JP2014222698A - Electrode-embedded quartz member and method of manufacturing the same - Google Patents

Electrode-embedded quartz member and method of manufacturing the same Download PDF

Info

Publication number
JP2014222698A
JP2014222698A JP2013101311A JP2013101311A JP2014222698A JP 2014222698 A JP2014222698 A JP 2014222698A JP 2013101311 A JP2013101311 A JP 2013101311A JP 2013101311 A JP2013101311 A JP 2013101311A JP 2014222698 A JP2014222698 A JP 2014222698A
Authority
JP
Japan
Prior art keywords
electrode
quartz glass
glass plate
embedded
quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013101311A
Other languages
Japanese (ja)
Other versions
JP6139970B2 (en
Inventor
加藤 幸子
Sachiko Kato
幸子 加藤
泰啓 安本
Yasuhiro Yasumoto
泰啓 安本
村松 滋子
Shigeko Muramatsu
滋子 村松
後藤 浩之
Hiroyuki Goto
浩之 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2013101311A priority Critical patent/JP6139970B2/en
Publication of JP2014222698A publication Critical patent/JP2014222698A/en
Application granted granted Critical
Publication of JP6139970B2 publication Critical patent/JP6139970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrode-embedded quartz member that is a member for semiconductor processing of an electrostatic chuck, a heater, etc., and is free of breakage of an electrode and stably usable for a long time, and a method of manufacturing the same.SOLUTION: There is manufactured an electrode-embedded quartz member that has an electrode 3 embedded in a first quartz glass plate 1 and a second quartz glass plate 2 by joining together an electrode formation surface of the first quartz glass plate 1 and the second quartz glass plate 2 after an electrode pattern is formed by screen printing on one main surface of the first quartz glass plate 1, and bonding them by thermal compression at a temperature lower than the fusion point of a conductive material constituting the electrode 3, the electrode 3 comprising an aggregate of powder of the conductive material bonded in a non-sintered state.

Description

本発明は、半導体プロセスにおいて用いられる静電チャックやヒータ等の電極埋め込み石英部材及びその製造方法に関する。   The present invention relates to an electrode-embedded quartz member such as an electrostatic chuck or a heater used in a semiconductor process and a method for manufacturing the same.

半導体処理装置では、ウェーハ等を保持・固定するための静電チャックや、熱処理に用いられるヒータ、あるいはまた、これらの両者の機能を兼ね備えた部材として、電極埋め込み部材が用いられている。特に、石英ガラス製の電極埋め込み部材は、石英ガラスが高純度であり、セラミックスよりも平坦性及び絶縁性に優れていることから、半導体プロセスに好適である。   In a semiconductor processing apparatus, an electrode embedding member is used as an electrostatic chuck for holding / fixing a wafer or the like, a heater used for heat treatment, or a member having both functions. In particular, an electrode embedding member made of quartz glass is suitable for a semiconductor process because quartz glass has a high purity and is superior in flatness and insulation to ceramics.

例えば、特許文献1には、ガラス板の内部に金属層の電極が埋設されたガラス製静電チャックが開示されている。特許文献1には、前記電極が、金属層の蒸着により、又は、金属箔や金属メッシュを用いて形成されることが記載されている。   For example, Patent Literature 1 discloses a glass electrostatic chuck in which a metal layer electrode is embedded in a glass plate. Patent Document 1 describes that the electrode is formed by vapor deposition of a metal layer or using a metal foil or a metal mesh.

また、特許文献2には、同一素材からなるガラス質絶縁層とガラス質基盤とが、間に電極を具備して、実質的に一体化されたガラス質静電チャックが開示されている。該静電チャックは、予め加工された溝の内面に製膜法により電極が配置されており、その製膜法としては、ドライプロセス、特に、イオンプレーティング、スパッタリング、CVD、真空蒸着が好ましいとされている。   Patent Document 2 discloses a vitreous electrostatic chuck in which a vitreous insulating layer and a vitreous substrate made of the same material are substantially integrated with electrodes interposed therebetween. In the electrostatic chuck, electrodes are arranged on the inner surface of a previously processed groove by a film forming method, and as the film forming method, a dry process, in particular, ion plating, sputtering, CVD, or vacuum deposition is preferable. Has been.

