JP2014212365A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2014212365A
JP2014212365A JP2013086222A JP2013086222A JP2014212365A JP 2014212365 A JP2014212365 A JP 2014212365A JP 2013086222 A JP2013086222 A JP 2013086222A JP 2013086222 A JP2013086222 A JP 2013086222A JP 2014212365 A JP2014212365 A JP 2014212365A
Authority
JP
Japan
Prior art keywords
clock signal
circuit
delay line
phase
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013086222A
Other languages
English (en)
Inventor
北川 勝浩
Katsuhiro Kitagawa
勝浩 北川
弘樹 高橋
Hiroki Takahashi
弘樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2013086222A priority Critical patent/JP2014212365A/ja
Publication of JP2014212365A publication Critical patent/JP2014212365A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Pulse Circuits (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

【課題】位相判定回路のデッドバンドによって生じる位相誤差を低減する。【解決手段】ディレイライン120と、ディレイライン120に内部クロック信号PCLKを入力する入力回路110と、ディレイライン120を介して内部クロック信号PCLKを複数回循環させることにより、オシレータ信号DOSCDを生成するフィードバックループ110,120,130と、内部クロック信号PCLKとオシレータ信号DOSCDの位相を比較する位相判定回路140とを備える。本発明によれば、フィードバックループを複数回循環することによってオーバーサンプリングを行っていることから、位相判定回路140のデッドバンドが見かけ上縮小される。これにより、デッドバンドによって生じる位相誤差を低減することが可能となる。【選択図】図2

Description

本発明は半導体装置に関し、特に、位相制御された内部クロック信号を生成するDLL(Delay Locked Loop)回路を備えた半導体装置に関する。
同期型のDRAM(Dynamic Random Access Memory)のようにクロック信号に同期した動作を行う半導体装置においては、位相制御された内部クロック信号が必要となることがある。位相制御された内部クロック信号は、DLL回路によって生成されることが多い(特許文献1参照)。
DLL回路は、内部クロック信号を遅延させるディレイラインを備えており、遅延前の内部クロック信号と遅延後の内部クロック信号の位相が一致するようにディレイラインの遅延量が制御される。一般的に、ディレイラインの遅延量はカウンタ回路のカウント値によって制御されることから、ディレイラインの遅延量は所定の遅延ピッチにしたがって調整される。このため、原理的には、ディレイラインの最小遅延ピッチを細かく設計することにより、より高精度に位相制御された内部クロック信号を得ることが可能となる。
特開2010−124020号公報
しかしながら、実際には、ディレイラインの最小遅延ピッチをいくら細かくしても、生成される内部クロック信号の位相誤差を所定値以下に低減することができないという問題があった。これは、内部クロック信号の位相を比較する位相判定回路の精度限界によるものであり、位相比較すべき2つの内部クロック信号の位相差が所定値以下、つまりデッドバンド内である場合には、正しく位相比較を行うことができないためである。このため、位相判定回路のデッドバンドによって生じる位相誤差が低減された半導体装置が望まれている。
本発明の一側面による半導体装置は、第1のクロック信号を遅延させることにより第2のクロック信号を生成するディレイラインと、前記第2のクロック信号に基づいて前記第3のクロック信号を生成するレプリカ回路と、前記第3のクロック信号及び第4のクロック信号のいずれか一方を選択し、前記第1のクロック信号として前記ディレイラインに供給する入力回路と、前記入力回路が前記第4のクロック信号を選択した後、前記入力回路、前記ディレイライン及び前記レプリカ回路からなるフィードバックループを複数回循環することにより得られた前記第3のクロック信号の位相と、前記第4のクロック信号の位相とを比較することにより位相判定信号を生成する位相判定回路と、前記位相判定信号に基づいて前記ディレイラインの遅延量を制御するディレイライン制御回路と、を備えることを特徴とする。
本発明の他の側面による半導体装置は、ディレイラインと、前記ディレイラインに第1のクロック信号を入力する入力回路と、前記ディレイラインを介して前記第1のクロック信号を複数回循環させることにより、第2のクロック信号を生成するフィードバックループと、前記第1のクロック信号と第2のクロック信号の位相を比較する位相判定回路と、を備えることを特徴とする。
本発明によれば、フィードバックループを複数回循環することによってオーバーサンプリングを行っていることから、位相判定回路のデッドバンドが見かけ上縮小される。これにより、デッドバンドによって生じる内部クロック信号の位相誤差を低減することが可能となる。
