JP2014214959A - Heat insulation box - Google Patents

Heat insulation box Download PDF

Info

Publication number
JP2014214959A
JP2014214959A JP2013092332A JP2013092332A JP2014214959A JP 2014214959 A JP2014214959 A JP 2014214959A JP 2013092332 A JP2013092332 A JP 2013092332A JP 2013092332 A JP2013092332 A JP 2013092332A JP 2014214959 A JP2014214959 A JP 2014214959A
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
vacuum heat
box
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013092332A
Other languages
Japanese (ja)
Other versions
JP6225324B2 (en
Inventor
高野 隆司
Takashi Takano
隆司 高野
吉英 中島
Yoshifusa Nakajima
吉英 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013092332A priority Critical patent/JP6225324B2/en
Publication of JP2014214959A publication Critical patent/JP2014214959A/en
Application granted granted Critical
Publication of JP6225324B2 publication Critical patent/JP6225324B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls

Abstract

PROBLEM TO BE SOLVED: To provide a heat insulation box which can suppress appearance deformation due to air infiltration into a vacuum heat insulation material which is caused by aged deterioration, which is the space-saving heat insulation box of a large capacity, and which has high energy saving performance as it has high heat insulation performance.SOLUTION: In a heat insulation box configured by a plurality of temperature zones, a core material including at least a fiber material, and a vacuum heat insulation material including a gas adsorbent which is vacuum sealed in a bag made of a packaging material having an excellent gas barrier property are mounted. On the surface of the vacuum heat insulation material, a first groove part 151 and a second groove part 152 are made to intersect with each other, and the grooves are disposed to upper and lower end parts. The vacuum heat insulation material includes the gas adsorbent 137. The gas adsorbent included in the vacuum heat insulation material and a heat generation part are disposed in separated positions. Thereby, the heat insulation box can be provided which is the space-saving heat insulation box of a large capacity, and which has high energy saving performance as it has high heat insulation performance.

Description

本発明は、真空断熱材を適用した断熱箱体に関するものである。   The present invention relates to a heat insulation box to which a vacuum heat insulating material is applied.

近年、冷蔵庫の省エネルギー化や省スペース化を狙いに、断熱箱体の断熱性能を高める一手段として、高断熱性能を有する真空断熱材を利用する方法があり、省エネルギーの要請が益々高まる今日では、硬質ウレタンフォームと比較して数倍から10倍程度の断熱性能を有する真空断熱材を適切な範囲内で最大限に利用することにより断熱性能を向上させていくことが急務であるといえる。   In recent years, with the aim of energy saving and space saving of refrigerators, there is a method of using a vacuum heat insulating material having high heat insulating performance as one means of improving the heat insulating performance of the heat insulating box, and today, the demand for energy saving is increasing, It can be said that there is an urgent need to improve the heat insulation performance by making maximum use of a vacuum heat insulating material having a heat insulation performance several times to 10 times that of rigid urethane foam within an appropriate range.

その中で、真空断熱材を備えた従来の断熱箱体としては、例えば、特許文献1に開示されたものがある。   Among them, as a conventional heat insulation box provided with a vacuum heat insulating material, for example, there is one disclosed in Patent Document 1.

以下、図面を参照しながら上記従来の断熱箱体を説明する。   Hereinafter, the conventional heat insulation box will be described with reference to the drawings.

図7は特許文献1に記載されている冷蔵庫の側面断面図を示すものである。外箱2と、内箱3と、内箱3と外箱2と間に充填されるウレタン断熱材4とからなる断熱壁を有する冷蔵庫において、外箱2と内箱3との間で外箱2に密着して備えられた真空断熱材5と、真空断熱材5と外箱2の間に構成された放熱パイプ10とを備え、放熱パイプ10は真空断熱材5に設けられた第一溝部11に埋設されている。   FIG. 7 shows a side sectional view of the refrigerator described in Patent Document 1. As shown in FIG. In a refrigerator having a heat insulating wall composed of an outer box 2, an inner box 3, and a urethane heat insulating material 4 filled between the inner box 3 and the outer box 2, the outer box is placed between the outer box 2 and the inner box 3. 2 and a heat radiation pipe 10 formed between the vacuum heat insulation material 5 and the outer box 2, and the heat radiation pipe 10 is a first groove portion provided in the vacuum heat insulation material 5. 11 is buried.

本構成により、放熱パイプ10は第一溝部11に埋設されているので真空断熱材5に密着固定できることにより、真空断熱材5に形成される第一溝部11は従来に比べ狭小化でき、冷蔵庫の外箱の外観変形を防止し、かつアルミ廃止によるリサイクル性が向上できる。さらに近年、断熱性能を向上させる手段として、被覆面積を高める取り組みがされている。被覆面積を高めると放熱パイプ10の折り返し部分が突出し、庫内側に真空断熱材を設けることができないので放熱パイプ10の折り返し部分に第二溝部を設け、放熱パイプ10を突出させることなく、放熱パイプ10を折り返し部分の庫内側にも配設することができる真空断熱材5が提案されている。   With this configuration, since the heat radiating pipe 10 is embedded in the first groove 11, the first groove 11 formed in the vacuum heat insulating material 5 can be narrowed compared to the conventional case by being able to adhere and fix to the vacuum heat insulating material 5. The outer box can be prevented from being deformed and the recyclability can be improved by eliminating aluminum. In recent years, efforts have been made to increase the covering area as a means for improving the heat insulation performance. When the covering area is increased, the folded portion of the heat radiating pipe 10 protrudes, and a vacuum heat insulating material cannot be provided inside the cabinet. Therefore, the second groove portion is provided in the folded portion of the radiating pipe 10 so that the heat radiating pipe 10 does not protrude. There has been proposed a vacuum heat insulating material 5 in which 10 can also be arranged inside the folded portion.

第二溝部は真空断熱材の上下端部まで形成したもので第一溝部11と第二溝部の配置は第一溝部11と第二溝部は、少なくとも板状の表面において互いに交叉するように形成させ、第一溝部11の数は前記第二溝部の数より多く設け、第二溝部の溝の幅は第一溝部の幅より広くさせて、出来るだけ被覆面積を高めて断熱性能を向上させる取り組みがなされている。   The second groove is formed up to the upper and lower ends of the vacuum heat insulating material. The first groove 11 and the second groove are arranged so that the first groove 11 and the second groove cross each other at least on the plate-like surface. The number of the first groove portions 11 is more than the number of the second groove portions, and the width of the groove of the second groove portion is made wider than the width of the first groove portion to increase the covering area as much as possible to improve the heat insulation performance. Has been made.

特開2007−198622号公報JP 2007-198622 A

しかしながら、前記従来例に記載されている冷蔵庫では、真空断熱材5は硬質ウレタンフォーム内部に存在するものの、真空断熱材5の空気に触れる面積が大きいため、使用時の経年経過中に真空断熱材内部に空気が侵入し易く、更に空気侵入した真空断熱材は内部真空度が劣化するため熱伝導率の低下を招くという懸念があった。   However, in the refrigerator described in the above-described conventional example, although the vacuum heat insulating material 5 exists inside the hard urethane foam, the area of the vacuum heat insulating material 5 that touches the air is large. There is a concern that air easily penetrates into the interior, and that the vacuum heat insulating material that has entered the air deteriorates the degree of internal vacuum, leading to a decrease in thermal conductivity.

更に、長期使用時に内部真空度の劣化した真空断熱材5に入る空気によって、外観への凹み等の変形を招くという問題があった。特に、冷蔵庫は放熱用パイプ10が冷蔵庫の外箱2に配設され、真空断熱材5に第一溝部11と第二溝部を設け、放熱用パイプ10を覆う様に真空断熱材5が貼り付けられる。   Furthermore, there is a problem that the air entering the vacuum heat insulating material 5 whose internal vacuum degree has deteriorated during long-term use causes deformation such as a dent to the appearance. In particular, in the refrigerator, the heat radiating pipe 10 is disposed in the outer box 2 of the refrigerator, the vacuum heat insulating material 5 is provided with the first groove portion 11 and the second groove portion, and the vacuum heat insulating material 5 is attached so as to cover the heat radiating pipe 10. It is done.

このとき、真空断熱材5は硬質ウレタンフォーム内部となるが、放熱用パイプ10は硬質ウレタンフォーム外部へと埋設されていることと、放熱用パイプ自身を外箱2に貼り付ける際のアルミテープにより空気層が生まれるため、外部空気と真空断熱材が直接的、もしくは硬質ウレタンフォームやアルミテープを介して間接的にも接触する。   At this time, the vacuum heat insulating material 5 is inside the hard urethane foam, but the heat radiating pipe 10 is embedded outside the hard urethane foam and the aluminum tape when the heat radiating pipe itself is attached to the outer box 2 is used. Since an air layer is created, the external air and the vacuum heat insulating material are in direct contact with each other or indirectly through rigid urethane foam or aluminum tape.

