JP2014220127A - Conductive paste, method of producing the same and ceramic electronic part using the same - Google Patents

Conductive paste, method of producing the same and ceramic electronic part using the same Download PDF

Info

Publication number
JP2014220127A
JP2014220127A JP2013098818A JP2013098818A JP2014220127A JP 2014220127 A JP2014220127 A JP 2014220127A JP 2013098818 A JP2013098818 A JP 2013098818A JP 2013098818 A JP2013098818 A JP 2013098818A JP 2014220127 A JP2014220127 A JP 2014220127A
Authority
JP
Japan
Prior art keywords
conductive paste
external electrode
glass powder
conductive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013098818A
Other languages
Japanese (ja)
Other versions
JP6107394B2 (en
Inventor
有紀 金森
Yuki Kanemori
有紀 金森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013098818A priority Critical patent/JP6107394B2/en
Publication of JP2014220127A publication Critical patent/JP2014220127A/en
Application granted granted Critical
Publication of JP6107394B2 publication Critical patent/JP6107394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Conductive Materials (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste which produces no defects even when an external electrode of a ceramic electronic part is in a thin-layer form.SOLUTION: A conductive paste comprises a conductive powder, a glass powder and an organic vehicle and has a yield value of 3.2-5.8 Pa at a descending shear rate of 9-4 s, calculated by the Casson approximation. An external electrode which has a clear shape free of defects, e.g. discontinuous parts, in corner parts of a laminate ceramic chip can be obtained by applying the conductive paste onto a laminate ceramic chip and baking.

Description

この発明は、導電性ペーストとその製造方法およびそれを用いたセラミック電子部品に関し、特にたとえば、セラミック素体の外面に形成される外部電極に用いられる導電性ペーストとその製造方法およびそれを用いたセラミック電子部品に関する。   The present invention relates to a conductive paste, a manufacturing method thereof, and a ceramic electronic component using the same, and more particularly, for example, a conductive paste used for an external electrode formed on an outer surface of a ceramic body, a manufacturing method thereof, and the same. The present invention relates to ceramic electronic components.

近年、携帯電話を含めた電子機器の小型化に伴い、搭載されるセラミック電子部品の小型化が求められている。このような背景から、セラミック電子部品の外部電極に関しても、さらなる薄層化が望まれている。   In recent years, along with miniaturization of electronic devices including mobile phones, there is a demand for miniaturization of mounted ceramic electronic components. Against this background, further thinning is desired for the external electrodes of ceramic electronic components.

セラミック電子部品の外部電極を形成するために、導電性粉末とガラス粉末と有機ビヒクルとをミキサーやロール機などで混合・分散させて導電性ペーストが作製される。そして、セラミック基板や積層セラミック素子等のセラミック素体にスクリーン印刷やディップ工法を用いて導電性ペーストを塗布し、乾燥させた後に焼成し、めっきを施すことにより、外部電極が形成される。   In order to form an external electrode of a ceramic electronic component, a conductive paste is prepared by mixing and dispersing conductive powder, glass powder, and an organic vehicle with a mixer or a roll machine. Then, an external electrode is formed by applying a conductive paste to a ceramic body such as a ceramic substrate or a multilayer ceramic element by using screen printing or a dip method, drying, baking, and plating.

ところが、外部電極を形成するための導電性ペーストに含まれる導電性粉末等の分散性が経時的に変化し、導電性ペーストのレオロジー特性が変化して塗布形状が変化したり、導電性ペーストを塗布・焼成して形成される電極膜の緻密性が低下するなどの問題がある。そこで、このような問題を解決することができる導電性ペーストが開示されている(特許文献1、特許文献2参照)。   However, the dispersibility of the conductive powder contained in the conductive paste for forming the external electrode changes with time, the rheological properties of the conductive paste change, the application shape changes, and the conductive paste There is a problem that the denseness of the electrode film formed by coating and baking is lowered. Then, the conductive paste which can solve such a problem is disclosed (refer patent document 1 and patent document 2).

特開2004−171804号公報JP 2004-171804 A 特開2004−39267号公報JP 2004-39267 A

これらの特許文献には、BET法により測定した比表面積が3m2/g以下のガラス粉末を用いた導電性ペーストが開示されている。しかしながら、このような比表面積の小さいガラス粉末を用いた場合、導電性ペーストの降伏値が低くなる。セラミック素体に外部電極を形成する場合、セラミック素体の端面から側面に回り込むように導電性ペーストが塗布されるが、降伏値の低い導電性ペーストを用いて外部電極を薄層化する場合、セラミック素体のコーナー部における導電性ペーストの塗布厚みが特に薄くなってしまう。このような状態で導電性ペーストを焼成すると、焼結時の収縮のためにセラミック素体のコーナー部における外部電極に不連続部分が発生するなどの欠陥が生じる可能性がある。 These patent documents disclose a conductive paste using glass powder having a specific surface area measured by the BET method of 3 m 2 / g or less. However, when such a glass powder having a small specific surface area is used, the yield value of the conductive paste is lowered. When forming the external electrode on the ceramic body, the conductive paste is applied so as to go around from the end surface of the ceramic body to the side surface, but when the external electrode is thinned using the conductive paste having a low yield value, The coating thickness of the conductive paste at the corner portion of the ceramic body is particularly thin. When the conductive paste is fired in such a state, defects such as discontinuous portions may occur in the external electrodes at the corner portions of the ceramic body due to shrinkage during sintering.