本発明の好ましい実施形態による半導体装置10の全体構成を示すブロック図である。 本発明の第1の実施形態によるDLL回路100の構成を示すブロック図である。 ディレイライン120及びディレイライン制御回路150の構成を示す説明するためのブロック図である。 (a)はコースディレイライン121の遅延ピッチを説明するための図であり、(b)はファインディレイライン122の遅延ピッチを説明するための図である。 コースディレイライン121とファインディレイライン122を用いた位相調整動作の一例である。 内部クロック信号PCLKとレプリカクロック信号RCLKとの関係を説明するためのタイミング図であり、(a)は初期状態、(b)はロック状態を示している。 最小遅延ピッチとデッドバンドとの関係を説明するための図である。 デッドバンドDBを考慮した最大位相誤差Aを説明するための図である。 入力回路110の構成を示すブロック図である。 レプリカ回路130の構成を示すブロック図である。 内部クロック信号PCLKとオシレータ信号DOSCDとの関係を説明するための波形図である。 ディレイライン120を1回通過したオシレータ信号DOSCDを用いた位相比較動作を説明するための波形図である。 ディレイライン120をZ回通過したオシレータ信号DOSCDを用いた位相比較動作を説明するための波形図である。 本発明の第2の実施形態によるDLL回路100の構成を示すブロック図である。 初期位相差検知回路170の回路図である。 初期位相差検知回路170を用いる意義を説明するための図であり、(a)は初期位相差△が小さい場合、(b)は初期位相差△が大きい場合を示している。 初期位相差検知回路170の動作を説明するための動作波形図であり、SRラッチ回路172にレプリカクロック信号RCLKが入力される場合を示している。 初期位相差検知回路170の動作を説明するための動作波形図であり、SRラッチ回路172にオシレータ信号DOSCDが入力される場合を示している。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の好ましい実施形態による半導体装置10の全体構成を示すブロック図である。
本実施形態による半導体装置10はDRAMであり、図1に示すようにメモリセルアレイ11を備えている。メモリセルアレイ11には、互いに交差する複数のワード線WLと複数のビット線BLが設けられており、それらの交点にメモリセルMCが配置されている。ワード線WLの選択はロウデコーダ12によって行われ、ビット線BLの選択はカラムデコーダ13によって行われる。ビット線BLは、センス回路14内の対応するセンスアンプSAにそれぞれ接続されており、カラムデコーダ13により選択されたビット線BLは、センスアンプSAを介してアンプ回路15に接続される。
ロウデコーダ12、カラムデコーダ13、センス回路14及びアンプ回路15の動作は、アクセス制御回路20によって制御される。アクセス制御回路20には、端子21〜24を介してアドレス信号ADD、コマンド信号CMD、外部クロック信号CK,CKBなどが供給される。外部クロック信号CK,CKBは、互いに相補の信号である。アクセス制御回路20は、これらの信号に基づいてロウデコーダ12、カラムデコーダ13、センス回路14、アンプ回路15及びデータ入出力回路30を制御する。
具体的には、コマンド信号CMDがアクティブコマンドを示している場合、アドレス信号ADDはロウデコーダ12に供給される。これに応答して、ロウデコーダ12はアドレス信号ADDが示すワード線WLを選択し、これにより対応するメモリセルMCがそれぞれビット線BLに接続される。その後、アクセス制御回路20は、所定のタイミングでセンス回路14を活性化させる。
一方、コマンド信号CMDがリードコマンド又はライトコマンドを示している場合、アドレス信号ADDはカラムデコーダ13に供給される。これに応答して、カラムデコーダ13はアドレス信号ADDが示すビット線BLをアンプ回路15に接続する。これにより、リード動作時においては、センスアンプSAを介してメモリセルアレイ11から読み出されたリードデータDQがアンプ回路15及びデータ入出力回路30を介してデータ端子31から外部に出力される。また、ライト動作時においては、データ端子31及びデータ入出力回路30を介して外部から供給されたライトデータDQが、アンプ回路15及びセンスアンプSAを介してメモリセルMCに書き込まれる。
図1に示すように、アクセス制御回路20にはDLL回路100が含まれている。DLL回路100は、外部クロック信号CK,CKBを受け、これに基づいて位相制御された内部クロック信号LCLKを生成する回路である。内部クロック信号LCLKは、データ入出力回路30に含まれる出力回路30aに供給される。これにより、リードデータDQ及びデータストローブ信号DQSは、内部クロック信号LCLKに同期してデータ端子31及びデータストローブ端子32からそれぞれ出力される。
これら各回路ブロックは、それぞれ所定の内部電圧を動作電源として使用する。これら内部電源は、図1に示す電源回路40によって生成される。電源回路40は、電源端子41,42を介してそれぞれ供給される外部電位VDD及び接地電位VSSを受け、これらに基づいて内部電圧VPP,VPERI,VARYなどを生成する。内部電位VPPは外部電位VDDを昇圧することによって生成され、内部電位VPERI,VARYは外部電位VDDを降圧することによって生成される。
内部電圧VPPは、主にロウデコーダ12において用いられる電圧である。ロウデコーダ12は、アドレス信号ADDに基づき選択したワード線WLをVPPレベルに駆動し、これによりメモリセルMCに含まれるセルトランジスタを導通させる。内部電圧VARYは、主にセンス回路14において用いられる電圧である。センス回路14が活性化すると、ビット線対の一方をVARYレベル、他方をVSSレベルに駆動することにより、読み出されたリードデータの増幅を行う。内部電圧VPERIは、アクセス制御回路20などの大部分の周辺回路の動作電圧として用いられる。これら周辺回路の動作電圧として外部電圧VDDよりも電圧の低い内部電圧VPERIを用いることにより、半導体装置10の低消費電力化が図られている。
図2は、第1の実施形態によるDLL回路100の構成を示すブロック図である。