このようなことから、本発明は、上記課題に鑑み、経年劣化によって起こる真空断熱材の空気侵入による外観変形の発生を抑制し、省スペースで大容量の冷蔵庫でかつ、高い断熱性能を有する省エネ性能の高い冷蔵庫を提供するものである。   Therefore, in view of the above problems, the present invention suppresses the occurrence of external deformation due to air intrusion of the vacuum heat insulating material caused by aging deterioration, is a space-saving large-capacity refrigerator, and has high heat insulating performance. A high-performance refrigerator is provided.

上記従来の課題を解決するために、本発明は複数の断熱区画で構成された箱体と、前記箱体に備えられた発熱部と、前記箱体を仕切る断熱仕切り部と、を備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤と、前記発熱部とは、離れた位置に配設したものである。   In order to solve the above-described conventional problems, the present invention includes a box including a plurality of heat insulating compartments, a heat generating portion provided in the box, and a heat insulating partition that partitions the box. The heat insulating box constituted by the temperature zone is mounted with a vacuum heat insulating material sealed at a reduced pressure by enclosing at least a core material with a covering material, and the vacuum heat insulating material has a groove formed in the longitudinal direction on the surface. A second groove portion having a groove portion and a groove formed in a short direction is formed up to the upper and lower end portions of the vacuum heat insulating material, and the first groove portion and the second groove portion cross each other at least on a plate-like surface. The number of the first groove portions is larger than the number of the second groove portions, the width of the groove of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulation The material contains a gas adsorbent and is prepared for the vacuum heat insulating material. It is said gas adsorbents, and the heating unit is obtained by disposed at a position apart.

また、本発明は、複数の断熱区画で構成された箱体と、前記箱体に備えられた発熱部と、前記箱体を仕切る断熱仕切り部と、を備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤は、前記真空断熱材の厚み方向の投影面上において前記発熱部と重ならない位置に配設したものである。   In addition, the present invention is configured by a plurality of temperature zones including a box configured by a plurality of heat insulating compartments, a heat generating unit provided in the box, and a heat insulating partition that partitions the box. The heat insulating box is equipped with a vacuum heat insulating material which is sealed at a reduced pressure by enclosing at least a core material with a covering material, and the vacuum heat insulating material is formed in a short direction with a first groove portion having a groove formed in a longitudinal direction on the surface. The second groove part having the groove formed to the upper and lower ends of the vacuum heat insulating material, the first groove part and the second groove part are formed so as to cross each other at least on a plate-like surface, The number of the first groove portions is larger than the number of the second groove portions, the width of the groove of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulating material contains a gas adsorbent. In addition, the gas adsorbent provided in the vacuum heat insulating material, Serial in which is disposed at a position which does not overlap with the heat generating portion on the projection surface in the thickness direction of the vacuum heat insulating material.

これによって、真空断熱材に備えられた気体吸着剤が高温となることを避けることができ、気体吸着剤が短期間に高活性化するのを避け、長期間に渡って機能を発揮することを実現するとともに、気体吸着剤周辺の外被材の経年劣化を防ぐことで気体吸着剤が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着剤は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。   As a result, the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and the function can be demonstrated over a long period of time. Realizes and prevents the aging of the jacket material around the gas adsorbent to reduce the effect of the gas adsorbent touching the air, and even when the heat insulation box is used for a long time, the gas mounted on the vacuum heat insulating material Since the adsorbent can continuously adsorb air entering from the outside, it is possible to maintain the vacuum degree of the vacuum heat insulating material and to suppress the deterioration of the thermal conductivity of the vacuum heat insulating material.

本発明の断熱箱体は、断熱箱体を長期に渡り使用した場合でも、真空断熱材の真空度維持ができ、真空断熱材の熱伝導率の劣化防止が図れ、省エネ性に優れた断熱箱体を提供することが可能となる。   The heat insulating box of the present invention can maintain the vacuum degree of the vacuum heat insulating material even when the heat insulating box is used for a long time, can prevent deterioration of the thermal conductivity of the vacuum heat insulating material, and is excellent in energy saving. The body can be provided.

本発明の実施の形態1における冷蔵庫の正面断面図Front sectional view of the refrigerator according to Embodiment 1 of the present invention. 本発明の実施の形態1における冷蔵庫の縦断面図The longitudinal cross-sectional view of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫に用いられる真空断熱材の平面図The top view of the vacuum heat insulating material used for the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における気体吸着剤を適用した真空断熱材の断面図Sectional drawing of the vacuum heat insulating material which applied the gas adsorbent in Embodiment 1 of this invention 本発明の実施の形態1における冷蔵庫の壁面の断面図Sectional drawing of the wall surface of the refrigerator in Embodiment 1 of this invention 本発明の実施の形態1における気体吸着剤を適用した真空断熱材の経年劣化イメージ図Aged deterioration image diagram of the vacuum heat insulating material to which the gas adsorbent in Embodiment 1 of the present invention is applied 本発明の実施の形態1における真空断熱材の気体吸着剤配置図Arrangement diagram of gas adsorbent of vacuum heat insulating material in Embodiment 1 of the present invention 従来技術による冷蔵庫を説明する冷蔵庫の側面断面図Side sectional view of a refrigerator explaining a refrigerator according to the prior art

第1の発明は、複数の断熱区画で構成された箱体と、前記箱体に備えられた発熱部と、前記箱体を仕切る断熱仕切り部と、を備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤と、前記発熱部とは、離れた位置に配設したものである。   1st invention comprised with the several temperature zone provided with the box comprised by the some heat insulation division, the heat-emitting part with which the said box was equipped, and the heat insulation partition part which partitions off the said box. The heat insulating box is equipped with a vacuum heat insulating material which is sealed at a reduced pressure by enclosing at least a core material with a covering material, and the vacuum heat insulating material is formed in a short direction with a first groove portion having a groove formed in a longitudinal direction on the surface. The second groove part having the groove formed to the upper and lower ends of the vacuum heat insulating material, the first groove part and the second groove part are formed so as to cross each other at least on a plate-like surface, The number of the first groove portions is larger than the number of the second groove portions, the width of the groove of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulating material contains a gas adsorbent. And the gas adsorbent provided in the vacuum heat insulating material, A heating unit is obtained by disposed at a position apart.

これによって、真空断熱材に備えられた気体吸着剤が高温となることを避けることができ、気体吸着剤が短期間に高活性化するのを避け、長期間に渡って機能を発揮することを実現するとともに、気体吸着剤周辺の外被材の経年劣化を防ぐことで気体吸着剤が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着剤は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。   As a result, the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and the function can be demonstrated over a long period of time. Realizes and prevents the aging of the jacket material around the gas adsorbent to reduce the effect of the gas adsorbent touching the air, and even when the heat insulation box is used for a long time, the gas mounted on the vacuum heat insulating material Since the adsorbent can continuously adsorb air entering from the outside, it is possible to maintain the vacuum degree of the vacuum heat insulating material and to suppress the deterioration of the thermal conductivity of the vacuum heat insulating material.

第2の発明は、複数の断熱区画で構成された箱体と、前記箱体に備えられた発熱部と、前記箱体を仕切る断熱仕切り部と、を備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤は、前記真空断熱材の厚み方向の投影面上において前記発熱部と重ならない位置に配設したものである。   2nd invention was comprised by the several temperature zone provided with the box comprised by the some heat insulation division, the heat-emitting part with which the said box was equipped, and the heat insulation partition part which partitions off the said box. The heat insulating box is equipped with a vacuum heat insulating material which is sealed at a reduced pressure by enclosing at least a core material with a covering material, and the vacuum heat insulating material is formed in a short direction with a first groove portion having a groove formed in a longitudinal direction on the surface. The second groove part having the groove formed to the upper and lower ends of the vacuum heat insulating material, the first groove part and the second groove part are formed so as to cross each other at least on a plate-like surface, The number of the first groove portions is larger than the number of the second groove portions, the width of the groove of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulating material contains a gas adsorbent. The gas adsorbent provided in the vacuum heat insulating material is In which is disposed at a position which does not overlap with the heat generating portion on the projection surface in the thickness direction of the vacuum heat insulating material.

これによって、真空断熱材に備えられた気体吸着剤が高温となることを避けることができ、気体吸着剤が短期間に高活性化するのを避け、長期間に渡って機能を発揮することを実現するとともに、気体吸着剤周辺の外被材の経年劣化を防ぐことで気体吸着剤が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着剤は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。   As a result, the gas adsorbent provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent can be prevented from being highly activated in a short period of time, and the function can be demonstrated over a long period of time. Realizes and prevents the aging of the jacket material around the gas adsorbent to reduce the effect of the gas adsorbent touching the air, and even when the heat insulation box is used for a long time, the gas mounted on the vacuum heat insulating material Since the adsorbent can continuously adsorb air entering from the outside, it is possible to maintain the vacuum degree of the vacuum heat insulating material and to suppress the deterioration of the thermal conductivity of the vacuum heat insulating material.