特開2009−32718号公報JP 2009-32718 A 特開2008−294174号公報JP 2008-294174 A

しかしながら、上記特許文献1,2に記載されているような蒸着等のドライプロセスによって形成された電極は、一般に、成膜速度は0.0001〜0.1μm/min.程度であり、厚さ1μm以上の電極を形成するには長時間を要するものであった。その一方で、成膜厚さが薄すぎると、静電チャックやヒータとして十分に機能するための電極が形成されない。また、厚さ1〜100μmの金属箔では、微細な電極パターンの作製は難しく、作製できた場合であっても、ガラス基板上に設置する際に形状が崩れて配線が折れたり、隣接する配線と接触して短絡したりする等、電極の形態を保持することが困難である。   However, an electrode formed by a dry process such as vapor deposition as described in Patent Documents 1 and 2 generally has a film formation rate of 0.0001 to 0.1 μm / min. Therefore, it takes a long time to form an electrode having a thickness of 1 μm or more. On the other hand, if the film thickness is too thin, an electrode for sufficiently functioning as an electrostatic chuck or a heater cannot be formed. In addition, with a metal foil having a thickness of 1 to 100 μm, it is difficult to produce a fine electrode pattern, and even if it can be produced, when it is placed on a glass substrate, the shape collapses and the wiring breaks, or adjacent wiring It is difficult to maintain the shape of the electrode, such as being short-circuited by contact.

また、上記のような金属電極が形成されたガラス板の接合面は、他のガラス板と接合し、熱をかけて圧着されるが、このとき、両ガラス板に挟まれる電極が厚すぎると、ガラス板と金属電極の熱膨張差により、電極が破断したり、ガラス板の電極近傍にクラックが生じたりする場合があった。   In addition, the bonding surface of the glass plate on which the metal electrode as described above is bonded to another glass plate and is crimped by applying heat. At this time, if the electrodes sandwiched between the two glass plates are too thick Depending on the difference in thermal expansion between the glass plate and the metal electrode, the electrode may break or a crack may occur near the electrode of the glass plate.

ところで、近年、ウェーハの大口径化に対応して、静電チャックやヒータも大型化され、また、より高精度での加工を行うために、電極パターンが微細化されている。
このため、特許文献2に記載されているような電極を配置するための溝加工は、プロセスが煩雑となり、加工時間及び製造コストも増加することとなる。しかも、上述したような電極の破断や溝部分におけるガラス板のクラックもより生じやすくなる。
By the way, in recent years, electrostatic chucks and heaters have been increased in size in response to an increase in wafer diameter, and electrode patterns have been miniaturized in order to perform processing with higher accuracy.
For this reason, the groove processing for arranging the electrodes as described in Patent Document 2 makes the process complicated, and increases the processing time and the manufacturing cost. In addition, the breakage of the electrode and the crack of the glass plate in the groove portion are more likely to occur as described above.

したがって、大型であっても、ガラス板内に、電極パターンを破断させることなく、容易に形成する方法が求められている。   Therefore, there is a demand for a method for easily forming an electrode pattern in a glass plate without breaking it, even if it is large.

本発明は、上記技術的課題を解決するためになされたものであり、静電チャックやヒータ等の半導体処理用部材であって、電極が破断することなく、長時間安定的に使用可能な電極埋め込み石英部材及びその製造方法を提供することを目的とするものである。   The present invention has been made to solve the above technical problem, and is a semiconductor processing member such as an electrostatic chuck or a heater, which can be used stably for a long time without breaking the electrode. An object of the present invention is to provide an embedded quartz member and a manufacturing method thereof.

本発明に係る電極埋め込み石英部材は、石英ガラス板の内部に、導電性材料からなる粉体が未焼結状態で密着した集合体からなる電極が埋設されていることを特徴とする。
このような電極を備えた石英部材は、電極の破断や石英ガラスのクラックの発生が抑制され、しかも、長時間安定的に使用することができる。
The electrode-embedded quartz member according to the present invention is characterized in that an electrode made of an aggregate in which a powder made of a conductive material is adhered in an unsintered state is embedded in a quartz glass plate.
A quartz member provided with such an electrode can be used stably for a long period of time, with the occurrence of electrode breakage and quartz glass cracking being suppressed.