図2に示すDLL回路100は、内部クロック信号PCLK及びオシレータ信号DOSCDを受け、いずれか一方を内部クロック信号PCLK1として出力する入力回路110と、内部クロック信号PCLK1を遅延させることによって内部クロック信号LCLKを生成するディレイライン120とを備えている。内部クロック信号PCLKは、外部クロック信号CK,CKBを受けるクロックレシーバ25から出力される信号である。ディレイライン120から出力される内部クロック信号LCLKは出力回路30aに供給され、上述の通り、リードデータDQやデータストローブ信号DQSの出力タイミングを規定するタイミング信号として用いられる。
内部クロック信号LCLKは、レプリカ回路130にも供給される。レプリカ回路130は、出力回路30aと実質的に同じ特性を有する回路であり、内部クロック信号LCLKと同位相のレプリカクロック信号RCLK又は逆位相のオシレータ信号DOSCDを出力する。ここで、出力回路30aは内部クロック信号LCLKに同期してリードデータDQやデータストローブ信号DQSを出力するものであることから、レプリカ回路130から出力されるレプリカクロック信号RCLKは、リードデータDQやデータストローブ信号DQSと正確に同期する。DRAMにおいては、リードデータDQやデータストローブ信号DQSが外部クロック信号CK,CKBに対して正確に同期している必要があり、両者の位相にずれが生じている場合にはこれを検出し、補正する必要がある。かかる検出は、位相判定回路140によって行われ、判定の結果は位相判定信号PDとして出力される。
位相判定信号PDは、ディレイライン制御回路150に供給される。後述するように、ディレイライン制御回路150にはカウンタ回路が含まれており、そのカウント値CNTは位相判定信号PDに基づいてカウントアップ又はカウントダウンされる。カウント値CNTはディレイライン120に供給され、その値によってディレイライン120の遅延量が制御される。特に限定されるものではないが、ディレイライン120は、図3に示すように調整ピッチの粗いコースディレイライン(CDL)121と調整ピッチの細かいファインディレイライン(FDL)122を含んでいることが好ましい。この場合、コースディレイライン121はディレイライン制御回路150に含まれるCDLカウンタ151のカウント値CNTCによって制御され、ファインディレイライン122はディレイライン制御回路150に含まれるFDLカウンタ152のカウント値CNTFによって制御される。
図3に示す例では、コースディレイライン121は複数のディレイ素子CDE(CDE0,CDE1・・・)からなり、ファインディレイライン122は複数のディレイ素子FDE(FDE0,FDE1・・・)からなる。ディレイ素子CDEはコースディレイライン121における最小遅延ピッチに相当し、その値は例えば160psである。この場合、図4(a)に示すように、クロックサイクルが1ns又はそれ以下の内部クロック信号に対する調整ピッチとしては粗すぎる。しかしながら、1回の位相調整動作で位相差を大きく変化させることができるため、位相調整動作の初期においてはコースディレイライン121を用いることが望ましい。
一方、ディレイ素子FDEはファインディレイライン122における最小遅延ピッチに相当し、特に限定されるものではないが、ディレイ素子FDEを全部用いた場合の遅延量が1個のディレイ素子CDEの遅延量に相当するよう設計される。一例として、ファインディレイライン122が16個のディレイ素子FDEからなる場合、1個のディレイ素子CDEの遅延量が160psであれば、図4(b)に示すように1個のディレイ素子FDEの遅延量は10ps(=160ps/16)である。
このようにコースディレイライン121とファインディレイライン122を備えたディレイライン120を用いれば、高速且つ高精度な位相調整動作を実現できる。
図5は、コースディレイライン121とファインディレイライン122を用いた位相調整動作の一例である。図5において、符号RCLK(1)〜RCLK(4)は時刻t1〜t4におけるレプリカクロック信号RCLKの位相を示し、破線(1)〜(4)はそれぞれレプリカクロック信号RCLK(1)〜RCLK(4)の立ち上がりエッジの位置を示している。また、基準位相とは、内部クロック信号PCLKの目標エッジである。
まず、時刻t1においては、内部クロック信号PCLKに対してレプリカクロック信号RCLK(1)の位相が進んでいることから、CDLカウンタ151がカウントアップされ、コースディレイライン121の遅延量が増大する方向に制御される。その結果、時刻t2においては、内部クロック信号PCLKに対してレプリカクロック信号RCLK(2)の位相が遅れた状態となっている。これにより、レプリカクロック信号RCLKの立ち上がりエッジが基準位相を越えるため、位相判定信号PDが反転する。これに応答して、コースディレイライン121を用いた位相調整動作からファインディレイライン122を用いた位相調整動作に制御が切り替わる。
その結果、時刻t3においては、内部クロック信号PCLKに対してレプリカクロック信号RCLK(3)の位相がやや進んだ状態となっている。これに応答してFDLカウンタ151がカウントアップされ、ファインディレイライン122の遅延量が増大する方向に制御される。その結果、時刻t4においては、内部クロック信号PCLKに対してレプリカクロック信号RCLK(4)の位相がやや遅れた状態となる。以降は、時刻t3,t4における動作が繰り返され、位相判定信号PDが交互に反転する状態となる。この状態は、レプリカクロック信号RCLKの位相が内部クロック信号PCLKの位相に(ほぼ)一致した状態であり、ロック状態と呼ばれる。
図6は、内部クロック信号PCLKとレプリカクロック信号RCLKとの関係を説明するためのタイミング図であり、(a)は初期状態、(b)はロック状態を示している。一例として、内部クロック信号PCLKのクロックサイクルが1nsである場合を示している。
図6(a)に示す例では、初期状態におけるディレイライン120の遅延量(厳密には、入力回路110、ディレイライン120及びレプリカ回路130の合計遅延量)が2.6nsであり、したがって、内部クロック信号PCLKのエッジ0Tから生成されるレプリカクロック信号RCLKのエッジ0'Tは、エッジ0Tから2.6ns遅れて現れる。ここで、レプリカクロック信号RCLKのエッジ0'Tは、内部クロック信号PCLKがローレベルである期間に現れていることから、位相判定回路140は位相判定信号PDをローレベルとし、これに応答してディレイライン制御回路150はカウント値CNTをカウントアップする。つまり、ディレイライン120の遅延量を増大させる方向に制御する。
