conductive paste is embedded in the protective tape 72, and a bump electrode 73 can be formed on the back side of the semiconductor substrate as shown in FIG. 11B by electroplating using the protective tape 72 as a power feeding layer. The bump electrode 73 may be formed by electroless plating.

上記のような本発明の半導体装置を積層接続して得られるマルチチップ半導体装置は、100μm程度にまで薄くした半導体基板21を有する半導体装置が複数個積層されたものであるので、マルチチップ半導体装置の省スペース化に大きく寄与できる。ひいては、そのマルチチップ半導体装置を搭載した電子機器、たとえば携帯情報機器の性能向上に大きく寄与することができる。   The multichip semiconductor device obtained by stacking and connecting the semiconductor devices of the present invention as described above is a multichip semiconductor device in which a plurality of semiconductor devices having the semiconductor substrate 21 thinned to about 100 μm are stacked. Can greatly contribute to space saving. As a result, it can greatly contribute to the improvement of the performance of an electronic device, for example, a portable information device, on which the multichip semiconductor device is mounted.

本発明の実施の一態様である半導体装置の製造方法の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the manufacturing method of the semiconductor device which is 1 aspect of this invention. 本発明の実施の一態様である半導体装置の製造方法の概要を説明するための図である。It is a figure for demonstrating the outline | summary of the manufacturing method of the semiconductor device which is 1 aspect of this invention. 非貫通孔24の形成方法を説明する図である。5 is a diagram illustrating a method for forming a non-through hole 24. FIG. 図2に示す方法によって円錐台形状に形成された非貫通孔24を有する半導体基板21の断面図である。It is sectional drawing of the semiconductor substrate 21 which has the non-through-hole 24 formed in the truncated cone shape by the method shown in FIG. 非貫通孔24を有する半導体基板21を主面側から見た平面図である。FIG. 3 is a plan view of a semiconductor substrate 21 having a non-through hole 24 as viewed from the main surface side. 孔版印刷法によって側壁絶縁膜26を形成する絶縁膜形成工程を説明する図である。It is a figure explaining the insulating film formation process which forms the side wall insulating film 26 by the stencil printing method. 導体充填工程の一例の概要を説明する図である。It is a figure explaining the outline | summary of an example of a conductor filling process. 底部41aおよび開口部41bが矩形状に形成される非貫通孔41が形成される半導体基板42の断面図である。It is sectional drawing of the semiconductor substrate 42 in which the non-through-hole 41 in which the bottom part 41a and the opening part 41b are formed in a rectangular shape is formed. 非貫通孔41が形成される半導体基板42を主面側から見た平面図である。It is the top view which looked at the semiconductor substrate 42 in which the non-through-hole 41 is formed from the main surface side. スプレー法によって側壁絶縁膜26を形成する絶縁膜形成工程を説明する図である。It is a figure explaining the insulating film formation process which forms the side wall insulating film 26 by the spray method. 本発明の製造方法によって製造される半導体装置62を積層して得られるマルチチップ半導体装置61を示す概略断面図である。It is a schematic sectional drawing which shows the multichip semiconductor device 61 obtained by laminating | stacking the semiconductor device 62 manufactured by the manufacturing method of this invention. 裏面配線を用いずにバンプ電極11を形成する方法を示す図である。It is a figure which shows the method of forming the bump electrode 11 without using a back surface wiring. マルチチップ半導体装置1の構成の一例を簡略化して示す断面図である。2 is a cross-sectional view schematically showing an example of a configuration of a multichip semiconductor device 1. FIG. 非貫通孔11a,11bに、絶縁膜13a,13bおよび貫通電極14a,14bを形成する方法を説明する図である。It is a figure explaining the method of forming insulating film 13a, 13b and penetration electrode 14a, 14b in non-through-hole 11a, 11b.

符号の説明Explanation of symbols

21 半導体基板
22 層間絶縁膜
23 パターンマスク
24 非貫通孔
24a 非貫通孔開口部
24b 非貫通孔底部
25 保護膜
26 側壁絶縁膜
27 貫通電極
28 裏面絶縁膜
29 裏面配線
35 導体
35a 導電プラグ
DESCRIPTION OF SYMBOLS 21 Semiconductor substrate 22 Interlayer insulating film 23 Pattern mask 24 Non-through-hole 24a Non-through-hole opening 24b Non-through-hole bottom 25 Protective film 26 Side wall insulating film 27 Through-electrode 28 Back surface insulating film 29 Back surface wiring 35 Conductor 35a Conductive plug

Claims (5)

