JP2014209670A - 差動増幅回路およびa/d変換器 - Google Patents

差動増幅回路およびa/d変換器 Download PDF

Info

Publication number
JP2014209670A
JP2014209670A JP2013085719A JP2013085719A JP2014209670A JP 2014209670 A JP2014209670 A JP 2014209670A JP 2013085719 A JP2013085719 A JP 2013085719A JP 2013085719 A JP2013085719 A JP 2013085719A JP 2014209670 A JP2014209670 A JP 2014209670A
Authority
JP
Japan
Prior art keywords
voltage
circuit
transistors
differential amplifier
mos transistors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085719A
Other languages
English (en)
Inventor
卓矢 本田
Takuya Honda
卓矢 本田
原田 卓哉
Takuya Harada
卓哉 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2013085719A priority Critical patent/JP2014209670A/ja
Publication of JP2014209670A publication Critical patent/JP2014209670A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/22Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)
  • Amplifiers (AREA)

Abstract

【課題】入力電圧範囲を従来よりも広く確保する。【解決手段】差動増幅回路8において、差動対21のトランジスタNH1、NH2をデプレッション形のMOSトランジスタで構成し、その他のトランジスタをエンハンスメント形のMOSトランジスタで構成することにより、トランジスタNH1、NH2のしきい値電圧を、その他のトランジスタのしきい値電圧よりも低く設定する。差動増幅回路8に入力される最小電圧をVmin、トランジスタN4の有効ゲート電圧をVeff(N4)とすれば、トランジスタNH1、NH2は、(Vin(min)−Veff(N4))よりも低いしきい値電圧VT(NH1,NH2)を有する。【選択図】図1