前記電極の厚さは1〜100μmであることが好ましい。
上記範囲内の厚さであれば、石英ガラス板を熱圧着により支障なく一体化させることができ、静電チャックやヒータとしての十分な機能を得ることができる。
The thickness of the electrode is preferably 1 to 100 μm.
If it is the thickness within the said range, a quartz glass plate can be integrated without trouble by thermocompression bonding, and sufficient function as an electrostatic chuck or a heater can be obtained.

また、本発明によれば、上記のような電極埋め込み石英部材を製造する方法であって、第1の石英ガラス板の一主面上に、スクリーン印刷により電極パターンを形成した後、前記第1の石英ガラス板の電極形成面と前記第2の石英ガラス板を接合して、前記電極を構成する導電性材料の融点よりも低い温度で熱圧着することを特徴とする電極埋め込み石英部材の製造方法が提供される。
このような製造方法は、本発明に係る電極埋め込み石英部材を得る上で好適な方法である。
According to the present invention, there is also provided a method of manufacturing the electrode-embedded quartz member as described above, wherein an electrode pattern is formed on one main surface of the first quartz glass plate by screen printing, and then the first An electrode-embedded quartz member produced by bonding an electrode-forming surface of a quartz glass plate to the second quartz glass plate and thermocompression bonding at a temperature lower than the melting point of the conductive material constituting the electrode A method is provided.
Such a manufacturing method is a preferable method for obtaining the electrode-embedded quartz member according to the present invention.

本発明に係る電極埋め込み石英部材は、製造プロセスにおいて、電極が破断したり、石英ガラスにクラックが生じたりすることがなく、また、長時間の使用においても、電極の断線や該部材の破損等を生じにくく、安定的に使用することができる。しかも、電極パターンの大型化及び微細化にも対応可能である。
また、本願発明に係る製造方法によれば、上記のような電極埋め込み石英部材を好適に得ることができる。
The electrode-embedded quartz member according to the present invention does not break the electrode or cause cracks in the quartz glass in the manufacturing process, and the electrode breaks or the member is damaged even when used for a long time. Can be used stably. Moreover, it is possible to cope with an increase in size and miniaturization of the electrode pattern.
Moreover, according to the manufacturing method which concerns on this invention, the above electrode embedding quartz members can be obtained suitably.

本発明に係る電極埋め込み石英部材の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the electrode embedding quartz member which concerns on this invention.

以下、本発明を、図面を参照して、より詳細に説明する。
図1に、本発明に係る電極埋め込み石英部材の概略構成を示す。図1に示したように、本発明に係る電極埋め込み石英部材は、石英ガラス板1,2の内部に電極3が埋設されているものである。該電極3は、導電性材料からなる粉体が未焼結状態で密着した集合体からなるものである。なお、図1でいう第2の石英ガラス板2には、給電端子用穴4が形成されている。
ここで、石英ガラス板1,2は、区分されて記載されているが、実際には、上面側の第1の石英ガラス板1と下面側の第2の石英ガラス板2は、熱圧着により一体化されており、1枚の板状をなしている。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
FIG. 1 shows a schematic configuration of an electrode-embedded quartz member according to the present invention. As shown in FIG. 1, the electrode-embedded quartz member according to the present invention is one in which an electrode 3 is embedded in quartz glass plates 1 and 2. The electrode 3 is made of an aggregate in which powders made of a conductive material are adhered in an unsintered state. Note that a feed terminal hole 4 is formed in the second quartz glass plate 2 referred to in FIG.
Here, the quartz glass plates 1 and 2 are described separately, but actually, the first quartz glass plate 1 on the upper surface side and the second quartz glass plate 2 on the lower surface side are formed by thermocompression bonding. It is integrated and forms a single plate.