それゆえに、この発明の主たる目的は、セラミック電子部品の外部電極を薄層化しても欠陥が発生しない導電性ペーストとその製造方法およびそれを用いたセラミック電子部品を提供することである。   Therefore, a main object of the present invention is to provide a conductive paste that does not cause defects even when the external electrode of the ceramic electronic component is thinned, a manufacturing method thereof, and a ceramic electronic component using the same.

この発明は、導電性粉末と、ガラス粉末と、有機ビヒクルとを含有する導電性ペーストにおいて、下降ずり速度が9〜4s-1の範囲におけるCasson近似から算出した降伏値が3.2〜5.8Paの範囲にあることを特徴とする、導電性ペーストである。
降伏値が上述の範囲にある導電性ペーストを用いることにより、セラミック素体のコーナー部に塗布された導電性ペーストの厚みを十分に確保することができる。したがって、セラミック素体に塗布された導電性ペーストを焼成したときに、外部電極に欠陥が発生することを防止することができる。
According to the present invention, in a conductive paste containing conductive powder, glass powder, and organic vehicle, the yield value calculated from the Casson approximation in the range of 9-4 s -1 descent rate is 3.2-5. A conductive paste characterized by being in the range of 8 Pa.
By using the conductive paste whose yield value is in the above range, the thickness of the conductive paste applied to the corner portion of the ceramic body can be sufficiently secured. Therefore, it is possible to prevent the external electrode from being defective when the conductive paste applied to the ceramic body is fired.

このような導電性ペーストにおいて、BET法により測定したガラス粉末の比表面積が7.0〜10.1m2/gの範囲にあることが好ましい。
ガラス粉末の比表面積がこのような範囲にあるときに、上述のような降伏値を有する導電性ペーストを得ることができる。
In such a conductive paste, the specific surface area of the glass powder measured by the BET method is preferably in the range of 7.0 to 10.1 m 2 / g.
When the specific surface area of the glass powder is in such a range, a conductive paste having a yield value as described above can be obtained.

また、この発明は、湿式または乾式メディア微粉砕を行なうことによりガラス粉末の比表面積を7.0〜10.1m2/gとなるように調整する工程、および比表面積を調整したガラス粉末と、導電性粉末と、有機ビヒクルとを分散、混合する工程を含む、導電性ペーストの製造方法である。
このような製造方法を採用することにより、上述のような導電性ペーストを得ることができる。
The present invention also includes a step of adjusting the specific surface area of the glass powder to 7.0 to 10.1 m 2 / g by performing wet or dry media fine grinding, and a glass powder having an adjusted specific surface area, A method for producing a conductive paste, comprising a step of dispersing and mixing a conductive powder and an organic vehicle.
By employing such a manufacturing method, the conductive paste as described above can be obtained.

また、この発明は、セラミック素体の外面に外部電極が形成されたセラミック電子部品において、外部電極が上述の導電性ペーストを用いて形成されたものであることを特徴とする、セラミック電子部品である。
上述の導電性ペーストを用いて外部電極を形成することにより、欠陥のない薄層の外部電極を有するセラミック電子部品を得ることができる。
According to another aspect of the present invention, there is provided a ceramic electronic component having an external electrode formed on the outer surface of the ceramic body, wherein the external electrode is formed using the above-described conductive paste. is there.
By forming the external electrode using the above-described conductive paste, a ceramic electronic component having a thin external electrode without a defect can be obtained.

この発明によれば、セラミック素体に導電性ペーストを薄く塗布しても、コーナー部における導電性ペーストの塗布厚みを十分に確保することができる。そのため、セラミック素体に塗布された導電性ペーストを焼結させても電極に不連続部分などが発生せず、欠陥のない薄層の外部電極を有するセラミック電子部品を得ることができる。   According to the present invention, even if the conductive paste is thinly applied to the ceramic body, the application thickness of the conductive paste at the corner portion can be sufficiently ensured. Therefore, even if the conductive paste applied to the ceramic body is sintered, a discontinuous portion or the like does not occur in the electrode, and a ceramic electronic component having a thin external electrode without defects can be obtained.