第3の発明は、第1の発明または第2の発明において、前記断熱箱体は、圧縮機と、コンデンサに備えられた放熱用の放熱パイプと、キャピラリーチューブと、冷却器とを有する冷凍サイクルを備え、前記発熱部は、前記放熱パイプである。   A third invention is the refrigeration cycle according to the first invention or the second invention, wherein the heat insulation box includes a compressor, a heat radiating pipe provided in the condenser, a capillary tube, and a cooler. The heat generating part is the heat radiating pipe.

これによって、冷凍サイクルの中の高温側となり、外気温度よりも高い放熱パイプの熱が気体吸着剤に熱伝達することを抑制することができ、気体吸着剤がヒートスポットになることを避けることが可能となる。   By this, it becomes the high temperature side in a refrigerating cycle, it can suppress that the heat of a heat radiating pipe higher than outside temperature transfers to a gas adsorbent, and it can avoid that a gas adsorbent becomes a heat spot. It becomes possible.

さらに、気体吸着剤が真空断熱材よりも出っ張る場合でも、外箱への凸形状とならず、外観変形も防止できる。   Further, even when the gas adsorbent protrudes more than the vacuum heat insulating material, it does not have a convex shape to the outer box, and appearance deformation can be prevented.

また、低真空度に維持される真空断熱材の空気侵入による変形も防止できるため、外箱の外観変形も防止できる。   Moreover, since the deformation | transformation by the air penetration | invasion of the vacuum heat insulating material maintained at a low vacuum degree can be prevented, the external appearance deformation | transformation of an outer box can also be prevented.

第4の発明は、第3の発明において、前記放熱パイプは前記真空断熱材の表面に配設され、かつ少なくともに二本の放熱パイプの間に前記気体吸着剤が配設されるように前記真空断熱材を搭載したものである。   In a fourth aspect based on the third aspect, the heat radiating pipe is disposed on a surface of the vacuum heat insulating material, and the gas adsorbent is disposed between at least two heat radiating pipes. It is equipped with a vacuum insulation material.

これにより、真空断熱材に局所的に断熱できない箇所がないため、放熱能力を増加し、省エネ性を向上させることができる。   Thereby, since there is no location which cannot be thermally insulated locally in a vacuum heat insulating material, heat dissipation capability can be increased and energy-saving property can be improved.

第5の発明は、第3の発明または第4の発明において、前記空気吸着剤は、前記真空断熱材の前記放熱パイプが配設される側と反対の面側に位置させるものである。   According to a fifth invention, in the third or fourth invention, the air adsorbent is positioned on a surface side of the vacuum heat insulating material opposite to a side where the heat radiating pipe is disposed.

これによって、放熱パイプと気体吸着剤とは、真空断熱材の芯材を介して逆側の面に位置するため、放熱パイプからの熱影響を受けることを低減することが可能となる。   As a result, the heat radiating pipe and the gas adsorbent are located on the opposite surface through the core of the vacuum heat insulating material, so that it is possible to reduce the influence of heat from the heat radiating pipe.

以下、本発明の実施の形態について、図面を参照しながら説明する。また、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Further, the present invention is not limited to the embodiments.

なお、従来と同一構成及び差異がない部分については、詳細な説明を省略する。また、この実施の形態によってこの発明が限定されるものではない。   Note that detailed descriptions of parts that are the same as those in the conventional configuration and that have no difference are omitted. Further, the present invention is not limited to the embodiments.

(実施の形態1)
以下、本発明の実施の形態について図面を用いて詳細に説明する。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の実施の形態1による断熱箱体の正面断面図である。図2は、本発明の実施の形態1による断熱箱体の縦断面図である。図3は、本発明の実施の形態1による冷蔵庫に用いられる真空断熱材の平面図である。   FIG. 1 is a front sectional view of a heat insulating box according to Embodiment 1 of the present invention. FIG. 2 is a longitudinal sectional view of the heat insulation box according to Embodiment 1 of the present invention. FIG. 3 is a plan view of a vacuum heat insulating material used in the refrigerator according to Embodiment 1 of the present invention.

図1、図2、図3に示すように、箱体を形成する断熱箱体である本体101は、前方に開口する金属製(例えば鉄板)の外箱124と硬質樹脂製(例えばABS)の内箱125と、外箱124と内箱125の間に発泡充填された硬質ウレタンフォーム126と、からなる断熱箱体である。この本体101の上部に設けられた冷蔵室102と、冷蔵室102の下に設けられた上段冷凍室103と、冷蔵室102の下で上段冷凍室103に並列に設けられた製氷室104と、本体下部に設けられた野菜室106と、並列に設置された上段冷凍室103及び製氷室104と野菜室106の間に設けられた下段冷凍室105で、構成されている。   As shown in FIGS. 1, 2, and 3, the main body 101, which is a heat insulating box forming a box, is made of a metal (for example, iron plate) outer box 124 that opens forward and a hard resin (for example, ABS). This is a heat insulating box made up of an inner box 125 and a hard urethane foam 126 filled with foam between the outer box 124 and the inner box 125. A refrigerating chamber 102 provided at the top of the main body 101, an upper freezing chamber 103 provided below the refrigerating chamber 102, an ice making chamber 104 provided in parallel to the upper freezing chamber 103 under the refrigerating chamber 102, A vegetable compartment 106 provided at the lower part of the main body, an upper freezing compartment 103 installed in parallel, and a lower freezing compartment 105 provided between the ice making chamber 104 and the vegetable compartment 106 are configured.

断熱箱体である本体101の天面部は、断熱箱体の背面方向に向かって階段状に凹みを設けて機械室119があり、第一の天面部108と第二の天面部109で構成されている。この階段状の凹部に配置された圧縮機117と、水分除去を行うドライヤ(図示せず)と、コンデンサ(図示せず)と、放熱用の放熱パイプ143と、キャピラリーチューブ118と、冷却器(図示せず)と、を順次環状に接続して冷凍サイクルを構成し、冷凍サイ
クルに冷媒を封入し、冷却運転を行う。
The top surface portion of the main body 101 which is a heat insulation box body is provided with a machine room 119 provided with a dent in a step-like manner toward the back surface of the heat insulation box body, and is composed of a first top surface portion 108 and a second top surface portion 109. ing. A compressor 117 disposed in the stepped recess, a dryer (not shown) for removing moisture, a condenser (not shown), a heat radiating pipe 143, a capillary tube 118, a cooler ( (Not shown) are successively connected in an annular manner to form a refrigeration cycle, and a refrigerant is sealed in the refrigeration cycle to perform a cooling operation.

なお、冷媒には近年、環境保護のために可燃性冷媒であるR600aを用いる。   In recent years, R600a, which is a flammable refrigerant, is used as a refrigerant for environmental protection.

ここで、真空断熱材127、128、129、130、131は、硬質ウレタンフォーム126とともに断熱箱体の本体101を構成している。   Here, the vacuum heat insulating materials 127, 128, 129, 130, and 131 constitute the main body 101 of the heat insulating box together with the hard urethane foam 126.

ここで、真空断熱材127、128、129、130は、外箱124にそれぞれ天面、背面、左側面、右側面の内側に接して貼り付けられている。また、真空断熱材131は、内箱125の底面に接して貼り付けられている。   Here, the vacuum heat insulating materials 127, 128, 129, and 130 are attached to the outer box 124 in contact with the inside of the top surface, the back surface, the left side surface, and the right side surface, respectively. The vacuum heat insulating material 131 is attached in contact with the bottom surface of the inner box 125.

断熱箱体である本体101の背面及び側面には、放熱用の放熱パイプ143が配設されており、一本のパイプを例えばU字に折り曲げることで放熱長さを確保し、外箱124に貼り付けられている。   A heat radiating pipe 143 is disposed on the back and side surfaces of the main body 101 which is a heat insulating box, and a heat radiating length is secured by bending one pipe into, for example, a U-shape. It is pasted.

本体101側面には配設してある放熱パイプ143に真空断熱材128、129、130が貼り付けてある。   Vacuum heat insulating materials 128, 129, and 130 are attached to a heat radiating pipe 143 disposed on the side surface of the main body 101.

真空断熱材128、129、130には、放熱パイプ143を設置する第一溝部151と第二溝部152とからなり、第一溝部151は、真空断熱材128、129、130の長手方向(つまり断熱箱体である本体101の上下方向)に沿って真空断熱材128、129、130の上下端部153まで形成された凹溝であり、複数の第一溝部151が互いに平行に配設されている。なお、本実施の形態では、第一溝部は、三本である。   The vacuum heat insulating materials 128, 129, and 130 include a first groove portion 151 and a second groove portion 152 in which the heat radiating pipe 143 is installed. The first groove portion 151 is in the longitudinal direction of the vacuum heat insulating materials 128, 129, and 130 (that is, heat insulating material). It is a concave groove formed up to the upper and lower end portions 153 of the vacuum heat insulating materials 128, 129, 130 along the vertical direction of the main body 101 which is a box, and a plurality of first groove portions 151 are arranged in parallel to each other. . In the present embodiment, there are three first groove portions.