Description

本発明は、MOSトランジスタから構成される差動増幅回路およびそれを用いたA/D変換器に関する。
MOSトランジスタを用いて差動対を構成する場合、MOSトランジスタのしきい値電圧VTに応じて増幅動作可能な最低入力電圧が定まる。例えばコンパレータにおいて、Nチャネル型のMOSトランジスタを用いた差動対(特許文献1参照)は、しきい値電圧VTよりも低い入力電圧に対して比較動作を停止する。微細プロセスを用いたMOSトランジスタを用いればしきい値電圧VTを低くできるが、微細プロセスを用いると素子耐圧も低下するので採用可能な用途が限られる。
特開2004−304312号公報
これは、特に車載装置において深刻な問題になる。例えば、キャパシタアレイを用いた逐次比較型のA/D変換器は、キャパシタが共通に接続されたコモンラインの電圧と基準電圧とを比較するコンパレータを備えている。コンパレータの差動対を構成するMOSトランジスタの耐圧は、A/D変換するセンサ信号の電圧に応じて決定されており、しきい値電圧VTの都合により低くすることができない。さらに、クランキングなどによりバッテリ電圧が低下すると、A/D変換器で用いる電源電圧、基準電圧などが安定化の範囲を超えて低下する虞がある。基準電圧が最低入力電圧を下回ると、コンパレータは正常な比較動作ができなくなる。
本発明は上記事情に鑑みてなされたもので、その目的は、入力電圧範囲を従来よりも広く確保することができる差動増幅回路およびそれを用いたA/D変換器を提供することにある。
請求項1に記載した差動増幅回路は、デプレッション形の第1、第2MOSトランジスタから構成される差動対と、第1電源線と第1、第2MOSトランジスタの各ドレインとの間に接続されたMOSトランジスタから構成される負荷回路と、第1、第2MOSトランジスタの共通に接続されたソースと第2電源線との間に接続されたMOSトランジスタから構成される定電流回路とを備えている。第1、第2MOSトランジスタのしきい値電圧は、負荷回路を構成するMOSトランジスタのしきい値電圧および定電流回路を構成するMOSトランジスタのしきい値電圧よりも低い。一例として、負荷回路と定電流回路を構成するMOSトランジスタは、エンハンスメント形で構成されている。
この構成によれば、従来構成に比べ、第1、第2MOSトランジスタのしきい値電圧VTが低くなり、増幅動作可能な入力電圧範囲を従来よりも広く確保することができる。具体的には、第1、第2MOSトランジスタがNチャネル型の場合には、入力電圧範囲がより低い範囲にまで広がり、Pチャネル型の場合には、入力電圧範囲がより高い範囲にまで広がる。
請求項2に記載した手段によれば、第1、第2MOSトランジスタがNチャネル型の場合、定電流回路を構成するMOSトランジスタの有効ゲート電圧をVeffとし、差動対に入力される最小電圧をVminとすれば、第1、第2MOSトランジスタは、(Vmin−Veff)よりも低いしきい値電圧を有している。このような電圧関係によれば、定電流回路を構成するMOSトランジスタが定電流動作でき、第1、第2MOSトランジスタは、そのゲート電圧に応じた差動増幅が可能になる。
請求項3に記載した手段によれば、差動対に入力される電圧範囲は第1、第2電源線間の電圧よりも広く、第1、第2MOSトランジスタは第1、第2電源線間の電圧よりも高い耐圧を有している。一般に、MOSトランジスタの耐圧が高くなるとしきい値電圧も高くなるので、入力電圧範囲が一層狭まる傾向にある。これに対し本手段では、入力電圧範囲を広く確保することができる。
請求項4に記載した手段によれば、負荷回路は定電流回路を構成しており、差動対と当該定電流回路とともにフォールデッドカスコード回路を構成するMOSトランジスタと、当該MOSトランジスタと第2電源線との間に接続された能動負荷回路を備えている。この構成によりゲインを高めることができる。
請求項5に記載したA/D変換器は、キャパシタアレイを用いた逐次比較型のA/D変換器である。このA/D変換器は、上述した差動増幅回路を備えてコモンラインの電圧と基準電圧とを比較するコンパレータを有している。さらに、一端がコモンラインに接続された複数のキャパシタからなるキャパシタアレイと、複数のキャパシタごとにその他端を被変換電圧側、第1規定電圧側または第2規定電圧側に切り替えてキャパシタの電荷設定および電荷分配を行う切替回路と、コンパレータの出力信号に基づいて切替回路を制御することによりA/D変換コードを生成する制御回路とを備えている。
コンパレータの差動増幅回路には、コモンラインの電圧と基準電圧が入力される。差動増幅回路の第1、第2MOSトランジスタは、A/D変換するセンサ信号の電圧に応じた耐圧が必要になる。耐圧が高い場合でも差動増幅回路の入力電圧範囲は従来構成に比べて広いので、バッテリ電圧の低下などによりA/D変換器への供給電圧が低下しても、コンパレータは正常に比較動作を継続することができる。
本発明の第1の実施形態を示すチョッパ型コンパレータの構成図 A/D変換器の構成図 A/D変換器の電荷設定および電荷分配に係る等価回路を示す図 本発明の第2の実施形態を示す差動増幅回路の構成図 本発明の第3の実施形態を示すコンパレータの構成図
各実施形態において実質的に同一部分には同一符号を付して説明を省略する。
(第1の実施形態)
