JP2014205096A - Chemical denitrification processing method using solid organism-derived substance - Google Patents

Chemical denitrification processing method using solid organism-derived substance Download PDF

Info

Publication number
JP2014205096A
JP2014205096A JP2013083012A JP2013083012A JP2014205096A JP 2014205096 A JP2014205096 A JP 2014205096A JP 2013083012 A JP2013083012 A JP 2013083012A JP 2013083012 A JP2013083012 A JP 2013083012A JP 2014205096 A JP2014205096 A JP 2014205096A
Authority
JP
Japan
Prior art keywords
treatment
nitric acid
wastewater
concentrated nitric
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013083012A
Other languages
Japanese (ja)
Inventor
真鍋征一
Seiichi Manabe
尾池哲郎
Tetsuro Oike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sepa Sigma Inc
Original Assignee
Sepa Sigma Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sepa Sigma Inc filed Critical Sepa Sigma Inc
Priority to JP2013083012A priority Critical patent/JP2014205096A/en
Publication of JP2014205096A publication Critical patent/JP2014205096A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means for economically reducing contaminant in an oxidation state in concentrated nitric acid drainage without applying biological treatment.SOLUTION: Chemical processing is performed to contaminant in an oxidation state in drainage by reducing the contaminant by adding a solid organism-derived substance being an object to be discarded in a reduced state to drainage in an oxidation state. For example, by adding a solid organism-derived substance such as garbage, livestock feed and waste food to nitrate nitrogen being contaminant in concentrated nitric acid drainage having pH at 3 or less without applying biological treatment, nitrate nitrogen is chemically reduced to nitrogen gas, and can be denitrified.

Description


本発明は工業排水等の処理に使用され、処理後の水の水質の維持管理に関する。特に排水中に含まれる硝酸態窒素、亜硝酸態窒素など酸化状態でかつ強い酸性を示す排水中にある汚染物質の処理において、生物学的処理を経ることなく化学的処理のみによる還元処理方法を提供する。

The present invention is used for treatment of industrial wastewater and the like, and relates to maintenance of water quality after treatment. Especially in the treatment of pollutants in wastewater that is oxidized and strongly acidic, such as nitrate nitrogen and nitrite nitrogen contained in wastewater, a reduction treatment method that uses only chemical treatment without biological treatment. provide.


脱脂・酸洗浄工程から排出される濃厚硝酸排水は、強酸性で、かつ大量に発生するため、処理が容易でない。従来の処理法としては、中和、希釈、脱窒菌による生物処理などがあるが、いずれも大量のアルカリが必要であったり、処理水量が大幅に増えたり、あるいは生物の活性度合いによって処理性能が不安定化するなどの課題がある。一般的には微生物を利用した生物学的処理を基本とし、それに補完的処理として中和法や希釈法、揮発法を合わせて行っている場合が多い。

Concentrated nitric acid drainage discharged from the degreasing / acid cleaning process is strongly acidic and a large amount is generated, so that the treatment is not easy. Conventional treatment methods include neutralization, dilution, biological treatment with denitrifying bacteria, etc., all of which require a large amount of alkali, greatly increase the amount of treated water, or treatment performance depending on the degree of biological activity. There are issues such as destabilization. In general, biological treatment using microorganisms is basically used, and as a complementary treatment, neutralization, dilution, and volatilization methods are often combined.


特開2008-136942では嫌気性菌による脱窒方法が提案され、特開2011-240327では食品排水中のグラニュール菌のみを取り出し、脱窒する方法が提案されている。生物学的処理法に、補完的な技術を加えたものとして、特開平09-206790や特許4037491では排水を生物学的に還元処理して脱窒する場合の有機物の添加方法における工夫が示されている。また特開昭55-129199、特開昭62-171792、特開平10-137788では、下水などBOD含有排水を生物学的に処理する場合の酸化剤として硝酸排水を混合し、脱窒を行う処理法が提案されている。しかし生物学的な処理法の場合は、微生物が生育できる環境を整える必要があるため、大量の廃硝酸、特に高濃度の廃硝酸を処理することが難しい。