第二溝部152は、真空断熱材128、129、130の短手方向(つまり断熱箱体である本体101の前後方向)に沿って延びる凹溝であり、第一溝部151の上下方向に一本ずつ配設されており、互いに交叉するように形成されている。   The second groove 152 is a concave groove that extends along the short direction of the vacuum heat insulating materials 128, 129, and 130 (that is, the front-rear direction of the main body 101 that is a heat-insulating box), and one groove in the vertical direction of the first groove 151. They are arranged one by one and are formed so as to cross each other.

上下の第二溝部152の底面には、放熱パイプ143の上下端で屈曲形成された屈曲部が配置されている。   Bending portions that are bent at the upper and lower ends of the heat radiating pipe 143 are disposed on the bottom surfaces of the upper and lower second groove portions 152.

また、第二溝部152の上下のいずれか一方の溝部(本実施形態では、下側の第二溝部152)は放熱パイプ143の導入溝154に連結されている。   One of the upper and lower grooves of the second groove 152 (in this embodiment, the lower second groove 152) is connected to the introduction groove 154 of the heat radiating pipe 143.

そして、放熱パイプ143は、真空断熱材128、129、130の周縁から放熱パイプ143の導入溝154を通って、第二溝部152に導入され、第一溝部151に直線部が配置され、第二溝部152の底面に屈曲部が配置され、第二溝部152の上部に形成される第一溝部151の放熱パイプ143の出口溝155を通るように配置される。   The heat radiating pipe 143 is introduced from the peripheral edge of the vacuum heat insulating materials 128, 129, and 130 through the introduction groove 154 of the heat radiating pipe 143 into the second groove portion 152, and the linear portion is disposed in the first groove portion 151. A bent portion is disposed on the bottom surface of the groove portion 152 and is disposed so as to pass through the outlet groove 155 of the heat radiation pipe 143 of the first groove portion 151 formed on the upper portion of the second groove portion 152.

これにより、上下に蛇行する放熱パイプ143のほぼ全体が、真空断熱材128、129、130の上下端部153より飛び出ることなく真空断熱材128、129、130と外箱124の側板との間に配置される。   As a result, almost the entire heat radiating pipe 143 meandering up and down does not jump out from the upper and lower ends 153 of the vacuum heat insulating materials 128, 129, and 130, and between the vacuum heat insulating materials 128, 129, 130 and the side plate of the outer box 124. Be placed.

真空断熱材128、129、130には、気体吸着剤137がそれぞれ内部に搭載されており、真空断熱材128、129、130の気体吸着剤は、中心よりも庫内側(内箱側)に配設されている。   A gas adsorbent 137 is mounted on each of the vacuum heat insulating materials 128, 129, and 130, and the gas adsorbents of the vacuum heat insulating materials 128, 129, and 130 are arranged on the inner side (inner box side) of the center. It is installed.

放熱パイプ143は、真空断熱材128、129、130の外箱124側に設置されている。   The heat radiating pipe 143 is installed on the outer casing 124 side of the vacuum heat insulating materials 128, 129, and 130.

また、冷蔵室102と製氷室104および上段冷凍室103とは第一の断熱仕切り部110で区画されている。   The refrigerator compartment 102, the ice making compartment 104, and the upper freezer compartment 103 are partitioned by a first heat insulating partition 110.

また、製氷室104と上段冷凍室103とは第二の断熱仕切り部111で区画されている。   Further, the ice making chamber 104 and the upper freezing chamber 103 are partitioned by a second heat insulating partition 111.

また、製氷室104および上段冷凍室103と、下段冷凍室105とは第三の断熱仕切り部112で区画されている。   In addition, the ice making chamber 104, the upper freezing chamber 103, and the lower freezing chamber 105 are partitioned by a third heat insulating partition 112.

また、下段冷凍室105と、野菜室106とは第四の断熱仕切り部113で区画されている。   The lower freezer compartment 105 and the vegetable compartment 106 are partitioned by a fourth heat insulating partition 113.

断熱箱体である本体101の背面には冷却室123が設けられ、冷却室123内には、代表的なものとしてフィンアンドチューブ式の冷気を生成する冷却器107が第二の断熱仕切り部111、第三の断熱仕切り部112の後方領域を含めて下段冷凍室105の背面に上下方向に縦長に配設されている。また、冷却器107の材質は、アルミや銅が用いられる。   A cooling chamber 123 is provided on the back surface of the main body 101 that is a heat insulating box, and a cooler 107 that generates fin-and-tube type cool air is representatively provided in the cooling chamber 123 as the second heat insulating partition 111. In addition, the rear side of the lower freezer compartment 105 including the rear region of the third heat insulating partition 112 is vertically arranged in the vertical direction. The material of the cooler 107 is aluminum or copper.

冷却器107の近傍(例えば上部空間)には強制対流方式により冷蔵室102,製氷室104、上段冷凍室103、下段冷凍室105、野菜室106の各貯蔵室に冷却器107で生成した冷気を送風する冷気送風ファン116が配置され、冷却器107の下方空間には冷却時に冷却器107や冷気送風ファン116に付着する霜を除霜する除霜装置としてのガラス管製のラジアントヒータ136が設けられている。   In the vicinity of the cooler 107 (for example, the upper space), the cold air generated by the cooler 107 is stored in each storage room of the refrigerator compartment 102, the ice making room 104, the upper freezer room 103, the lower freezer room 105, and the vegetable room 106 by a forced convection method. A cool air blowing fan 116 for blowing air is disposed, and a radiant heater 136 made of a glass tube is provided in a lower space of the cooler 107 as a defrosting device for defrosting the frost adhering to the cooler 107 and the cold air blowing fan 116 during cooling. It has been.

除霜装置は特に指定するものではなく、ラジアントヒータ136の他に、冷却器107に密着したパイプヒータを用いても良い。   The defroster is not particularly specified, and a pipe heater in close contact with the cooler 107 may be used in addition to the radiant heater 136.

次に断熱箱体の冷却について説明する。   Next, cooling of the heat insulating box will be described.

圧縮機117から吐出された高温高圧の冷媒は、最終的に機械室119に配置されたドライヤ(図示せず)まで到達する間、特に外箱124に設置される放熱パイプ143において、外箱124の外側の空気や庫内の硬質ウレタンフォーム126との熱交換により、冷却されて液化する。   While the high-temperature and high-pressure refrigerant discharged from the compressor 117 finally reaches a dryer (not shown) disposed in the machine room 119, the outer casing 124 particularly in the heat radiating pipe 143 installed in the outer casing 124. It is cooled and liquefied by heat exchange with the outside air and the hard urethane foam 126 in the cabinet.

次に液化した冷媒はキャピラリーチューブ118で減圧されて、冷却器107に流入し冷却器107の周辺の庫内空気と熱交換する。熱交換された冷気は、近傍の冷気送風ファン116により庫内に冷気が送風され庫内を冷却する。   Next, the liquefied refrigerant is decompressed by the capillary tube 118, flows into the cooler 107, and exchanges heat with the internal air around the cooler 107. The cold air subjected to heat exchange is blown into the cabinet by a nearby cool air blower fan 116 to cool the inside of the cabinet.

この後、冷媒は加熱されガス化して圧縮機117に戻る。庫内が冷却されて冷凍室センサ(図示せず)の温度が停止温度以下になった場合に圧縮機117の運転が停止する。   Thereafter, the refrigerant is heated and gasified to return to the compressor 117. When the inside of the refrigerator is cooled and the temperature of the freezer compartment sensor (not shown) becomes equal to or lower than the stop temperature, the operation of the compressor 117 is stopped.

冷気送風ファン116は、内箱125に直接配設されることもあるが、発泡後に組み立てられる第二の断熱仕切り部111に配設し、部品のブロック加工を行うことで製造コストの低減を図ることも可能である。   Although the cool air blowing fan 116 may be directly disposed in the inner box 125, it is disposed in the second heat insulating partition 111 assembled after foaming, and the manufacturing cost is reduced by performing block processing of the parts. It is also possible.

ここで、発熱部とは、圧縮機117や放熱パイプ143を意味する。   Here, the heat generating part means the compressor 117 and the heat radiating pipe 143.

次に、本実施の形態の気体吸着剤137を用いた真空断熱材について説明する。   Next, a vacuum heat insulating material using the gas adsorbent 137 of the present embodiment will be described.