この発明の上述の目的、その他の目的、特徴および利点は、図面を参照して行う以下の発明を実施するための形態の説明から一層明らかとなろう。   The above-described object, other objects, features, and advantages of the present invention will become more apparent from the following description of embodiments for carrying out the invention with reference to the drawings.

図1は、本発明のセラミック電子部品の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the ceramic electronic component of the present invention. 図2は、本発明の実施例に用いられる積層セラミックチップの斜視図である。FIG. 2 is a perspective view of the multilayer ceramic chip used in the embodiment of the present invention. 図3は、図2に示す積層セラミックチップの分解斜視図である。FIG. 3 is an exploded perspective view of the multilayer ceramic chip shown in FIG. 図4は、実施例において測定される外部電極の部分を示す顕微鏡写真である。FIG. 4 is a photomicrograph showing the portion of the external electrode measured in the example. 図5は、導電性ペーストに含まれるガラス粉末の比表面積と導電性ペーストの降伏値との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the specific surface area of the glass powder contained in the conductive paste and the yield value of the conductive paste. 図6(a)(b)は、それぞれ降伏値5.8Paおよび3.2Paの導電性ペーストで形成した外部電極の様子を示す顕微鏡写真である。FIGS. 6A and 6B are photomicrographs showing the state of the external electrodes formed with conductive pastes having yield values of 5.8 Pa and 3.2 Pa, respectively. 図7は、降伏値1.5Paの導電性ペーストで形成した外部電極の様子を示す顕微鏡写真である。FIG. 7 is a photomicrograph showing a state of the external electrode formed of a conductive paste having a yield value of 1.5 Pa. 図8(a)(b)は、それぞれ降伏値14.8Paおよび19.6Paの導電性ペーストで形成した外部電極の様子を示す顕微鏡写真である。FIGS. 8A and 8B are photomicrographs showing the state of external electrodes formed from conductive pastes having a yield value of 14.8 Pa and 19.6 Pa, respectively.

この発明の導電性ペーストは、導電性粉末と、微粉砕を行なって比表面積を向上させたガラス粉末と、有機ビヒクルとを含む。ここで、導電性ペーストは、下降ずり速度が4〜9s-1の範囲におけるCasson近似から算出した導電性ペーストの降伏値が3.2〜5.8Paの範囲にあるものである。 The electrically conductive paste of this invention contains electrically conductive powder, the glass powder which improved the specific surface area by pulverizing, and the organic vehicle. Here, the conductive paste has a yield value of the conductive paste in the range of 3.2 to 5.8 Pa calculated from the Casson approximation in the range of the descent rate of 4 to 9 s −1 .

ここで用いられる導電性粉末の形状、形態に制約はなく、球状、不定形状、扁平状などの種々の形状、形態のものを使用することができる。また、有機ビヒクルを構成する有機溶剤としては、高分子物質を溶解させることが可能な種々の物質を用いることができる。たとえば、ベンゼン、キシレン、トルエン等の芳香族炭化水素類、ヘキサン、デカン等の脂肪族炭化水素類、ベンジルアルコール、3−メトキシ−3−メチル−1ブタノール等のアルコール類、ターピネオール、ジヒドロターピネオール等のテルペン類、エチレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル等の多価アルコール類、乳酸ブチル等のエステル類、ケトン類、エーテル類、アセタール類、含窒素化合物類、含硫黄化合物類などを使用することができる。なお、これらの溶剤は、単独もしくは2種類以上を組み合わせて使用することが可能である。   There is no restriction | limiting in the shape and form of the electroconductive powder used here, The thing of various shapes, such as spherical shape, indefinite shape, and flat shape, can be used. As the organic solvent constituting the organic vehicle, various substances capable of dissolving the polymer substance can be used. For example, aromatic hydrocarbons such as benzene, xylene and toluene, aliphatic hydrocarbons such as hexane and decane, alcohols such as benzyl alcohol and 3-methoxy-3-methyl-1-butanol, terpineol, dihydroterpineol and the like It is possible to use terpenes, polyhydric alcohols such as ethylene glycol monomethyl ether and ethylene glycol monobutyl ether, esters such as butyl lactate, ketones, ethers, acetals, nitrogen-containing compounds, sulfur-containing compounds, etc. it can. These solvents can be used alone or in combination of two or more.

また、有機ビヒクルを構成する高分子物質としては、公知の合成高分子物質や天然高分子物質を用いることが可能であり、具体的には、アクリル系樹脂、酢酸ビニル系樹脂、ポリエステル樹脂、ポリオレフィン系樹脂、フッ素系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、アルキド樹脂、セルロース系樹脂等が例示される。なお、これらの高分子物質は、単独もしくは2種類以上を組み合わせて使用することが可能である。   In addition, as the polymer material constituting the organic vehicle, known synthetic polymer materials and natural polymer materials can be used. Specifically, acrylic resins, vinyl acetate resins, polyester resins, polyolefins can be used. Examples of such resins include fluororesins, fluororesins, polystyrene resins, polyamide resins, alkyd resins, and cellulose resins. These polymer substances can be used alone or in combination of two or more.