Japanese Unexamined Patent Application Publication No. 2008-136942 proposes a denitrification method using anaerobic bacteria, and Japanese Unexamined Patent Application Publication No. 2011-240327 proposes a method of extracting and denitrifying only granular bacteria in food wastewater. As a supplement to biological treatment methods, Japanese Patent Application Laid-Open No. 09-206790 and Japanese Patent No. 4037491 show contrivances in organic matter addition methods when wastewater is biologically reduced and denitrified. ing. In JP-A-55-129199, JP-A-62-171792, and JP-A-10-137788, a treatment for denitrification by mixing nitric acid wastewater as an oxidizing agent when biologically treating BOD-containing wastewater such as sewage. A law has been proposed. However, in the case of a biological treatment method, it is necessary to prepare an environment in which microorganisms can grow, so that it is difficult to treat a large amount of waste nitric acid, particularly a high concentration of waste nitric acid.


化学的な脱窒処理法の場合、主に還元剤や、還元反応を促す触媒を利用する方法である。特開2006-263705や特許4706828は第一鉄を還元剤として利用するものであり、特開2000-334478や特許3145582は水素の還元力を利用するものである。特開平05-138177は重亜硫酸ソーダを還元剤として使用するものである。特開2012-076019、特開平11-047793、特許3652618などは還元触媒を利用するものである。

In the case of the chemical denitrification treatment method, the method mainly uses a reducing agent or a catalyst that promotes a reduction reaction. Japanese Patent Laid-Open No. 2006-263705 and Japanese Patent No. 4706828 use ferrous iron as a reducing agent, and Japanese Patent Laid-Open No. 2000-334478 and Japanese Patent No. 3145582 use the reducing power of hydrogen. Japanese Patent Application Laid-Open No. 05-138177 uses sodium bisulfite as a reducing agent. JP 2012-076019, JP 11-047793, JP 3652618, etc. use a reduction catalyst.

特開2008-136942JP2008-136942 特開2011-240327JP2011-240327 特開平09-206790JP 09-206790 特許4037491Patent 4037491 特開昭55-129199JP 55-129199 特開昭62-171792JP 62-171792 特開平10-137788JP 10-137788 A 特開2006-263705JP 2006-263705 特許4706828Patent 4706828 特開2000-334478JP2000-334478 特許3145582Patent 3155582 特開平05-138177JP 05-138177 特開2012-076019JP2012-076019 特開平11-047793JP 11-047793 A 特許3652618Patent 3652618


生物学的処理法の場合は、温度、成分によって微生物の働きに差が生じ、処理性能が不安定になりがちである。また、排水の品質は一定でなく、微生物の生育環境の維持管理が難しいといった課題もある。特に濃厚硝酸が流入する場合、微生物が大量に死滅することもあり、大量の処理の場合は濃厚硝酸を希釈せざるをえず、結果として処理装置が大型化してしまう問題がある。

In the case of a biological treatment method, the function of microorganisms varies depending on the temperature and components, and the treatment performance tends to become unstable. In addition, the quality of the wastewater is not constant, and there is a problem that it is difficult to maintain and maintain the microbial growth environment. In particular, when concentrated nitric acid flows in, a large amount of microorganisms may be killed. In the case of a large amount of processing, concentrated nitric acid must be diluted, resulting in a problem that the processing apparatus becomes large.


生物学的処理を補完する技術である中和処理、希釈処理も、そのアルカリ中和剤、希釈水を大量に使用するため、処理水量が増大する。しかも希釈することが前提の場合、排水中の硝酸態窒素、亜硝酸態窒素の還元菌への接触機会が減り、処理速度が遅くなる。そのため、処理工程中に空気中へ長時間かけて揮発させる必要もある。中和剤を混入する場合、多量の金属塩が産生し、該金属塩の除去という新たな課題が生じる。

The neutralization treatment and dilution treatment, which are techniques for complementing biological treatment, also use a large amount of the alkali neutralizing agent and dilution water, so that the amount of treated water increases. In addition, when it is premised on dilution, the chance of contact of nitrate nitrogen and nitrite nitrogen in the waste water with the reducing bacteria is reduced, and the treatment speed is reduced. Therefore, it is necessary to volatilize in the air over a long time during the treatment process. When a neutralizing agent is mixed, a large amount of metal salt is produced, and a new problem of removing the metal salt arises.


