JP2014218532A - Polymer and production method of the same - Google Patents

Polymer and production method of the same Download PDF

Info

Publication number
JP2014218532A
JP2014218532A JP2013096035A JP2013096035A JP2014218532A JP 2014218532 A JP2014218532 A JP 2014218532A JP 2013096035 A JP2013096035 A JP 2013096035A JP 2013096035 A JP2013096035 A JP 2013096035A JP 2014218532 A JP2014218532 A JP 2014218532A
Authority
JP
Japan
Prior art keywords
polymer
bonded
carbon
general formula
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013096035A
Other languages
Japanese (ja)
Other versions
JP6156818B2 (en
Inventor
工藤 宏人
Hiroto Kudo
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai University
Original Assignee
Kansai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai University filed Critical Kansai University
Priority to JP2013096035A priority Critical patent/JP6156818B2/en
Publication of JP2014218532A publication Critical patent/JP2014218532A/en
Application granted granted Critical
Publication of JP6156818B2 publication Critical patent/JP6156818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel polymer which is a host.SOLUTION: The polymer of the present application has a calixarene structure in which the second and sixth carbons of a phenol are coupled by a methylene group. Among first oxygens in a ring structure formed by n repeating units, at least two pairs of the oxygens are coupled by a coupling chain including 1-18 methylene chain in which hydrogen atom may be substituted and at least one of nitrogen atoms may be inserted.

Description

本発明は、ホストとなる高分子および当該高分子の製造方法に関する。   The present invention relates to a polymer as a host and a method for producing the polymer.

近年、放射能性物質に代表される物質の除去、回収についての研究が重要視されている。例えば、放射能性物質を回収する無機材料として、ゼオライト、スメクタイト等の層状ケイ酸塩;鉄系好物;炭化物;層状複水酸化物などが挙げられる。また、植物をベースにした材料もある。   In recent years, research on removal and recovery of substances typified by radioactive substances has been emphasized. For example, as an inorganic material for recovering radioactive substances, layered silicates such as zeolite and smectite; iron-based foods; carbides; There are also plant-based materials.

これらの材料は、無機材料または植物をベースにしていることから、使用用途に制限がある。例えば、無機材料の場合、水溶液中の放射能性物質の除去用途が挙げられ、水溶液に無機材料を添加した後、水溶液を撹拌することで放射能性物質が回収され、水中または土中に存在する放射能性物質の回収が想定される。しかし、空気中に浮遊する放射能性物質を回収する場合には、利用が困難であると想定される。   Since these materials are based on inorganic materials or plants, their use is limited. For example, in the case of inorganic materials, it can be used to remove radioactive substances in aqueous solutions. After adding inorganic materials to aqueous solutions, the radioactive substances are recovered by stirring the aqueous solution and are present in water or soil. Recovery of radioactive material is expected. However, it is assumed that the utilization is difficult when recovering radioactive substances floating in the air.

これに対し、有機物である高分子材料は、加工性に優れており、膜、繊維などに加工することが容易であり、合成経路によっては安価に合成することも可能である。このため、有機物に着眼した研究が大変重要である。   On the other hand, a polymer material that is an organic substance is excellent in processability, can be easily processed into a film, a fiber, and the like, and can be synthesized at a low cost depending on a synthesis route. Therefore, research focusing on organic matter is very important.

ゲストの取り込み能を有する有機物としては、クラウンエーテルが有名であるが、有力な分子骨格を有し、容易な合成方法が見出されている有機物としてカリックスアレーンにも注目が集まっている。カリックスアレーンは、ゲストを包接するホールのサイズを変更することでゲストの選択性が可変である。非特許文献1には、多官能性エポキシドと、硬化剤としてのカリックスアレーンとを反応させた結果が開示されている。また、環状のPillar [5]areneについては非特許文献2、3に公開されている。   As an organic substance having a guest-incorporating ability, crown ether is famous, but calixarene is also attracting attention as an organic substance having a powerful molecular skeleton and for which an easy synthesis method has been found. In calixarene, the selectivity of the guest is variable by changing the size of the hole surrounding the guest. Non-Patent Document 1 discloses a result of reacting a polyfunctional epoxide with calixarene as a curing agent. Non-Patent Documents 2 and 3 disclose cyclic Pillar [5] arene.

SHENGANG XU, HIROTO KUDO et al., Thermal Cured Epoxy Resins Using Certain Calixarenes and Their Esterified Derivatives as Curing Agents, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 48, 1931-1942 (2010)SHENGANG XU, HIROTO KUDO et al., Thermal Cured Epoxy Resins Using Certain Calixarenes and Their Esterified Derivatives as Curing Agents, Journal of Polymer Science: Part A: Polymer Chemistry, Vol. 48, 1931-1942 (2010) T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130 (15), pp 5022-5023T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi and Y. Nakamoto, J. Am. Chem. Soc., 2008, 130 (15), pp 5022-5023 T. Ogoshi, T. Aoki, K. Kitajima, S. Fujinami, T. Yamagishi, and Y. Nakamoto, J. Org. Chem., 2011, 76 (1), pp 328-331T. Ogoshi, T. Aoki, K. Kitajima, S. Fujinami, T. Yamagishi, and Y. Nakamoto, J. Org. Chem., 2011, 76 (1), pp 328-331

しかしながら、非特許文献1ではカリックスアレーンを硬化剤として使用しているが、生成物はゲルであり、可溶性高分子とは異なり、加工性に乏しい。また、非特許文献2、3には、Pillar [5]areneを高分子として利用することは開示されていない。このような状況を鑑み、カリックスアレーン構造を含有したような、ホストとなる新規高分子を開発できれば、非常に有用であろうことが予想される。   However, in Non-Patent Document 1, calixarene is used as a curing agent, but the product is a gel, and unlike a soluble polymer, the processability is poor. Non-patent documents 2 and 3 do not disclose the use of Pillar [5] arene as a polymer. In view of such circumstances, it would be very useful to develop a new host polymer that contains a calixarene structure.

上記課題に鑑み、本発明の目的は、ホストとなる新規な高分子を提供することにある。   In view of the above problems, an object of the present invention is to provide a novel polymer as a host.

上記新規な高分子を得るべく、本発明者らは、8つの水酸基を有するカリックス[8]アレーンと、2官能性との反応を検討した。しかし、この反応はカリックス[8]アレーンに反応点として8つもの水酸基が存在し、反応の制御が困難であることと、非特許文献1に開示された結果から、ゲルが生成することが容易に想定された。   In order to obtain the above novel polymer, the present inventors examined the reaction between a calix [8] arene having 8 hydroxyl groups and bifunctionality. However, this reaction has as many as eight hydroxyl groups as reaction points in calix [8] arene, and it is difficult to control the reaction, and the result disclosed in Non-Patent Document 1 makes it easy to form a gel. Assumed.

しかしながら、発明者らはあくまで実験的に反応を行ったところ、予想と反して良好な収率で可溶性高分子を得ることに成功した。本発明はこの予想に反した知見に基づくものである。   However, as a result of experimental reaction, the inventors have succeeded in obtaining a soluble polymer with a good yield contrary to expectations. The present invention is based on the knowledge contrary to this expectation.

本発明の高分子は、下記一般式1で示された構造を含む高分子であって、   The polymer of the present invention is a polymer having a structure represented by the following general formula 1,

(一般式1において、nは4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、Rは−OHである。)
nつの繰り返し単位で構成された環状構造同士における1位の酸素原子同士のうち少なくとも2対が、水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含む結合鎖−R−によって結合されていることを特徴としている。
(In General Formula 1, n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 , provided that n is 4, 6, 7 or 8. The methylene group is bonded to the 2nd and 6th carbons of the benzene ring. When n is 5, the methylene group is bonded to the 2nd or 3rd carbon of the benzene ring and the 6th carbon. And R 1 is —OH when bonded to the carbon at the 3-position.)
At least two pairs of oxygen atoms at the 1-positions in the cyclic structures composed of n repeating units may be substituted with hydrogen atoms, and at least oxygen atoms, sulfur atoms, and nitrogen atoms between carbon atoms. It is characterized by being connected by a bonding chain -R 2- containing 1 to 18 methylene groups, one of which may be inserted.

また、本発明の高分子では、上記結合鎖−R−は、下記一般式群1に示されたいずれかの構造であり、 In the polymer of the present invention, the bonding chain -R 2 -has any structure shown in the following general formula group 1.

−R−は、
水素原子が、酸素原子、硫黄原子、−NHR、−NR 、−Rまたは−ORによって置換されていてもよく(RはC2x+1であり、xは自然数である)、炭素原子間に、酸素原子、硫黄原子または窒素原子が挿入されていてもよいaが1〜18の整数である−(CH−であってもよい。
-R 3 -is
A hydrogen atom may be substituted by an oxygen atom, a sulfur atom, -NHR 4 , -NR 4 2 , -R 4 or -OR 4 (R 4 is C x H 2x + 1 , x is a natural number) In addition, an oxygen atom, a sulfur atom or a nitrogen atom may be inserted between carbon atoms, and — (CH 2 ) a — in which a is an integer of 1 to 18 may be used.