また、ガラス粉末の形状、形態に制約はなく、球状、不定形状、扁平状などの種々の形状、形態のものを使用することができる。BET法により測定したガラス粉末の比表面積は、7.0〜10.1m2/gの範囲にあることが望ましい。ガラス粉末としては、例えば、ホウ酸シリカ系ガラス類、ホウ酸亜鉛系ガラス類などの公知のガラス粉末を単独もしくは2種類以上を組合せて使用することができる。 Moreover, there is no restriction | limiting in the shape and form of glass powder, The thing of various shapes, forms, such as spherical shape, indefinite shape, and flat shape, can be used. The specific surface area of the glass powder measured by the BET method is preferably in the range of 7.0 to 10.1 m 2 / g. As the glass powder, for example, known glass powders such as silica borate glasses and zinc borate glasses can be used alone or in combination of two or more.

この導電性ペーストを得るために、導電性粉末と、ガラス粉末と、有機ビヒクルとが準備される。ここで、ガラス粉末は、湿式もしくは乾式メディア微粉砕を行なうことで、比表面積を7.0〜10.1m2/gの範囲となるように調整したものである。そして、導電性粉末とガラス粉末とを有機ビヒクル中に投入し、ディスパミル、ボールミル、ロ−ル等の公知の方法を用いて分散混合することにより、導電性ペーストを製造することができる。 In order to obtain this conductive paste, conductive powder, glass powder, and an organic vehicle are prepared. Here, the glass powder is adjusted to have a specific surface area of 7.0 to 10.1 m 2 / g by wet or dry media fine grinding. Then, the conductive powder and the glass powder are put into an organic vehicle, and dispersed and mixed using a known method such as dispal mill, ball mill, or roll, whereby a conductive paste can be manufactured.

このようにして得られた導電性ペーストを用いて、図1に示すようなセラミック電子部品10が作製される。セラミック電子部品10は、例えば直方体状のセラミック素体12を含む。セラミック素体12としては、例えば、積層セラミックコンデンサやチップインダクタなどに用いられるセラミック素体を使用することができる。このようなセラミック素体12の外面に導電性ペーストが塗布され、乾燥後、焼成されることにより、外部電極14が形成される。外部電極14には、必要に応じて、めっき処理が施される。   A ceramic electronic component 10 as shown in FIG. 1 is manufactured using the conductive paste thus obtained. The ceramic electronic component 10 includes, for example, a rectangular parallelepiped ceramic body 12. As the ceramic body 12, for example, a ceramic body used for a multilayer ceramic capacitor, a chip inductor, or the like can be used. A conductive paste is applied to the outer surface of such a ceramic body 12, dried and fired to form the external electrode 14. The external electrode 14 is plated as necessary.

この導電性ペーストに含まれるガラス粉末の比表面積が7.0〜10.1m2/gの範囲にあることにより、下降ずり速度が4〜9s-1の範囲におけるCasson近似から算出した降伏値が3.2〜5.8Paの範囲にある導電性ペーストを得ることができる。導電性ペーストの降伏値をこのような範囲にすることにより、セラミック素体のコーナー部における導電性ペーストの厚みを十分に確保することができる。そのため、導電性ペーストを焼成する際に収縮が発生しても、セラミック素体のコーナー部において外部電極に不連続部分が発生せず、良好な特性を得ることができる。 Since the specific surface area of the glass powder contained in this conductive paste is in the range of 7.0 to 10.1 m 2 / g, the yield value calculated from the Casson approximation in the range of the descent rate of 4 to 9 s −1 is A conductive paste in the range of 3.2 to 5.8 Pa can be obtained. By setting the yield value of the conductive paste in such a range, the thickness of the conductive paste at the corner portion of the ceramic body can be sufficiently ensured. Therefore, even if shrinkage occurs when firing the conductive paste, discontinuous portions do not occur in the external electrodes at the corners of the ceramic body, and good characteristics can be obtained.

