JP2014212219A - Solar cell and method for manufacturing the same - Google Patents

Solar cell and method for manufacturing the same Download PDF

Info

Publication number
JP2014212219A
JP2014212219A JP2013087920A JP2013087920A JP2014212219A JP 2014212219 A JP2014212219 A JP 2014212219A JP 2013087920 A JP2013087920 A JP 2013087920A JP 2013087920 A JP2013087920 A JP 2013087920A JP 2014212219 A JP2014212219 A JP 2014212219A
Authority
JP
Japan
Prior art keywords
diffusion layer
silicon substrate
receiving surface
solar cell
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013087920A
Other languages
Japanese (ja)
Other versions
JP6076814B2 (en
Inventor
光人 高橋
Mitsuto Takahashi
光人 高橋
大塚 寛之
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013087920A priority Critical patent/JP6076814B2/en
Publication of JP2014212219A publication Critical patent/JP2014212219A/en
Application granted granted Critical
Publication of JP6076814B2 publication Critical patent/JP6076814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a solar cell with excellent surface passivation, and a solar cell with high conversion efficiency manufactured by the method.SOLUTION: A method for manufacturing a solar cell comprises the steps of: forming a light-receiving surface side diffusion layer having a conductivity type opposite to a first conductivity type on a light-receiving surface side of a silicon substrate of a first conductivity type; processing a surface of the silicon substrate by applying a solution obtained by dissolving a halogen element in a solvent to the silicon substrate after the step of forming the light-receiving surface side diffusion layer; forming a dielectric film serving as an antireflection film on the light-receiving surface side diffusion layer after the step of processing the surface of the silicon substrate; and forming a light-receiving surface electrode electrically connected to the light-receiving surface side diffusion layer after the step of forming the dielectric film.

Description

本発明は、光エネルギーを直接電気エネルギーに変換する太陽電池及びその製造方法に関する。   The present invention relates to a solar cell that directly converts light energy into electric energy and a method for manufacturing the solar cell.

太陽電池は、光エネルギーを電力に変換する半導体素子であり、p−n接合型、pin型、ショットキー型などがあり、特にp−n接合型が広く用いられている。また、太陽電池をその基板材料を基に分類すると、シリコン結晶系太陽電池、アモルファス(非晶質)シリコン系太陽電池、化合物半導体系太陽電池の3種類に大きく分類される。シリコン結晶系太陽電池は、更に、単結晶系太陽電池と多結晶系太陽電池に分類される。太陽電池用シリコン結晶基板は比較的容易に製造できることから、その生産規模は現在最大となっており、今後も更に普及していくものと思われる(例えば、特許文献1:特開平8−073297号公報)。
太陽電池の出力特性は、一般に、ソーラーシミュレーターを用いて出力電流電圧曲線を測定することにより評価される。この曲線上で出力電流Imaxと出力電圧Vmaxとの積、Imax×Vmaxが最大となる点を最大出力Pmaxとよび、該Pmaxを太陽電池に入射する総光エネルギー(S×I:Sは素子面積、Iは照射する光の強度)で除した値:
η={Pmax/(S×I)}×100(%)
が太陽電池の変換効率ηとして定義される。
A solar cell is a semiconductor element that converts light energy into electric power, and includes a pn junction type, a pin type, a Schottky type, and the pn junction type is widely used. Further, when solar cells are classified based on their substrate materials, they are broadly classified into three types: silicon crystal solar cells, amorphous (amorphous) silicon solar cells, and compound semiconductor solar cells. Silicon crystal solar cells are further classified into single crystal solar cells and polycrystalline solar cells. Since a silicon crystal substrate for a solar cell can be manufactured relatively easily, its production scale is currently the largest and is expected to become more widespread in the future (for example, Patent Document 1: JP-A-8-073297). Publication).
The output characteristics of a solar cell are generally evaluated by measuring an output current voltage curve using a solar simulator. The product of the output current I max and the output voltage V max on this curve, the point where I max × V max is maximum is called the maximum output P max , and this P max is the total light energy (S × (I: S is the element area, I is the intensity of the irradiated light))
η = {P max / (S × I)} × 100 (%)
Is defined as the conversion efficiency η of the solar cell.

変換効率ηを高めるには、短絡電流Isc(電流電圧曲線にてV=0の時の出力電流値)あるいはVoc(電流電圧曲線にてI=0の時の出力電圧値)を大きくすること、及び出力電流電圧曲線をなるべく角形に近い形状のものとすることが重要である。なお、出力電流電圧曲線の角形の度合いは一般に、
FF=Pmax/(Isc×Voc)
で定義されるフィルファクタ(曲線因子)により評価でき、該FFの値が1に近いほど出力電流電圧曲線が理想的な角形に近づき、変換効率ηも高められることを意味する。
上記変換効率ηを向上させるには、キャリアの表面再結合を低減させることが重要である。シリコン結晶系太陽電池においては、太陽光の入射光によって光生成した少数キャリアが、主に拡散によってp−n接合面へ到達した後、受光面及び裏面に取り付けられた電極から多数キャリアとして外部へ取り出され、電気エネルギーとなる。その際、電極面以外の基板表面に存在する界面準位を介して、本来電流として取り出すことの出来たキャリアが再結合して失われることがあり、変換効率ηの低下に繋がる。
In order to increase the conversion efficiency η, the short-circuit current Isc (output current value when V = 0 in the current-voltage curve) or Voc (output voltage value when I = 0 in the current-voltage curve) is increased. It is important to make the output current voltage curve as close to a square as possible. The squareness of the output current voltage curve is generally
FF = P max / (Isc × Voc)
It can be evaluated by the fill factor (curve factor) defined by the equation (1). The closer the FF value is to 1, the closer the output current-voltage curve becomes to an ideal square, and the higher the conversion efficiency η.
In order to improve the conversion efficiency η, it is important to reduce the surface recombination of carriers. In a silicon crystal solar cell, minority carriers generated by incident light of sunlight reach the pn junction surface mainly by diffusion, and then are transferred to the outside as majority carriers from the electrodes attached to the light receiving surface and the back surface. It is taken out and becomes electric energy. At that time, carriers that could be taken out as current through interface states existing on the substrate surface other than the electrode surface may be recombined and lost, leading to a decrease in conversion efficiency η.