上記のように、本発明に係る電極埋め込み石英部材においては、電極3は、導電性材料が、未焼結状態の導電性材料からなる粉体が密着した状態の集合体として形成されている。
電極をこのような構成とすることにより、電極を構成する導電性材料と石英ガラスとの熱膨張差が大きくても、石英ガラス板の熱圧着後の冷却の際に、電極が破断したり、石英ガラス板にクラックが生じたりすることを防ぐことができる。
As described above, in the electrode-embedded quartz member according to the present invention, the electrode 3 is formed as an aggregate in a state where the conductive material is in close contact with the powder made of an unsintered conductive material.
By making the electrode in such a configuration, even when the difference in thermal expansion between the conductive material constituting the electrode and quartz glass is large, the electrode breaks during cooling after thermocompression bonding of the quartz glass plate, It is possible to prevent the quartz glass plate from being cracked.

電極は、静電チャックの場合は、載置されたウェーハ等を吸着するための静電力を発生させるものであり、また、ヒータの場合は、載置されたウェーハ等を加熱するための発熱体として機能する。必要に応じて、これらの両機能を具備するようにしてもよい。   In the case of an electrostatic chuck, the electrode generates an electrostatic force for adsorbing the mounted wafer or the like. In the case of a heater, the electrode is a heating element for heating the mounted wafer or the like. Function as. You may make it comprise both of these functions as needed.

前記電極の厚さは1〜100μmであることが好ましい。
前記厚さが1μm未満では、静電チャックやヒータとしての機能が十分に得られない。一方、100μmを超える場合は、石英ガラス板を熱圧着により一体化させることが困難となる。
The thickness of the electrode is preferably 1 to 100 μm.
When the thickness is less than 1 μm, a function as an electrostatic chuck or a heater cannot be obtained sufficiently. On the other hand, when it exceeds 100 μm, it becomes difficult to integrate the quartz glass plate by thermocompression bonding.

上記のような電極埋め込み石英部材は、図1によれば、第1の石英ガラス板1の一主面上に、スクリーン印刷により電極パターンを形成した後、第1の石英ガラス板1の電極形成面と第2の石英ガラス板2を接合して、電極3を構成する金属の融点よりも低い温度で熱圧着することにより製造することができる。
なお、第1の石英ガラス板1と第2の石英ガラス板2は相互に入れ替わっていてもよく、すなわち、電極3は、図1でいう下面側の第2の石英ガラス板2に形成してもよい。
2枚の石英ガラス板の間に電極を挟み込むようにして、上記のような熱圧着温度で一体化させることにより、前記電極を構成する導電性材料は未焼結状態で密着した粉末の集合体の状態で維持され、電極が破断したり、石英ガラスにクラックが生じたりすることを防ぐことができる。
According to FIG. 1, the electrode-embedded quartz member as described above is formed by forming an electrode pattern on one main surface of the first quartz glass plate 1 by screen printing, and then forming an electrode on the first quartz glass plate 1. It can be manufactured by bonding the surface and the second quartz glass plate 2 and thermocompression bonding at a temperature lower than the melting point of the metal constituting the electrode 3.
The first quartz glass plate 1 and the second quartz glass plate 2 may be interchanged. That is, the electrode 3 is formed on the second quartz glass plate 2 on the lower surface side in FIG. Also good.
The electrode is sandwiched between two quartz glass plates and integrated at the above-described thermocompression bonding temperature, so that the conductive material constituting the electrode is in an aggregated state of a powder that adheres in an unsintered state. It is possible to prevent the electrode from being broken and the quartz glass from being cracked.

ここで、前記電極に用いられる導電性材料は、導電性が高く、抵抗率を制御しやすい金属が好適である。特に、熱圧着温度が通常1200〜1300℃程度であることを考慮して、融点が1250℃以上の金属粉体であることが好ましい。石英ガラス板を熱圧着する際に、粉体が、融解せず、未焼結の状態が維持されるようにするため、このような高融点金属を用いることが好ましい。   Here, the conductive material used for the electrode is preferably a metal having high conductivity and easy to control resistivity. In particular, considering that the thermocompression bonding temperature is usually about 1200 to 1300 ° C., a metal powder having a melting point of 1250 ° C. or higher is preferable. When the quartz glass plate is thermocompression bonded, it is preferable to use such a refractory metal so that the powder does not melt and maintains an unsintered state.