なお、導電性ペーストの降伏値が2.0Pa以下の場合、周知のスクリーン印刷やディップ工法によってセラミック素体に導電性ペーストを塗布した際、コーナー部における導電性ペーストの塗布厚みが薄くなり、焼結して収縮したときに欠陥が生じるという問題がある。また、導電性ペーストの降伏値が5.8Paより著しく高い場合、例えば降伏値が14.8Pa以上の場合、周知のスクリーン印刷やディップ工法によってセラミック素体に導電性ペーストを塗布した際、塗膜レベリングが悪化して外部電極が凸凹になるという問題がある。   When the yield value of the conductive paste is 2.0 Pa or less, when the conductive paste is applied to the ceramic body by a well-known screen printing or dip method, the thickness of the conductive paste applied at the corner is reduced, and the firing is performed. There is a problem that defects occur when contracted. Further, when the yield value of the conductive paste is significantly higher than 5.8 Pa, for example, when the yield value is 14.8 Pa or more, when the conductive paste is applied to the ceramic body by a known screen printing or dipping method, There is a problem that the leveling deteriorates and the external electrode becomes uneven.

それに対して、導電性ペーストの降伏値が3.2〜5.8Paの範囲にある場合、セラミック素体のコーナー部において欠陥がなく、きれいな形状の外部電極を得ることができる。   On the other hand, when the yield value of the conductive paste is in the range of 3.2 to 5.8 Pa, there is no defect in the corner portion of the ceramic body, and a clean external electrode can be obtained.

導電性ペーストの素材料として、表1に示す導電性粉末(Cu粉末)、表2に示すガラス粉末、表3に示す有機ビヒクルを準備した。なお、表2に示すガラス粉末は、湿式もしくは乾式メディア微粉砕を行なうことで、比表面積を調整したものである。また、表1の導電性粉末の平均粒子径および表2のガラス粉末の平均粒子径は、レーザー回折式粒度分布測定法のD50値を示している。さらに、表2のガラス粉末の比表面積は、BET法により測定した値である。   As raw materials of the conductive paste, conductive powder (Cu powder) shown in Table 1, glass powder shown in Table 2, and organic vehicle shown in Table 3 were prepared. The glass powder shown in Table 2 has a specific surface area adjusted by wet or dry media fine grinding. Moreover, the average particle diameter of the electroconductive powder of Table 1 and the average particle diameter of the glass powder of Table 2 have shown D50 value of the laser diffraction type particle size distribution measuring method. Furthermore, the specific surface area of the glass powder in Table 2 is a value measured by the BET method.

導電性粉末、ガラス粉末および有機ビヒクルを3本ロールで分散混合し、表4に示す組成の導電性ペーストを得た。   Conductive powder, glass powder and an organic vehicle were dispersed and mixed with three rolls to obtain a conductive paste having the composition shown in Table 4.

表4における導電性ペーストに含まれるガラス粉末の比表面積と導電性ペーストの降伏値との関係を表5に示す。   Table 5 shows the relationship between the specific surface area of the glass powder contained in the conductive paste in Table 4 and the yield value of the conductive paste.

表5において、導電性ペーストの降伏値の測定は、TA Instruments社製のレオメータを使用して、コーン角0.04°、コーン直径25mm、ギャップ0.0559mm、測定温度25℃の条件で、ずり速度が0〜10s-1まで30秒間で加速し、次いで10〜0s-1まで30秒間減速して行った。このようにして得られたフローカーブの下降ずり速度が9〜4s-1の範囲にCasson近似を適用して降伏値を算出した。 In Table 5, the yield value of the conductive paste was measured using a rheometer manufactured by TA Instruments, with a cone angle of 0.04 °, a cone diameter of 25 mm, a gap of 0.0559 mm, and a measurement temperature of 25 ° C. The speed was accelerated from 0 to 10 s −1 in 30 seconds and then decelerated from 10 to 0 s −1 for 30 seconds. The yield value was calculated by applying Casson approximation in the range where the descending shear rate of the flow curve thus obtained was 9 to 4 s −1 .

また、導電性ペーストを用いて外部電極を形成するために、図2に示すように、JIS2012サイズ(長さL:2.0mm、高さT:1.2mm、幅W:1.2mm)の積層セラミックチップ10を準備した。積層セラミックチップ12の内部には、図3に示すように、複数の内部電極16を含む。内部電極16は、積層セラミックチップ12の長さ方向の一方側から他方側に伸びるように形成されている。複数の内部電極16は、積層セラミックチップ12の長さ方向の中央部において互いに重なり合うように形成される。そして、隣接する内部電極16は、積層セラミックチップ12の長さ方向の異なる端部に引き出される。したがって、積層セラミックチップ12の長さ方向の両端面には、積層された内部電極16が交互に引き出され、積層セラミックチップ12の側面には内部電極は引き出されていない。このような積層セラミックチップ12の長さ方向の端部にディップ工法を用いて試料番号1〜5の導電性ペーストを塗布し、その後、850℃で焼成を行うことで外部電極の焼結膜を形成した。   Moreover, in order to form an external electrode using a conductive paste, as shown in FIG. 2, a JIS2012 size (length L: 2.0 mm, height T: 1.2 mm, width W: 1.2 mm) A multilayer ceramic chip 10 was prepared. The multilayer ceramic chip 12 includes a plurality of internal electrodes 16 as shown in FIG. The internal electrode 16 is formed so as to extend from one side in the length direction of the multilayer ceramic chip 12 to the other side. The plurality of internal electrodes 16 are formed so as to overlap each other at the center in the length direction of the multilayer ceramic chip 12. The adjacent internal electrodes 16 are drawn out to different end portions of the multilayer ceramic chip 12 in the length direction. Therefore, the laminated internal electrodes 16 are alternately drawn on both end faces in the length direction of the multilayer ceramic chip 12, and the internal electrodes are not drawn on the side surfaces of the multilayer ceramic chip 12. A conductive paste of Sample Nos. 1 to 5 is applied to the end in the length direction of such a multilayer ceramic chip 12 using a dipping method, and then sintered at 850 ° C. to form a sintered film of the external electrode did.