そこで高効率太陽電池においては、シリコン基板の表面に、電極とのコンタクト部を除いてSiOからなるパッシベーション膜を形成しシリコン基板とパッシベーション膜との界面におけるキャリア再結合を抑制し、変換効率ηの向上が図られている。
パッシベーション膜の形成方法としては、主に熱酸化法が用いられ、シリコン基板を酸素雰囲気中または大気雰囲気中で熱酸化炉内において、900℃以上に加熱しシリコン基板の表面に酸化膜を形成する。しかし、パッシベーション膜を熱酸化法にて形成する場合、900℃以上という高温でシリコン基板を処理する必要があり、このような高温処理による不純物の再拡散によって、シリコン基板のライフタイムが低下するといった問題が発生する。
Therefore, in a high-efficiency solar cell, a passivation film made of SiO 2 is formed on the surface of the silicon substrate except for the contact portion with the electrode to suppress carrier recombination at the interface between the silicon substrate and the passivation film, thereby converting the conversion efficiency η Improvements are being made.
As a method for forming the passivation film, a thermal oxidation method is mainly used, and the silicon substrate is heated to 900 ° C. or more in a thermal oxidation furnace in an oxygen atmosphere or an air atmosphere to form an oxide film on the surface of the silicon substrate. . However, when the passivation film is formed by a thermal oxidation method, it is necessary to process the silicon substrate at a high temperature of 900 ° C. or higher, and the lifetime of the silicon substrate is reduced due to re-diffusion of impurities by such high temperature processing. A problem occurs.

また、特許文献2(特開昭58−23486号公報)では、パッシベーション膜として酸化タンタル膜、酸化ニオブ膜をスピンコート法、スプレー法、ディップ法により基板表面に塗布後、焼成することでパッシベーション膜を形成する手法が報告されている。この手法によれば、高温処理を必要としないためシリコン基板のライフタイムを低下させずにパッシベーション膜を形成することが可能だが、酸化タンタルや酸化ニオブ膜は、それ自身パッシベーション能力が低いため、十分なパッシベーション効果が得られずシリコン基板表面でのキャリア再結合が多くなり太陽電池の変換効率が低下する問題がある。   Further, in Patent Document 2 (Japanese Patent Laid-Open No. 58-23486), a passivation film is formed by applying a tantalum oxide film and a niobium oxide film to a substrate surface by spin coating, spraying, or dipping as a passivation film, followed by baking. A method for forming the above has been reported. According to this method, it is possible to form a passivation film without reducing the lifetime of the silicon substrate because it does not require high-temperature processing, but tantalum oxide and niobium oxide films themselves have low passivation ability, so it is sufficient There is a problem that a sufficient passivation effect cannot be obtained and carrier recombination increases on the surface of the silicon substrate, so that the conversion efficiency of the solar cell is lowered.

また、特許文献3(特開昭58−220477号公報)では、窒化珪素膜をシリコン基板表面にプラズマCVD法にて成膜することでパッシベーション効果が得られることが報告されている。窒化珪素膜は、結晶系シリコン太陽電池の反射防止膜としての機能と同時に、シリコン基板表面及び内部のパッシベーション効果にも優れているためパッシベーション膜として窒化珪素膜は有用な膜として使われている。しかし、プラズマCVD法は、プロセス温度が400℃程度と比較的低温であっても高い成膜速度を有するため、太陽電池の誘電体膜形成プロセスで多用されているが、プラズマ中で生成される高エネルギー荷電粒子が、成膜した膜やシリコン基板表面にダメージを与えやすいため、得られる窒化珪素膜は界面準位密度が多くなり、窒化珪素膜だけでは十分なパッシベーション効果が得られないといった問題があった。   Patent Document 3 (Japanese Patent Laid-Open No. 58-220477) reports that a passivation effect can be obtained by forming a silicon nitride film on the surface of a silicon substrate by a plasma CVD method. Since the silicon nitride film has a function as an antireflection film for a crystalline silicon solar cell and also has an excellent passivation effect on the surface and inside of the silicon substrate, the silicon nitride film is used as a useful film as a passivation film. However, since the plasma CVD method has a high film formation rate even at a relatively low process temperature of about 400 ° C., it is frequently used in the dielectric film formation process of solar cells, but is generated in plasma. Since high energy charged particles are likely to damage the deposited film and the surface of the silicon substrate, the resulting silicon nitride film has a high interface state density, and a sufficient passivation effect cannot be obtained with the silicon nitride film alone. was there.

また、拡散層と誘電体膜の固定電荷の関係に注目した研究が近年盛んに行われている。一般に正の固定電荷を有する窒化珪素膜は、n型領域のパッシベーション膜としては有効なパッシベーション性能を有するが、p型領域へのパッシベーション膜としては不適切と考えられており、窒化珪素膜だけではp型領域において十分なパッシベーション効果が得られないといった問題があった。   In recent years, research that focuses on the relationship between the fixed charge of the diffusion layer and the dielectric film has been actively conducted. In general, a silicon nitride film having a positive fixed charge has an effective passivation performance as a passivation film in an n-type region, but is considered inappropriate as a passivation film for a p-type region. There is a problem that a sufficient passivation effect cannot be obtained in the p-type region.

特開平8−073297号公報JP-A-8-073297 特開昭58−23486号公報JP 58-23486 A 特開昭58−220477号公報JP 58-220477 A

そこで、本発明は上記事情に鑑みてなされたものであり、シリコン基板における受光面側の拡散層上、特にp型拡散層上に適したパッシベーション膜を形成することで、表面パッシベーションの優れた太陽電池の製造方法、及びその方法により製造される高変換効率な太陽電池を提供することを目的とする。   Therefore, the present invention has been made in view of the above circumstances, and by forming a suitable passivation film on the diffusion layer on the light-receiving surface side of the silicon substrate, particularly on the p-type diffusion layer, the sun having excellent surface passivation. It aims at providing the manufacturing method of a battery, and the high conversion efficiency solar cell manufactured by the method.