以下、本発明の第1の実施形態について図1から図3を参照しながら説明する。図2に示すA/D変換器1は、キャパシタアレイとチョッパ型のコンパレータを用いた逐次比較型のA/D変換器である。
このA/D変換器1は、車載装置に搭載されており、図中の破線で区分するように電源電圧VDD1(5V)で動作する回路Aと、電源電圧VDD2(1.5V)で動作する回路Bとから構成されている。回路Aの電源電圧VDD1は、センサ(図示せず)から入力される電圧Vinの電圧範囲(0V〜5V)に応じて定められており、回路Bの電源電圧VDD2は、消費電力の低減および高速化が図られるように定められている。
キャパシタアレイ2を構成するキャパシタC0〜Cmは、0.5C、0.5C、C、2C、…、2C(n=m−2)のように2のべき乗に重み付けされており、各一端がコモンライン3に接続されている。切替回路4は、キャパシタC0〜Cmごとに、その他端に入力電圧Vin、第1規定電圧Vref+(VDD1:5V)および第2規定電圧Vref-(GND:0V)の何れかの電圧を与えるスイッチSW0〜SWmから構成されている。電圧Vinの入力端子5とスイッチSW0〜SWmとの間にはスイッチ6が設けられている。
チョッパ型のコンパレータ7は、コモンライン3の電圧VCOMと基準電圧Vrとを比較するもので、差動増幅回路8、9がキャパシタ10、11を介して縦続に接続された構成を備えている。コンパレータ7には、差動増幅回路9の入力端子同士を接続するスイッチ12が付加されている。差動増幅回路8の反転入力端子はコモンライン3に接続されており、非反転入力端子は基準電圧Vr(=VDD1/2:2.5V)を出力するバッファ13の出力端子に接続されている。差動増幅回路8の入力端子間には、スイッチ14が設けられている。
制御回路15は、クロックCLKに同期してA/D変換を実行し、A/D変換コードを逐次比較レジスタに格納する。制御回路15は、A/D開始信号ADSを入力すると、制御信号SP、SD、SCを出力してそれぞれスイッチ6、12、14を制御するとともに、コンパレータ7から出力される比較信号CPに基づいてスイッチSW0〜SWmを切り替える。制御回路15は、低電圧である回路Bに属するので、レベルシフト回路16を介して回路Aに属するスイッチ6、14とスイッチSW0〜SWmを切り替える。制御回路15は、A/D変換が終了するとA/D終了信号ADEを出力する。
チョッパ型のコンパレータ7は、図1に示すようにバイアス回路17、差動増幅回路8、9、キャパシタ10、11およびスイッチ12から構成されている。コンパレータ7は、1.5V系の耐圧を持つNチャネル型のMOSトランジスタN1〜N15とPチャネル型のMOSトランジスタP1〜P18、および5V系の耐圧を持つNチャネル型のMOSトランジスタNH1、NH2を備えている。
トランジスタN1〜N15、P1〜P18はエンハンスメント形であり、トランジスタNH1、NH2はデプレッション形である。エンハンスメント形はVGS=0で電流が流れない素子であり、デプレッション形はVGS=0で電流が流れる素子である。このような違いにより、トランジスタNH1、NH2の耐圧はトランジスタN1〜N15、P1〜P18の耐圧よりも高いにもかかわらず、トランジスタNH1、NH2のしきい値電圧は、トランジスタN1〜N15、P1〜P18のしきい値電圧よりも低くなっている。
バイアス回路17は、差動増幅回路8、9で必要となるバイアス電圧VBH1、VBH2、VBLを生成する。電源線18、19間には、抵抗20とゲート・ドレイン間が接続されたトランジスタN1とが直列に接続されている。トランジスタN1に流れる定電流は、トランジスタN1とともにカレントミラー回路を構成するトランジスタN2、N3により折り返されてトランジスタP1、P2に流れる。ここで、トランジスタN1〜N3のゲート電位がバイアス電圧VBLとなり、トランジスタP1、P2のゲート電位がそれぞれバイアス電圧VBH1、VBH2となる。
差動増幅回路8の差動対21を構成するトランジスタNH1、NH2のゲートには、それぞれ0Vから5Vの範囲で変化するコモンライン3の電圧VCOM、VDD1/2(2.5V)の基準電圧Vrが入力される。そのため、トランジスタNH1、NH2には、電源線18、19間の電圧1.5Vよりも高い5V系の耐圧が必要になる。トランジスタNH1、NH2のバックゲートにはグランド電位が与えられている。トランジスタNH1、NH2の共通に接続されたソースとグランド線19との間には、トランジスタN4が接続されている。トランジスタN4は、バイアス電圧VBLをゲート電圧とすることで定電流回路として動作する。
電源線18とトランジスタNH1、NH2の各ドレインとの間には、トランジスタP3、P4が接続されている。トランジスタP3、P4は、バイアス電圧VBH1をゲート電圧とすることで定電流回路である負荷回路22として動作する。さらに、電源線18、19間にトランジスタP3、P4と直列に接続されたトランジスタP5、P6は、バイアス電圧VBH2をゲート電圧としており、差動対21とトランジスタP3、P4とともにフォールデッドカスコード接続の形態を有している。トランジスタP5、P6の各ドレインと電源線19との間には、トランジスタN5〜N8からなる能動負荷回路23が設けられている。フォールデッドカスコード接続を用いることでゲインを高めることができる。