基板を貫通する貫通電極の形成方法において、
基板の一方の面に開口部を有し、基板内部に底部を有する非貫通孔を形成する非貫通孔形成工程と、
非貫通孔に臨む基板の内壁に絶縁膜を形成する絶縁膜形成工程と、
絶縁膜が形成された非貫通孔に導体を充填する導体充填工程と、
基板の他方の面を、導体が外方に露出するまで後退させる貫通孔形成工程とを含み、
非貫通孔は、
非貫通孔の底部に臨む基板の面積が、開口部の面積よりも大きくなるように形成されることを特徴とする貫通電極の形成方法。
In the formation method of the through electrode penetrating the substrate,
A non-through hole forming step of forming a non-through hole having an opening on one surface of the substrate and having a bottom inside the substrate;
An insulating film forming step of forming an insulating film on the inner wall of the substrate facing the non-through hole;
A conductor filling step of filling a non-through hole in which an insulating film is formed with a conductor;
A through hole forming step of retracting the other surface of the substrate until the conductor is exposed to the outside,
Non-through holes are
A method of forming a through electrode, wherein the area of the substrate facing the bottom of the non-through hole is larger than the area of the opening.
非貫通孔は、
非貫通孔の底部に臨む基板の面が、略円形状になるように形成されることを特徴とする請求項1記載の貫通電極の形成方法。
Non-through holes are
2. The method for forming a through electrode according to claim 1, wherein the surface of the substrate facing the bottom of the non-through hole is formed in a substantially circular shape.
非貫通孔は、
非貫通孔に臨む基板の内壁から非貫通孔内部に向かうベクトルであって、基板の一方の面に垂直な仮想断面において、非貫通孔の底部周縁部と、前記非貫通孔の底部周縁部と連なって形成される基板の内壁面の非貫通孔の開口部周縁部とを結ぶ仮想平面の法線単位ベクトルと、
基板の一方の面から外方に向かうベクトルであって、基板の一方の面の法線単位ベクトルとの内積が、−0.5以上−0.034以下となるように形成されることを特徴とする請求項1または2記載の貫通電極の形成方法。
Non-through holes are
A vector directed from the inner wall of the substrate facing the non-through hole to the inside of the non-through hole, and in a virtual cross section perpendicular to one surface of the substrate, the bottom peripheral edge of the non-through hole, and the bottom peripheral edge of the non-through hole A normal unit vector of a virtual plane connecting the peripheral edge of the opening of the non-through hole on the inner wall surface of the substrate formed in a row,
A vector directed outward from one surface of the substrate, wherein an inner product with a normal unit vector of one surface of the substrate is −0.5 or more and −0.034 or less. The method of forming a through electrode according to claim 1 or 2.
請求項1〜3のいずれか1つに記載の貫通電極の形成方法を用いる半導体装置の製造方法。   The manufacturing method of the semiconductor device using the formation method of the penetration electrode as described in any one of Claims 1-3. 請求項4記載の半導体装置の製造方法によって製造される半導体装置であって、
半導体基板の半導体素子が形成される側の面である一方の面から一方の面と反対側の他方の面に向かって半導体基板を貫通する貫通電極と、
貫通電極と半導体基板との間に設けられる絶縁膜とを含み、
絶縁膜は、
半導体基板の厚み方向に垂直な仮想平面における断面積が、半導体基板の一方の面から他方の面に向かうのに伴って大きくなり、
貫通電極は、
半導体基板の一方の面を含む仮想平面における面積と、半導体基板の他方の面を含む仮想平面における面積とが略等しいことを特徴とする半導体装置。
A semiconductor device manufactured by the method for manufacturing a semiconductor device according to claim 4,
A through electrode penetrating the semiconductor substrate from one surface, which is a surface on which the semiconductor element is formed, of the semiconductor substrate toward the other surface opposite to the one surface;
Including an insulating film provided between the through electrode and the semiconductor substrate,
Insulating film
The cross-sectional area in a virtual plane perpendicular to the thickness direction of the semiconductor substrate increases as it goes from one surface of the semiconductor substrate to the other surface,
The through electrode is
A semiconductor device, wherein an area on a virtual plane including one surface of a semiconductor substrate is substantially equal to an area on a virtual plane including the other surface of the semiconductor substrate.
JP2004351493A 2004-12-03 2004-12-03 Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby Pending JP2006165112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351493A JP2006165112A (en) 2004-12-03 2004-12-03 Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351493A JP2006165112A (en) 2004-12-03 2004-12-03 Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby

Publications (1)

Publication Number Publication Date
JP2006165112A true JP2006165112A (en) 2006-06-22

Family

ID=36666799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351493A Pending JP2006165112A (en) 2004-12-03 2004-12-03 Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby

Country Status (1)