真空断熱材は、少なくとも繊維材料を含む芯材132と、ガスバリア性に優れた包材1
33と、真空封止された気体吸着剤137と、をガスバリア性に優れた外被材135で被い、外被材135を真空封止後に、突起物を有する部材134によって、包材133に穴を開け、包材133内部と外被材135内部を連通させてなるものである。
The vacuum heat insulating material includes a core material 132 including at least a fiber material, and a packaging material 1 having excellent gas barrier properties.
33 and the vacuum-sealed gas adsorbent 137 are covered with a jacket material 135 having excellent gas barrier properties. After the jacket material 135 is vacuum-sealed, the packaging material 133 is formed by a member 134 having protrusions. A hole is formed to allow the inside of the packaging material 133 and the inside of the outer covering material 135 to communicate with each other.

本実施の形態では、包材133からなる容器として、金属製の容器とし、容器内に粉末形状からなる気体吸着剤137を有するものである。   In the present embodiment, the container made of the packaging material 133 is a metal container, and has a gas adsorbent 137 having a powder shape in the container.

繊維材料を含む芯材132とは、芯材132の重量に対して繊維を1パーセント以上100パーセント以下含むものであって、繊維材料と繊維材料以外の複合体であっても良い。   The core material 132 including the fiber material includes fibers of 1% to 100% with respect to the weight of the core material 132, and may be a composite other than the fiber material and the fiber material.

また、ガスバリア性に優れた包材133は、本実施の形態では金属製の容器としたが、気体難透過性の製袋可能なフィルム、またはシート状の部材である。   In addition, the packaging material 133 having excellent gas barrier properties is a metal container in the present embodiment, but is a film or sheet-like member that is hardly gas permeable and can be made.

例えば、ポリプロピレンフィルム、アルミニウム箔、低密度ポリエチレンの順にラミネートしたフィルムであってもよく、気体吸着剤137を包み込むことにより、周囲の空間と独立させるものであり、四方をヒートシールした袋、ピロー袋、ガゼット袋等がある。   For example, it may be a film laminated in the order of polypropylene film, aluminum foil, and low-density polyethylene. By enclosing the gas adsorbent 137, it is made independent from the surrounding space, and heat-sealed bags and pillow bags on all sides. And gusset bags.

また、気体透過度が10[cm/m・day・atm]以下であることが好ましく、より望ましくは、10[cm/m・day・atm]以下となるものである。 Further, the gas permeability is preferably 10 4 [cm 3 / m 2 · day · atm] or less, and more preferably 10 3 [cm 3 / m 2 · day · atm] or less.

気体吸着剤137とは、気体中に含まれる非凝縮性気体を吸着できる吸着材料と容器で構成されているものである。   The gas adsorbent 137 is composed of an adsorbing material and a container that can adsorb a non-condensable gas contained in the gas.

主な吸着材料として、ジルコニウム、バナジウム及びタングステンからなる合金や、鉄、マンガン、イットリウム、ランタンと、希土類元素の一種の元素を含む合金や、Ba−Li合金、および、金属イオン交換したゼオライトなどがある。   Main adsorbing materials include alloys composed of zirconium, vanadium and tungsten, alloys containing iron, manganese, yttrium, lanthanum, and one kind of rare earth elements, Ba-Li alloys, and metal ion exchanged zeolites. is there.

これによって、空気中の概ね75%を有する窒素を常温状態で吸着できるため、高い真空度を得ることができる。   Accordingly, since nitrogen having approximately 75% in the air can be adsorbed at room temperature, a high degree of vacuum can be obtained.

主な容器としては、アルミニウム、鉄、胴、ステンレスなどの金属材料があり、特にコストや取り扱いを考慮するとアルミニウムが望ましい。   As main containers, there are metal materials such as aluminum, iron, trunk, and stainless steel, and aluminum is preferable in consideration of cost and handling.

突起物を有する部材134とは、周囲の曲率に比較して、曲率が著しく大きい部分を有するものである。曲率が大きい部分は、同一の力をより小さい面積で受けるため、単位面積あたりに加わる力が大きくなる。従って曲率が大きい部分が包材133に押し付けられた際、包材133に貫通孔が生じやすくなる。   The member 134 having protrusions has a portion having a remarkably large curvature as compared with the surrounding curvature. Since the portion having a large curvature receives the same force in a smaller area, the force applied per unit area increases. Therefore, when a portion having a large curvature is pressed against the packaging material 133, a through hole is likely to be generated in the packaging material 133.

なお、本実施の形態では、ガスバリア性に優れた外被材135は、蒸着層フィルムとした。   In the present embodiment, the jacket material 135 having excellent gas barrier properties is a vapor deposition layer film.

穴を開ける方法は、突起物に圧力を加えることによりなされるものである。   The method of making a hole is made by applying pressure to the protrusion.

なお、ここで、連通とは、包材内部と包材外部で隔てられていた空間を一続きの空間にすることである。   Here, the term “communication” means that the space separated between the inside of the packaging material and the outside of the packaging material is made into a continuous space.

なお、繊維材料を含む芯材を用いて作製した真空断熱材の熱伝導率は、粉末材料のみからなる芯材を用いて作製した真空断熱材の熱伝導率に比較して、低圧力領域では小さく、高圧力領域では大きい。   In addition, the thermal conductivity of the vacuum heat insulating material produced using the core material containing the fiber material is lower in the low pressure region than the heat conductivity of the vacuum heat insulating material produced using the core material made only of the powder material. Small and large in high pressure range.

従って、繊維材料を含む芯材を用いて作製した真空断熱材は、その外被材内部の圧力を低く維持することが重要である。   Therefore, it is important for the vacuum heat insulating material produced using the core material containing the fiber material to keep the pressure inside the jacket material low.

なお、本実施の形態で使用した気体吸着剤137を用いた真空断熱材は、外被材135内に気体吸着剤137を有しているため、外被材135内部は圧力が低く維持され、繊維材料を含む芯材132を用いた真空断熱材の熱伝導率は低く維持される。   In addition, since the vacuum heat insulating material using the gas adsorbent 137 used in the present embodiment has the gas adsorbent 137 in the jacket material 135, the pressure inside the jacket material 135 is maintained low, The thermal conductivity of the vacuum heat insulating material using the core material 132 containing the fiber material is kept low.

よって、外被材135内部の圧力が低く維持される。   Therefore, the pressure inside the jacket material 135 is kept low.

一般に、真空断熱材の熱伝導率は、芯材132による熱伝導と、外被材135内の残留ガスによる熱伝導の和により決定する。   In general, the thermal conductivity of the vacuum heat insulating material is determined by the sum of the heat conduction by the core material 132 and the heat conduction by the residual gas in the jacket material 135.

例えば、芯材132が粉末を含む場合は、芯材132内部に存在する気体の平均自由工程が短いため、気体による熱伝導率は非常に小さく、芯材132による熱伝導が支配的である。   For example, when the core material 132 includes powder, the mean free path of the gas present in the core material 132 is short, so that the heat conductivity by the gas is very small, and the heat conduction by the core material 132 is dominant.

一方、芯材132が繊維の場合は、繊維同士の接点が少ないため、芯材132の熱伝導率は非常に小さくなるが、気体の平均自由工程が大きいため、わずかな圧力上昇で、気体による熱伝導率が支配的になってしまう。   On the other hand, when the core material 132 is a fiber, since the number of contact points between the fibers is small, the thermal conductivity of the core material 132 is very small. However, since the mean free path of the gas is large, Thermal conductivity becomes dominant.

従って、芯材132が繊維のみからなるときは、このような効果が大きいため繊維芯材では外被材135内部を低圧に保つことが、真空断熱材の熱伝導率を低減するために非常に有効な手段となる。   Therefore, when the core material 132 is made of only fibers, such an effect is great. Therefore, in the fiber core material, keeping the inside of the jacket material 135 at a low pressure is extremely effective for reducing the thermal conductivity of the vacuum heat insulating material. It becomes an effective means.

ここで、繊維集合体とは、繊維のみからなる集合体であって、バインダーや酸、熱等で成型されていても良い。   Here, the fiber aggregate is an aggregate composed only of fibers, and may be molded with a binder, acid, heat, or the like.

なお、真空断熱材は、内部に芯材132を有しており、芯材132はグラスウールなどの無機繊維集合体を加熱乾燥後、蒸着層フィルムと金属箔層フィルムを貼り合わせた外被材135中に挿入し、内部を真空引きして開口部を封止することにより形成されている。   In addition, the vacuum heat insulating material has a core material 132 inside, and the core material 132 is a jacket material 135 in which an inorganic fiber aggregate such as glass wool is heated and dried, and then a vapor deposition layer film and a metal foil layer film are bonded together. It is formed by inserting inside and evacuating the inside to seal the opening.