差動増幅回路8は、能動負荷回路23の出力電圧を増幅する出力段24を備えている。出力段24は、ノードNA、NBの電圧VNA、VNBを入力とするソースフォロアの形態を持つトランジスタP7、P8と、電源線18とトランジスタP7、P8との間にそれぞれ接続されてバイアス電圧VBH1をゲート電圧とするトランジスタP9、P10とから構成されている。トランジスタP7、P8のソースが、差動増幅回路8の出力ノードNC、NDとなる。
差動増幅回路9は、トランジスタN9、N10からなる差動対25を備えている。トランジスタN9、N10のゲートは、それぞれキャパシタ10、11を介して差動増幅回路8の出力ノードNC、NDに接続されている。トランジスタN9、N10の共通に接続されたソースとグランド線19との間には、トランジスタN11が接続されている。トランジスタN11は、バイアス電圧VBLをゲート電圧とすることで定電流回路として動作する。
電源線18とトランジスタN9、N10の各ドレインとの間には、トランジスタP11〜P14からなる能動負荷回路26が設けられている。差動増幅回路9は、差動対25の出力電圧を増幅する出力段27を備えている。出力段27は、ノードNE、NFの電圧VNE、VNFを入力とするトランジスタP15、P16と、トランジスタP15、P16とグランド線19との間に接続されたトランジスタN12、N13からなる能動負荷回路28(カレントミラー回路)とから構成されている。トランジスタN13のドレインが出力ノードNGとなる。
スイッチ12は、トランジスタN14、P17からなるアナログスイッチ29、トランジスタN15、P18からなるアナログスイッチ30、およびインバータ31、32から構成されている。アナログスイッチ29、30は、信号SDがLレベルのときにオフ、Hレベルのときにオンする。
次に、本実施形態の作用および効果について説明する。はじめに、逐次比較型のA/D変換器1の動作を簡単に説明する。A/D変換器1の制御回路15は、初めにスイッチ6、12、14をオンするとともに、スイッチSW0〜SWmを全て入力電圧Vin側(サンプリング側)に切り替えてキャパシタC0〜Cmに(Vin−VDD1/2)に応じた電荷を設定する。このときのキャパシタC0〜Cmの電荷設定に係る等価回路を図3(a)に示す。
差動増幅回路8の差動出力端子に現れるオフセット電圧により、キャパシタ10、11に初期電荷が与えられる。制御回路15は、この初期電荷の設定が終了するとスイッチ12をオフし、続いてスイッチ14をオフし、その後、スイッチSW0〜SWmを全てVref-側に切り替えてホールドする(図3(b)参照)。予めスイッチ12をオンしておくことで、差動増幅回路8のオフセット電圧をキャンセルできるとともに、差動増幅回路9の動作を速めることができる。
コンパレータ7を用いた比較動作の準備が整ったため、制御回路15は、比較信号CPに応じてスイッチSW0〜SWmを切り替えて、MSB側から順に各ビットの値を決定する。制御回路15は、MSBを決定する場合、スイッチSW0〜SWmのうちスイッチSWmを規定電圧Vref+側に切り替え、残りをVref-側に維持する(図3(c)参照)。これによりキャパシタC0〜Cmで電荷が再分配され、コモンライン3の電圧VCOMは(1)式で示す値となる。
VCOM=(VDD1/2−Vin+Vref+/2)=5V−Vin …(1)
VinがVDD1/2よりも低い場合にはVCOM>Vrとなるので、比較信号CPがHレベル(VDD2)になる。このとき、制御回路15は、MSB=0とし、スイッチSWmに加えてスイッチSWm-1も規定電圧Vref+側に切り替える(図3(d)参照)。一方、VinがVDD1/2以上の場合にはVCOM≦Vrとなるので、比較信号CPがLレベル(0V)になる。このとき、制御回路15は、MSB=1とし、スイッチSWmを規定電圧Vref-側に切り替え、スイッチSWm-1を規定電圧Vref+側に切り替える(図3(e)参照)。制御回路15は、コモンライン3の電圧VCOMと基準電圧Vrとの比較結果に応じてスイッチSW0〜SWmを切り替える。以降、同様にして第2ビット目、第3ビット目、…を決定し、逐次比較レジスタにA/D変換コードを格納する。
次に、差動増幅回路8の入力電圧範囲について説明する。トランジスタN4は、ゲートにバイアス電圧VBLが与えられた状態で定電流動作をする必要がある。トランジスタN4を飽和領域で動作させるためには、以下の(2)式の関係が必要になる。VTはしきい値電圧であり、VGS−VTは有効ゲート電圧Veffである。1.5V系の耐圧を持つトランジスタN4の場合、有効ゲート電圧Veffは例えば0.2V程度となる。
VDS>VGS−VT …(2)
差動対21のトランジスタNH1、NH2は5V系の耐圧を持つので、差動増幅回路8の入力電圧範囲の上限はVDD1(5V)となる。これに対し、入力電圧範囲の下限は、以下の(3)式の関係が必要である。
Veff(N4)+VT(NH1,NH2)<入力電圧(NH1,NH2) …(3)
換言すれば、差動増幅回路8に入力される最小電圧をVminとしたとき、トランジスタNH1、NH2は、(Vin(min)−Veff(N4))よりも低いしきい値電圧VT(NH1,NH2)を有する必要がある。