Country Link
JP (1) JP2006165112A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844997B1 (en) 2006-12-29 2008-07-09 삼성전자주식회사 Semiconductor package, stacked semiconductor package and methods of manufacturing the packages
JP2008300782A (en) * 2007-06-04 2008-12-11 Shinko Electric Ind Co Ltd Method of manufacturing substrate with penetrating electrodes
JP2010034432A (en) * 2008-07-31 2010-02-12 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2010074396A (en) * 2008-09-17 2010-04-02 Daishinku Corp Sealing member for piezoelectric vibration device, and manufacturing method for the same
JP2011082291A (en) * 2009-10-06 2011-04-21 Seiko Epson Corp Semiconductor device
JP2011124524A (en) * 2009-12-09 2011-06-23 Korea Electronics Telecommun Method for fabricating semiconductor element
JP2012119685A (en) * 2010-11-29 2012-06-21 Samsung Electronics Co Ltd Semiconductor device, manufacturing method of the same, and semiconductor package including semiconductor device
KR101215648B1 (en) * 2011-02-11 2012-12-26 에스케이하이닉스 주식회사 Semiconductor chip and method for manufacturing the same
JP2014222785A (en) * 2014-08-19 2014-11-27 セイコーエプソン株式会社 Semiconductor device and electronic device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100844997B1 (en) 2006-12-29 2008-07-09 삼성전자주식회사 Semiconductor package, stacked semiconductor package and methods of manufacturing the packages
US8349733B2 (en) 2007-06-04 2013-01-08 Shinko Electric Industries Co., Ltd. Manufacturing method of substrate with through electrode
JP2008300782A (en) * 2007-06-04 2008-12-11 Shinko Electric Ind Co Ltd Method of manufacturing substrate with penetrating electrodes
JP2010034432A (en) * 2008-07-31 2010-02-12 Toshiba Corp Semiconductor device and method of manufacturing the same
JP2010074396A (en) * 2008-09-17 2010-04-02 Daishinku Corp Sealing member for piezoelectric vibration device, and manufacturing method for the same
JP2011082291A (en) * 2009-10-06 2011-04-21 Seiko Epson Corp Semiconductor device
JP2011124524A (en) * 2009-12-09 2011-06-23 Korea Electronics Telecommun Method for fabricating semiconductor element
JP2012119685A (en) * 2010-11-29 2012-06-21 Samsung Electronics Co Ltd Semiconductor device, manufacturing method of the same, and semiconductor package including semiconductor device
US9343361B2 (en) 2010-11-29 2016-05-17 Samsung Electronics Co., Ltd. Semiconductor device, fabricating method thereof and semiconductor package including the semiconductor device
US9941196B2 (en) 2010-11-29 2018-04-10 Samsung Electronics Co., Ltd. Semiconductor device, fabricating method thereof and semiconductor package including the semiconductor device
KR101215648B1 (en) * 2011-02-11 2012-12-26 에스케이하이닉스 주식회사 Semiconductor chip and method for manufacturing the same
US8669642B2 (en) 2011-02-11 2014-03-11 SK Hynix Inc. Semiconductor chip and fabricating method thereof
JP2014222785A (en) * 2014-08-19 2014-11-27 セイコーエプソン株式会社 Semiconductor device and electronic device

Similar Documents

Publication Publication Date Title
TWI227910B (en) Semiconductor device, circuit substrate and electronic instrument
JP4129643B2 (en) Manufacturing method of semiconductor device
JP3918935B2 (en) Manufacturing method of semiconductor device
US7795140B2 (en) Method of manufacturing substrate
JP3972846B2 (en) Manufacturing method of semiconductor device
TWI282592B (en) Manufacturing method of semiconductor device
JP4492196B2 (en) Semiconductor device manufacturing method, circuit board, and electronic apparatus
TW200403765A (en) Semiconductor device and its manufacturing method, circuit substrate and electronic machine
JP5103854B2 (en) SEMICONDUCTOR DEVICE, SEMICONDUCTOR DEVICE MANUFACTURING METHOD, CIRCUIT BOARD AND ELECTRONIC DEVICE
JP2006179752A (en) Manufacturing method of semiconductor device, semiconductor device, laminated semiconductor device, circuit board and electronic apparatus
JP2006269968A (en) Semiconductor device and its manufacturing method
JP2003203940A (en) Semiconductor chip and wiring base board and manufacturing method of them, semiconductor wafer, semiconductor device, circuit base board and electronic instrument
JP2006261323A (en) Semiconductor device and its manufacturing method
JP2006165112A (en) Through-electrode formation method and method for manufacturing semiconductor device using same, and semiconductor device obtained thereby
JP4155154B2 (en) Semiconductor device, circuit board, and electronic device
TW200535982A (en) Semiconductor device and its manufacturing method, circuit board, and electronic apparatus
JP2004342991A (en) Semiconductor device and its manufacturing process, circuit board and electronic apparatus
JP4114660B2 (en) Semiconductor device manufacturing method, semiconductor device, circuit board, electronic device
JP4063277B2 (en) Manufacturing method of semiconductor device
JP2008153352A (en) Semiconductor device and its manufacturing method, and electronic apparatus
JP4019985B2 (en) Semiconductor device manufacturing method, circuit board, and electronic apparatus
JP4706180B2 (en) Manufacturing method of semiconductor device
JP4127095B2 (en) Manufacturing method of semiconductor device
JP2012209440A (en) Semiconductor device, circuit board and electronic apparatus
JP2005072489A (en) Semiconductor-device and manufacturing method thereof