上記目的を達成するため鋭意検討した結果、プラズマCVD法により窒化珪素からなる誘電体膜を形成する前に、ハロゲン元素を溶剤に溶解させた溶液にてシリコン基板表面を処理することで、基板表面上に形成されたハロゲン元素が負の電荷を有していると予想され、上記拡散層、特にp型領域におけるパッシベーション効果が向上することを見出し、本発明をなすに至った。従って、本発明は、下記の太陽電池及びその製造方法を提供する。   As a result of diligent studies to achieve the above object, the silicon substrate surface is treated with a solution in which a halogen element is dissolved in a solvent before the dielectric film made of silicon nitride is formed by the plasma CVD method. The halogen element formed thereon is expected to have a negative charge, and it has been found that the passivation effect in the diffusion layer, particularly the p-type region, is improved, and the present invention has been made. Therefore, this invention provides the following solar cell and its manufacturing method.

上記目的を達成するべく、第一導電型のシリコン基板の受光面側に第一導電型と反対の導電型となる受光面側拡散層を形成する工程と、受光面側拡散層を形成する工程の後で、ハロゲン元素を溶剤に溶解させた溶液をシリコン基板に塗布して該シリコン基板の表面を処理する工程と、シリコン基板の表面を処理する工程の後で、受光面側拡散層上に反射防止膜となる誘電体膜を形成する工程と、誘電体膜を形成する工程の後で、受光面側拡散層に電気的に接続する受光面電極を形成する工程とを含む太陽電池の製造方法を提供する。   In order to achieve the above object, a step of forming a light receiving surface side diffusion layer having a conductivity type opposite to the first conductivity type on the light receiving surface side of the first conductivity type silicon substrate, and a step of forming the light receiving surface side diffusion layer After the step of coating the silicon substrate with a solution in which a halogen element is dissolved in a solvent and treating the surface of the silicon substrate, and the step of treating the surface of the silicon substrate, the light-receiving surface side diffusion layer is formed. Manufacturing a solar cell including a step of forming a dielectric film to be an antireflection film, and a step of forming a light receiving surface electrode electrically connected to the light receiving surface side diffusion layer after the step of forming the dielectric film Provide a method.

上記の太陽電池の製造方法は、シリコン基板の受光面と反対側の裏面側に第一導電型と同じ導電型の裏面側拡散層を形成する工程を更に有し、誘電体膜を形成する工程において、受光面側拡散層上に加え裏面側拡散層上に誘電体膜を形成し、シリコン基板の表面を処理する工程は、裏面側拡散層を形成する工程の後で行われるとよい。   The method for manufacturing a solar cell further includes a step of forming a back side diffusion layer of the same conductivity type as the first conductivity type on the back side opposite to the light receiving surface of the silicon substrate, and a step of forming a dielectric film In this case, the step of forming the dielectric film on the back surface side diffusion layer in addition to the light receiving surface side diffusion layer and treating the surface of the silicon substrate may be performed after the step of forming the back surface side diffusion layer.

ハロゲン元素を溶剤に溶解させた溶液におけるハロゲン元素の濃度は、0.001〜0.1mol/lとするとよい。また、ハロゲン元素を溶剤に溶解させた溶液は、有機溶媒又は水を含有するとよい。また、ハロゲン元素はヨウ素とするとよい。   The concentration of the halogen element in the solution in which the halogen element is dissolved in a solvent is preferably 0.001 to 0.1 mol / l. A solution in which a halogen element is dissolved in a solvent may contain an organic solvent or water. The halogen element is preferably iodine.

上記の太陽電池の製造方法において、受光面側拡散層は、シリコン基板におけるp型拡散層とするとよい。この場合、シリコン基板の表面を処理する工程において、シリコン基板の受光面にのみハロゲン元素を溶剤に溶解させた溶液を塗布するとよい。   In the above solar cell manufacturing method, the light-receiving surface side diffusion layer may be a p-type diffusion layer in a silicon substrate. In this case, in the step of processing the surface of the silicon substrate, a solution in which a halogen element is dissolved in a solvent may be applied only to the light receiving surface of the silicon substrate.

また、上記目的を達成するべく、上記の太陽電池の製造方法により製造された太陽電池を提供する。   Moreover, in order to achieve the said objective, the solar cell manufactured with the manufacturing method of said solar cell is provided.

本発明によれば、ハロゲン元素を溶剤に溶解させた溶液を、シリコン基板の受光面側拡散層、特にp型領域上に塗布し表面処理することで、ハロゲン元素の負の電荷による効果で、受光面側拡散層、特にp型領域におけるパッシベーション効果の優れたパッシベーション膜の形成が可能となり、その結果、高変換効率の太陽電池を提供することができる。   According to the present invention, a solution in which a halogen element is dissolved in a solvent is applied on the light-receiving surface side diffusion layer of the silicon substrate, particularly on the p-type region, and is subjected to surface treatment. A light-receiving surface side diffusion layer, particularly a passivation film having an excellent passivation effect in the p-type region can be formed, and as a result, a solar cell with high conversion efficiency can be provided.

本発明の太陽電池の製造工程の一例を示す概略断面図であり、(A)は基板、(B)は基板裏面にn型拡散層を形成した状態、(C)は基板表面にp型拡散層を形成した状態、(D)はハロゲン元素を溶剤に溶解させた溶液の基板表面への塗布工程、(E)は基板表裏面に反射防止膜(窒化珪素膜)を形成した状態、(F)は受光面及び非受光面電極を形成した状態をそれぞれ示す。It is a schematic sectional drawing which shows an example of the manufacturing process of the solar cell of this invention, (A) is a board | substrate, (B) is the state which formed the n-type diffused layer in the board | substrate back surface, (C) is p-type diffusion on the substrate surface. (D) is a step of applying a solution in which a halogen element is dissolved in a solvent to the substrate surface, (E) is a state in which an antireflection film (silicon nitride film) is formed on the front and back surfaces of the substrate, and (F) ) Shows a state where a light receiving surface and a non-light receiving surface electrode are formed.