本実施形態で用いる差動対21のトランジスタNH1、NH2は、デプレッション形のMOSトランジスタであるため、しきい値電圧VTは0V付近の値となる。これに対し、5V系の耐圧を持つエンハンスメント形のMOSトランジスタでは、しきい値電圧VTは0.8V〜1V付近の値となる。両者を(3)式に代入すると、本実施形態の差動増幅回路8では、入力電圧(NH1,NH2)の下限は0.2V程度になるのに対し、エンハンスメント形のMOSトランジスタを用いた従来構成では、入力電圧(NH1,NH2)の下限は1V程度になる。
このように、本実施形態の差動増幅回路8は、差動対21にデプレッション形のトランジスタNH1、NH2を備えたので、トランジスタNH1、NH2の耐圧が他のトランジスタに比べて高いにもかかわらず、増幅作用を維持可能な入力電圧範囲を従来構成よりも低電位側に広げることができる。その結果、初段に差動増幅回路8を備えたコンパレータ7は、ほぼ0.2Vから5Vまでの広範な入力電圧に対して比較動作を維持できる。
車載装置では、クランキングなどによりバッテリ電圧が低下すると、電源電圧VDD1、VDD2が低下する場合がある。5Vの電源電圧VDD1が低下すると、コモンライン3の電圧VCOMや基準電圧Vrも低下する。このため、入力電圧範囲の下限値が高い従来構成のコンパレータを用いると、比較動作が停止してしまう虞があった。これに対し、本実施形態によれば、バッテリ電圧の低下時であっても比較動作を維持可能となり、A/D変換器1は正常に動作してA/D変換コードを生成することができる。
さらに、コンパレータ7の入力電圧範囲が低電位側に広がるので、センサから入力される電圧Vinの電圧範囲に合わせて、回路Aの電源電圧VDD1を5Vよりも低く設定することもできる。電源電圧VDD1を低くすると、微細プロセスを採用でき、一層の消費電力の低減および一層の高速化が図られる。
(第2の実施形態)
図4に示す差動増幅回路33は、図1に示した差動増幅回路8の能動負荷回路23を能動負荷回路34で置き替えたものである。能動負荷回路34は、カスコード接続されたトランジスタN16〜N19から構成されている。トランジスタN16、N17は、電源線19にソース接地されている。トランジスタN18、N19は、それぞれノードNA、NBとトランジスタN16、N17との間に接続されており、そのゲートにはバイアス電圧VBL2が与えられている。バイアス電圧VBL1、VBL2は、上述したバイアス電圧VBLと同様にして生成される。本実施形態によっても、第1の実施形態と同様の作用および効果が得られる。
(第3の実施形態)
図5は、シングルエンド出力のコンパレータ35である。コンパレータ35は、図1に示した差動増幅回路8の出力段24を、出力段36とシュミット回路37とで置き替えたものである。出力段36は、ソースフォロアの形態を持つトランジスタP7、P8と、電源線18とトランジスタP7、P8との間にそれぞれ接続されたトランジスタP19、P20とから構成されている。トランジスタP19、P20は、カレントミラー回路の接続形態を有している。シュミット回路37は、入力端子がトランジスタP8のソースに接続されており、ヒステリシス特性を有している。その他の構成は、差動増幅回路8と同様である。
本実施形態のコンパレータ35も、入力電圧範囲について第1の実施形態で説明した差動増幅回路8と同様に、増幅作用(比較作用)を維持可能な入力電圧範囲を従来構成よりも低電位側に広げることができる。その他、第1の実施形態と同様の作用および効果が得られる。
(その他の実施形態)
以上、本発明の好適な実施形態について説明したが、本発明は上述した実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲内で種々の変形、拡張を行うことができる。
負荷回路22は、Pチャネル型MOSトランジスタをカレントミラー接続した構成など種々の形態を持つ能動負荷回路であってもよい。
トランジスタNH1、NH2の入力電圧範囲が電源電圧VDD2の電圧範囲内であれば、トランジスタNH1、NH2は、電源線18、19間の電圧VDD2に合わせて1.5V系の耐圧で十分である。
上述した電源電圧VDD1、VDD2、しきい値電圧VT、有効ゲート電圧Veffなどの値は一例であって、(2)式および(3)式を満たす限りにおいて適宜変更してもよい。
各実施形態において、第1電源線18を低電位側電源線、第2電源線19を高電位側電源線とし、Nチャネル型MOSトランジスタをPチャネル型MOSトランジスタに変更し、Pチャネル型MOSトランジスタをNチャネル型MOSトランジスタに変更した構成としてもよい。すなわち、差動増幅回路8の差動対21は、Pチャネル型のMOSトランジスタPH1、PH2から構成される。この場合でも、同様の作用、効果が得られ、入力電圧範囲がより高い範囲にまで広がる。
図面中、1はA/D変換器、2はキャパシタアレイ、3はコモンライン、4は切替回路、7はコンパレータ、8、33は差動増幅回路、15は制御回路、18、19は第1、第2電源線、21は差動対、22は負荷回路(定電流回路)、23、34は能動負荷回路、NH1、NH2は第1、第2MOSトランジスタ、P3、P4、P5、P6はMOSトランジスタ、N4はMOSトランジスタ(定電流回路)、C0〜Cmはキャパシタである。