かかる動作を継続することによりレプリカクロック信号RCLKの位相は徐々に遅くなり、最終的には、図6(b)に示すように内部クロック信号PCLKの位相と一致する。この時、レプリカクロック信号RCLKのエッジ0'Tは、内部クロック信号PCLKのエッジ3Tに同期している。つまり、ディレイライン120による遅延量が2.6nsから3.0nsに拡大されたことになる。
次に、位相判定回路140のデッドバンドについて説明する。
デッドバンドとは、基準となる内部クロック信号PCLKに対して、比較対象となるレプリカクロック信号RCLKの位相が非常に近接している結果、位相関係が判別できない領域を言う。レプリカクロック信号RCLKのエッジがデッドバンド内にある場合、位相判定回路140から出力される位相判定信号PDはいずれの論理レベルも採り得るため、事実上、その値は意味を持たない。ここで、デッドバンドの影響について説明すべく、まずデッドバンドが存在しないと仮定した場合の位相合致率について考察する。
位相合致率とは、ロック状態における内部クロック信号PCLKとレプリカクロック信号RCLKの位相差である。つまり、最大位相誤差をA、クロックサイクルをBとした場合、位相合致率Cは、
C=100×{1−(A/B)}
で定義される。一例として、最小遅延ピッチ(1個のディレイ素子FDEの遅延量)を10ps、クロックサイクルを1000ps(=1ns)とした場合、位相合致率Cは、
C=100×{1−(10ps×2/1000ps)}=98%
となる。尚、最大位相誤差A(=20ps)を最小遅延ピッチ(=10ps)の2倍としているのは、ロック状態における位相誤差は前後いずれかの方向にも現れ得るからである。
以上は、位相判定回路140にデッドバンドが存在しないと仮定した場合の位相合致率であり、実際にはデッドバンドを考慮して評価する必要がある。
図7は、最小遅延ピッチとデッドバンドとの関係を説明するための図である。図7に示す例では、最小遅延ピッチPが10psと非常に細かいのに対し、デッドバンドDBが300ps(=±150ps)であり、デッドバンドDB内に多くの無効ピッチが含まれている。
図8は、デッドバンドDBを考慮した最大位相誤差Aを説明するための図である。図8に示す符号RCLK(a),RCLK(b)は、内部クロック信号PCLKに対して正しく位相判定可能なレプリカクロック信号RCLKの下限及び上限をそれぞれ示している。
図8に示すように、デッドバンドDB内においては正しい位相調整動作が不可能であり、デッドバンドDB外の領域でのみ位相調整動作が可能であることから、最大位相誤差Aは、
A=2×P+DB
となる。図8に示す例の通り、最小遅延ピッチPが10ps、デッドバンドDBが300psであれば、最大位相誤差Aは、
A=2×10ps+300ps=320ps
となる。この場合、位相合致率Cは、
C=100×{1−(320ps/1000ps)}=68%
となり、デッドバンドDBを考慮しない場合の値と比べて大幅に悪化する。
このような問題を解消するためには、最小遅延ピッチPよりもデッドバンドDBの小さい位相判定回路140を用いればよい。しかしながら、クロック信号の周波数が高い場合、製造プロセス上の制約などから、最小遅延ピッチPよりもデッドバンドDBの小さい位相判定回路140を作製することは現実的に困難である。
本実施形態によるDLL回路100は、デッドバンドDBによる位相合致率Cの悪化を低減するものであり、以下、その特徴的な回路部分について説明する。
図9は、入力回路110の構成を示すブロック図である。
図9に示すように、入力回路110は、内部クロック信号PCLK及びオシレータ信号DOSCDのいずれか一方を選択する切替回路111と、切替回路111によって選択された内部クロック信号PCLK及びオシレータ信号DOSCDの一方を内部クロック信号PCLK1として出力する入力回路本体112とを備えている。切替回路111による選択は、図2に示した入力制御回路160から出力される切替信号SELに基づいて行われる。
かかる構成により、切替回路111が内部クロック信号PCLKを選択している場合、ディレイライン120は内部クロック信号PCLKを遅延させ、これによって内部クロック信号LCLKが生成される。一方、切替回路111がオシレータ信号DOSCDを選択している場合、入力回路110、ディレイライン120及びレプリカ回路130からなるフィードバックループが形成され、このフィードバックループ内をオシレータ信号DOSCDが循環することになる。
図10は、レプリカ回路130の構成を示すブロック図である。
図10に示すように、レプリカ回路130は、内部クロック信号LCLKと同相のレプリカクロック信号RCLKを生成する比較用レプリカ回路131と、内部クロック信号LCLKと逆相のオシレータ信号DOSCDを生成するフィードバック用レプリカ回路132を備えている。比較用レプリカ回路131及びフィードバック用レプリカ回路132は、いずれも出力回路30aと実質的に同じ特性を有する回路である。レプリカクロック信号RCLK及びオシレータ信号DOSCDは選択回路133に入力され、切替信号SELに基づき、いずれか一方が出力される。
具体的には、入力回路110が内部クロック信号PCLKを選択している期間においてはレプリカ回路130からレプリカクロック信号RCLKが出力され(第1の動作モード)、入力回路110がオシレータ信号DOSCDを選択している期間においてはレプリカ回路130からオシレータ信号DOSCDが出力される(第2の動作モード)。
したがって、第1の動作モードにおいては、一般的なDLL回路と同様、ディレイライン120を1回だけ通過したレプリカクロック信号RCLKと内部クロック信号PCLKの位相が位相判定回路140によって比較されるのに対し、第2の動作モードにおいては、ディレイライン120を含むフィードバックループを複数回循環したオシレータ信号DOSCDと内部クロック信号PCLKの位相が位相判定回路140によって比較されることになる。
図11は、内部クロック信号PCLKとオシレータ信号DOSCDとの関係を説明するための波形図である。