また、本発明の高分子では、上記結合鎖−R−は、下記構造であり、 In the polymer of the present invention, the bonding chain -R 2 -has the following structure:

−R−は、bが1〜18の整数である−(CO)−であってもよい。 —R 3 — may be — (C 2 H 4 O) b — in which b is an integer of 1 to 18.

また、本発明の高分子は、nが4または6であり、−Rが−C(CHである構造であってもよい。 In addition, the polymer of the present invention may have a structure in which n is 4 or 6, and —R 1 is —C (CH 3 ) 3 .

また、本発明の高分子は、nが5であり、−Rが−OHである構造であってもよい。 Further, the polymer of the present invention may have a structure in which n is 5 and -R 1 is -OH.

本発明の包接材料は、上記高分子をフィルム状、繊維状、粉末状、高分子の溶液としたものである。   The inclusion material of the present invention is a polymer solution in which the polymer is a film, a fiber, a powder, or a polymer.

本発明の高分子の製造方法は、下記一般式2で示される化合物と、下記一般式群2に示された何れかの化合物とを反応させることを特徴としている。   The method for producing a polymer of the present invention is characterized by reacting a compound represented by the following general formula 2 with any compound represented by the following general formula group 2.

(一般式2において、nは、4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、−Rは−OHである。) (In General Formula 2, n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 , provided that n is 4, 6, 7 or 8. In this case, the methylene group is bonded to the 2nd and 6th carbons of the benzene ring, and when n is 5, the methylene group is bonded to the 2nd or 3rd carbon and the 6th carbon of the benzene ring. When bonded and bonded to the 3rd carbon, -R 1 is -OH.)

(一般式群2において、−R−は、水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含み、XおよびXは、塩素、臭素、ニトロベンゼン、クロロベンゼン、またはブロモベンゼンである) (In General Formula Group 2, —R 3 — may have 1 to 18 hydrogen atoms that may be substituted, and at least one of an oxygen atom, a sulfur atom, and a nitrogen atom may be inserted between carbon atoms. Including a methylene group, X 1 and X 2 are chlorine, bromine, nitrobenzene, chlorobenzene, or bromobenzene)

本発明の高分子では、環状構造と結合鎖−R−とによって、空孔を有する筒状構造が形成されているため、ゲストを包接するホスト高分子として機能する。また、当該高分子は有機溶媒に可溶であり、成形にも優れるものである。 In the polymer of the present invention, a cylindrical structure having pores is formed by the cyclic structure and the bonding chain -R 2-, and therefore functions as a host polymer that encloses the guest. Further, the polymer is soluble in an organic solvent and is excellent in molding.

本発明の高分子の製造方法によれば、ゲストを包接するホスト高分子として機能し、成形にも優れる上記高分子を得ることができる。   According to the method for producing a polymer of the present invention, it is possible to obtain the above polymer that functions as a host polymer for inclusion of a guest and is excellent in molding.

本発明の高分子のH NMRスペクトルを示すグラフである。It is a graph showing the 1 H NMR spectrum of the polymer of the present invention. 本発明の高分子のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the polymer | macromolecule of this invention. 本発明の高分子のH NMRスペクトルを示すグラフである。It is a graph showing the 1 H NMR spectrum of the polymer of the present invention. 本発明の高分子のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the polymer | macromolecule of this invention. 本発明の高分子のH NMRスペクトルを示すグラフである。It is a graph showing the 1 H NMR spectrum of the polymer of the present invention. 本発明の高分子のIRスペクトルを示すグラフである。It is a graph which shows IR spectrum of the polymer | macromolecule of this invention. 本発明の包接材料を示す写真図である。It is a photograph figure which shows the inclusion material of this invention. 本発明の高分子の吸着能を示すグラフである。It is a graph which shows the adsorption capacity of the polymer | macromolecule of this invention. 本発明の高分子および包接材料の吸着能を示すグラフである。It is a graph which shows the adsorption capacity of the polymer of this invention and an inclusion material.

本発明に係る実施の形態について説明すると以下の通りであるが、本発明はこれに限定されるものではなく、様々な変形が可能である。以下、本発明に係る高分子および当該高分子の製造方法を説明する。   Embodiments according to the present invention will be described as follows. However, the present invention is not limited to these, and various modifications can be made. Hereinafter, the polymer according to the present invention and a method for producing the polymer will be described.

[高分子の構造]
本発明に係る高分子は、下記一般式1で示された構造を含む高分子であって、
[Polymer structure]
The polymer according to the present invention is a polymer including a structure represented by the following general formula 1,

nつの繰り返し単位で構成された環状構造同士における1位の酸素原子同士のうち少なくとも2対が、水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含む結合鎖−R−によって結合されているものである。 At least two pairs of oxygen atoms at the 1-positions in the cyclic structures composed of n repeating units may be substituted with hydrogen atoms, and at least oxygen atoms, sulfur atoms, and nitrogen atoms between carbon atoms. Those bonded by a bonding chain -R 2- containing 1 to 18 methylene groups, one of which may be inserted.

環状構造は、以下に示すようにベンジル構造が環状にnつ連結してなる。nは4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、−Rは−OHである。 The cyclic structure is formed by connecting n benzyl structures in a cyclic manner as shown below. n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 . However, when n is 4, 6, 7 or 8, the methylene group is bonded to the 2-position carbon and the 6-position carbon of the benzene ring, and when n is 5, the methylene group is the 2-position of the benzene ring. or 3-position of being bonded to a carbon of the carbon and 6-position, when attached to the 3-position carbon, -R 1 is -OH.

上記nが3以下の場合、環状構造の環サイズが小さいため、ホスト高分子として作用することができない。一方、nが9以上の場合、環状構造の環サイズが大きすぎるため、高分子を適切に構成できないおそれがある。   When n is 3 or less, the ring size of the cyclic structure is small, so that it cannot act as a host polymer. On the other hand, when n is 9 or more, since the ring size of the cyclic structure is too large, the polymer may not be appropriately configured.

結合鎖−R−は二官能性基であり、1〜18つのメチレン基を含んでいれば特に限定されない。しかしながら、好適なサイズの高分子を形成する観点から、メチレン基の数は3〜16であることが好ましく、4〜14であることがより好ましく、6〜12であることがさらに好ましく、6〜8であることが特に好ましい。 The bonding chain —R 2 — is a bifunctional group and is not particularly limited as long as it contains 1 to 18 methylene groups. However, from the viewpoint of forming a polymer having a suitable size, the number of methylene groups is preferably 3 to 16, more preferably 4 to 14, still more preferably 6 to 12, and 6 to 8 is particularly preferred.

結合鎖−R−をより具体的に示すと、下記一般式群1のうちいずれかの構造であり、 More specifically, the bonding chain —R 2 — is a structure of any one of the following general formula group 1,

−R−は、水素原子が、酸素原子、硫黄原子、−NHR、−NR 、−Rまたは−ORによって置換されていてもよく(RはC2x+1であり、xは自然数である)、炭素原子間に、酸素原子、硫黄原子または窒素原子が挿入されていてもよいaが1〜18の整数である−(CH−であってもよい。上記Xの範囲は特に限定されないが、高分子において立体障害を生じないよう、1以上、8以下であることが好ましい。 In —R 3 —, a hydrogen atom may be substituted by an oxygen atom, a sulfur atom, —NHR 4 , —NR 4 2 , —R 4 or —OR 4 (R 4 is C x H 2x + 1 , x is a natural number), and an oxygen atom, a sulfur atom or a nitrogen atom may be inserted between carbon atoms, and-(CH 2 ) a — where a is an integer of 1 to 18 may be used. The range of X is not particularly limited, but is preferably 1 or more and 8 or less so as not to cause steric hindrance in the polymer.

具体的には、水素原子が酸素原子によって置換されている場合、−R−は、−CO−のカルボニル構造を有し、−Rによって置換されている場合、−CHR−の構造を有し、水素原子がさらに置換されて−CR −の構造を有していてもよい。−R−が−ORによって置換されている場合、−R−は、−CHR−のアルコキシド構造または−CR −のアセタール構造を有する。 Specifically, if the hydrogen atoms are replaced by an oxygen atom, -R 3 - has a carbonyl structure -CO-, when it is substituted by -R 4, -CHR 4 - the structure of And a hydrogen atom may be further substituted to have a structure of —CR 4 2 —. When —R 3 — is substituted by —OR 4 , —R 3 — has an alkoxide structure of —CHR 4 — or an acetal structure of —CR 4 2 —.