前記金属としては、具体的には、マンガン、ベリリウム、スカンジウム、ケイ素、ニッケル、イットリウム、コバルト、鉄、パラジウム、バナジウム、チタン、白金、トリウム、クロム、ロジウム、ジルコニウム、ルテニウム、イリジウム、ニオビウム、モリブデン、オスミウム、タンタル、タングステン、ハフニウム、又は、これらの合金が挙げられる。これらのうち、石英ガラス部材の用途に応じて、比抵抗や熱伝導率等を考慮して、適宜選択して用いられる。   Specific examples of the metal include manganese, beryllium, scandium, silicon, nickel, yttrium, cobalt, iron, palladium, vanadium, titanium, platinum, thorium, chromium, rhodium, zirconium, ruthenium, iridium, niobium, molybdenum, Examples thereof include osmium, tantalum, tungsten, hafnium, or alloys thereof. Of these, the quartz glass member is appropriately selected and used in consideration of specific resistance, thermal conductivity, and the like, depending on the use of the quartz glass member.

金属以外の導電性材料としては、窒化物や炭化物のうち、導電性を示す炭化珪素(SiC)、炭化チタン(TiC)、窒化チタン(TiN)等のセラミックス材料も適用することができる。この場合も、石英ガラス板を熱圧着する際に、該セラミックス粉体同士が未焼結状態を維持するように、製造条件は適宜調整される。
なお、前記電極3は、単一層構造であっても、あるいはまた、上記金属やセラミックス等の導電性材料のうちの2種以上による多層構造であってもよい。
As the conductive material other than metal, ceramic materials such as silicon carbide (SiC), titanium carbide (TiC), and titanium nitride (TiN) exhibiting conductivity can be used among nitrides and carbides. Also in this case, when the quartz glass plate is subjected to thermocompression bonding, the manufacturing conditions are appropriately adjusted so that the ceramic powders are maintained in an unsintered state.
The electrode 3 may have a single layer structure, or may have a multilayer structure made of two or more of the above-described conductive materials such as metals and ceramics.

前記電極パターンは、任意であり、用途に応じて適宜定められ、例えば、静電チャックの吸着用電極の場合、双極タイプであっても単極タイプであってもよい。その形成方法としては、電極材料となる金属粉体を各種溶媒に分散させた分散液やペーストとして、石英ガラス板の電極形成面にスクリーン印刷する方法が用いられる。
スクリーン印刷によれば、電極パターンが大型又は微細な場合であっても、金属粉体が均等な密度である電極パターンを容易かつ効率的に形成することができる。
The electrode pattern is arbitrary and appropriately determined according to the application. For example, in the case of an electrostatic chuck attracting electrode, the electrode pattern may be a bipolar type or a monopolar type. As the forming method, a method of screen printing on the electrode forming surface of a quartz glass plate as a dispersion or paste in which metal powder as an electrode material is dispersed in various solvents is used.
According to screen printing, even when the electrode pattern is large or fine, it is possible to easily and efficiently form an electrode pattern in which the metal powder has a uniform density.

上記のようにして、電極パターンをスクリーン印刷した後、該電極形成面を他方の石英ガラス板と接合して、2枚の石英ガラス板を熱圧着する。
このように、石英ガラス板の接合は、接着剤等の他の材料を用いることなく、熱圧着によって容易に一体化することができる。
After the electrode pattern is screen-printed as described above, the electrode forming surface is joined to the other quartz glass plate, and two quartz glass plates are thermocompression bonded.
As described above, the quartz glass plates can be easily joined by thermocompression bonding without using other materials such as an adhesive.

熱圧着時の加熱により、スクリーン印刷のために用いられた溶媒成分は、揮発又は酸化して消失するが、このとき、電極を構成する導電性材料からなる粉体同士が焼結しないようにする必要がある。このため、熱圧着時には、石英ガラス板が圧着により一体化されるように加熱する必要があり、通常、3〜6MPaの加圧下で1200〜1300℃程度とされるが、熱圧着温度は、電極を構成する導電性材料の融点よりも低い温度とする。   The solvent component used for screen printing disappears by volatilization or oxidation due to heating during thermocompression bonding, but at this time, it is necessary to prevent the powders made of conductive materials constituting the electrodes from being sintered to each other. There is a need. For this reason, at the time of thermocompression bonding, it is necessary to heat so that the quartz glass plate is integrated by pressure bonding, and it is usually about 1200 to 1300 ° C. under a pressure of 3 to 6 MPa. The temperature is lower than the melting point of the conductive material constituting the.