本実施形態の太陽電池の製造方法は、第一導電型のシリコン基板と、シリコン基板の受光面側に形成された第一導電型と反対の導電型の受光面側拡散層と、受光面側拡散層上に電極とのコンタクト部を除いて窒化珪素よりなる誘電体膜が形成され、受光面側拡散層に電気的に接続する受光面電極とを備える太陽電池、及びシリコン基板の裏面側の少なくとも一部に形成された第一導電型と同じ導電型の裏面側拡散層と、裏面側拡散層上に電極とのコンタクト部を除いて窒化珪素よりなる誘電体膜が形成され、裏面側拡散層に電気的に接続する裏面電極とを備える太陽電池の製造方法に関して、窒化珪素膜からなる誘電体膜を形成する前に、ハロゲン元素を溶剤に溶解させた溶液をシリコン基板表面に塗布し基板表面を処理することを特徴とする。   The solar cell manufacturing method of the present embodiment includes a first conductivity type silicon substrate, a light receiving surface side diffusion layer of a conductivity type opposite to the first conductivity type formed on the light receiving surface side of the silicon substrate, and a light receiving surface side. A dielectric film made of silicon nitride is formed on the diffusion layer except for a contact portion with the electrode, and includes a light receiving surface electrode electrically connected to the light receiving surface side diffusion layer, and a back surface side of the silicon substrate. A backside diffusion layer of the same conductivity type as the first conductivity type formed at least in part, and a dielectric film made of silicon nitride is formed on the backside diffusion layer, excluding the contact portion with the electrode, and the backside diffusion A method of manufacturing a solar cell including a back electrode electrically connected to a layer, and before forming a dielectric film made of a silicon nitride film, a solution in which a halogen element is dissolved in a solvent is applied to the surface of the silicon substrate. Characterized by treating the surface .

以下、本発明の太陽電池の製造方法の一実施形態を、図面を用いて説明するが、この説明により本発明が限定される物ではない。   Hereinafter, although one Embodiment of the manufacturing method of the solar cell of this invention is described using drawing, this invention is not a thing limited by this description.

図1(A)〜(F)は、本発明の太陽電池の製造方法における一実施形態の製造工程を示す概略断面図である。以下、各工程について詳細に説明する。   1 (A) to 1 (F) are schematic cross-sectional views showing a manufacturing process of one embodiment in the method for manufacturing a solar cell of the present invention. Hereinafter, each step will be described in detail.

(1)シリコン基板1としてn型基板を使用する[図1(A)]。このシリコン単結晶基板はチョクラルスキー(CZ)法及びフロートゾーン(FZ)法のいずれの方法によって作製されていてもよい。シリコン基板1の比抵抗は、高性能の太陽電池を作る点から、0.1〜20Ω・cmが好ましく、0.5〜2.0Ω・cmがより好ましい。シリコン基板1としては、リンドープn型単結晶シリコン基板が好ましい。リンドープのドーパント濃度は1×1015cm−3〜5×1016cm−3が好ましい。 (1) An n-type substrate is used as the silicon substrate 1 [FIG. 1 (A)]. This silicon single crystal substrate may be produced by any of the Czochralski (CZ) method and the float zone (FZ) method. The specific resistance of the silicon substrate 1 is preferably 0.1 to 20 Ω · cm, and more preferably 0.5 to 2.0 Ω · cm from the viewpoint of producing a high-performance solar cell. As the silicon substrate 1, a phosphorus-doped n-type single crystal silicon substrate is preferable. The dopant concentration of the phosphorus dope is preferably 1 × 10 15 cm −3 to 5 × 10 16 cm −3 .

(2)ダメージエッチング/テクスチャ形成
例えば、シリコン基板1を水酸化ナトリウム水溶液に浸し、ダメージ層をエッチングで取り除く。この基板のダメージ除去は、水酸化カリウム等の強アルカリ水溶液を用いてもよく、フッ硝酸等の酸水溶液でも同様の目的を達成することが可能である。ダメージエッチングを行ったシリコン基板1にランダムテクスチャを形成する。太陽電池は通常、表面に凹凸形状を形成するのが好ましい。その理由は、可視光域の反射率を低減させる目的で、できる限り2回以上の反射を受光面で行わせる必要があるためである。これら一つ一つの凹凸形状のサイズは1〜20μm程度が好ましい。代表的な表面凹凸構造としては、V溝、U溝が挙げられる。これらは、研削機を利用して形成可能である。また、水酸化ナトリウムにイソプロピルアルコールを加えた水溶液に浸してウェットエッチングすることで、ランダムな凹凸構造を作ることができる。他には、酸エッチングやリアクティブ・イオン・エッチング等を用いてランダムな凹凸構造を作ることもできる。なお、図中では両面に形成したテクスチャ構造は微細なため省略している。
(2) Damage etching / texture formation For example, the silicon substrate 1 is immersed in an aqueous sodium hydroxide solution, and the damaged layer is removed by etching. For removing damage from the substrate, a strong alkaline aqueous solution such as potassium hydroxide may be used, and a similar purpose can be achieved with an acid aqueous solution such as hydrofluoric acid. A random texture is formed on the silicon substrate 1 subjected to damage etching. In general, a solar cell preferably has an uneven shape on the surface. This is because it is necessary to cause the light receiving surface to perform reflection at least twice as much as possible in order to reduce the reflectance in the visible light region. The size of each concavo-convex shape is preferably about 1 to 20 μm. Typical surface uneven structures include V-grooves and U-grooves. These can be formed using a grinding machine. Moreover, a random uneven structure can be made by dipping in an aqueous solution obtained by adding isopropyl alcohol to sodium hydroxide and performing wet etching. In addition, a random concavo-convex structure can be formed by using acid etching, reactive ion etching, or the like. In the drawing, the texture structure formed on both sides is omitted because it is fine.