化学的な脱窒処理法において、第一鉄、水素、重亜硫酸ソーダなど還元剤を使用する方法も提案されているが、いずれも高コストであり、大量の濃厚硝酸排水を処理する場合には現実的ではない。

In chemical denitrification treatment methods, methods using reducing agents such as ferrous iron, hydrogen, and sodium bisulfite have been proposed, but they are all expensive, and when treating a large amount of concentrated nitric acid wastewater. Not realistic.


BOD含有排水を利用して硝酸排水の還元処理を行う方法も提案されているが、微生物処理が前提であるため、硝酸排水の混合量はBOD含有廃水中の全有機物質1kgに対して1/10から1/2kg−N−NOと制限されている。BOD含有排水はその大部分が水であるため、還元剤としては希薄であり、結果として処理水量が増える。そのため微生物の生育環境に影響を与える高濃度の硝酸排水に対応できない。

A method of reducing nitric acid wastewater using BOD-containing wastewater has also been proposed, but because microbial treatment is premised, the amount of nitric acid wastewater mixed is 1 / kg of total organic matter in 1 kg of BOD-containing wastewater. It is limited from 10 and 1 / 2kg-N-NO 3 . Since most of the BOD-containing wastewater is water, it is dilute as a reducing agent, resulting in an increase in the amount of treated water. Therefore, it cannot cope with highly concentrated nitric acid waste water that affects the growth environment of microorganisms.


またBOD含有排水と硝酸排水の排出元が離れている場合は、いずれかの原水を運搬する必要があり、どちらの場合も多量の水を運搬することになり、運搬コストが大きくなる課題もある。

Also, if the source of BOD-containing wastewater and nitric acid wastewater are separated, it is necessary to transport either raw water. In either case, a large amount of water must be transported, which increases the transportation cost. .


発明者らは、pHが3以下の濃厚硝酸排水の処理方法を多種多様な手法を用いて鋭意開発する過程において、生物学的処理に比べ化学的処理法の方が処理の安定性、設備の縮小化を考慮する場合に有利であり、そのためには安価な還元剤の開発が欠かせないという発想に辿りついた。生物学的処理の場合は、微生物に還元反応を頼るために、処理性能が不安定で、濃厚硝酸を直接処理することができず、結果として処理水量が増大し、窒素成分が希薄になり、還元反応速度が遅くなる点において根本的な課題の解決が難しいと判断した。一方で、化学的手法の場合においても、安価な還元剤の開発が必須要件であった。強酸下で働く還元剤であることが必要条件である。

In the process of diligently developing a treatment method for concentrated nitric acid wastewater having a pH of 3 or less using a variety of methods, the chemical treatment method is more stable than the biological treatment, and the equipment This is advantageous when considering reduction, and the idea has been reached that the development of an inexpensive reducing agent is indispensable. In the case of biological treatment, the processing performance is unstable because the microorganisms rely on a reduction reaction, and concentrated nitric acid cannot be treated directly, resulting in an increase in the amount of treated water and a dilute nitrogen component, It was judged that it was difficult to solve the fundamental problem in that the reduction reaction rate was slow. On the other hand, even in the case of chemical methods, the development of an inexpensive reducing agent was an essential requirement. It is a necessary condition that the reducing agent works under a strong acid.