また、炭素原子間に酸素原子が挿入されている場合、−R−は、−O−のエーテル構造を有し、さらに、水素原子が炭素原子に置換されていれば、−CO−O−CH−のエステル構造を有する。炭素原子間に硫黄原子が挿入されている場合、−R−は、−S−のチオエーテル構造を有し、さらに、水素原子が硫黄原子に置換されていれば、−CS−O−CH−のチオエステル構造を有する。炭素原子間に窒素原子が挿入されている場合、例えば、−R−は−CH−N=CH−の構造を有する。−R−の炭素原子間に窒素原子が挿入され、窒素原子に隣接する炭素の水素原子が酸素原子に置換され、炭素原子間に酸素原子が挿入されていれば、−R−は−NH−CO−O−のウレタン構造を有することとなる。 When an oxygen atom is inserted between carbon atoms, —R 3 — has an ether structure of —O—, and if a hydrogen atom is substituted with a carbon atom, —CO—O— having the ester structure - CH 2. When a sulfur atom is inserted between carbon atoms, —R 3 — has a —S— thioether structure, and if a hydrogen atom is substituted with a sulfur atom, —CS—O—CH 2 -Having a thioester structure. When a nitrogen atom is inserted between carbon atoms, for example, —R 3 — has a structure of —CH 2 —N═CH—. If a nitrogen atom is inserted between carbon atoms of —R 3 —, a hydrogen atom of carbon adjacent to the nitrogen atom is substituted with an oxygen atom, and an oxygen atom is inserted between carbon atoms, —R 3 — is — It will have a urethane structure of NH-CO-O-.

結合鎖−R−は、上記のようにエーテル結合(酸素原子)を含んだ繰り返し単位を含んでいてもよく、例えば、上記結合鎖−R−は、下記構造であり、 The bonding chain —R 2 — may include a repeating unit including an ether bond (oxygen atom) as described above. For example, the bonding chain —R 2 — has the following structure:

−R−は、bが1〜18の整数である−(CO)−であってもよい。 —R 3 — may be — (C 2 H 4 O) b — in which b is an integer of 1 to 18.

結合鎖−R−の構造は本発明の高分子を得る上で非常に重要である。比較例にて後述するが、メチレン基ではなく、ベンゼン環を有する分子運動の自由度が低い化合物を用いたとしても、本発明の高分子を得ることはできない。 The structure of the bonding chain —R 2 — is very important in obtaining the polymer of the present invention. As will be described later in the comparative example, the polymer of the present invention cannot be obtained even if a compound having a benzene ring and a low degree of freedom of molecular motion is used instead of a methylene group.

本発明の高分子は、環状構造同士が連結鎖−R−によって結合されており、空孔を有することによりホストとして機能する高分子である。当該高分子は、環状構造同士を1組以上含んでおり、種々の形態をとることができる。高分子の形状に関する一例を以下に示す。下記高分子は、フェノールの2位および6位の炭素がメチレン基で連結されたカリックスアレーン構造を有している。 The polymer of the present invention is a polymer in which cyclic structures are bonded to each other by a linking chain —R 2 — and functions as a host by having pores. The polymer contains one or more sets of cyclic structures and can take various forms. An example of the shape of the polymer is shown below. The following polymer has a calixarene structure in which the 2nd and 6th carbons of phenol are linked by a methylene group.

当該高分子では、一方の環状構造における酸素原子の全てが、結合鎖−R−によって他方の環状構造における酸素原子の全てに結合されている。このように、本発明に係る高分子は、ベンジル構造が環状に結合してなる環状構造を2つ備えていることにより、筒の輪のような構造が形成され、結合鎖−R−によって筒の側面のような構造が形成されており、高分子は全体として筒状構造となっている。このように、本発明の高分子には、筒状構造を1つ有する形態が含まれる。 In the polymer, all oxygen atoms in one cyclic structure are bonded to all oxygen atoms in the other cyclic structure by a bonding chain -R 2- . Thus, the polymer according to the present invention, by benzyl structure is provided with two annular structure formed by cyclically linked, structures such as wheel cylinder is formed, bonding chain -R 2 - by A structure like the side surface of the cylinder is formed, and the polymer has a cylindrical structure as a whole. Thus, the polymer of the present invention includes a form having one cylindrical structure.

本発明の高分子に係る他の形態を以下に示す。   The other form which concerns on the polymer of this invention is shown below.

上記高分子は、4つの環状構造を有しており、環状構造同士では、互いに対向するn−1組の酸素原子同士が、結合鎖−R−によって結合されている。残り1組の互いに対向する酸素原子同士は、結合鎖−R−によって結合されておらず、ある環状構造と、上記環状構造に隣接する環状構造に対向する他の環状構造との酸素原子同士が結合鎖−R−によって結合されている(Rがクロスしている)。このように、本発明の高分子には、筒状構造を2つ有する形態が含まれる。 The polymer has four cyclic structures, and in the cyclic structures, n-1 pairs of oxygen atoms facing each other are bonded by a bonding chain -R 2- . The remaining pair of oxygen atoms facing each other are not bonded by a bonding chain -R 2- , and oxygen atoms of a certain cyclic structure and another cyclic structure facing the cyclic structure adjacent to the cyclic structure Are linked by a linking chain -R 2- (R 2 is crossed). Thus, the polymer of the present invention includes a form having two cylindrical structures.

さらに、6つ以上の環状構造を含む高分子を以下に示す。下記高分子におけるmは特に限定されないが、有機溶媒への可溶性などを考慮すると概して3〜100の整数であり、好ましくは、5〜20の整数である。   Furthermore, the polymer containing 6 or more cyclic structures is shown below. Although m in the following polymer is not particularly limited, it is generally an integer of 3 to 100, preferably an integer of 5 to 20, considering solubility in an organic solvent.

上記高分子は、6つ以上の環状構造を有しており、高分子の両末端となる環状構造同士では、互いに対向するn−1組の酸素原子同士が、結合鎖−R−によって結合されている。これに対し、両末端間に位置する、m−2つの繰り返し単位で示される環状構造同士では、互いに対向するn−2組の酸素原子同士が、結合鎖−R−によって結合されている。このように、本発明の高分子には、筒状構造を3つ以上有する形態が含まれる。本発明に係る高分子には筒状構造の含有数が異なる構造が存在するが、単独構造のみであっても、混合した状態であっても、ホスト高分子としての効果を生じる。 The polymer has six or more cyclic structures, and in the cyclic structures serving as both ends of the polymer, n-1 oxygen atoms facing each other are bonded to each other by a bonding chain -R 2-. Has been. In contrast, located between both ends, in the ring structure with each other represented by the m-2 one recurring unit, the n-2 sets of oxygen atoms between opposing each other, bonding chain -R 2 - it is bound by. Thus, the polymer of the present invention includes a form having three or more cylindrical structures. The polymer according to the present invention has a structure having a different number of cylindrical structures. However, the polymer has an effect as a host polymer regardless of whether it is a single structure or in a mixed state.

上述した高分子では、フェノール性の水酸基が結合したベンゼン環の炭素を1位として、ベンゼン環の2位および6位の炭素にメチレン基が結合しているが、ベンゼン環の3位および6位の炭素にメチレン基が結合していてもよい。この場合、−Rは−OHである。このような高分子として、筒状構造を1つ、2つ、および3つ以上含む構造をそれぞれ以下に示す。筒状構造を3つ以上含む構造において、特に限定されないが、有機溶媒への可溶性などを考慮すると概して3〜100の整数であり、好ましくは、5〜20の整数である。 In the polymer described above, the carbon of the benzene ring to which the phenolic hydroxyl group is bonded is the 1st position, and the methylene group is bonded to the 2nd and 6th positions of the benzene ring. A methylene group may be bonded to the carbon. In this case, -R 1 is -OH. As such a polymer, structures including one, two, and three or more cylindrical structures are shown below. The structure including three or more cylindrical structures is not particularly limited, but is generally an integer of 3 to 100 and preferably an integer of 5 to 20 in consideration of solubility in an organic solvent.

本発明の高分子は筒状構造を有しており、環状構造の開口のサイズ(繰り返し数n)、および結合鎖−R−の構造を適宜変更することで、高分子の空孔に応じたゲストを包接可能である。ゲストとしては、放射性物質、レアメタルおよびハロゲンが例示される。放射性物質としては、セシウム、放射性ヨウ素、放射性ストロンチウムなどが挙げられ、レアメタルとしては、リチウム、ベリリウム、ホウ素、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、ガリウムなどが挙げられ、ハロゲンとしては、ヨウ素、塩素などが挙げられる。 The polymer of the present invention has a cylindrical structure. By appropriately changing the size of the opening of the cyclic structure (repetition number n) and the structure of the bonding chain —R 2 —, the polymer can be used in accordance with the polymer pores. Can be included. Examples of guests include radioactive substances, rare metals, and halogens. Examples of radioactive materials include cesium, radioactive iodine, and radioactive strontium. Examples of rare metals include lithium, beryllium, boron, titanium, vanadium, chromium, manganese, cobalt, nickel, and gallium. Examples of halogen include iodine. , Chlorine and the like.

本発明に係る高分子はゲル状ではなく、溶媒に溶解可能である。このため、ゲストを回収する際、ゲストを溶解させた水溶液と、本発明の高分子を溶解させた有機溶液とを撹拌し、ゲストを液−液抽出することが可能である。   The polymer according to the present invention is not gel-like and can be dissolved in a solvent. For this reason, when recovering the guest, it is possible to stir the aqueous solution in which the guest is dissolved and the organic solution in which the polymer of the present invention is dissolved to perform liquid-liquid extraction of the guest.