図11に示す例では、オシレータ信号DOSCDの論理レベルが内部クロック信号PCLKの3クロックサイクル−△ごとに反転している。したがって、内部クロック信号PCLKのエッジ0Tとオシレータ信号DOSCDの立ち上がりエッジが一致している場合、オシレータ信号DOSCDの次のエッジ(立ち下がりエッジ)は内部クロック信号PCLKのエッジ3Tに対して△だけ遅れる。そして、オシレータ信号DOSCDの次の立ち上がりエッジは内部クロック信号PCLKのエッジ6Tに対して2△だけ遅れ、オシレータ信号DOSCDの次の立ち下がりエッジは内部クロック信号PCLKのエッジ9Tに対して3△だけ遅れ、オシレータ信号DOSCDのその次の立ち上がりエッジは内部クロック信号PCLKのエッジ12Tに対して4△だけ遅れる。
このように、オシレータ信号DOSCDのエッジとこれに対応する内部クロック信号PCLKのエッジとの位相差は、オシレータ信号DOSCDがフィードバックループを循環するごとに拡大される。具体的には、フィードバックループの循環数をZとした場合、位相差△はZ△に拡大される。
尚、図11に示すようなオシレータ信号DOSCDの波形を得るためには、内部クロック信号PCLKのエッジ0Tの前後において、切替回路111によって内部クロック信号PCLKを一時的に選択すればよい。つまり、内部クロック信号PCLKの立ち上がりエッジ0Tを選択することによって、これに基づくオシレータ信号DOSCDの生成を開始した後、オシレータ信号DOSCDを選択することによってフィードバックループを形成すればよい。
図12はディレイライン120を1回通過したオシレータ信号DOSCDを用いた位相比較動作を説明するための波形図であり、図13はディレイライン120をZ回通過したオシレータ信号DOSCDを用いた位相比較動作を説明するための波形図である。
図12に示すP1〜P4は、ディレイライン120の遅延量を最小遅延ピッチで変化させた場合におけるオシレータ信号DOSCDの位相を示しており、これらが全てデッドバンドDB内に含まれていることが分かる。上述した例のように、最小遅延ピッチPが10ps、デッドバンドDBが300ps(±150ps)であれば、約30ピッチ分の位相調整動作が無効化されることになる。
これに対し、ディレイライン120をZ回通過したオシレータ信号DOSCDは、最小遅延ピッチPがZ倍に拡大されているため、図13に示すように、最小遅延ピッチZ×PをデッドバンドDBよりも大きくすることができる。これは、デッドバンドDBの値がZの値と無関係だからである。一例として、Z=64とした場合、最小遅延ピッチPが64倍に拡大されて640psとなることから、デッドバンドDBの値である300psよりも大きくなる。
このことは、デッドバンドDBの値が等価的に1/Zに縮小されたことを意味する。したがって、Z=64とした場合、最小遅延ピッチPが10ps、デッドバンドDBが300psであれば、最大位相誤差Aは、
A=2×10ps+300ps/64=24.6875ps
となる。この場合、位相合致率Cは、
C=100×{1−(24.6875ps/1000ps)}=97.53125%
となり、大幅に改善されることが分かる。
したがって、ディレイライン120をZ回通過したオシレータ信号DOSCDと内部クロック信号PCLKの位相を位相判定回路140によって判定し、これにより得られる位相判定信号PDに基づいてディレイライン制御回路150を制御すれば、デッドバンドDBの影響を実質的に排除した状態で位相調整動作を行うことが可能となる。
これにより、例えばコースディレイライン121を用いた位相調整動作を行う期間においてはレプリカクロック信号RCLKを用いた第1の動作モードを選択し、ファインディレイライン122を用いた位相調整動作を行う期間においてはオシレータ信号DOSCDを用いた第2の動作モードを選択すれば、位相調整動作の初期においては位相差を高速に短縮することができるとともに、その後は、デッドバンドDBの影響を排除した高精度な位相調整動作を行うことが可能となる。
尚、第2の動作モードにおいては、オシレータ信号DOSCDの位相が内部クロック信号PCLKに対して1クロックサイクル以上相違している場合、実際に位相が進んでいるのか遅れているのか、正しく判定を行うことができなくなる。しかしながら、上述したように、コースディレイライン121を用いた位相調整動作では第1の動作モードを選択し、ファインディレイライン122を用いた位相調整動作では第2の動作モードを選択すれば、オシレータ信号DOSCDと内部クロック信号PCLKの位相差は十分に短縮されていると考えられ、上記の誤判定の問題は実際には生じない。また、目標とする内部クロック信号PCLKのエッジ(例えば図11に示す12T)のみを抽出して位相判定回路140に出力する回路を追加すれば、オシレータ信号DOSCDと内部クロック信号PCLKの位相差が1クロックサイクル以上相違している場合であっても、正しく位相比較動作を行うことが可能である。
次に、本発明の第2の実施形態について説明する。
図14は、本発明の第2の実施形態によるDLL回路100の構成を示すブロック図である。
図14に示すように、本実施形態によるDLL回路100は、初期位相差検知回路170が追加されている点において、第1の実施形態と相違している。その他の点については第1の実施形態と同じであることから、同一の要素には同一の符号を付し、重複する説明は省略する。初期位相差検知回路170は、内部クロック信号PCLKとレプリカクロック信号RCLKとの位相差を検出し、その長さを示す位相差検出信号(カウント値)DEFをディレイライン制御回路150に供給する回路である。つまり、初期位相差検知回路170は、位相判定回路140のようにいずれの位相が進んでいるか或いは遅れているかを判定するものではなく、位相の差分を時間の長さとして検出する。
図15は、初期位相差検知回路170の回路図である。
図15に示すように、初期位相差検知回路170は、リングオシレータ171と、リングオシレータ171の動作を制御するSRラッチ回路172と、リングオシレータ171によって生成されるオシレータ信号ROSCをカウントするカウンタ回路173を備えている。リングオシレータ171の発振周期は、コースディレイライン121の最小遅延ピッチ(CDE)と一致するよう設計される。