安価な還元剤の探索と、その反応性と入手の容易さを重点的に検討した結果、生分解性を持つ生体物質が、還元状態あるいは過還元状態のまま生活環境中に放置されていることに気付いた。生体由来物質、具体的には残飯、飼料、廃食品、下水汚泥、廃棄動植物、生分解性を持つ有機固形廃棄物といった生活環境中にある有機物は、本来化学反応に利用されることがなく、いわゆる生ゴミとして一部はコンポスト化して有効利用されるか、大部分は焼却処分される。該生体由来物質の化学反応性についてはほとんど検討されていない。発明者らは、安価な還元剤を多数にわたり探索する経緯の中で、動植物といった生物が生命維持のために還元物質を使用していることに気付いた。そもそも食物連鎖において生産者である植物は、光合成によって二酸化炭素を還元し、糖を合成している。さらに動物はその糖を代謝することによりさらに還元し、多糖類、タンパク質、脂質などを合成する。その中には過還元状態ともいえる抗酸化物質も含まれる。

As a result of investigating inexpensive reducing agents and focusing on their reactivity and availability, biodegradable biological materials are left in the living environment in a reduced or overreduced state. I noticed. Organic substances in living environment such as biologically derived substances, specifically leftover food, feed, waste food, sewage sludge, waste animals and plants, organic solid waste with biodegradability, are not originally used for chemical reactions, Some of the so-called raw garbage is composted for effective use, or most is incinerated. The chemical reactivity of the biological material has hardly been studied. The inventors have noticed that organisms such as animals and plants use reducing substances for life support in the course of searching for inexpensive reducing agents. In the first place, plants that are producers in the food chain reduce carbon dioxide by photosynthesis and synthesize sugar. Furthermore, animals metabolize the sugars to further reduce them and synthesize polysaccharides, proteins, lipids, and the like. Among them are antioxidants that can be said to be in a hyperreduced state.


発明者らはそのような還元状態のまま放置されている生体由来物質を利用することがもっとも現状の課題の解決に有効であることに気づき、本発明に辿りついた。すなわち大部分の生体由来物質は非晶状態にあるため水分子の浸透速度が速く、しかも密度は1前後であり、さらに多孔体(比表面積大)であることを発見し、水中での反応性が優れていることを見出した。廃棄対象物質である固形状の生体由来物質、特に人口的な処理が加わった食品加工物、例えば残飯、飼料、廃食品、下水汚泥、廃棄動植物、有機固形廃棄物などを、濃厚硝酸排水の処理における還元剤として使用することにより、濃厚硝酸排水を希釈することなく、処理装置が大型化することもなく、安定的に処理することができる。

The inventors have realized that the use of a biologically-derived substance that is left in such a reduced state is most effective in solving the present problem, and has reached the present invention. In other words, most biological substances are in an amorphous state, so the water molecule permeation rate is high, the density is around 1, and it is found to be a porous body (large specific surface area). Found that it was excellent. Treatment of concentrated nitric acid wastewater from solid biological substances that are subject to disposal, especially processed foods that have undergone artificial treatment, such as leftover food, feed, waste food, sewage sludge, waste animals and plants, organic solid waste, etc. By using as a reducing agent, the concentrated nitric acid waste water can be stably treated without diluting and without increasing the size of the treatment apparatus.


本発明の最大の特徴は固形状の生体由来物質を還元剤として利用する点にある。固形状であるため処理による排水の量的な増加は無視できる程度であり、生体由来物質自体が非晶性で多孔体で親水性であるため、適度に速い反応速度を持つという効果は化学薬品としての還元剤では出現しない特徴である。

The greatest feature of the present invention is that a solid biological substance is used as a reducing agent. Because it is solid, the increase in the amount of wastewater due to treatment is negligible, and since the biological material itself is amorphous, porous and hydrophilic, the effect of having a moderately fast reaction rate is a chemical. This is a feature that does not appear in the reducing agent.