また、本発明の高分子は加工性に優れており、高分子を溶解させた有機溶液を所定の形態に配置し、有機溶剤を揮発させることで高分子を成形することが可能である。例えば、高分子をフィルム状または繊維状に成形して包接材料を得ることができる。この高分子をフィルム状または繊維状に成形してなる包接材料によれば、例えば、ゲストを溶解させた水溶液と、包接材料とを接触させることで、固液界面にてゲストを回収することが可能である。   Further, the polymer of the present invention is excellent in processability, and it is possible to form the polymer by disposing an organic solution in which the polymer is dissolved in a predetermined form and volatilizing the organic solvent. For example, the inclusion material can be obtained by forming a polymer into a film or fiber. According to the inclusion material formed by molding this polymer into a film or fiber, for example, the guest is recovered at the solid-liquid interface by bringing the aqueous solution in which the guest is dissolved into contact with the inclusion material. It is possible.

フィルム状に成形する方法としては、公知の方法を用いればよく、スピンコーティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、キャスティングなどの方法が挙げられ、繊維状に成形する方法としては、溶融紡糸法、乾式紡糸法、湿式防止法などが挙げられ、高分子の構造に応じて適切な方法を選択すればよい。   As a method for forming into a film shape, a known method may be used, and methods such as spin coating, spin coating, dip coating, blade coating, wire bar coating, and casting may be used. As a method for forming into a fiber shape, Examples thereof include a melt spinning method, a dry spinning method, and a wet prevention method, and an appropriate method may be selected according to the structure of the polymer.

高分子を溶解させる有機溶媒としては、塩化メチレン、酢酸エチル、ベンゼン、トルエン、キシレン、クロロホルム、ジメチルスルホキシド、1−メチルー2−ピロリドン、ジメチルホルムアミドなどが挙げられる。   Examples of the organic solvent for dissolving the polymer include methylene chloride, ethyl acetate, benzene, toluene, xylene, chloroform, dimethyl sulfoxide, 1-methyl-2-pyrrolidone, dimethylformamide and the like.

高分子と有機溶媒との配合比率は、互いの溶解性等により一義的に規定することは困難であるが、概して、3mg以上、100mg以下の高分子を、0.1〜300mlの有機溶媒を添加して溶液を調製すればよい。好ましくは、5mg以上、10mg以下の高分子を1ml以上、3mlの有機溶媒に溶解させる。   Although it is difficult to uniquely define the blending ratio of the polymer and the organic solvent depending on the solubility of each other, generally, 3 mg or more and 100 mg or less of the polymer is added to 0.1 to 300 ml of the organic solvent. What is necessary is just to prepare a solution by adding. Preferably, 5 mg or more and 10 mg or less of the polymer is dissolved in 1 ml or more and 3 ml of an organic solvent.

[高分子の製造方法]
以下、本発明の高分子を製造する方法について説明する。当該製造方法は非常に簡便であり、触媒等を使用することなく、所望のホスト高分子を得ることが可能である。まず、使用する出発原料について説明する。
[Method for producing polymer]
Hereinafter, the method for producing the polymer of the present invention will be described. The production method is very simple, and a desired host polymer can be obtained without using a catalyst or the like. First, the starting material to be used will be described.

出発原料としては、環状構造を形成する環状化合物、および、結合鎖−R−を含む化合物が挙げられる。当該環状化合物は下記一般式2で示される。 Examples of the starting material include a cyclic compound forming a cyclic structure and a compound containing a bonding chain —R 2 —. The cyclic compound is represented by the following general formula 2.

(一般式2において、nは、4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、−Rは−OHである。)
一般式2にて示される環状化合物では、水酸基が他の構造に阻害されず、環状に配置している。すなわち、各水酸基の間に他の構造が位置していない。このように水酸基の立体配置が規制されていることで、環状化合物と、結合鎖−R−を含む化合物との所望の反応が進行する。この立体配置の規制は、本発明の高分子を得る上で非常に重要である。比較例にて後述するが、水酸基が、環状に配置しておらず、高分子の外側に向かって配置しているNoria、Calix[4]resorciarene(以下、CRAと適宜略す)などと、結合鎖−R−を含む化合物とを反応させてもゲルが生成し、高分子は得られない。
(In General Formula 2, n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 , provided that n is 4, 6, 7 or 8. In this case, the methylene group is bonded to the 2nd and 6th carbons of the benzene ring, and when n is 5, the methylene group is bonded to the 2nd or 3rd carbon and the 6th carbon of the benzene ring. When bonded and bonded to the 3rd carbon, -R 1 is -OH.)
In the cyclic compound represented by the general formula 2, the hydroxyl group is not hindered by other structures and is arranged in a ring shape. That is, no other structure is located between the hydroxyl groups. Thus, the desired reaction of the cyclic compound and the compound containing a bonding chain —R 2 — proceeds because the steric configuration of the hydroxyl group is regulated. This restriction of configuration is very important in obtaining the polymer of the present invention. As will be described later in Comparative Examples, the hydroxyl groups are not arranged in a ring, and are arranged toward the outside of the polymer, such as Noria, Calix [4] resorcialene (hereinafter abbreviated as CRA as appropriate), and bonding chains. Even when a compound containing —R 2 — is reacted, a gel is formed, and a polymer cannot be obtained.

一般式2において、上記メチレン基が2位の炭素に結合している場合、より具体的に環状化合物は以下のように示される。   In the general formula 2, when the methylene group is bonded to the carbon at the 2-position, the cyclic compound is more specifically shown as follows.

また、一般式2において、nが5であり、上記メチレン基が3位の炭素に結合している場合、より具体的に環状化合物は以下のように示される。   In the general formula 2, when n is 5 and the methylene group is bonded to the 3rd carbon, the cyclic compound is more specifically shown as follows.

一方、結合鎖−R−を含む化合物としては、下記一般式群2のうち何れかの化合物が挙げられる。下記一般式群2の−R−については、一般式群1の−R−と共通するため説明を省略する。 On the other hand, as a compound containing bonding chain -R < 2 >-, any compound in the following general formula group 2 is mentioned. About -R < 3 >-of the following general formula group 2, since it is common with -R < 3 >-of the general formula group 1, description is abbreviate | omitted.

(一般式群2において、−R−は、水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含み、XおよびXが、塩素、臭素、ニトロベンゼン、クロロベンゼン、またはブロモベンゼンである)
これらの化合物は二官能性であり、2分子の環状化合物と反応して立体配置が規制された酸素同士を連結する。結合鎖−R−における−R−は、より具体的には、水素原子が、酸素原子、硫黄原子、−NHR、−NR 、−Rまたは−ORによって置換されていてもよく(RはC2x+1であり、xは自然数である)、炭素原子間に、酸素原子、硫黄原子または窒素原子が挿入されていてもよいaが1〜18の整数である−(CH−である。
(In General Formula Group 2, —R 3 — may have 1 to 18 hydrogen atoms that may be substituted, and at least one of an oxygen atom, a sulfur atom, and a nitrogen atom may be inserted between carbon atoms. Including a methylene group and X 1 and X 2 are chlorine, bromine, nitrobenzene, chlorobenzene, or bromobenzene)
These compounds are bifunctional, and react with two molecules of cyclic compounds to link oxygens whose configuration is regulated. More specifically, —R 3 — in the bonding chain —R 2 — is such that a hydrogen atom is substituted by an oxygen atom, a sulfur atom, —NHR 4 , —NR 4 2 , —R 4 or —OR 4 . (R 4 is C x H 2x + 1 , x is a natural number), and an oxygen atom, a sulfur atom or a nitrogen atom may be inserted between carbon atoms, and a is an integer of 1 to 18 − (CH 2) a - it is.

また、例えば、上記結合鎖−R−は、下記構造であり、 In addition, for example, the bonding chain —R 2 — has the following structure:

−R−は、bが1〜18の整数である−(CO)−であってもよい。 —R 3 — may be — (C 2 H 4 O) b — in which b is an integer of 1 to 18.

上記環状化合物と、結合鎖−R−を含む化合物との反応条件は、特に限定されないが、両化合物を溶媒に溶解させ、塩基性化合物の存在下で反応を行うことが好ましい。塩基性化合物としては、トリエチルアミン、ジメチルアニリン、アニリン、トリメチルアミン、DBU(ジアザビシクロウンデセン)、水酸化ナトリウム水溶液、水酸化カリウム水溶液などが例示される。 Although the reaction conditions of the said cyclic compound and the compound containing bonding chain -R < 2 >-are not specifically limited, It is preferable to dissolve both compounds in a solvent and to react in presence of a basic compound. Examples of the basic compound include triethylamine, dimethylaniline, aniline, trimethylamine, DBU (diazabicycloundecene), sodium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like.