Claims (5)

  1. デプレッション形の第1、第2MOSトランジスタ(NH1,NH2)から構成される差動対(21)と、
    第1電源線(18)と前記第1、第2MOSトランジスタの各ドレインとの間に接続されたMOSトランジスタ(P3,P4)から構成される負荷回路(22)と、
    前記第1、第2MOSトランジスタの共通に接続されたソースと第2電源線(19)との間に接続されたMOSトランジスタ(N4)から構成される定電流回路とを備え、
    前記第1、第2MOSトランジスタのしきい値電圧は、前記負荷回路を構成するMOSトランジスタのしきい値電圧および前記定電流回路を構成するMOSトランジスタのしきい値電圧よりも低いことを特徴とする差動増幅回路。
  2. 第1、第2MOSトランジスタがNチャネル型の場合、前記定電流回路を構成するMOSトランジスタの有効ゲート電圧をVeffとし、前記差動対に入力される最小電圧をVminとすれば、前記第1、第2MOSトランジスタは、(Vmin−Veff)よりも低いしきい値電圧を有していることを特徴とする請求項1記載の差動増幅回路。
  3. 前記差動対に入力される電圧範囲は、前記第1、第2電源線間の電圧よりも広く、
    前記第1、第2MOSトランジスタは、前記第1、第2電源線間の電圧よりも高い耐圧を有していることを特徴とする請求項1または2記載の差動増幅回路。
  4. 前記負荷回路は定電流回路を構成しており、
    前記差動対と当該定電流回路とともにフォールデッドカスコード回路を構成するMOSトランジスタ(P5,P6)と、当該MOSトランジスタと前記第2電源線との間に接続された能動負荷回路(23,34)を備えていることを特徴とする請求項1から3の何れか一項に記載の差動増幅回路。
  5. 請求項1から4の何れか一項に記載の差動増幅回路を有し、コモンライン(3)の電圧と基準電圧とを比較するコンパレータ(7)と、
    一端が前記コモンラインに接続された複数のキャパシタ(C0〜Cm)からなるキャパシタアレイ(2)と、
    前記複数のキャパシタごとにその他端を被変換電圧側、第1規定電圧側または第2規定電圧側に切り替えて前記キャパシタの電荷設定および電荷分配を行う切替回路(4)と、
    前記コンパレータの出力信号に基づいて前記切替回路を制御することによりA/D変換コードを生成する制御回路(15)とを備えていることを特徴とするA/D変換器。
JP2013085719A 2013-04-16 2013-04-16 差動増幅回路およびa/d変換器 Pending JP2014209670A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085719A JP2014209670A (ja) 2013-04-16 2013-04-16 差動増幅回路およびa/d変換器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085719A JP2014209670A (ja) 2013-04-16 2013-04-16 差動増幅回路およびa/d変換器