SRラッチ回路172は、レプリカクロック信号RCLK又はオシレータ信号DOSCDの立ち上がりエッジに同期してセットされ、内部クロック信号PCLKの立ち上がりエッジに同期してリセットされる回路であり、その出力信号であるイネーブル信号ENは、リングオシレータ171に含まれるNANDゲート回路に供給される。かかる構成により、リングオシレータ171は、レプリカクロック信号RCLK又はオシレータ信号DOSCDの立ち上がりエッジが現れてから、内部クロック信号PCLKの立ち上がりエッジが到来するまでの期間だけ、オシレータ信号ROSCを発振させる。オシレータ信号ROSCはカウンタ回路173によってカウントされ、そのカウント値DEFは、ディレイライン制御回路150に供給される。ディレイライン制御回路150は、初期位相差検知回路170からのカウント値DEFを受け、ディレイライン120に出力するカウント値CNTを1又は2ステップ以上、ジャンプさせる。
図16は初期位相差検知回路170を用いる意義を説明するための図であり、(a)は初期位相差△が小さい場合、(b)は初期位相差△が大きい場合を示している。
図16(a)に示すように、レプリカクロック信号RCLKと内部クロック信号PCLKの初期位相差△が小さい場合、必要な位相調整動作の回数は当然ながら少なくて済む。一例として、コースディレイライン121の最小遅延ピッチが200psであり、初期位相差が150psであれば、コースディレイライン121を用いた位相調整動作を1回行うことによって位相判定信号PDが反転することから、コースディレイライン121を用いた位相調整動作からファインディレイライン122を用いた位相調整動作に短時間で移行させることができる。
これに対し、図16(b)に示すように、レプリカクロック信号RCLKと内部クロック信号PCLKの初期位相差△が大きい場合、必要な位相調整動作の回数が多くなる。一例として、コースディレイライン121の最小遅延ピッチが200psであり、初期位相差が3950psであれば、位相判定信号PDが反転するまでにコースディレイライン121を用いた位相調整動作を20回行う必要がある。通常、DLL回路100をロックさせるための許容時間は規格などによって定められていることから、初期位相差△が大きい場合には、ロック未了となってしまう可能性がある。
このような問題は、初期位相差検知回路170を用いてディレイライン制御回路150のカウント値CNTをジャンプさせることにより解決することができる。
図17は、初期位相差検知回路170の動作を説明するための動作波形図であり、SRラッチ回路172にレプリカクロック信号RCLKが入力される場合を示している。
図17に示すように、SRラッチ回路172にレプリカクロック信号RCLKが入力される場合、レプリカクロック信号RCLKの立ち上がりエッジに同期してイネーブル信号ENが活性化し、内部クロック信号PCLKの立ち上がりエッジに同期してイネーブル信号ENが非活性化する。イネーブル信号ENが活性化している期間においてはリングオシレータ171の発振動作が行われ、その発振回数がカウンタ回路173によってカウントされる。
ここで、リングオシレータ171の発振周期はコースディレイライン121の最小遅延ピッチ(CDE)と一致していることから、カウンタ回路173のカウント値DEFは、コースディレイライン121を用いた位相調整動作の必要回数と一致することになる。したがって、カウンタ回路173のカウント値DEFを受けるディレイライン制御回路150は、カウント値DEFが示す数だけカウント値CNTをジャンプさせれば、初期位相差が大きい場合であっても、1回の位相調整動作で位相判定信号PDを反転させることができ、直ちにファインディレイライン122を用いた位相調整動作に移行することが可能となる。
図17を用いて説明した動作は、リングオシレータ171の発振周波数を高めることにより、コースディレイライン121を用いた位相調整動作だけでなく、ファインディレイライン122を用いた位相調整動作についても短時間で完了することが可能である。例えば、リングオシレータ171の発振周期をファインディレイライン122の最小遅延ピッチ(FDE)と一致するよう設計すれば、コースディレイライン121及びファインディレイライン122を用いた全ての位相調整動作を1回で完了することが可能となる。しかしながら、リングオシレータ171の発振周期をファインディレイライン122の最小遅延ピッチ(FDE)まで短縮するのは現実的に困難である。
そこで、本実施形態ではオシレータ信号DOSCDを用いたオーバーサンプリングによって、等価的に初期位相差の検出精度を高めている。
図18は、初期位相差検知回路170の動作を説明するための動作波形図であり、SRラッチ回路172にオシレータ信号DOSCDが入力される場合を示している。
図18に示すように、SRラッチ回路172にオシレータ信号DOSCDが入力される場合、オシレータ信号DOSCDの所定の立ち上がりエッジに同期してイネーブル信号ENが活性化し、内部クロック信号PCLKの対応する立ち上がりエッジに同期してイネーブル信号ENが非活性化する。ここで、オシレータ信号DOSCDの所定の立ち上がりエッジとは、フィードバックループをZ回循環したオシレータ信号DOSCDの立ち上がりエッジを指す。これにより、イネーブル信号ENが活性化する期間は、図17に示した例に対してZ倍に増大する。これにより、図17に示した例に比べてZ倍の分解能が得られることから、リングオシレータ171の発振周波数を高めることなく、初期位相差の検出精度を高めることができる。
例えば、リングオシレータ171の発振周期がコースディレイライン121の最小遅延ピッチ(CDE)と一致し、且つ、ファインディレイライン122を構成する16個のディレイ素子FDEの合計遅延量が1個のディレイ素子CDEの遅延量に相当する場合、
Z=16
に設定することにより、リングオシレータ171の発振周期をファインディレイライン122の最小遅延ピッチ(FDE)に設計した場合と同じ分解能が得られる。この場合、初期位相差の検出によって得られたカウント値DEFを現在のカウント値CNTに加算するだけで、ロック状態またはこれに近い状態を得ることが可能となる。