溶媒としては、塩化メチレン、酢酸エチル、ベンゼン、トルエン、キシレン、エチルエーテル、DMSO(ジメチルスルホキシド)、NMP(1−メチル−2−ピロリドン)、DMAC(ジメチルアセトアミド)などが挙げられる。   Examples of the solvent include methylene chloride, ethyl acetate, benzene, toluene, xylene, ethyl ether, DMSO (dimethyl sulfoxide), NMP (1-methyl-2-pyrrolidone), DMAC (dimethylacetamide), and the like.

nつの反応性(水酸基)を有する環状化合物と結合鎖−R−を含む化合物とは、2:nのモル比で反応する。したがって、環状化合物1モルに対する結合鎖−R−を含む化合物の使用量は、n/2モル以上である。本発明では、結合鎖−R−を含む化合物を過剰に使用しても、高分子の収率はさほど向上しないため、環状化合物1モルに対する結合鎖−R−を含む化合物の使用量は、n/2モル以上、n/2×1.5モル以下、好ましくは、n/2モル以上、n/2×1.1モル以下の範囲で反応を行えばよい。また、塩基性化合物の使用量は、例えば、環状化合物1モルに対し、環状化合物の繰り返し数n倍とすることができる。 A cyclic compound having n reactivity (hydroxyl group) and a compound containing a bonding chain —R 2 — react at a molar ratio of 2: n. Therefore, bonding chain -R 2 for 1 mole of the cyclic compound - amount of the compound containing a is n / 2 mol or more. In the present invention, even if an excessive amount of a compound containing a bond chain —R 2 — is used, the yield of the polymer is not improved so much. Therefore, the amount of the compound containing the bond chain —R 2 — relative to 1 mol of the cyclic compound is N / 2 mol or more and n / 2 × 1.5 mol or less, preferably n / 2 mol or more and n / 2 × 1.1 mol or less. Moreover, the usage-amount of a basic compound can be made into the repetition number n times of a cyclic compound with respect to 1 mol of cyclic compounds, for example.

反応温度は、室温が進行すれば特に限定されず、例えば、室温で反応を行えばよい。室温での反応を行う場合、反応時間は、概して12時間とすればよい。環状化合物の反応濃度は、100mmol/ml以上、1000mmol/mlの高濃度にて当該反応が進行するため、溶媒量の使用量は少量ですむという点で優れている。   The reaction temperature is not particularly limited as long as the room temperature proceeds. For example, the reaction may be performed at room temperature. When the reaction is performed at room temperature, the reaction time may be generally 12 hours. The reaction concentration of the cyclic compound is excellent in that the amount of solvent used is small because the reaction proceeds at a high concentration of 100 mmol / ml or more and 1000 mmol / ml.

生成した高分子の精製は、公知の方法で行えばよく、例えば、塩酸を用いた再沈法にて高分子を再沈させ、水等で高分子を洗浄することにより、精製が可能である。   The produced polymer may be purified by a known method. For example, it can be purified by reprecipitation of the polymer by reprecipitation using hydrochloric acid and washing the polymer with water or the like. .

[高分子の評価]
本発明の高分子は、筒状構造を有しており、空孔が形成されている。この空孔に、上述の放射性物質、レアメタルおよびハロゲンなどのゲストが包接される。これにより、放射性物質等の回収または除去等、目的に応じた対応が可能である。
[Evaluation of polymer]
The polymer of the present invention has a cylindrical structure and has pores. A guest such as the above-mentioned radioactive substance, rare metal and halogen is included in the holes. Thereby, it is possible to respond according to the purpose, such as collection or removal of radioactive substances.

本発明の高分子は有機溶媒に可溶であり、液体のホスト高分子として使用される。また、高分子を所望の形状に加工して包接材料とし、固体のホスト高分子としても使用可能である。ホスト高分子としての評価は、ゲスト(金属イオン)の減少量(減少濃度)に基づき判断すればよい。評価方法としては、水溶液中のゲスト(金属イオン)の吸光度測定や、ゲストが包接された後、ゲストから解離したゲストの対アニオンが水溶液に溶解し難く、有機溶液に移動する場合、水溶液中の対アニオンの吸光度測定が挙げられる。   The polymer of the present invention is soluble in an organic solvent and is used as a liquid host polymer. Further, the polymer can be processed into a desired shape to form an inclusion material, which can also be used as a solid host polymer. Evaluation as a host polymer may be made based on the amount of reduction (decrease concentration) of the guest (metal ion). As an evaluation method, the absorbance of the guest (metal ion) in the aqueous solution is measured, and after the guest is included, the counter anion of the guest dissociated from the guest is difficult to dissolve in the aqueous solution and moves to the organic solution. Measurement of the absorbance of the counter anion.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明に係る技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope according to the present invention.

次に、本発明のエポキシ樹脂およびエポキシ樹脂組成物について、実施例を挙げてさらに詳細に説明するが、本発明は係る実施例のみに制限されるものではない。実施例および比較例で使用した試薬は市販品を用いた。また、得られた高分子のH NMRスペクトル、IRスペクトル、分子量および吸着能は以下の手法で測定した。 Next, the epoxy resin and the epoxy resin composition of the present invention will be described in more detail with reference to examples. However, the present invention is not limited only to such examples. Commercially available products were used as reagents used in Examples and Comparative Examples. Further, the 1 H NMR spectrum, IR spectrum, molecular weight and adsorption capacity of the obtained polymer were measured by the following methods.

[H NMRスペクトル]
実施例にて精製した高分子のH NMRスペクトルを400MHz NMR 日本電子株式会社 JEOL ECS−400Kにより測定した。
[ 1 H NMR spectrum]
The 1 H NMR spectrum of the polymer purified in the examples was measured by 400 MHz NMR JEOL ECS-400K.

[IRスペクトル]
実施例にて精製した高分子のIRスペクトルをJUSCO FT/IR4200により測定した。
[IR spectrum]
The IR spectrum of the polymer purified in the examples was measured by JUSCO FT / IR4200.

[分子量]
実施例にて精製した高分子の数平均分子量および質量平均分子量は以下の検出器にて算出した。
カラム:昭和電工Shodex asahipak GF−510 HQ+GF−310×2
標準:ポリスチレン
溶離液:20mM リチウムブロミド、20 mM リン酸含有ジメチルホルムアミド溶液
検出器:東ソー株式会社製HLC−8200内蔵RI・UV−8220(280nm)
[吸着能]
50mlの三角フラスコに回転子と脱イオン水25mlを入れ、さらにピクリン酸0.3g(1.30mmol)を加えて室温で飽和状態にし、ろ過を行った。得られた飽和ピクリン酸水溶液に、CsOH.aq(1.30mmol/1.5ml)をpH試験紙で調べながら徐々に加え、中性にした。この溶液を放置し、析出した塩を室温で徐々に成長させた。析出した結晶は、ろ過後、エタノール、エーテルにて順に洗浄し、脱イオン水で再結晶を行った。洗浄および再結晶の操作を3回繰り返すことにより、ピクリン酸塩の黄色針状結晶を得た。
[Molecular weight]
The number average molecular weight and the mass average molecular weight of the polymer purified in the examples were calculated by the following detectors.
Column: Showa Denko Shodex asahipak GF-510 HQ + GF-310 × 2
Standard: Polystyrene eluent: 20 mM lithium bromide, 20 mM phosphoric acid-containing dimethylformamide solution Detector: RI / UV-8220 (280 nm) with built-in HLC-8200 manufactured by Tosoh Corporation
[Adsorption capacity]
A rotor and 25 ml of deionized water were placed in a 50 ml Erlenmeyer flask, and 0.3 g (1.30 mmol) of picric acid was further added to saturate at room temperature, followed by filtration. CsOH.aq (1.30 mmol / 1.5 ml) was gradually added to the obtained saturated picric acid aqueous solution while examining with a pH test paper to make it neutral. This solution was allowed to stand, and the precipitated salt was gradually grown at room temperature. The precipitated crystal was filtered, washed in turn with ethanol and ether, and recrystallized with deionized water. By repeating the washing and recrystallization operations three times, yellow acicular crystals of picrate were obtained.