蒸着層フィルムは、アルミ蒸着フィルムをナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムで、金属箔層フィルムは、アルミ箔をナイロンフィルムと高密度ポリエチレンフィルムとで挟み込んだ複合プラスチックフィルムである。   The vapor deposition layer film is a composite plastic film in which an aluminum vapor deposition film is sandwiched between a nylon film and a high density polyethylene film, and the metal foil layer film is a composite plastic film in which an aluminum foil is sandwiched between a nylon film and a high density polyethylene film. .

また、蒸着層フィルムと金属箔層フィルムとのシール面は蒸着層フィルム側を一平面状とし、金属箔層フィルム側の面を立体的に構成している。そして、蒸着層フィルム側を外箱124もしくは内箱125に接して配置している。   Moreover, the sealing surface of a vapor deposition layer film and a metal foil layer film makes the vapor deposition layer film side into one plane shape, and comprises the surface on the metal foil layer film side in three dimensions. And the vapor deposition layer film side is arranged in contact with the outer box 124 or the inner box 125.

以上のように構成された断熱箱体について、以下その動作、作用について説明する。   About the heat insulation box comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

近年では、省エネとして環境への取り組みの中で、硬質ウレタンフォーム126と比較して数倍から十倍程度の断熱性能を有する真空断熱材を適切な範囲内で最大限に利用することにより、断熱性能や強度を向上させている断熱箱体も発売されている。   In recent years, in an effort to save energy, the heat insulation performance is maximized within an appropriate range by using a vacuum insulation material having a heat insulation performance several times to ten times that of the rigid urethane foam 126. Insulated boxes with improved performance and strength are also on the market.

その中で、本実施の形態では、真空断熱材は気体吸着剤を内包するとともに、真空断熱材に備えられた気体吸着剤137と、発熱部である放熱パイプ143との間には芯材132が配設したものである。   Among them, in the present embodiment, the vacuum heat insulating material contains the gas adsorbent, and the core material 132 is interposed between the gas adsorbent 137 provided in the vacuum heat insulating material and the heat radiating pipe 143 which is a heat generating portion. Are arranged.

これは、図5に示すように、言い換えると、気体吸着剤137と放熱パイプ143とが一定の距離を離れて配設されたものである。   As shown in FIG. 5, in other words, the gas adsorbent 137 and the heat radiating pipe 143 are arranged at a certain distance.

その際に、断熱材である芯材132を介していることで、放熱パイプ143の熱が気体吸着剤に到達するのを低減している。   In that case, it is reducing that the heat | fever of the thermal radiation pipe 143 reaches | attains a gas adsorbent by interposing the core material 132 which is a heat insulating material.

また、図3に示すように、気体吸着剤137は、真空断熱材130の厚み方向の投影面上において、発熱部である放熱パイプ143および圧縮機117と重ならない位置に配設したものである。   Further, as shown in FIG. 3, the gas adsorbent 137 is disposed on the projection surface in the thickness direction of the vacuum heat insulating material 130 at a position that does not overlap with the heat radiating pipe 143 and the compressor 117 which are heat generating portions. .

上記構成によって、真空断熱材に備えられた気体吸着剤137が高温となることを避けることができ、気体吸着剤137が短期間に高活性化するのを避け、長期間に渡って機能を発揮することを実現できる。   With the above configuration, the gas adsorbent 137 provided in the vacuum heat insulating material can be prevented from becoming high temperature, the gas adsorbent 137 is prevented from being highly activated in a short period of time, and functions over a long period of time. Can be realized.

さらには、気体吸着剤137の周辺の外被材135の経年劣化を防ぐことで気体吸着剤137が空気に触れる影響が低減でき、断熱箱体を長期に渡り使用した場合でも、真空断熱材に搭載した気体吸着剤137は外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図り、真空断熱材の熱伝導率の劣化を抑制することができる。   Furthermore, the influence of the gas adsorbent 137 coming into contact with the air can be reduced by preventing the aging of the outer jacket material 135 around the gas adsorbent 137, and even when the heat insulating box is used for a long time, the vacuum heat insulating material can be used. Since the mounted gas adsorbent 137 can continuously adsorb air entering from the outside, it is possible to maintain the vacuum degree of the vacuum heat insulating material and suppress deterioration of the thermal conductivity of the vacuum heat insulating material.

また、本実施の形態のように、気体吸着剤137を収納する容器として包材133からなる金属製の容器とした場合には、仮に、高温部付近に容器が位置した場合には、熱伝導性の良い金属であるが故に、その部分がヒートスポットとなり、常に高温で維持され、気体吸着剤が高活性化し、さらに短期間で吸着特性が低下する可能性があった。   Further, in the case where a metal container made of the packaging material 133 is used as a container for storing the gas adsorbent 137 as in this embodiment, if the container is located near the high temperature part, the heat conduction Since the metal is a good metal, the portion becomes a heat spot and is always maintained at a high temperature, the gas adsorbent is highly activated, and there is a possibility that the adsorptive properties are deteriorated in a short period of time.

しかしながら、本実施の形態のように、気体吸着剤と発熱部とは離れた位置に配設させる、すなわち、離間させることで、長期間にわたって機能を発揮することが可能となる。   However, as in the present embodiment, the gas adsorbent and the heat generating portion are disposed at positions separated from each other, that is, separated from each other, so that the function can be exhibited over a long period of time.

また、本実施の形態のように、真空断熱材の外被材135として蒸着層フィルムを用いた場合には、温度の上昇により劣化が加速されるので、長期間の使用時において、外被材135が劣化することで気体の侵入量が増加するという懸念があった。   Further, as in the present embodiment, when a vapor deposition layer film is used as the outer covering material 135 of the vacuum heat insulating material, the deterioration is accelerated by a rise in temperature. There is a concern that the amount of gas intrusion increases due to deterioration of 135.

しかしながら、本実施の形態のように、気体吸着剤137と発熱部は離れた位置に配設させる、すなわち、離間させることで、気体吸着剤137の周辺が高温となることを避けることで、外被材135の劣化を抑制することが可能となる。   However, as in the present embodiment, the gas adsorbent 137 and the heat generating portion are arranged at positions apart from each other, that is, by separating them, it is possible to avoid the surroundings of the gas adsorbent 137 from becoming a high temperature. It becomes possible to suppress the deterioration of the workpiece 135.

また、気体吸着剤137を備えた真空断熱材で、かつ、気体吸着剤137を真空断熱材のうち断熱箱体の庫内側(内箱側)に配設し、発熱部である放熱パイプ143を庫外側(外箱側)に配置したものである。   Moreover, it is a vacuum heat insulating material provided with the gas adsorbent 137, and the gas adsorbent 137 is disposed on the inner side (inner box side) of the heat insulating box body in the vacuum heat insulating material, and a heat radiating pipe 143 as a heat generating portion is provided. It is arranged on the outer side (outer box side).

これにより、確実に気体吸着剤137と発熱部を離間させることができ、気体吸着剤137の周辺が高温となることを避け、真空断熱材の長期信頼性を向上することができる。   As a result, the gas adsorbent 137 and the heat generating portion can be reliably separated from each other, the temperature around the gas adsorbent 137 can be avoided, and the long-term reliability of the vacuum heat insulating material can be improved.

また、本体101の内側に配設されて空気に触れる影響が低減される気体吸着剤137は、断熱箱体を長期に渡り使用した場合でも、真空断熱材に外部から侵入してくる空気の吸着を継続して行えるので、真空断熱材の真空度維持を図ることができ、真空断熱材の熱伝導率の劣化を防止することができる。   Further, the gas adsorbent 137 which is disposed inside the main body 101 and reduces the influence of exposure to air can adsorb air entering the vacuum heat insulating material from the outside even when the heat insulating box is used for a long time. Therefore, the vacuum degree of the vacuum heat insulating material can be maintained, and the deterioration of the thermal conductivity of the vacuum heat insulating material can be prevented.

図5に示すように、放熱パイプ143は、断熱箱体の本体101の外箱124の内側に
配置され、アルミテープ145により固定される。アルミテープ145は、硬質ウレタンフォーム126の充填される外箱124と内箱125の内部から外部へと配設される。つまり、アルミテープ145内の空気は外部と連通となっている。
As shown in FIG. 5, the heat radiating pipe 143 is disposed inside the outer box 124 of the main body 101 of the heat insulating box and is fixed by the aluminum tape 145. The aluminum tape 145 is disposed from the inside to the outside of the outer box 124 and the inner box 125 filled with the hard urethane foam 126. That is, the air in the aluminum tape 145 communicates with the outside.

これは、断熱箱体の製造工程で硬質ウレタンフォーム126を発泡する際に発生する熱によりアルミテープ145内に存在する空気が膨張し、その圧力によって外箱124が変形するのを防止するためである。   This is to prevent the air present in the aluminum tape 145 from expanding due to the heat generated when the rigid urethane foam 126 is foamed in the manufacturing process of the heat insulation box and the outer box 124 being deformed by the pressure. is there.