得られた焼結膜について、セラミックチップの長さ方向と高さ方向とを含むL−T面を研磨し、内部電極が最初に露出する面をWGap0研磨面とし、この面における外部電極のコーナー部の接合状態を金属顕微鏡で観察した。ここで、外部電極の観察は、端面厚み、最外層厚みおよびコーナー部厚みについて行った。端面厚みは、図4(a)に示すように、内部電極が引き出された積層セラミックチップの端面における外部電極の厚みである。また、最外層厚みは、図4(b)に示すように、最外層にある内部電極に接続された部分の外部電極の厚みである。さらに、コーナー部厚みは、図4(b)に示すように、積層セラミックチップの端面から側面に移行するコーナー部における外部電極の厚みである。そして、測定した各部の外部電極の厚みを表6に示す。なお、表6には、外部電極の各部において目標とする厚みを示してある。   For the obtained sintered film, the LT surface including the length direction and the height direction of the ceramic chip is polished, and the surface where the internal electrode is first exposed is the WGap0 polished surface, and the corner portion of the external electrode on this surface The bonding state of was observed with a metallographic microscope. Here, the external electrodes were observed with respect to the end face thickness, the outermost layer thickness, and the corner portion thickness. The end face thickness is the thickness of the external electrode on the end face of the multilayer ceramic chip from which the internal electrode is drawn, as shown in FIG. Further, the outermost layer thickness is the thickness of the external electrode in a portion connected to the internal electrode in the outermost layer, as shown in FIG. Furthermore, the corner portion thickness is the thickness of the external electrode at the corner portion that transitions from the end surface to the side surface of the multilayer ceramic chip, as shown in FIG. Table 6 shows the measured thickness of the external electrode of each part. Table 6 shows target thicknesses in the respective portions of the external electrode.

表5において示されるガラス粉末の比表面積と導電性ペーストの降伏値との関係が、グラフとして図5に示される。図5の片対数グラフからわかるように、導電性ペーストの降伏値は、ガラス粉末の比表面積に対して指数関数的に増加している。   The relationship between the specific surface area of the glass powder shown in Table 5 and the yield value of the conductive paste is shown in FIG. 5 as a graph. As can be seen from the semilogarithmic graph of FIG. 5, the yield value of the conductive paste increases exponentially with respect to the specific surface area of the glass powder.

降伏値が5.8Paおよび3.2Paの導電性ペーストを用いた場合について、積層セラミックチップのコーナー部における外部電極の顕微鏡写真を図6(a)(b)に示す。図6(a)(b)からわかるように、導電性ペーストの降伏値が3.2〜5.8Paの範囲(ガラス粉末の比表面積が7.0〜10.1m2/gの範囲)においては、WGap0研磨面における積層セラミックチップのコーナー部の外部電極厚みが十分に確保でき、欠陥のない良好な状態であった。 FIGS. 6A and 6B show micrographs of the external electrodes at the corners of the multilayer ceramic chip when the conductive pastes having the yield values of 5.8 Pa and 3.2 Pa are used. 6A and 6B, the yield value of the conductive paste is in the range of 3.2 to 5.8 Pa (the specific surface area of the glass powder is in the range of 7.0 to 10.1 m 2 / g). Was able to secure a sufficient thickness of the external electrode at the corner of the multilayer ceramic chip on the WGap0 polished surface, and was in a good state without defects.

また、降伏値が1.5Paの導電性ペーストを用いた場合について、積層セラミックチップのコーナー部における外部電極の顕微鏡写真を図7に示す。図7からわかるように、導電性ペーストの降伏値が2.0Pa以下と低い場合、WGap0研磨面における積層セラミックチップのコーナー部の外部電極厚みが十分に確保できず、外部電極に不連続部分などの欠陥が見られた。   FIG. 7 shows a photomicrograph of the external electrode at the corner portion of the multilayer ceramic chip when a conductive paste having a yield value of 1.5 Pa is used. As can be seen from FIG. 7, when the yield value of the conductive paste is as low as 2.0 Pa or less, the external electrode thickness at the corner portion of the multilayer ceramic chip on the WGap0 polished surface cannot be sufficiently secured, and the external electrode has a discontinuous portion. The defect was seen.