(1)高分子を溶液として使用する場合
ホストにポリマーの塩化メチレン溶液と、ゲスト(ピクリン酸塩)の脱イオン水溶液を、2.5×10−4mol dm−3となるように調製し、ホスト溶液とゲスト溶液とを4mlずつサンプル瓶(直径:2.5cm)に量りとり、25℃で24時間撹拌した。また、ホスト非存在下における対照サンプルとして、塩化メチレンとゲスト溶液とを4mlずつサンプル瓶(直径:2.5cm)に量りとり、同様の操作を行った。撹拌後、1時間静置し、水層を石英セルに分取し、ピクリン酸アニオンの吸収極大波長(355nm)における吸光度を測定し、対照サンプルの水層の吸光度と比較し、その減少率から抽出率を求めた(eq.1)。
・抽出率の計算方法
抽出率Ex(%)=[Abs(Bi)-ABS(Ex)]/[Abs(Bi)]×100・・・(eq.1)
Abs(Bi):ホスト非存在下における抽出操作後の吸光度
Abs(Ex):ホスト存在下における抽出操作後の吸光度
(2)高分子をフィルム状に成形する場合
実施例3において得られた、5mgのBCA(6)/Dihを5mlの塩化メチレンに溶解させ、透明なガラス板に製膜を行った後、室温で放置し、10mm×10mmの透明膜を形成した。2.5×10−4mol dm−3のピクリン酸セシウム水溶液に、ガラス板ごと上記膜を1週間浸漬させた。ピクリン酸セシウム水溶液から上記膜を取り出し、ピクリン酸アニオンの吸収極大波長(355nm)における吸光度を測定し、(1)における対照サンプルの水層の吸光度と比較し、その減少率からeq.1に基づき抽出率を求めた。
(1) When using a polymer as a solution: Prepare a methylene chloride solution of a polymer and a deionized aqueous solution of a guest (picrate) as a host so as to be 2.5 × 10 −4 mol dm −3 , 4 ml each of the host solution and the guest solution were weighed into a sample bottle (diameter: 2.5 cm) and stirred at 25 ° C. for 24 hours. As a control sample in the absence of the host, 4 ml of methylene chloride and the guest solution were weighed into a sample bottle (diameter: 2.5 cm), and the same operation was performed. After stirring, the mixture is allowed to stand for 1 hour, the aqueous layer is separated into a quartz cell, the absorbance at the absorption maximum wavelength (355 nm) of picrate anion is measured, and compared with the absorbance of the aqueous layer of the control sample. The extraction rate was determined (eq. 1).
Extraction rate calculation method Extraction rate Ex (%) = [Abs (Bi) −ABS (Ex)] / [Abs (Bi)] × 100 (eq. 1)
Abs (Bi): Absorbance after extraction in the absence of host
Abs (Ex): Absorbance after extraction operation in the presence of host (2) When polymer is formed into a film 5 mg of BCA (6) / Dih obtained in Example 3 was dissolved in 5 ml of methylene chloride. After forming a film on a transparent glass plate, it was left at room temperature to form a 10 mm × 10 mm transparent film. The above film was immersed in an aqueous cesium picrate solution of 2.5 × 10 −4 mol dm −3 for one week together with the glass plate. The membrane is taken out from the aqueous cesium picrate, and the absorbance of the picric acid anion at the absorption maximum wavelength (355 nm) is measured. The absorbance is compared with the absorbance of the aqueous layer of the control sample in (1). The extraction rate was determined.

[実施例1]
・t-Butylcalix[8]arene(BCA[8])とAdipoylchloride との縮合反応
100mlのナスフラスコにcalix[8]arene(BCA[8]) 1.29g(1mmol:官能基当量 8mol)を加えNMP(N−メチルピロリドン) 8mlに溶解させた。この溶液にトリエチルアミンを0.81g(8ml)を加えた。次に、Adipoyl chloride(Ac)2mmolとNMP 2mlを滴下した。その後、室温で12時間撹拌し、反応終了後、1N HClで再沈した。反応溶液をろ過し、水で洗浄後、エタノールで洗浄した後、生成した沈殿物を回収し、固体を減圧乾燥し白色固体を得た。構造確認はIR、およびH NMRにて行った(Run1)。
[Example 1]
・ Condensation reaction between t-Butylcalix [8] arene (BCA [8]) and Adipoylchloride Add 1.29 g (1 mmol: functional group equivalent 8 mol) of calix [8] arene (BCA [8]) to a 100 ml eggplant flask NMP (N-methylpyrrolidone) Dissolved in 8 ml. To this solution, 0.81 g (8 ml) of triethylamine was added. Next, 2 mmol of Adipoyl chloride (Ac) and 2 ml of NMP were added dropwise. Thereafter, the mixture was stirred at room temperature for 12 hours, and after completion of the reaction, reprecipitation was performed with 1N HCl. The reaction solution was filtered, washed with water and then with ethanol, and then the generated precipitate was collected and the solid was dried under reduced pressure to obtain a white solid. The structure was confirmed by IR and 1 H NMR (Run 1).

Run1では、ゲルが生成することを予想し、BCA(8)に対するAcの供給比率を2に抑制して反応を行ったが、予想に反してゲルは精製しなかった。得られた生成物のH NMRスペクトルの測定結果を図1に、IRスペクトルの測定結果を図2に示す。これらの結果から、得られた高分子は、BCA(8)とAcとが縮合した高分子(BCA(8)/Ac)であると同定した。 In Run1, it was predicted that a gel would be formed, and the reaction was carried out while suppressing the supply ratio of Ac to BCA (8) to 2, but contrary to the expectation, the gel was not purified. The measurement result of 1 H NMR spectrum of the obtained product is shown in FIG. 1, and the measurement result of IR spectrum is shown in FIG. From these results, the obtained polymer was identified as a polymer obtained by condensation of BCA (8) and Ac (BCA (8) / Ac).

さらに、BCA[8]とAcの供給比率を、1:4(Run2)、1:6(Run3)、1:8(Run4)に変更した以外は、Run1と同様にして、目的物である高分子を合成した。Run1〜4の結果を表1に示す。表1において、収率はAcの使用量を基準とした値である。   Furthermore, the high ratio of the target product is the same as that of Run 1 except that the supply ratio of BCA [8] and Ac is changed to 1: 4 (Run 2), 1: 6 (Run 3), and 1: 8 (Run 4). A molecule was synthesized. The results of Runs 1 to 4 are shown in Table 1. In Table 1, the yield is a value based on the amount of Ac used.

Run2において、Acの供給比率を2倍としたところ、収率は5%向上したが、収率の大きな向上には繋がらなかった。一方、DIについては、40%向上する結果となった。DI(%)は導入率を示し、H NMRスペクトル解析により、残存している水酸基のピークの積分値とベンゼン部位の積分値による比により、導入率を計算することが可能である。 In Run 2, when the supply ratio of Ac was doubled, the yield was improved by 5%, but the yield was not significantly improved. On the other hand, DI was improved by 40%. DI (%) represents the introduction rate, and the introduction rate can be calculated by 1 H NMR spectrum analysis based on the ratio of the integrated value of the remaining hydroxyl peak and the integrated value of the benzene moiety.

Run3、4では、Acの供給比率を6、8に増加させたが、収率は逆に低下する結果となった。   In Runs 3 and 4, the supply ratio of Ac was increased to 6 and 8, but the yield decreased.

[実施例2]
実施例2では、実施例1で用いたAcを1,6-Diisocyanatohexane(Dih)に変更した以外は、実施例1と同様にして反応を行った。Dihの供給比率については、表2に示す通りである。表2において、収率はDihの使用量を基準とした値である。Run1〜4の何れにおいてもゲルは生じず、反応が進行した。得られた高分子(BCA(8)/Dih)のH NMRスペクトルを図3に、IRスペクトルを図4に示す。
[Example 2]
In Example 2, the reaction was performed in the same manner as in Example 1 except that Ac used in Example 1 was changed to 1,6-Diisocyanatohexane (Dih). The supply ratio of Dih is as shown in Table 2. In Table 2, the yield is a value based on the amount of Dih used. No gel was formed in any of Runs 1 to 4, and the reaction proceeded. The 1 H NMR spectrum of the obtained polymer (BCA (8) / Dih) is shown in FIG. 3, and the IR spectrum is shown in FIG.

Run1〜4の何れにおいても収率は良好であり、Run1〜3ではDIが99%、Run4ではDIが30%であった。このように、BCA(8)と反応させる化合物を変更しても反応はスムーズに進行し、所望の高分子を得ることができる。   In any of Runs 1 to 4, the yield was good, with Runs 1 to 3 having a DI of 99% and Run 4 having a DI of 30%. Thus, even if the compound to be reacted with BCA (8) is changed, the reaction proceeds smoothly and a desired polymer can be obtained.

[実施例3]
実施例3では、実施例1で用いたBCA(8)をBCA(6)に、AcをDihに変更した以外は、実施例1と同様にして反応を行った。Dihの供給比率については、表3に示す通りである。表3において、収率はDihの使用量を基準とした値である。この反応においてもゲルは生じず、反応が進行した。ガラス板上に得られた高分子をフィルム状に成形し(乾燥条件:室温で放置)、包接材料を得た。得られた高分子(BCA(6)/Dih)のH NMRスペクトルを図5に、IRスペクトルを図6に示す。
[Example 3]
In Example 3, the reaction was performed in the same manner as in Example 1 except that BCA (8) used in Example 1 was changed to BCA (6) and Ac was changed to Dih. The supply ratio of Dih is as shown in Table 3. In Table 3, the yield is a value based on the amount of Dih used. In this reaction, no gel was formed and the reaction proceeded. The polymer obtained on the glass plate was formed into a film (drying condition: left at room temperature) to obtain an inclusion material. The 1 H NMR spectrum of the obtained polymer (BCA (6) / Dih) is shown in FIG. 5, and the IR spectrum is shown in FIG.

この包接材料を図7の左側に示す。この包接材料は透明度が高く、ガラス板の透明性を阻害しない。このため、当該包接材料は、透明性が要求される素材に塗布された状態で使用可能である。   This inclusion material is shown on the left side of FIG. This inclusion material is highly transparent and does not hinder the transparency of the glass plate. Therefore, the inclusion material can be used in a state where it is applied to a material that requires transparency.

比較のため、上記包接材料の作製工程において、ドライヤーを用いて膜を急激に乾燥させることで包接材料を得た。このようにして得た包接材料を図7の右側に示す。ドライヤーの熱風にて膜の表面が乱されることで平滑性が失われ、右側の包接材料は、白色となっているが、乾燥により包接材料が形成されている。両包接材料の比較から、室温で膜を放置した場合に得られた包接材料の透明度が高いことが理解できる。   For comparison, an inclusion material was obtained by rapidly drying the membrane using a drier in the above-described production process of the inclusion material. The inclusion material thus obtained is shown on the right side of FIG. The smoothness is lost by disturbing the surface of the film by the hot air of the dryer, and the right inclusion material is white, but the inclusion material is formed by drying. From the comparison of the both clathrate materials, it can be understood that the clathrate material obtained when the film is left at room temperature has high transparency.