具体的な数字を挙げて説明すると、内部クロック信号PCLKのクロックサイクルを1ns、DLL回路100の初期遅延量を2618ps、ターゲットとなる内部クロック信号PCLKのエッジを3Tとした場合、初期状態においては内部クロック信号PCLKに対するレプリカクロック信号RCLKの位相差は382psとなる。ここで、リングオシレータ171の発振周期(=CDE)を200nsとすると、図17に示した方法で初期位相差の検知を行った場合、カウント値DEFは、
DEF=382/200=1.91
となり、整数部分のみがカウントされる(小数点以下は切り捨てられる)ことから、
DEF=1
とカウントされる。
これは、コースディレイライン121の遅延量を1ピッチ増大させる必要があることを意味する。したがって、カウント値DEFを受けたディレイライン制御回路150は、CDLカウンタ151の値を1だけ増大させればよい。その後は、通常の位相調整動作を実行することにより、ロック状態に移行させる。
これに対し、図18に示した方法で初期位相差の検知を行った場合、Z=16とするとカウント値DEFは、
DEF=6112/200=30.56
となり、整数部分のみがカウントされる(小数点以下は切り捨てられる)ことから、
DEF=30
とカウントされる。
この値を2進数で表すと
DEF=11110b
であり、上位1ビット(=1)をCDLカウンタ151に割り当て、下位4ビット(=1110)をFDLカウンタ152に割り当てることができる。つまり、カウント値DEFを受けたディレイライン制御回路150は、CDLカウンタ151の値を1だけ増大させるとともに、FDLカウンタ151の値を14(=1110b)だけ増大させればよい。ここで、ファインディレイライン122の最小遅延ピッチ(FDE)は12.5ps(=200ps/16)である。
その結果、ディレイライン120による遅延量の変化△Zは、
△Z=1CDE+14FDE=200+175=375ps
となり、初期位相差である382psに対してわずか7psの誤差となる。この場合、調整後におけるディレイライン120の遅延量は、
2618ps+375ps=2993ps
となり、位相合致率Cは99.3%となる。つまり、初期位相差検知回路170を用いた1回の位相調整動作によって極めて高い位相合致率を得ることができる。このように、本実施形態によれば、高速且つ高精度な位相調整動作を実現することが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上述した各実施形態では、本発明をDRAMに用いられるDLL回路に適用した場合を例に説明したが、本発明の適用対象がこれに限定されるものではなく、SRAM、PcRAM、ReRAM、フラッシュメモリなど他の種類の半導体メモリデバイスに適用することも可能であるし、CPU、DSPなどロジック系の半導体装置に適用することも可能である。
また、上述した第2の実施形態では、リングオシレータ171の発振周期とコースディレイライン121の最小遅延ピッチ(CDE)とを一致させているが、本発明においてこの点は必須でなく、例えばリングオシレータ171の発振周期をコースディレイライン121の最小遅延ピッチ(CDE)のN倍又は1/N倍(Nは自然数)に設定することが可能である。
10 半導体装置
11 メモリセルアレイ
12 ロウデコーダ
13 カラムデコーダ
14 センス回路
15 アンプ回路
20 アクセス制御回路
21〜24 端子
25 クロックレシーバ
30 データ入出力回路
30a 出力回路
31 データ端子
32 データストローブ端子
40 電源回路
41,42 電源端子
100 DLL回路
110 入力回路
111 切替回路
112 入力回路本体
120 ディレイライン
121 コースディレイライン
122 ファインディレイライン
130 レプリカ回路
131 比較用レプリカ回路
132 フィードバック用レプリカ回路
133 選択回路
140 位相判定回路
150 ディレイライン制御回路
151 CDLカウンタ
152 FDLカウンタ
160 入力制御回路
170 初期位相差検知回路
171 リングオシレータ
172 ラッチ回路
173 カウンタ回路

Claims (12)

  1. 第1のクロック信号を遅延させることにより第2のクロック信号を生成するディレイラインと、
    前記第2のクロック信号に基づいて前記第3のクロック信号を生成するレプリカ回路と、
    前記第3のクロック信号及び第4のクロック信号のいずれか一方を選択し、前記第1のクロック信号として前記ディレイラインに供給する入力回路と、
    前記入力回路が前記第4のクロック信号を選択した後、前記入力回路、前記ディレイライン及び前記レプリカ回路からなるフィードバックループを複数回循環することにより得られた前記第3のクロック信号の位相と、前記第4のクロック信号の位相とを比較することにより位相判定信号を生成する位相判定回路と、
    前記位相判定信号に基づいて前記ディレイラインの遅延量を制御するディレイライン制御回路と、を備えることを特徴とする半導体装置。
  2. 前記第2のクロック信号に同期して外部信号を出力する出力回路をさらに備え、
    前記第2のクロック信号に対する前記第3のクロック信号の遅延量は、前記第2のクロック信号に対する前記外部信号の遅延量に等しいことを特徴とする請求項1に記載の半導体装置。
  3. 前記入力回路は、前記第4のクロック信号の立ち上がりエッジ及び立ち下がりエッジの少なくとも一方を1回だけ抽出し、前記第1のクロック信号として前記ディレイラインに供給することを特徴とする請求項1又は2に記載の半導体装置。
  4. 前記レプリカ回路は、前記フィードバックループが形成されている間、前記第2のクロック信号を反転させることによって前記第3のクロック信号を生成することを特徴とする請求項3に記載の半導体装置。
  5. 前記位相判定回路は、前記第3のクロック信号の位相が前記第4のクロック信号の位相に対して遅れているか進んでいるかに応じて前記位相判定信号を生成し、
    前記ディレイライン制御回路は、前記位相判定信号に基づいて前記ディレイラインの遅延量を所定のピッチで変化させることを特徴とする請求項1乃至4のいずれか一項に記載の半導体装置。
  6. 前記第3のクロック信号と前記第4のクロック信号との位相差を測定することにより位相差検出信号を生成する位相差検知回路をさらに備え、