本発明に係る電極埋め込み石英部材は、熱圧着により一体化された石英ガラス板の内部に導電性材料からなる粉体が埋設されているため、第1の石英ガラス板の厚さは、セラミックス板の場合より薄くても、電極に対する十分な絶縁性及び平坦性を確保することができ、所望の強度及び静電チャックやヒータとしての機能を考慮して、適宜定めることができる。第2の石英ガラス板の厚さについても同様である。   In the electrode-embedded quartz member according to the present invention, since the powder made of a conductive material is embedded in the quartz glass plate integrated by thermocompression bonding, the thickness of the first quartz glass plate is the ceramic plate. Even if it is thinner than this case, sufficient insulation and flatness with respect to the electrode can be ensured, and it can be appropriately determined in consideration of desired strength and functions as an electrostatic chuck or heater. The same applies to the thickness of the second quartz glass plate.

なお、第2の石英ガラス板2には、図1に示したような電極3に通じる給電端子用穴4を、第2の石英ガラス板2と第1の石英ガラス板1とを接合させる前に、予め形成しておくことが好ましい。
これにより、接合後、前記給電端子用穴4内で、導電ペースト等を用いて、電極3に給電端子及び導線を固定することができる。
The second quartz glass plate 2 is provided with a feeding terminal hole 4 leading to the electrode 3 as shown in FIG. 1 before joining the second quartz glass plate 2 and the first quartz glass plate 1 together. In addition, it is preferably formed in advance.
Thereby, after joining, the power supply terminal and the conductive wire can be fixed to the electrode 3 using the conductive paste or the like in the hole 4 for the power supply terminal.

本発明において用いられる石英ガラス板は、気泡や不純物の混入が少なく、比較的均質であることから、VAD(Vaper-phase Axial Deposition)法や直接法により製造された石英ガラスが好ましい。
このような石英ガラスを用いれば、より高電圧を印加しても絶縁破壊しにくく、長期間安定して使用することができる部材を構成することができる。
なお、熱膨張係数の低い石英ガラスが求められる場合には、チタニアがドープされたもの等を用いることができる。
The quartz glass plate used in the present invention is preferably a quartz glass produced by a VAD (Vaper-phase Axial Deposition) method or a direct method because it contains few bubbles and impurities and is relatively homogeneous.
By using such quartz glass, it is possible to constitute a member that is difficult to break down even when a higher voltage is applied and can be used stably for a long period of time.
In addition, when quartz glass with a low thermal expansion coefficient is calculated | required, what doped titania etc. can be used.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記実施例により制限されるものではない。
[実施例1]
直径300mm、厚さ5mmの第1の石英ガラス板に、タングステンペースト(78重量%)を用いて電極パターンをスクリーン印刷した。該電極は、厚さ10μm、ライン2mm、間隔0.5mmのくし型状の双極型電極とした。
この面に、直径300mm、厚さ20mmの第2の石英ガラス板を接合し、1275℃、プレス圧6MPaで60分間保持し、熱圧着した。
両石英ガラス板は完全に一体化した状態で圧着され、電極を構成するタングステンは、未焼結状態で密着した粉体の集合体となっていることが顕微鏡観察により確認された。
また、電圧1.5kVを印加しても、ガラスにクラックも生じず、電極に断線も見られなかった。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1]
An electrode pattern was screen-printed on a first quartz glass plate having a diameter of 300 mm and a thickness of 5 mm using tungsten paste (78% by weight). The electrode was a comb-shaped bipolar electrode having a thickness of 10 μm, a line of 2 mm, and an interval of 0.5 mm.
A second quartz glass plate having a diameter of 300 mm and a thickness of 20 mm was joined to this surface, held at 1275 ° C. and a press pressure of 6 MPa for 60 minutes, and thermocompression bonded.
It was confirmed by microscopic observation that the two quartz glass plates were pressure-bonded in a completely integrated state, and that the tungsten constituting the electrode was an aggregate of powders in close contact in an unsintered state.
Moreover, even when a voltage of 1.5 kV was applied, no crack was generated in the glass, and no disconnection was observed in the electrodes.