また、降伏値が14.8Paおよび19.6Paの導電性ペーストを用いた場合について、積層セラミックチップのコーナー部における外部電極の顕微鏡写真を図8(a)(b)に示す。図8(a)(b)からわかるように、導電性ペーストの降伏値が著しく高い場合、導電性ペーストを周知のスクリーン印刷やディップ工法によって積層セラミックチップに塗布したとき、塗膜レベリングが悪化して、積層セラミックチップのコーナー部における外部電極の形状が凸凹になっている。   8A and 8B show micrographs of the external electrodes at the corners of the multilayer ceramic chip when using conductive pastes having yield values of 14.8 Pa and 19.6 Pa. As can be seen from FIGS. 8A and 8B, when the yield value of the conductive paste is remarkably high, coating leveling deteriorates when the conductive paste is applied to the multilayer ceramic chip by a known screen printing or dip method. Thus, the shape of the external electrode at the corner of the multilayer ceramic chip is uneven.

この実施例から、降伏値が3.2〜5.8Paの範囲にある導電性ペーストを用いることにより、欠陥がなく、良好な形状を有する外部電極が得られることがわかる。したがって、このような導電性ペーストを用いることにより、欠陥のない薄い外部電極が形成されたセラミック電子部品を得ることができ、小型のセラミック電子部品の製造に貢献することができる。   From this example, it can be seen that by using a conductive paste having a yield value in the range of 3.2 to 5.8 Pa, an external electrode having no defects and having a good shape can be obtained. Therefore, by using such a conductive paste, it is possible to obtain a ceramic electronic component on which a thin external electrode having no defect is formed, which can contribute to the manufacture of a small ceramic electronic component.

Claims (4)

導電性粉末と、ガラス粉末と、有機ビヒクルとを含有する導電性ペーストにおいて、
下降ずり速度が9〜4s-1の範囲におけるCasson近似から算出した降伏値が3.2〜5.8Paの範囲にあることを特徴とする、導電性ペースト。
In a conductive paste containing a conductive powder, a glass powder, and an organic vehicle,
A conductive paste having a yield value calculated from Casson approximation in the range of 9-4 s -1 of the descent rate in the range of 3.2 to 5.8 Pa.
BET法により測定した前記ガラス粉末の比表面積が7.0〜10.1m2/gの範囲にあることを特徴とする、請求項1に記載の導電性ペースト。 2. The conductive paste according to claim 1, wherein a specific surface area of the glass powder measured by a BET method is in a range of 7.0 to 10.1 m 2 / g. 湿式または乾式メディア微粉砕を行なうことによりガラス粉末の比表面積を7.0〜10.1m2/gとなるように調整する工程、および
比表面積を調整した前記ガラス粉末と、導電性粉末と、有機ビヒクルとを分散、混合する工程を含む、導電性ペーストの製造方法。
A step of adjusting the specific surface area of the glass powder to 7.0 to 10.1 m 2 / g by performing wet or dry media pulverization, and the glass powder having the adjusted specific surface area, a conductive powder, A method for producing a conductive paste, comprising a step of dispersing and mixing an organic vehicle.
セラミック素体の外面に外部電極が形成されたセラミック電子部品において、
前記外部電極が請求項1または請求項2に記載の導電性ペーストを用いて形成されたものであることを特徴とする、セラミック電子部品。
In ceramic electronic components in which external electrodes are formed on the outer surface of the ceramic body,
A ceramic electronic component, wherein the external electrode is formed using the conductive paste according to claim 1 or 2.
JP2013098818A 2013-05-08 2013-05-08 Conductive paste, method for producing the same, and ceramic electronic component using the same Active JP6107394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098818A JP6107394B2 (en) 2013-05-08 2013-05-08 Conductive paste, method for producing the same, and ceramic electronic component using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098818A JP6107394B2 (en) 2013-05-08 2013-05-08 Conductive paste, method for producing the same, and ceramic electronic component using the same

Publications (2)

Publication Number Publication Date
JP2014220127A true JP2014220127A (en) 2014-11-20
JP6107394B2 JP6107394B2 (en) 2017-04-05

Family

ID=51938399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098818A Active JP6107394B2 (en) 2013-05-08 2013-05-08 Conductive paste, method for producing the same, and ceramic electronic component using the same

Country Status (1)