Publications (1)

Publication Number Publication Date
JP2014209670A true JP2014209670A (ja) 2014-11-06

Family

ID=51903638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085719A Pending JP2014209670A (ja) 2013-04-16 2013-04-16 差動増幅回路およびa/d変換器

Country Status (1)

Country Link
JP (1) JP2014209670A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019022083A (ja) * 2017-07-18 2019-02-07 株式会社リコー 半導体集積回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019022083A (ja) * 2017-07-18 2019-02-07 株式会社リコー 半導体集積回路

Similar Documents

Publication Publication Date Title
JP4789136B2 (ja) 演算増幅器
CN108574489B (zh) 一种比较器及逐次逼近式模拟数字转换器
JP4694323B2 (ja) 差動増幅回路および半導体装置
US7852142B2 (en) Reference voltage generating circuit for use of integrated circuit
CN110622417B (zh) 比较电路
JP5690469B2 (ja) 差動増幅器、基準電圧発生回路、差動増幅方法及び基準電圧発生方法
JP2007116497A (ja) オペアンプ
JP2007043661A (ja) 遅延回路
US9369098B2 (en) Inverting amplifier
JP2001185964A (ja) カレントミラー回路および演算増幅器
JP2007251507A (ja) 差動増幅回路
KR20060056419A (ko) Am 중간 주파 가변 이득 증폭 회로, 가변 이득 증폭 회로및 그 반도체 집적 회로
CN112825476B (zh) 一种运算放大器
JP2017079431A (ja) 電圧比較回路
JP7366692B2 (ja) 電源回路
CN111800101A (zh) 用于运算放大器的转换升压电路
JP4724670B2 (ja) 半導体集積回路装置
JP2014209670A (ja) 差動増幅回路およびa/d変換器
JP6949463B2 (ja) シングル差動変換回路
EP1804375A1 (en) Differential amplifier circuit operable with wide range of input voltages
CN114157253A (zh) 运算放大器
US7157946B2 (en) Chopper comparator circuit
JP2006352607A (ja) 差動増幅器およびアナログデジタルコンバータ
JP7025498B2 (ja) メモリ制御装置及びメモリ制御方法
JP2015220689A (ja) 差動増幅回路