(3)n型拡散層形成
シリコン基板1がn型の場合は、裏面にドーパントを含む塗布剤を塗布した後に熱処理を行うことでn型拡散層3を裏面に形成する[図1(B)]。熱処理後、シリコン基板1に付いたガラス成分はガラスエッチング等により洗浄する。ドーパントはリンが好ましい。n型拡散層3の表面ドーパント濃度は、1×1018cm−3〜5×1020cm−3が好ましく、5×1018cm−3〜1×1020cm−3がより好ましい。
(3) Formation of n-type diffusion layer When the silicon substrate 1 is n-type, the n-type diffusion layer 3 is formed on the back surface by performing a heat treatment after applying a coating agent containing a dopant on the back surface [FIG. ]. After the heat treatment, the glass component attached to the silicon substrate 1 is washed by glass etching or the like. The dopant is preferably phosphorus. The surface dopant concentration of the n-type diffusion layer 3 is preferably 1 × 10 18 cm −3 to 5 × 10 20 cm −3 and more preferably 5 × 10 18 cm −3 to 1 × 10 20 cm −3 .

(4)p型拡散層形成
同様の処理を受光面で行い、p型拡散層2を受光面全体に形成する[図1(C)]。n型拡散層3を形成した裏面同士を合わせて、BBrによる気相拡散により、p型拡散層2を形成する。ドーパントはボロンが好ましく、また、p型拡散層2の表面ドーパント濃度は、1×1018cm−3〜5×1020cm−3が好ましく、更には5×1018cm−3〜1×1020cm−3がより好ましい。
(4) Formation of p-type diffusion layer A similar process is performed on the light-receiving surface to form the p-type diffusion layer 2 over the entire light-receiving surface [FIG. 1 (C)]. The p-type diffusion layer 2 is formed by vapor phase diffusion with BBr 3 by combining the back surfaces on which the n-type diffusion layer 3 is formed. The dopant is preferably boron, and the surface dopant concentration of the p-type diffusion layer 2 is preferably 1 × 10 18 cm −3 to 5 × 10 20 cm −3 and more preferably 5 × 10 18 cm −3 to 1 × 10. 20 cm −3 is more preferable.

(5)pn接合分離
プラズマエッチャーを用い、pn接合分離を行う。このプロセスではプラズマやラジカルが受光面や裏面に侵入しないよう、サンプルをスタックし、その状態で端面を数ミクロン削る。接合分離後、シリコン基板1に付いたガラス成分、シリコン粉等はガラスエッチング等により洗浄する。
(5) Pn junction isolation Pn junction isolation is performed using a plasma etcher. In this process, the sample is stacked so that plasma and radicals do not enter the light-receiving surface and the back surface, and the end surface is cut by several microns in that state. After bonding and separation, glass components, silicon powder, and the like attached to the silicon substrate 1 are washed by glass etching or the like.

(6)ハロゲン元素含有溶液塗布
続いて、p型拡散層2上、すなわちシリコン基板1の受光面に、ハロゲン元素を溶剤に溶解させた溶液を塗布しシリコン基板1の表面を不活性化させる[図1(D)]。すなわち、図中に示したp型拡散層2上の基板表面4は、ハロゲン元素を溶剤に溶解させた溶液にて処理される。
(6) Application of Halogen Element-Containing Solution Subsequently, a solution in which a halogen element is dissolved in a solvent is applied on the p-type diffusion layer 2, that is, the light receiving surface of the silicon substrate 1 to inactivate the surface of the silicon substrate 1 [ FIG. 1 (D)]. That is, the substrate surface 4 on the p-type diffusion layer 2 shown in the figure is treated with a solution in which a halogen element is dissolved in a solvent.

ここで使用する溶剤としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、ベンゼン、トルエン等の芳香族炭化水素、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ホルムアミド、N−メチルホルムアミド、N−メチルピロリドン、エチレンカーボネート、プロピレンカーボネート等の極性溶剤、ヨウ化カリウム溶液等が挙げられる。これらの中でもアルコール類がより好ましい。   Examples of the solvent used here include alcohols such as methanol, ethanol, n-propanol, isopropanol and n-butanol, ethers such as diethyl ether, tetrahydrofuran and dioxane, aromatic hydrocarbons such as benzene and toluene, dimethyl sulfoxide, Examples thereof include polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, formamide, N-methylformamide, N-methylpyrrolidone, ethylene carbonate, propylene carbonate, and potassium iodide solution. Among these, alcohols are more preferable.

希釈する濃度としては、ハロゲン元素濃度が、0.001mol/l〜0.1mol/lの範囲が好ましい。ハロゲン元素濃度が低すぎると、シリコン基板1の表面を十分に不活性化できない。また、ハロゲン元素濃度が高すぎても生産性を悪化させるおそれがある。
ここで使用するハロゲン元素としては取扱が容易な観点からヨウ素が好適である。
また、シリコン基板1の表面へのハロゲン元素含有溶液の塗布方法としては、スピンコート法、スプレーコート法、ディップコート法、ロールコート法など、特に限定されないが、スピンコート法が簡便であり好適である。本工程で塗布された溶液に含まれるハロゲン元素は、処理後の基板表面4においてダングリングボンドを終端するとともに、負電荷として作用してp型拡散層2に対するパッシベーション効果を向上させる。
As the concentration to be diluted, the halogen element concentration is preferably in the range of 0.001 mol / l to 0.1 mol / l. If the halogen element concentration is too low, the surface of the silicon substrate 1 cannot be sufficiently inactivated. Further, if the halogen element concentration is too high, the productivity may be deteriorated.
The halogen element used here is preferably iodine from the viewpoint of easy handling.
Further, the method for applying the halogen element-containing solution to the surface of the silicon substrate 1 is not particularly limited, such as a spin coating method, a spray coating method, a dip coating method, and a roll coating method, but the spin coating method is simple and preferable. is there. The halogen element contained in the solution applied in this step terminates dangling bonds on the treated substrate surface 4 and also acts as a negative charge to improve the passivation effect on the p-type diffusion layer 2.