[比較例1]
AcをTerephthaloyl Chloride(TC)に変更した以外は、実施例1のRun1と同様にして反応を行った。その結果、ゲル状物質が生成し、実施例で得られたような可溶性の高分子は得られなかった。
[Comparative Example 1]
The reaction was performed in the same manner as Run 1 of Example 1 except that Ac was changed to Terephthaloyl Chloride (TC). As a result, a gel-like substance was generated, and a soluble polymer as obtained in the examples could not be obtained.

[比較例2]
Acを1,3,5-Benzenetricarbonyltrichloride(BT)に変更した以外は、実施例1のRun1と同様にして反応を行った。その結果、ゲル状物質が生成し、実施例で得られたような可溶性の高分子は得られなかった。
[Comparative Example 2]
The reaction was performed in the same manner as Run 1 of Example 1 except that Ac was changed to 1,3,5-Benzenetricarbonyltrichloride (BT). As a result, a gel-like substance was generated, and a soluble polymer as obtained in the examples could not be obtained.

[比較例3]
BCA(8)をCalix[4]resorcinarene(CRA)に変更した以外は、実施例1のRun1と同様に反応を行った(Run1)。その結果、ゲル状物質が生成し、実施例で得られたような可溶性の高分子は得られなかった。また、Run1のAcをDihに変更して反応を行ったが、ゲル状物質が生成し、実施例で得られたような可溶性の高分子は得られなかった(Run2)。
[Comparative Example 3]
A reaction was performed in the same manner as Run 1 of Example 1 except that BCA (8) was changed to Calix [4] resorcinarene (CRA) (Run 1). As a result, a gel-like substance was generated, and a soluble polymer as obtained in the examples could not be obtained. In addition, the reaction was carried out by changing the Ac of Run1 to Dih, but a gel-like substance was produced, and a soluble polymer as obtained in the examples was not obtained (Run2).

[比較例4]
BCA(8)をnoriaに変更した以外は、実施例1のRun1と同様に反応を行った。その結果、ゲル状物質が生成し、実施例で得られたような可溶性の高分子は得られなかった。
[Comparative Example 4]
The reaction was performed in the same manner as Run 1 of Example 1 except that BCA (8) was changed to noria. As a result, a gel-like substance was generated, and a soluble polymer as obtained in the examples could not be obtained.

比較例1、2で使用したTC、BTは、ベンゼン環にカルボニル基が直接結合しており、分子が変形し難いため、ゲル状物質が生成したのではないかと推定される。また、比較例3、4で使用したCRA、およびnoriaでは、高分子から高分子の外側に向かって配置しており、ポリマーネットワークが構築され、ゲル状物質が生成したものと予想される。このように、反応に用いる出発原料を精査しなければゲル状物質が生成し、実施例のような筒状構造を有する高分子を得ることはできない。   In TC and BT used in Comparative Examples 1 and 2, since a carbonyl group is directly bonded to the benzene ring and the molecule is not easily deformed, it is presumed that a gel-like substance was generated. In CRA and noria used in Comparative Examples 3 and 4, the polymer is arranged from the polymer toward the outside of the polymer, and it is expected that a polymer network is constructed and a gel material is generated. Thus, unless the starting materials used for the reaction are carefully examined, a gel-like substance is generated, and a polymer having a cylindrical structure as in the examples cannot be obtained.

[吸着能測定]
実施例2、3で得られたBCA(8)/Dih、BCA(6)/Dihを溶液として使用し、ピクリン酸セシウムからセシウムの抽出率を測定した。比較用には、比較例3で得られたゲル状物質CRA/Acを用いてピクリン酸セシウムからセシウムの抽出率を算出した。測定結果を図8に示す。
[Adsorption capacity measurement]
Using BCA (8) / Dih and BCA (6) / Dih obtained in Examples 2 and 3 as solutions, the extraction rate of cesium from cesium picrate was measured. For comparison, the extraction rate of cesium was calculated from cesium picrate using the gel material CRA / Ac obtained in Comparative Example 3. The measurement results are shown in FIG.

同図に示すように、対照サンプルのピクリン酸塩水溶液と、CRA/ACを用いて抽出操作を行ったピクリン酸塩水溶液とでは、吸光度にほとんど変化がなく、CRA/ACにイオン輸送能力がないことが明らかである。一方、BCA(8)/Dih、BCA(6)/Dihを用いた場合、吸光度の低下が観測された。特に、BCA(6)/Dihでは、吸光度が約0.6まで低下している。吸光度の相違は、それぞれの高分子に形成された空孔の大きさに起因すると考えられ、BCA(8)/DihよりもBCA(6)/Dihに形成された空孔の大きさが、Csイオンのイオン原子半径とよく一致していることが予想される。 As shown in the figure, there is almost no change in absorbance between the control sample picrate salt solution and the picrate salt solution extracted using CRA / AC, and CRA / AC has no ion transport ability. It is clear. On the other hand, when BCA (8) / Dih and BCA (6) / Dih were used, a decrease in absorbance was observed. In particular, with BCA (6) / Dih, the absorbance decreases to about 0.6. The difference in absorbance is considered to be due to the size of the vacancies formed in each polymer, and the size of the vacancies formed in BCA (6) / Dih rather than BCA (8) / Dih is Cs. It is expected to be in good agreement with the ion atomic radius of the + ion.

次に、実施例3で得られたBCA(6)/Dihをフィルム状に成形し、セシウムイオンの抽出率を算出した。測定結果を図9に示す。比較用に、BCA(6)/Dihを溶液として使用した測定結果も示している。同図に示すように、BCA(6)/Dihをフィルム状の包接材料として使用した場合、包接材料と水溶液との接触面積が小さいため、溶液として使用した場合よりも吸着能は低い結果となっているが、BCA(8)/Dihを溶液として使用した場合と同等の結果が得られている。   Next, BCA (6) / Dih obtained in Example 3 was formed into a film shape, and the extraction rate of cesium ions was calculated. The measurement results are shown in FIG. For comparison, measurement results using BCA (6) / Dih as a solution are also shown. As shown in the figure, when BCA (6) / Dih is used as a film-shaped inclusion material, the contact area between the inclusion material and the aqueous solution is small, so that the adsorption ability is lower than when used as a solution. However, a result equivalent to that obtained when BCA (8) / Dih was used as a solution was obtained.

このように、本発明の高分子は加工性に優れており、フィルム状に成形することで、各種ゲストを包接する包接材料として用いることもでき、例えば、海中に包接材料を浸漬しておくことで、ゲストを包接するなど、多様な形態にて使用可能である。   Thus, the polymer of the present invention is excellent in processability, and can be used as an inclusion material for inclusion of various guests by being formed into a film shape. For example, the inclusion material is immersed in the sea. It can be used in various forms, such as enclosing guests.

本発明は、放射性物質、レアメタルなどの各種ゲストの回収を要する分野にて利用可能である。   The present invention can be used in fields that require recovery of various guests such as radioactive substances and rare metals.

Claims (7)