Country Link
JP (1) JP6107394B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109559892A (en) * 2017-09-27 2019-04-02 太阳诱电株式会社 The manufacturing method of ceramic electronic component and ceramic electronic component
US10529486B2 (en) 2017-04-17 2020-01-07 Murata Manufacturing Co., Ltd. Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064561A (en) * 2007-09-04 2009-03-26 Mitsubishi Materials Corp Conductive black paste composition and manufacturing method of bus electrode using the composition
JP2011175750A (en) * 2010-02-23 2011-09-08 Murata Mfg Co Ltd Conductive paste, and electronic component
WO2012165167A1 (en) * 2011-06-03 2012-12-06 株式会社ノリタケカンパニーリミテド Solar cell and paste composition for forming aluminum electrode of solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009064561A (en) * 2007-09-04 2009-03-26 Mitsubishi Materials Corp Conductive black paste composition and manufacturing method of bus electrode using the composition
JP2011175750A (en) * 2010-02-23 2011-09-08 Murata Mfg Co Ltd Conductive paste, and electronic component
WO2012165167A1 (en) * 2011-06-03 2012-12-06 株式会社ノリタケカンパニーリミテド Solar cell and paste composition for forming aluminum electrode of solar cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529486B2 (en) 2017-04-17 2020-01-07 Murata Manufacturing Co., Ltd. Conductive paste for external electrode and method for manufacturing electronic component including the conductive paste for external electrode
CN109559892A (en) * 2017-09-27 2019-04-02 太阳诱电株式会社 The manufacturing method of ceramic electronic component and ceramic electronic component
KR20190036479A (en) * 2017-09-27 2019-04-04 다이요 유덴 가부시키가이샤 Ceramic electronic device and manufacturing method of ceramic electronic device
JP2019062100A (en) * 2017-09-27 2019-04-18 太陽誘電株式会社 Ceramic electronic part and method for manufacturing the same
US11107631B2 (en) 2017-09-27 2021-08-31 Taiyo Yuden Co., Ltd. Ceramic electronic device and manufacturing method of ceramic electronic device
JP7131897B2 (en) 2017-09-27 2022-09-06 太陽誘電株式会社 Ceramic electronic component and manufacturing method thereof
US11551868B2 (en) 2017-09-27 2023-01-10 Taiyo Yuden Co., Ltd. Ceramic electronic device and manufacturing method of ceramic electronic device
KR102635244B1 (en) * 2017-09-27 2024-02-13 다이요 유덴 가부시키가이샤 Ceramic electronic device and manufacturing method of ceramic electronic device

Also Published As

Publication number Publication date
JP6107394B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
US9230737B2 (en) Multilayer ceramic electronic component having a conductive paste
KR20130109071A (en) Low silver content paste composition and method of making a conductive film therefrom
JP6613551B2 (en) Multilayer ceramic capacitor internal electrode paste and multilayer ceramic capacitor
JP4947418B2 (en) Conductive paste, conductive paste dry film, and multilayer ceramic capacitor using the same
JP2010067418A (en) Conductive paste and method of manufacturing the same
JP6107394B2 (en) Conductive paste, method for producing the same, and ceramic electronic component using the same
JP6968524B2 (en) Manufacturing method of thick film conductive paste and ceramic multilayer laminated electronic components
CN105518805B (en) Conductive paste and ceramic electronic components
JP5630363B2 (en) Conductive paste and method for producing the same
JP6809280B2 (en) Method of manufacturing conductive paste
KR20160007219A (en) Dielectric composition and their manufacturing method
JP7447804B2 (en) Silver paste for forming internal electrodes of multilayer inductors
TWI734769B (en) Paste and multilayer ceramic capacitors for conductor formation
JP5459952B2 (en) Method for manufacturing dielectric ceramic material
JP2003297146A (en) Electrically conductive paste and layer stack ceramic electronic component using it
JP2015018785A (en) Composite conductive powder, conductive paste for external electrode including the same, and manufacturing method of multilayer ceramic capacitor
JP2019102241A (en) Thick film conductive paste, and corner chip resistor manufactured by using the same
JP6844299B2 (en) Method of manufacturing conductive paste
JP7447805B2 (en) Silver paste for forming internal electrodes of multilayer inductors
JP2018195405A (en) Method of producing conductive paste for internal electrode and method of manufacturing electronic component
JP2002294310A (en) Method for producing copper powder, copper powder, electrically conductive paste and ceramic electronic parts
JPWO2020137329A1 (en) Silver paste
JP2024061856A (en) Method for forming terminal electrodes of multilayer ceramic electronic components
JP5153118B2 (en) Dielectric paste, glass ceramic multilayer wiring board, electronic device, and method for manufacturing glass ceramic multilayer wiring board
JP6015860B2 (en) Internal electrode paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170220

R150 Certificate of patent or registration of utility model

Ref document number: 6107394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150