    前記ディレイライン制御回路は、前記位相差検出信号に基づいて前記ディレイラインの遅延量を前記所定のピッチ又はそれ以上のピッチで一度に変化させることを特徴とする請求項5に記載の半導体装置。
  7. 前記位相差検出回路は、前記第3及び第4のクロック信号の一方に同期してオシレータ信号のカウント動作を開始し、前記第3及び第4のクロック信号の他方に同期して前記オシレータ信号のカウント動作を終了するカウンタ回路を含み、前記カウンタ回路のカウント値を前記位相差検出信号として出力することを特徴とする請求項6に記載の半導体装置。
  8. 前記オシレータ信号の周期は、前記所定のピッチに相当する遅延時間のN倍又は1/N倍(Nは自然数)に等しいことを特徴とする請求項7に記載の半導体装置。
  9. ディレイラインと、
    前記ディレイラインに第1のクロック信号を入力する入力回路と、
    前記ディレイラインを介して前記第1のクロック信号を複数回循環させることにより、第2のクロック信号を生成するフィードバックループと、
    前記第1のクロック信号と第2のクロック信号の位相を比較する位相判定回路と、を備えることを特徴とする半導体装置。
  10. 前記位相判定回路による比較の結果に基づいて前記ディレイラインの遅延量を制御するディレイライン制御回路をさらに備えることを特徴とする請求項9に記載の半導体装置。
  11. 前記ディレイラインの後段に接続されたレプリカ回路をさらに備え、
    前記フィードバックループは、前記ディレイライン、前記レプリカ回路及び前記入力回路を含むことを特徴とする請求項9又は10に記載の半導体装置。
  12. 前記入力回路は、前記第1及び第2のクロック信号のいずれか一方を前記ディレイラインに入力する切替回路を含むことを特徴とする請求項11に記載の半導体装置。
JP2013086222A 2013-04-17 2013-04-17 半導体装置 Pending JP2014212365A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013086222A JP2014212365A (ja) 2013-04-17 2013-04-17 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013086222A JP2014212365A (ja) 2013-04-17 2013-04-17 半導体装置

Publications (1)

Publication Number Publication Date
JP2014212365A true JP2014212365A (ja) 2014-11-13

Family

ID=51931838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013086222A Pending JP2014212365A (ja) 2013-04-17 2013-04-17 半導体装置

Country Status (1)

Country Link
JP (1) JP2014212365A (ja)

Similar Documents

Publication Publication Date Title
CN109643566B (zh) 用于调整命令信号路径的延迟的设备及方法
US10679683B1 (en) Timing circuit for command path in a memory device
US6437619B2 (en) Clock generation circuit, control method of clock generation circuit, clock reproducing circuit, semiconductor memory device, and dynamic random access memory
JP3888603B2 (ja) クロック生成回路および制御方法並びに半導体記憶装置
US7027336B2 (en) Semiconductor memory device for controlling output timing of data depending on frequency variation
US9590606B2 (en) Semiconductor device having duty correction circuit
US8643416B2 (en) Semiconductor device including a delay locked loop circuit
US9325330B2 (en) Semiconductor device including a clock adjustment circuit
US11251796B2 (en) Phase lock circuitry using frequency detection
JP2013165354A (ja) 半導体装置
JP5600049B2 (ja) 半導体装置
US6977848B2 (en) Data output control circuit
CN111149163B (zh) 用于突发发射中的数据发射偏移值的设备和方法
JP2012252733A (ja) 半導体装置
US11398816B2 (en) Apparatuses and methods for adjusting a phase mixer circuit
US9065456B2 (en) Semiconductor device having DLL circuit
US8797074B2 (en) Semiconductor device having DLL circuit and control method thereof
US8525563B2 (en) Semiconductor device including DLL circuit having coarse adjustment unit and fine adjustment unit
JP2016012204A (ja) 半導体装置
JP2014212365A (ja) 半導体装置
WO2014129386A1 (ja) コマンドfifo回路
JP2015185200A (ja) 半導体装置