(6)誘電体膜形成
引き続き、図1(E)に示すように、CVD装置を用い、n型拡散層3及びp型拡散層2上に誘電体膜5である窒化珪素膜を堆積する。この膜厚は70〜100nmが好ましい。他の反射防止膜として二酸化チタン膜、酸化亜鉛膜、酸化スズ膜、酸化タンタル膜、酸化ニオブ膜、ふっ化マグネシウム膜、酸化アルミニウム膜等があり、代替が可能である。また、形成方法も上記以外にリモートプラズマCVD法、コーティング法、真空蒸着法等があるが、経済的な観点から、上記、窒化珪素膜をプラズマCVD法によって形成するのが好適である。
(6) Dielectric Film Formation Subsequently, as shown in FIG. 1E, a silicon nitride film as the dielectric film 5 is deposited on the n-type diffusion layer 3 and the p-type diffusion layer 2 using a CVD apparatus. This film thickness is preferably 70 to 100 nm. Other antireflection films include a titanium dioxide film, a zinc oxide film, a tin oxide film, a tantalum oxide film, a niobium oxide film, a magnesium fluoride film, and an aluminum oxide film, which can be substituted. In addition to the above, the formation method includes a remote plasma CVD method, a coating method, a vacuum deposition method, and the like. From the economical viewpoint, it is preferable to form the silicon nitride film by the plasma CVD method.

(7)電極形成
スクリーン印刷装置等を用い、受光面側及び裏面側に、例えば銀からなるペーストを、スクリーン印刷装置を用いてp型拡散層2及びn型拡散層3上に印刷し、櫛形電極パターン状に塗布して乾燥させる。シリコン基板にp型を使用する場合は、裏面側にAl粉末を有機バインダで混合したペーストをスクリーン印刷し乾燥させる。最後に、焼成炉において、500〜900℃で1〜30分焼成を行い、p型拡散層2及びn型拡散層3と電気的に接続するフィンガー電極6、裏面電極7、及びバスバー電極8を形成する[図1(F)]。
(7) Electrode formation Using a screen printing device or the like, a paste made of, for example, silver is printed on the p-type diffusion layer 2 and the n-type diffusion layer 3 using a screen printing device on the light-receiving surface side and the back surface side, and comb-shaped Apply to electrode pattern and dry. When using a p-type for a silicon substrate, the paste which mixed Al powder with the organic binder on the back side is screen-printed and dried. Finally, firing is performed at 500 to 900 ° C. for 1 to 30 minutes in a firing furnace, and the finger electrode 6, the back electrode 7, and the bus bar electrode 8 that are electrically connected to the p-type diffusion layer 2 and the n-type diffusion layer 3 are provided. Form [FIG. 1 (F)].

なお、図1(F)ではフィンガー電極6及び裏面電極7がそれぞれp型拡散層2及びn型拡散層3と接続されていないように示されているが、焼成によりファイヤースルーされ、実際は拡散層と接続される。   In FIG. 1 (F), the finger electrode 6 and the back electrode 7 are shown not connected to the p-type diffusion layer 2 and the n-type diffusion layer 3, respectively. Connected.

以上のように、誘電体膜5を形成する前に、ハロゲン元素を溶剤に溶解させた溶液を、p型拡散層2上に塗布し基板表面4を処理することで、ハロゲン元素がダングリングボンドを終端すると同時に、負の電荷による効果でシリコン基板1の表面のキャリア再結合が低減され、その結果、高変換効率の太陽電池を製造することができる。   As described above, before the dielectric film 5 is formed, a solution in which a halogen element is dissolved in a solvent is applied on the p-type diffusion layer 2 and the substrate surface 4 is treated, so that the halogen element is dangling bonded. At the same time, carrier recombination on the surface of the silicon substrate 1 is reduced by the effect of negative charges, and as a result, a solar cell with high conversion efficiency can be manufactured.

以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1]
結晶面方位(100)、15.65cm角200μm厚、アズスライス比抵抗2Ω・cm(ドーパント濃度7.2×1015cm−3)リンドープn型単結晶シリコン基板を、水酸化ナトリウム水溶液に浸してダメージ層をエッチングで取り除き、水酸化カリウム水溶液にイソプロピルアルコールを加えた水溶液に浸してアルカリエッチングすることでテクスチャ形成を行った。得られたシリコン基板1の裏面に、リンドーパントを含む塗布剤を塗布した後に、900℃,1時間熱処理を行い、n型拡散層3を裏面に形成した。熱処理後、基板に付いたガラス成分は高濃度フッ酸溶液等により除去後、洗浄した。
[Example 1]
Crystal plane orientation (100), 15.65 cm square 200 μm thickness, as slice specific resistance 2 Ω · cm (dopant concentration 7.2 × 10 15 cm −3 ) Phosphorus-doped n-type single crystal silicon substrate is immersed in an aqueous sodium hydroxide solution The damaged layer was removed by etching, and texture formation was performed by soaking in an aqueous solution obtained by adding isopropyl alcohol to an aqueous potassium hydroxide solution and performing alkali etching. After applying the coating agent containing a phosphorus dopant to the back surface of the obtained silicon substrate 1, heat treatment was performed at 900 ° C. for 1 hour to form the n-type diffusion layer 3 on the back surface. After the heat treatment, the glass component attached to the substrate was removed by high concentration hydrofluoric acid solution and then washed.

引き続きn型拡散層3を形成したシリコン基板の裏面同士を合わせてBBrによる気相拡散を行い、p型拡散層2を受光面全体に形成した。 Subsequently, the back surfaces of the silicon substrate on which the n-type diffusion layer 3 was formed were put together to perform gas phase diffusion with BBr 3 to form the p-type diffusion layer 2 over the entire light receiving surface.