そのため、真空断熱材は硬質ウレタンフォーム126の内部となるが、放熱パイプ143は硬質ウレタンフォーム126の外部へと配設されていることと、放熱パイプ143自身を外箱124に貼り付ける際のアルミテープ145により空気層が生まれるため、外部空気と真空断熱材が直接的、もしくは硬質ウレタンフォーム126やアルミテープ145を介して間接的にも接触するのである。   Therefore, although the vacuum heat insulating material is inside the hard urethane foam 126, the heat radiating pipe 143 is disposed outside the hard urethane foam 126, and aluminum when the heat radiating pipe 143 itself is attached to the outer box 124. Since an air layer is created by the tape 145, the external air and the vacuum heat insulating material are in direct contact or indirectly through the rigid urethane foam 126 and the aluminum tape 145.

このため、断熱箱体を長期に渡り使用した際に、少なからず空気に触れている真空断熱材は時間経過からの変化とともに、外部から侵入してくる空気の影響を受け、内部真空度が劣化し膨張するとともに、断熱箱体の外箱124への外観変形を及ぼすのである。   For this reason, when the heat insulation box is used for a long period of time, the vacuum insulation that is in contact with the air is affected by the air entering from the outside as time passes, and the degree of internal vacuum deteriorates. In addition to expansion, the outer appearance of the heat insulating box body is deformed.

上記のように、真空断熱材中の気体吸着剤137は、圧縮機117や放熱パイプ143といった発熱部からは離れた箇所に設置している。   As described above, the gas adsorbent 137 in the vacuum heat insulating material is installed at a location away from the heat generating portion such as the compressor 117 and the heat radiating pipe 143.

これによって、気体吸着剤137の容器が金属材料のため、発熱部からの熱を容器が吸収し、真空断熱材に局所的に断熱できない箇所(ヒートスポット)を作り、放熱能力を低下させてしまうことを防止している。   As a result, since the container of the gas adsorbent 137 is a metal material, the container absorbs heat from the heat generating part, creates a place (heat spot) that cannot be locally insulated in the vacuum heat insulating material, and reduces the heat dissipation capability. To prevent that.

特に、本実施の形態の断熱箱体に少なくともに二本の放熱パイプ143が真空断熱材の表面に埋設されている場合、気体吸着剤137は放熱パイプの間に配設されることが望ましい。   In particular, when at least two heat radiating pipes 143 are embedded in the surface of the vacuum heat insulating material in the heat insulating box of the present embodiment, the gas adsorbent 137 is desirably disposed between the heat radiating pipes.

これにより、放熱能力を増加し、省エネ性を向上させることができる。   Thereby, heat dissipation capability can be increased and energy-saving property can be improved.

本実施の形態に用いた気体吸着剤137は、空気中の概ね75%程度の割合で存在する窒素を、常温でも吸着することができるため、真空断熱材内部の残留空気を低減でき、真空断熱材の真空度の向上や剛性の向上が図れ、熱伝導率の低減を行える。   Since the gas adsorbent 137 used in the present embodiment can adsorb nitrogen present at a rate of approximately 75% in the air even at room temperature, residual air inside the vacuum heat insulating material can be reduced, and vacuum heat insulation can be achieved. The degree of vacuum and rigidity of the material can be improved, and the thermal conductivity can be reduced.

なお、断熱箱体内の温度は生鮮食品や飲料を貯蔵する概ね1℃〜5℃のプラス温度の冷蔵温度帯から、冷凍食品を貯蔵する概ね−18℃以下のマイナス温度の冷凍温度帯に区分けされている。   The temperature in the heat insulation box is divided into a refrigeration temperature range of approximately 1 ° C to 5 ° C for storing fresh food and beverages and a refrigeration temperature range of approximately -18 ° C or less for storing frozen foods. ing.

この場合に、低温になりすぎず、ある程度初期段階において吸着特性を発揮させたい場合には、真空断熱材中の気体吸着剤137を冷蔵温度帯の貯蔵室の水平方向における投影面上に配置すると良い。   In this case, if the gas adsorbent 137 in the vacuum heat insulating material is arranged on the projection surface in the horizontal direction of the storage room in the refrigeration temperature zone, when it is desired that the adsorption characteristic is exhibited at a certain initial stage without becoming too low in temperature. good.

本実施の形態のように、断熱箱体の側面もしくは背面に真空断熱材を搭載することで、先述の温度帯を広範囲にわたり被覆できるため、真空断熱材の高断熱性によって外部からの熱侵入を広範囲にわたり抑制でき、省エネ性に優れた箱体を実現できる。   As in this embodiment, by mounting the vacuum heat insulating material on the side or back of the heat insulating box, the above-mentioned temperature range can be covered over a wide range, so the heat insulation from the outside is prevented by the high heat insulating property of the vacuum heat insulating material. A box that can be controlled over a wide range and has excellent energy savings.

また、最も剛性または真空度の大きい真空断熱材を側面もしくは背面に気体吸着剤137搭載することは、断熱箱体の本体強度の骨格となる部分に搭載することとなるので、真空断熱材の劣化抑制を図ることで、断熱箱体の断熱能力を長期間維持することができる。   Moreover, mounting the gas adsorbent 137 on the side surface or the back surface of the vacuum heat insulating material having the greatest rigidity or vacuum degree is mounted on a portion that becomes a skeleton of the main body strength of the heat insulating box, and therefore the deterioration of the vacuum heat insulating material. By aiming at suppression, the heat insulation capacity of the heat insulation box can be maintained for a long time.

さらに、気体吸着剤137を真空断熱材のうち断熱箱体の庫内側(内箱側)に配設しているため、気体吸着剤137が真空断熱材よりも出っ張る場合でも、本体101の外箱124への凸形状とならず、外観変形も防止できる。   Further, since the gas adsorbent 137 is disposed on the inner side (inner box side) of the heat insulating box body in the vacuum heat insulating material, even when the gas adsorbent 137 protrudes from the vacuum heat insulating material, the outer box of the main body 101. It does not have a convex shape to 124, and appearance deformation can be prevented.

なお、本実施の形態では、気体吸着剤137の配置を搭載される真空断熱材の中心よりも庫内側(内箱側)に配設したが、庫外側(外箱側)に配置する場合は、本願のように、熱伝導性が良い金属材料からなる包材133を用いている場合には、外箱と外被材を介して、放熱パイプ143の熱が気体吸着剤137に直接伝達するため、熱伝達の緩和として気体吸着剤137と外被材135または外箱との間に断熱材を備えることが有効である。   In the present embodiment, the gas adsorbent 137 is disposed on the inner side (inner box side) than the center of the vacuum heat insulating material to be mounted. However, when the gas adsorbent 137 is disposed on the outer side (outer box side). When the packaging material 133 made of a metal material having good thermal conductivity is used as in the present application, the heat of the heat radiating pipe 143 is directly transmitted to the gas adsorbent 137 via the outer box and the outer jacket material. For this reason, it is effective to provide a heat insulating material between the gas adsorbent 137 and the jacket material 135 or the outer box as relaxation of heat transfer.

この場合に、断熱材として気体吸着剤137と外被材135真空断熱材に備えられている芯材132を用いることもでき、気体吸着剤137の外被材135側に芯材132を配置する、すなわち芯材132の中に気体吸着剤137を埋設して断熱材を介することで、熱伝導を抑制することが可能となる。   In this case, the gas adsorbent 137 and the core material 132 included in the vacuum heat insulating material 135 can be used as the heat insulating material, and the core material 132 is arranged on the outer material 135 side of the gas adsorbent 137. That is, it is possible to suppress heat conduction by embedding the gas adsorbent 137 in the core member 132 and using a heat insulating material.

また、気体吸着剤137が真空断熱材よりも出っ張り外観変形をきたす可能性がある場合には、気体吸着剤137を搭載する箇所の真空断熱材の芯材132に凹みを付けて真空断熱材よりも出っ張らないような配慮をすると良い。   In addition, when the gas adsorbent 137 is likely to protrude and deform more than the vacuum heat insulating material, the vacuum heat insulating material core 132 at the location where the gas adsorbent 137 is mounted is recessed to form the vacuum heat insulating material. It is better to consider so that it does not protrude.

なお、本実施の形態では、冷凍温度帯に掛かるように真空断熱材を貼り付けている。   In the present embodiment, a vacuum heat insulating material is attached so as to reach the freezing temperature zone.

これにより、外気あるいは庫内他室との温度差の大きい部分を効果的に断熱でき、真空断熱材の性能を生かすことができる。   Thereby, a part with a large temperature difference with external air or the other room | chamber interior can be effectively insulated, and the performance of a vacuum heat insulating material can be utilized.