[比較例1]
直径300mm、厚さ5mmの第1の石英ガラス板に、タングステンを厚さ10μmで蒸着し、実施例1と同様の電極パターンを形成した。
この面に、直径300mm、厚さ20mmの第2の石英ガラス板を接合し、1215℃、プレス圧6MPaで60分間保持し、熱圧着した。
電圧1.5kVを印加したところ、電極パターンにおいて断線が生じた。
[Comparative Example 1]
Tungsten was vapor-deposited with a thickness of 10 μm on a first quartz glass plate having a diameter of 300 mm and a thickness of 5 mm to form an electrode pattern similar to that in Example 1.
A second quartz glass plate having a diameter of 300 mm and a thickness of 20 mm was joined to this surface, held at 1215 ° C. and a press pressure of 6 MPa for 60 minutes, and thermocompression bonded.
When a voltage of 1.5 kV was applied, disconnection occurred in the electrode pattern.

1 第1の石英ガラス板
2 第2の石英ガラス板
3 電極
4 給電端子用穴
DESCRIPTION OF SYMBOLS 1 1st quartz glass plate 2 2nd quartz glass plate 3 Electrode 4 Feeding terminal hole

Claims (3)

石英ガラス板の内部に、導電性材料からなる粉体が未焼結状態で密着した集合体からなる電極が埋設されていることを特徴とする電極埋め込み石英部材。   An electrode-embedded quartz member, characterized in that an electrode made of an aggregate in which powder made of a conductive material is adhered in an unsintered state is embedded in a quartz glass plate. 前記電極の厚さが1〜100μmであることを特徴とする請求項1記載の電極埋め込み石英部材。   The electrode-embedded quartz member according to claim 1, wherein the electrode has a thickness of 1 to 100 μm. 請求項1又は2に記載の電極埋め込み石英部材を製造する方法であって、第1の石英ガラス板の一主面上に、スクリーン印刷により電極パターンを形成した後、前記第1の石英ガラス板の電極形成面と前記第2の石英ガラス板を接合して、前記電極を構成する導電性材料の融点よりも低い温度で熱圧着することを特徴とする電極埋め込み石英部材の製造方法。   3. A method for manufacturing an electrode-embedded quartz member according to claim 1 or 2, wherein an electrode pattern is formed on one main surface of the first quartz glass plate by screen printing, and then the first quartz glass plate. A method for producing an electrode-embedded quartz member, comprising: bonding an electrode forming surface of the electrode and the second quartz glass plate, and thermocompression bonding at a temperature lower than a melting point of a conductive material constituting the electrode.
JP2013101311A 2013-05-13 2013-05-13 Electrode-embedded quartz member and manufacturing method thereof Active JP6139970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013101311A JP6139970B2 (en) 2013-05-13 2013-05-13 Electrode-embedded quartz member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013101311A JP6139970B2 (en) 2013-05-13 2013-05-13 Electrode-embedded quartz member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014222698A true JP2014222698A (en) 2014-11-27
JP6139970B2 JP6139970B2 (en) 2017-05-31

Family

ID=52122099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013101311A Active JP6139970B2 (en) 2013-05-13 2013-05-13 Electrode-embedded quartz member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6139970B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039863A (en) * 2019-09-18 2021-06-25 日本碍子株式会社 Electrostatic chuck heater