次に、プラズマエッチャーを用い、pn接合分離を行った。プラズマやラジカルが受光面や裏面に侵入しないよう、対象をスタックした状態で端面を数ミクロン削った。基板に付いたガラス成分を高濃度フッ酸溶液等により除去後、洗浄した。   Next, pn junction isolation was performed using a plasma etcher. In order to prevent plasma and radicals from entering the light-receiving surface and back surface, the end face was cut several microns with the target stacked. The glass component attached to the substrate was removed with a high-concentration hydrofluoric acid solution and then washed.

引き続きヨウ素濃度として0.05mol/lのヨウ素メタノール溶液をスピンコート法にてp型拡散層2上に塗布し、表面処理を行った。   Subsequently, an iodine methanol solution having an iodine concentration of 0.05 mol / l was applied onto the p-type diffusion layer 2 by spin coating, and surface treatment was performed.

次に、平行平板型CVD装置を用い、成膜用ガスとしてモノシランとアンモニアと水素の混合ガスを使用して、受光面側のp型拡散層2、及び裏面のn型拡散層3上に誘電体膜5である窒化珪素膜を積層した。この膜厚は70nmであった。   Next, using a parallel plate type CVD apparatus, a mixed gas of monosilane, ammonia and hydrogen is used as a film forming gas, and dielectric is formed on the p-type diffusion layer 2 on the light-receiving surface side and the n-type diffusion layer 3 on the back surface. A silicon nitride film as the body film 5 was laminated. This film thickness was 70 nm.

引き続き、受光面側及び裏面側にそれぞれ銀ペーストを電極印刷し、乾燥後800℃で3分焼成を行い、フィンガー電極6、裏面電極7及びバスバー電極8を形成した。   Subsequently, a silver paste was electrode-printed on each of the light-receiving surface side and the back surface side, dried, and then fired at 800 ° C. for 3 minutes to form the finger electrode 6, the back electrode 7, and the bus bar electrode 8.

[比較例1]
窒化珪素膜形成前に、ヨウ素メタノール溶液をスピンコート法にてp型拡散層2上に塗布し、表面処理を行う工程を省いた以外は、実施例1と同様の方法にて作製した。
[Comparative Example 1]
Before the silicon nitride film was formed, an iodine methanol solution was applied onto the p-type diffusion layer 2 by a spin coating method, and the same process as in Example 1 was performed except that the surface treatment step was omitted.

実施例及び比較例で得られた太陽電池を、25℃の雰囲気の中、ソーラーシミュレーター(光強度:1kW/m,スペクトル:AM1.5グローバル)の下で電流電圧特性を測定した。結果を表1に示す。なお、表中の数字は実施例及び比較例で試作したセル10枚の平均値である。 The current-voltage characteristics of the solar cells obtained in Examples and Comparative Examples were measured in a 25 ° C. atmosphere under a solar simulator (light intensity: 1 kW / m 2 , spectrum: AM1.5 global). The results are shown in Table 1. In addition, the number in a table | surface is an average value of ten cells made as an experiment in an Example and a comparative example.

上記のように、実施例1の太陽電池は、誘電体膜5形成前にp型拡散層2上にヨウ素含有溶液を塗布し表面処理することで、ヨウ素による基板表面のダングリングボンドの終端と、ヨウ素の負電荷の効果で、パッシベーション効果に優れた高い変換効率の太陽電池が得られた。   As described above, in the solar cell of Example 1, the iodine-containing solution was applied on the p-type diffusion layer 2 and surface-treated before the dielectric film 5 was formed, so that the dangling bonds on the substrate surface with iodine were terminated. Due to the negative charge of iodine, a solar cell with high conversion efficiency and excellent passivation effect was obtained.

1 シリコン基板
2 p型拡散層
3 n型拡散層
4 ハロゲン元素を溶剤に溶解させた溶液にて処理した基板表面
5 誘電体膜(反射防止膜)
6 受光面電極(フィンガー電極)
7 裏面電極
8 バスバー電極
1 silicon substrate 2 p-type diffusion layer 3 n-type diffusion layer 4 substrate surface treated with a solution in which a halogen element is dissolved in a solvent 5 dielectric film (antireflection film)
6 Light-receiving surface electrode (finger electrode)
7 Back electrode 8 Bus bar electrode

Claims (8)