下記一般式1で示された構造を含む高分子であって、
(一般式1において、nは4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、Rは−OHである。)
nつの繰り返し単位で構成された環状構造同士における1位の酸素原子同士のうち少なくとも2対が、
水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含む結合鎖−R−によって結合されていることを特徴とする高分子。
A polymer comprising a structure represented by the following general formula 1,
(In General Formula 1, n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 , provided that n is 4, 6, 7 or 8. The methylene group is bonded to the 2nd and 6th carbons of the benzene ring. When n is 5, the methylene group is bonded to the 2nd or 3rd carbon of the benzene ring and the 6th carbon. And R 1 is —OH when bonded to the carbon at the 3-position.)
At least two pairs of the oxygen atoms at the 1-position in the cyclic structures composed of n repeating units are
A hydrogen atom may be substituted and bonded by a bonding chain -R 2- containing 1 to 18 methylene groups in which at least one of an oxygen atom, a sulfur atom and a nitrogen atom may be inserted between carbon atoms. A polymer characterized by
上記結合鎖−R−は、下記一般式群1に示されたいずれかの構造であり、
−R−は、水素原子が、酸素原子、硫黄原子、−NHR、−NR 、−Rまたは−ORによって置換されていてもよく(RはC2x+1であり、xは自然数である)、炭素原子間に、酸素原子、硫黄原子または窒素原子が挿入されていてもよいaが1〜18の整数である−(CH−であることを特徴とする請求項1に記載の高分子。
The bonding chain —R 2 — is any structure shown in the following general formula group 1,
In —R 3 —, a hydrogen atom may be substituted by an oxygen atom, a sulfur atom, —NHR 4 , —NR 4 2 , —R 4 or —OR 4 (R 4 is C x H 2x + 1 , x is a natural number), and an oxygen atom, a sulfur atom or a nitrogen atom may be inserted between carbon atoms, and a is an integer of 1 to 18 — (CH 2 ) a —. The polymer according to claim 1.
上記結合鎖−R−は、下記構造であり、
−R−は、bが1〜18の整数である−(CO)−であることを特徴とする請求項1に記載の高分子。
The binding chain -R 2 -has the following structure:
The polymer according to claim 1, wherein —R 3 — is — (C 2 H 4 O) b —, wherein b is an integer of 1 to 18.
nが4または6であり、−Rが−C(CHであることを特徴とする請求項1〜3の何れか1項に記載の高分子。 n is 4 or 6, a polymer according to any one of claims 1 to 3, characterized in that -R 1 is -C (CH 3) 3. nが5であり、−Rが−OHであることを特徴とする請求項1〜3の何れか1項に記載の高分子。 n is 5, a polymer according to any one of claims 1 to 3, characterized in that -R 1 is -OH. 請求項1〜5の何れか1項に記載の高分子をフィルム状または繊維状に成形してなる包接材料。   The inclusion material formed by shape | molding the polymer of any one of Claims 1-5 in a film form or a fiber form. 下記一般式2で示される化合物と、下記一般式群2に示された何れかの化合物とを反応させる高分子の製造方法。
(一般式2において、nは、4〜8の整数であり、−Rは−OH、−CHまたは−C(CHである。ただし、nが4、6、7または8の場合、メチレン基はベンゼン環の2位の炭素と6位の炭素とに結合しており、nが5の場合、メチレン基はベンゼン環の2位または3位の炭素と6位の炭素とに結合しており、3位の炭素に結合している場合、−Rは−OHである。)
(一般式群2において、−R−は、水素原子が置換されていてもよく、炭素原子間に酸素原子、硫黄原子、窒素原子の少なくも1つが挿入されていてもよい1〜18つのメチレン基を含み、XおよびXは、塩素、臭素、ニトロベンゼン、クロロベンゼン、またはブロモベンゼンである)
A method for producing a polymer, comprising reacting a compound represented by the following general formula 2 with any compound represented by the following general formula group 2.
(In General Formula 2, n is an integer of 4 to 8, and —R 1 is —OH, —CH 3 or —C (CH 3 ) 3 , provided that n is 4, 6, 7 or 8. In this case, the methylene group is bonded to the 2nd and 6th carbons of the benzene ring, and when n is 5, the methylene group is bonded to the 2nd or 3rd carbon and the 6th carbon of the benzene ring. When bonded and bonded to the 3rd carbon, -R 1 is -OH.)
(In General Formula Group 2, —R 3 — may have 1 to 18 hydrogen atoms that may be substituted, and at least one of an oxygen atom, a sulfur atom, and a nitrogen atom may be inserted between carbon atoms. Including a methylene group, X 1 and X 2 are chlorine, bromine, nitrobenzene, chlorobenzene, or bromobenzene)
JP2013096035A 2013-04-30 2013-04-30 Polymer and method for producing the polymer Active JP6156818B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013096035A JP6156818B2 (en) 2013-04-30 2013-04-30 Polymer and method for producing the polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013096035A JP6156818B2 (en) 2013-04-30 2013-04-30 Polymer and method for producing the polymer

Publications (2)

Publication Number Publication Date
JP2014218532A true JP2014218532A (en) 2014-11-20
JP6156818B2 JP6156818B2 (en) 2017-07-05

Family

ID=51937309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013096035A Active JP6156818B2 (en) 2013-04-30 2013-04-30 Polymer and method for producing the polymer

Country Status (1)

Country Link
JP (1) JP6156818B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058079A1 (en) * 2015-08-24 2017-03-02 A School Corporation Kansai University Polymer compound, radiation sensitive composition and pattern forming method
JP2017088848A (en) * 2015-08-24 2017-05-25 学校法人 関西大学 Polymer compound, radiation-sensitive composition and pattern forming method
CN106957406A (en) * 2017-05-11 2017-07-18 江南大学 A kind of calixarene type light-cured polyurethane resin and its coatings of preparation
CN108620042A (en) * 2018-05-16 2018-10-09 东华理工大学 Application of the carbon-based Supramolecular Recognition material and preparation method thereof with adsorbing separation Cs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123126A (en) * 1988-11-01 1990-05-10 Wakayama Pref Gov Production of thermosetting resin
JP2000264953A (en) * 1999-03-11 2000-09-26 Japan Science & Technology Corp Curable epoxy resin composition
JP2004503529A (en) * 2000-06-10 2004-02-05 イギリス国 Calix arenes and sensors based on calix arenes
WO2004039483A1 (en) * 2002-10-30 2004-05-13 Ajinomoto Co., Inc. Dispersing agent or solubilizing agent containing calixarene compound
JP2004161696A (en) * 2002-11-14 2004-06-10 Ajinomoto Co Inc Fluorine-containing calixarene compound and application thereof
JP2011162677A (en) * 2010-02-10 2011-08-25 Kanagawa Univ Polymer compound, curable composition and optical material, and manufacturing method of those

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123126A (en) * 1988-11-01 1990-05-10 Wakayama Pref Gov Production of thermosetting resin
JP2000264953A (en) * 1999-03-11 2000-09-26 Japan Science & Technology Corp Curable epoxy resin composition
JP2004503529A (en) * 2000-06-10 2004-02-05 イギリス国 Calix arenes and sensors based on calix arenes
WO2004039483A1 (en) * 2002-10-30 2004-05-13 Ajinomoto Co., Inc. Dispersing agent or solubilizing agent containing calixarene compound
JP2004161696A (en) * 2002-11-14 2004-06-10 Ajinomoto Co Inc Fluorine-containing calixarene compound and application thereof
JP2011162677A (en) * 2010-02-10 2011-08-25 Kanagawa Univ Polymer compound, curable composition and optical material, and manufacturing method of those

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170058079A1 (en) * 2015-08-24 2017-03-02 A School Corporation Kansai University Polymer compound, radiation sensitive composition and pattern forming method
JP2017088848A (en) * 2015-08-24 2017-05-25 学校法人 関西大学 Polymer compound, radiation-sensitive composition and pattern forming method
CN106957406A (en) * 2017-05-11 2017-07-18 江南大学 A kind of calixarene type light-cured polyurethane resin and its coatings of preparation
CN106957406B (en) * 2017-05-11 2019-04-23 江南大学 A kind of calixarene type light-cured polyurethane resin and its coatings of preparation
CN108620042A (en) * 2018-05-16 2018-10-09 东华理工大学 Application of the carbon-based Supramolecular Recognition material and preparation method thereof with adsorbing separation Cs

Also Published As

Publication number Publication date
JP6156818B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
CN104968637B (en) Allyl compound and its manufacture method
JP6156818B2 (en) Polymer and method for producing the polymer
US20190153154A1 (en) Polymers of intrinsic microporosity (pims) containing locked spirobisindane structures and methods of synthesis of pims polymers
Sulub-Sulub et al. Highly permeable polyimide membranes with a structural pyrene containing tert-butyl groups: synthesis, characterization and gas transport
CN109180492B (en) Rosin benzocyclobutene monomer capable of free radical polymerization, preparation method and application thereof
JP2008214529A (en) Ionic organic compound and method for producing the same, hydrogel-forming agent composed of the ionic organic compound, and hydrogel
Akae et al. Effective synthesis and modification of α‐cyclodextrin‐based [3] rotaxanes enabling versatile molecular design
JP5013366B2 (en) Method for synthesizing bis (terpyridine) compounds
CN104193986B (en) Curable polyether-ether-ketone and preparation thereof and application
CN106554338A (en) A kind of method that furancarboxylic acid prepares 2,5- furandicarboxylic acids
JP5092140B2 (en) Method for synthesizing asymmetric bis (terpyridine) compounds
JP5443017B2 (en) 9,9-bisaryl-1-carboxyfluorene
JPH0491070A (en) Calixarene derivative
JP5463541B2 (en) Modified pseudopolyrotaxane and modified polyrotaxane, and methods for producing them
CN107043353A (en) A kind of imidazoles benzaldehyde-p-phenylenediamine bi-schiff base and preparation method thereof
AU2017239770B2 (en) New polymer having aldaric acid as structural unit, and method for producing same
JP6021002B2 (en) Polyetherketone and method for producing the same
RU2631502C2 (en) Polyarylene diphthalides and method of their preparing
CN105753821A (en) Preparation method of 2,5-furandicarboxylic acid
CN102584610B (en) Bisphenol 2 (m-amino p-hydroxy phenyl) ether hydrochloride and preparation method and application thereof
JPS623149B2 (en)
Ben-Haida et al. Macrocyclic aromatic polysulfones and sulfide-sulfones: synthesis and structural characterisation of molecular pentagons and rectangles
JP6917612B2 (en) A method for producing and purifying a bromine monosubstituted product of perylenetetracarboxylic dianhydride.
US9000224B1 (en) Process for the preparation of pillar[5]quinone
JPS6042379A (en) Macrocyclic co-oligoester of salicylic acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170530

R150 Certificate of patent or registration of utility model

Ref document number: 6156818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250