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130591A (en) * 1985-12-03 1987-06-12 松下電器産業株式会社 Formation of thick film circuit
JPH091723A (en) * 1995-04-17 1997-01-07 Kanegafuchi Chem Ind Co Ltd Heat resisting bonding sheet
JP2000025157A (en) * 1998-04-28 2000-01-25 Murata Mfg Co Ltd Composite laminate and its production
JP2004018325A (en) * 2002-06-18 2004-01-22 Ngk Insulators Ltd Method of producing sintered compact, sintered compact, member for sintering, method of producing ceramic multilayered substrate and ceramic multilayered substrate
JP3866591B2 (en) * 2001-10-29 2007-01-10 富士通株式会社 Method for forming interelectrode connection structure and interelectrode connection structure
JP2008108703A (en) * 2006-09-28 2008-05-08 Covalent Materials Corp Planar heater and semiconductor heat treatment device equipped with this heater
WO2009014017A1 (en) * 2007-07-26 2009-01-29 Murata Manufacturing Co., Ltd. Multilayer ceramic board and process for manufacturing the same
JP2009032718A (en) * 2007-07-24 2009-02-12 Covalent Materials Corp Glass-made electrostatic chuck and method of manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130591A (en) * 1985-12-03 1987-06-12 松下電器産業株式会社 Formation of thick film circuit
JPH091723A (en) * 1995-04-17 1997-01-07 Kanegafuchi Chem Ind Co Ltd Heat resisting bonding sheet
JP2000025157A (en) * 1998-04-28 2000-01-25 Murata Mfg Co Ltd Composite laminate and its production
JP3866591B2 (en) * 2001-10-29 2007-01-10 富士通株式会社 Method for forming interelectrode connection structure and interelectrode connection structure
JP2004018325A (en) * 2002-06-18 2004-01-22 Ngk Insulators Ltd Method of producing sintered compact, sintered compact, member for sintering, method of producing ceramic multilayered substrate and ceramic multilayered substrate
JP2008108703A (en) * 2006-09-28 2008-05-08 Covalent Materials Corp Planar heater and semiconductor heat treatment device equipped with this heater
JP2009032718A (en) * 2007-07-24 2009-02-12 Covalent Materials Corp Glass-made electrostatic chuck and method of manufacturing the same
WO2009014017A1 (en) * 2007-07-26 2009-01-29 Murata Manufacturing Co., Ltd. Multilayer ceramic board and process for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113039863A (en) * 2019-09-18 2021-06-25 日本碍子株式会社 Electrostatic chuck heater
CN113039863B (en) * 2019-09-18 2023-03-28 日本碍子株式会社 Electrostatic chuck heater

Also Published As

Publication number Publication date
JP6139970B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
JP5117146B2 (en) Heating device
US11004715B2 (en) Substrate supporting device
KR102024965B1 (en) Electrostatic chuck and method of manufacturing electrostatic chuck
TW442888B (en) Electrostatic holding apparatus and method of producing the same
JP4482472B2 (en) Electrostatic chuck and manufacturing method thereof
TWI466847B (en) Method for manufacturing ceramic sintered body, ceramic sintered body and ceramic heater
US6756132B2 (en) Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials
JP2014063986A (en) Electrostatic chuck
TW201117553A (en) Electronic device and method of manufacturing the same
JP2017228361A (en) Heating member and electrostatic chuck
JP4005268B2 (en) Bonding structure of ceramics and metal and intermediate insert used for this
JP2017119593A (en) Ceramic member
JP2018006737A (en) Holding device and manufacturing method of holding device
JP2016100473A (en) Electrostatic chuck
JP4331983B2 (en) Wafer support member and manufacturing method thereof
JP6139970B2 (en) Electrode-embedded quartz member and manufacturing method thereof
US10477623B2 (en) Heater
JP6475054B2 (en) Components for semiconductor manufacturing equipment
JP4757839B2 (en) Glassy electrostatic chuck and manufacturing method thereof
JP5950409B2 (en) Electrode-embedded quartz member and manufacturing method thereof
CN105858587A (en) Heater structure for heating and activating micro-miniature self-heating air suction agents and method for manufacturing heater structure
JP4165793B2 (en) Metal foil / ceramic bonding material manufacturing method
KR101977394B1 (en) Method of manufacturing ceramic electrostatic chuck using liquid sintering method
JP5674192B2 (en) Electrostatic chuck and manufacturing method thereof.
JP2005281767A (en) Method for manufacturing highly heat resistant conductive thin film, highly heat resistant conductive thin film and laminated film obtained by the manufacturing method, and device provided with the laminated film

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170428

R150 Certificate of patent or registration of utility model

Ref document number: 6139970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250