第一導電型のシリコン基板の受光面側に第一導電型と反対の導電型となる受光面側拡散層を形成する工程と、
前記受光面側拡散層を形成する工程の後で、ハロゲン元素を溶剤に溶解させた溶液を前記シリコン基板に塗布して該シリコン基板の表面を処理する工程と、
前記シリコン基板の表面を処理する工程の後で、前記受光面側拡散層上に反射防止膜となる誘電体膜を形成する工程と、
前記誘電体膜を形成する工程の後で、前記受光面側拡散層に電気的に接続する受光面電極を形成する工程とを備える太陽電池の製造方法。
Forming a light-receiving surface side diffusion layer that has a conductivity type opposite to the first conductivity type on the light-receiving surface side of the first conductivity type silicon substrate;
After the step of forming the light receiving surface side diffusion layer, a step of applying a solution in which a halogen element is dissolved in a solvent to the silicon substrate to treat the surface of the silicon substrate;
After the step of processing the surface of the silicon substrate, a step of forming a dielectric film serving as an antireflection film on the light-receiving surface side diffusion layer;
And a step of forming a light receiving surface electrode electrically connected to the light receiving surface side diffusion layer after the step of forming the dielectric film.
前記シリコン基板の受光面と反対側の裏面側に第一導電型と同じ導電型の裏面側拡散層を形成する工程を更に有し、
前記誘電体膜を形成する工程において、前記受光面側拡散層上に加え前記裏面側拡散層上に前記誘電体膜を形成し、
前記シリコン基板の表面を処理する工程は、前記裏面側拡散層を形成する工程の後で行われることを特徴とする請求項1に記載の太陽電池の製造方法。
Further comprising forming a back side diffusion layer of the same conductivity type as the first conductivity type on the back side opposite to the light receiving surface of the silicon substrate;
In the step of forming the dielectric film, the dielectric film is formed on the back surface side diffusion layer in addition to the light receiving surface side diffusion layer,
The method for manufacturing a solar cell according to claim 1, wherein the step of processing the surface of the silicon substrate is performed after the step of forming the back-side diffusion layer.
前記ハロゲン元素を溶剤に溶解させた溶液における前記ハロゲン元素の濃度が0.001〜0.1mol/lであることを特徴とする請求項1または請求項2に記載の太陽電池の製造方法。   3. The method of manufacturing a solar cell according to claim 1, wherein a concentration of the halogen element in a solution in which the halogen element is dissolved in a solvent is 0.001 to 0.1 mol / l. 前記ハロゲン元素を溶剤に溶解させた溶液が有機溶媒又は水を含有することを特徴とする請求項1から3のいずれか1項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 3, wherein a solution in which the halogen element is dissolved in a solvent contains an organic solvent or water. 前記ハロゲン元素がヨウ素であることを特徴とする請求項1から4のいずれか1項に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to any one of claims 1 to 4, wherein the halogen element is iodine. 前記受光面側拡散層が前記シリコン基板におけるp型拡散層である請求項1から5のいずれか1項記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the light receiving surface side diffusion layer is a p-type diffusion layer in the silicon substrate. 前記シリコン基板の表面を処理する工程において、前記シリコン基板の受光面にのみハロゲン元素を溶剤に溶解させた溶液を塗布することを特徴とする請求項6に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 6, wherein in the step of treating the surface of the silicon substrate, a solution in which a halogen element is dissolved in a solvent is applied only to the light receiving surface of the silicon substrate. 請求項1から7のいずれか1つに記載の太陽電池の製造方法により製造された太陽電池。   The solar cell manufactured by the manufacturing method of the solar cell as described in any one of Claim 1 to 7.
JP2013087920A 2013-04-19 2013-04-19 Manufacturing method of solar cell Active JP6076814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013087920A JP6076814B2 (en) 2013-04-19 2013-04-19 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013087920A JP6076814B2 (en) 2013-04-19 2013-04-19 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2014212219A true JP2014212219A (en) 2014-11-13
JP6076814B2 JP6076814B2 (en) 2017-02-08

Family

ID=51931751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013087920A Active JP6076814B2 (en) 2013-04-19 2013-04-19 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP6076814B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101504B1 (en) * 2018-10-31 2020-04-16 한국생산기술연구원 Carrier Selective Contact Silicon Solar Cell Having Capping Layer And Method For The Same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014188A1 (en) * 1992-12-16 1994-06-23 Semilab Félvezetö Fizikai Laboratórium Rt. Method for chemical surface passivation for in-situ bulk lifetime measurement of silicon semiconductor material
JP2004071763A (en) * 2002-08-05 2004-03-04 Toyota Motor Corp Photovoltaic element
JP2005197343A (en) * 2004-01-05 2005-07-21 Sharp Corp Semiconductor element, its treating method and treatment equipment
WO2006129444A1 (en) * 2005-05-31 2006-12-07 Naoetsu Electronics Co., Ltd. Solar cell element and method for fabricating same
WO2011033826A1 (en) * 2009-09-18 2011-03-24 信越化学工業株式会社 Solar cell, method for manufacturing solar cell, and solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994014188A1 (en) * 1992-12-16 1994-06-23 Semilab Félvezetö Fizikai Laboratórium Rt. Method for chemical surface passivation for in-situ bulk lifetime measurement of silicon semiconductor material
JP2004071763A (en) * 2002-08-05 2004-03-04 Toyota Motor Corp Photovoltaic element
JP2005197343A (en) * 2004-01-05 2005-07-21 Sharp Corp Semiconductor element, its treating method and treatment equipment
WO2006129444A1 (en) * 2005-05-31 2006-12-07 Naoetsu Electronics Co., Ltd. Solar cell element and method for fabricating same
WO2011033826A1 (en) * 2009-09-18 2011-03-24 信越化学工業株式会社 Solar cell, method for manufacturing solar cell, and solar cell module

Also Published As

Publication number Publication date
JP6076814B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5490231B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
KR102120147B1 (en) Solar cell and method of manufacturing the same
JP2017508294A (en) Conductive polymer / Si interface at the back of the solar cell
JP2013511839A (en) Photovoltaic cell manufacturing method, photovoltaic cell manufactured thereby, and use thereof
TW201515244A (en) Solar cell and solar cell module
JP5477220B2 (en) Solar cell and manufacturing method thereof
JP2014011246A (en) Solar cell element and solar cell module
WO2014092649A1 (en) A method of manufacturing a photovoltaic cell
TWI390755B (en) Method of fabricating solar cells
WO2022156101A1 (en) Solar cell stack passivation structure and preparation method therefor
JP5375414B2 (en) Solar cell and manufacturing method thereof
JP5623131B2 (en) SOLAR CELL DEVICE, ITS MANUFACTURING METHOD, AND SOLAR CELL MODULE
TWI675490B (en) Method of fabricating solar cells
TWI650872B (en) Solar cell and its manufacturing method, solar cell module and solar cell power generation system
JP6076814B2 (en) Manufacturing method of solar cell
US20140360584A1 (en) Manufacturing method of solar cell
WO2022156102A1 (en) Solar cell stack passivation structure and preparation method therefor
JP5545277B2 (en) Solar cell and manufacturing method thereof
JP5516611B2 (en) Solar cell manufacturing method and solar cell
JP5494511B2 (en) Manufacturing method of solar cell
Chaoui et al. Improvement of screen-printed textured monocrystalline silicon solar cell performance by metal-assisted chemical etching
JP2013135155A (en) Method for manufacturing solar cell
JP5316491B2 (en) Manufacturing method of solar cell
CN110800114B (en) High-efficiency back electrode type solar cell and manufacturing method thereof
JP5994895B2 (en) Manufacturing method of solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170111

R150 Certificate of patent or registration of utility model

Ref document number: 6076814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150