以上のように、本発明にかかる断熱箱体は、気体吸着剤が真空断熱材内部の残留空気や外部からの侵入空気も継続的に吸着することができるため、経年劣化後も含め、熱伝導率や本体外観の変形を抑制し、省スペースで大容量かつ、高い断熱性能を長期に渡り維持できる。よって、環境を配慮し省エネランニングコスト低減や製品仕上がりの質感の高さを目的とする家庭用断熱箱体などに利用ができる。   As described above, the heat insulating box according to the present invention is capable of continuously adsorbing the residual air inside the vacuum heat insulating material and the intruding air from the outside because the gas adsorbent can continuously absorb heat, even after aging. Suppressing the rate and deformation of the external appearance of the main body, space-saving, large capacity and high heat insulation performance can be maintained for a long time. Therefore, it can be used for a heat insulation box for home use, etc. for the purpose of reducing the energy-saving running cost and improving the texture of the finished product in consideration of the environment.

101 本体
110 第一の断熱仕切り部
111 第二の断熱仕切り部
112 第三の断熱仕切り部
113 第四の断熱仕切り部
117 圧縮機
124 外箱
125 内箱
127、128、129、130、131 真空断熱材
132 芯材
133 包材
135 外被材
137 気体吸着剤
143 放熱パイプ
151 第一溝部
152 第二溝部
153 上下端部
DESCRIPTION OF SYMBOLS 101 Main body 110 1st heat insulation partition part 111 2nd heat insulation partition part 112 3rd heat insulation partition part 113 4th heat insulation partition part 117 Compressor 124 Outer box 125 Inner box 127, 128, 129, 130, 131 Vacuum insulation Material 132 Core material 133 Packaging material 135 Outer material 137 Gas adsorbent 143 Radiation pipe 151 First groove 152 Second groove 153 Upper and lower ends

Claims (5)

複数の断熱区画で構成された箱体と、前記箱体に備えられた発熱部と、前記箱体を仕切る断熱仕切り部と、を備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤と、前記発熱部とは、離れた位置に配設した断熱箱体。 A heat insulating box made up of a plurality of temperature zones, comprising a box made up of a plurality of heat insulating compartments, a heat generating part provided in the box, and a heat insulating partition that partitions the box, A vacuum heat insulating material encapsulating the core material with a jacket material and sealed under reduced pressure is mounted, and the vacuum heat insulating material has a first groove portion having a groove formed in the longitudinal direction on the surface and a second groove formed in the short direction. The groove portion is formed up to the upper and lower end portions of the vacuum heat insulating material, and the first groove portion and the second groove portion are formed so as to cross each other at least on a plate-like surface, and the number of the first groove portions Is provided more than the number of the second groove portions, the groove width of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulating material contains a gas adsorbent and the vacuum heat insulating material. The gas adsorbent provided in the material and the heat generating part, Insulating box body that is disposed at a position. 複数の断熱区画で構成された箱体と、前記箱体を仕切る断熱仕切り部とを備えた複数の温度帯で構成された断熱箱体は、少なくとも芯材を外被材で内包して減圧密封した真空断熱材を搭載し、前記真空断熱材は表面に長手方向に形成した溝を有する第一溝部と短手方向に形成した溝を有する第二溝部を前記真空断熱材の上下端部まで形成したもので、前記第一溝部と前記第二溝部は、少なくとも板状の表面において互いに交叉するように形成したものであり、前記第一溝部の数は前記第二溝部の数より多く設け、前記第二溝部の溝の幅は前記第一溝部の幅より広くしたものであり、さらに前記真空断熱材は気体吸着剤を内包するとともに、前記真空断熱材に備えられた前記気体吸着剤は、前記真空断熱材の厚み方向の投影面上において前記発熱部と重ならない位置に配設した断熱箱体。 A heat insulation box composed of a plurality of temperature zones provided with a box composed of a plurality of heat insulation sections and a heat insulation partition that partitions the box, and at least a core material is enclosed in a jacket material and sealed under reduced pressure. The vacuum heat insulating material is formed with a first groove portion having a groove formed in a longitudinal direction on the surface and a second groove portion having a groove formed in a short direction to the upper and lower ends of the vacuum heat insulating material. The first groove and the second groove are formed so as to cross each other at least on a plate-like surface, and the number of the first grooves is larger than the number of the second grooves, The groove width of the second groove portion is wider than the width of the first groove portion, and the vacuum heat insulating material includes a gas adsorbent, and the gas adsorbent provided in the vacuum heat insulating material includes: On the projection surface in the thickness direction of the vacuum heat insulating material, Insulating box body that is disposed at a position not overlapping the part. 前記断熱箱体は、圧縮機と、コンデンサに備えられた放熱用の放熱パイプと、キャピラリーチューブと、冷却器とを有する冷凍サイクルを備え、前記発熱部は、前記放熱パイプである請求項1または2に記載の断熱箱体。 The heat insulating box includes a refrigeration cycle having a compressor, a heat radiating pipe provided in a condenser, a capillary tube, and a cooler, and the heat generating part is the heat radiating pipe. 2. The heat insulating box according to 2. 前記放熱パイプは前記真空断熱材の表面に配設され、かつ少なくとも二本の前記放熱パイプの間に前記気体吸着剤が配設されるように前記真空断熱材を搭載した請求項3に記載の断熱箱体。 The said heat radiating pipe is arrange | positioned on the surface of the said vacuum heat insulating material, and the said vacuum heat insulating material is mounted so that the said gas adsorbent may be arrange | positioned between at least two said heat radiating pipes. Insulated box. 前記気体吸着剤は、前記真空断熱材の前記放熱パイプが配設される側と反対の面側に位置させる請求項3または4に記載の断熱箱体。 5. The heat insulating box according to claim 3, wherein the gas adsorbent is positioned on a surface side of the vacuum heat insulating material opposite to a side on which the heat radiating pipe is disposed.
JP2013092332A 2013-04-25 2013-04-25 Heat insulation box Active JP6225324B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013092332A JP6225324B2 (en) 2013-04-25 2013-04-25 Heat insulation box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013092332A JP6225324B2 (en) 2013-04-25 2013-04-25 Heat insulation box

Publications (2)

Publication Number Publication Date
JP2014214959A true JP2014214959A (en) 2014-11-17
JP6225324B2 JP6225324B2 (en) 2017-11-08

Family

ID=51940886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013092332A Active JP6225324B2 (en) 2013-04-25 2013-04-25 Heat insulation box

Country Status (1)

Country Link
JP (1) JP6225324B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103679A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2007178077A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063043A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
JP2013031234A (en) * 2011-07-26 2013-02-07 Fanuc Ltd Control device for driving one driven body by two electric motors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005233506A (en) * 2004-02-19 2005-09-02 Mitsubishi Electric Corp Refrigerator
JP2007178077A (en) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd Refrigerator
JP2011102599A (en) * 2009-11-10 2011-05-26 Toshiba Corp Vacuum insulation panel and refrigerator using the same
JP2012063043A (en) * 2010-09-14 2012-03-29 Hitachi Appliances Inc Refrigerator
JP2013031234A (en) * 2011-07-26 2013-02-07 Fanuc Ltd Control device for driving one driven body by two electric motors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016103679A1 (en) * 2014-12-26 2016-06-30 パナソニックIpマネジメント株式会社 Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material
JPWO2016103679A1 (en) * 2014-12-26 2017-10-05 パナソニックIpマネジメント株式会社 Residential wall with vacuum insulation and vacuum insulation
US10246872B2 (en) 2014-12-26 2019-04-02 Panasonic Intellectual Property Management Co., Ltd. Dwelling wall provided with vacuum heat-insulating material and vacuum heat-insulating material

Also Published As

Publication number Publication date
JP6225324B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5903567B2 (en) refrigerator
JP6074817B2 (en) refrigerator
US20130200084A1 (en) High-performance vacuum insulation panel and manufacturing method thereof
JP6226242B2 (en) Vacuum heat insulating material, heat insulating box including the same, and method for manufacturing vacuum heat insulating material
JP2009228917A (en) Refrigerator
JP2009024922A (en) Refrigerator
JP5455673B2 (en) Vacuum heat insulating material and refrigerator using the same
JP2008116161A (en) Refrigerator
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP2009299764A (en) Vacuum heat insulation material and heat insulation vessel using the same
CN111503962B (en) Refrigerator and vacuum heat insulation plate
JP2010169302A (en) Refrigerator
TWI622747B (en) Refrigerator
JP5945708B2 (en) refrigerator
JP6225324B2 (en) Heat insulation box
JP2008128516A (en) Refrigerator
JPH10205994A (en) Heat insulation box body of cooling storage
JP2013087806A (en) Heat insulating wall and heat insulating casing
JPH10205995A (en) Refrigerator
CN111503961B (en) Refrigerator and vacuum heat insulation plate
JP2013194761A (en) Vacuum insulating material and heat insulation box body
JP2015052401A (en) Refrigerator
JP2005024204A (en) Refrigerator
JP2015064134A (en) Refrigerator
JP2013053819A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20141021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160408

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20160526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170911

R151 Written notification of patent or utility model registration

Ref document number: 6225324

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151