また生体由来物質を利用する場合、濃厚硝酸に予め尿素、ナイロン不織布といった還元剤、触媒を強酸性下で共存させるか、さらに安価な鉄をもちいて酸濃度を低減し、その後生体由来物質をもちいて還元し、最終的に塩基性物質によって沈澱処理することによって最も効率的に処理できるという発見にも辿りついた。添加した鉄の一部は2価または3価の鉄イオンとして処理液中に残存するが、塩基性物質の添加によって水酸化第二鉄として沈澱する。この沈澱化に際して別途水酸化第二鉄コロイドを加えると重金属を選択的に沈澱させることができる。

In addition, when using biological substances, reduce acid concentration is reduced by using coexisting concentrated nitric acid with reducing agents such as urea and nylon nonwoven fabric and catalyst under strong acidity, or using cheap iron, and then using biological substances. It was also found that the most efficient treatment can be achieved by reduction and finally precipitation with a basic substance. A part of the added iron remains in the treatment liquid as divalent or trivalent iron ions, but precipitates as ferric hydroxide by the addition of a basic substance. When a ferric hydroxide colloid is separately added during the precipitation, heavy metals can be selectively precipitated.


微生物に頼らない化学的処理法であるため、濃厚硝酸の処理量あるいは濃度に制限はなく、日常の維持管理も容易になり、処理装置は自動化が可能となる。排水の品質の変動への対応も容易になり、排水の品質の変動を電導度や酸濃度、酸化還元電位などで追跡し、それに対する還元剤、触媒、鉄、塩基性物質などの化学反応物質の投入量を制御すればよい。

Since it is a chemical treatment method that does not rely on microorganisms, there is no limit to the amount or concentration of concentrated nitric acid, daily maintenance is easy, and the treatment apparatus can be automated. It is also easy to respond to fluctuations in the quality of wastewater, and the fluctuations in the quality of wastewater are tracked by conductivity, acid concentration, oxidation-reduction potential, etc., and chemical reactants such as reducing agents, catalysts, iron, basic substances, etc. What is necessary is just to control the input amount.


濃厚硝酸が希釈されないため、硝酸態窒素、亜硝酸態窒素と還元反応物質との接触機会が増え、還元反応速度が増大するため、処理工程中における経時的な窒素ガス揮発に頼る必要が無くなる。

Since concentrated nitric acid is not diluted, the chance of contact between nitrate nitrogen and nitrite nitrogen and the reducing reactant is increased, and the reduction reaction rate is increased. Therefore, it is not necessary to rely on nitrogen gas volatilization over time during the treatment process.


主たる還元剤は廃棄対象物質である固形状の生体由来物質であるため、コストは極めて安価であり、場合によっては処理費の徴収が可能な場合もある。特に廃食品や廃棄果実などは環境へ与える影響が大きいため、有効である。

Since the main reducing agent is a solid biological material that is a material to be discarded, the cost is extremely low, and in some cases, it may be possible to collect the processing costs. In particular, waste food and fruits are effective because they have a large impact on the environment.


利用する生体由来物質は、下水などのBOD含有排水に比べ水分比率が小さいため、運搬する場合にも運搬コストは極小化できる。しかも利用する生体由来物質は、廃棄対象物質とはいえ、一般的にはその品質が明瞭で安定的であり、化学反応用資材として適している。複数の固形状生体由来物質をブレンドすることによって、さらにその品質を安定化し、使いやすくすることも可能である。

Since the biological material to be used has a moisture ratio smaller than that of BOD-containing wastewater such as sewage, the transportation cost can be minimized even when transported. In addition, although the biologically derived substance to be used is a substance to be discarded, its quality is generally clear and stable, and it is suitable as a chemical reaction material. By blending a plurality of solid biological substances, the quality can be further stabilized and made easy to use.


濃厚硝酸の処理は、その強酸性や処理量の大きさから処理が困難であったが、本発明によって、希釈法や生物学的処理法に頼らずに処理することが可能となる。廃棄対象物質である固形状の生体由来物質を用いることで、濃厚硝酸を安価に、コンパクトに処理することができ、その処理設備を省エネルギー化、縮小化することができ、同時に環境に悪影響を与えてきた有機性固形廃棄物を処理することができるようになる。

Concentrated nitric acid has been difficult to treat due to its strong acidity and large amount of treatment, but according to the present invention, it can be treated without depending on a dilution method or a biological treatment method. By using a solid biological material that is a target for disposal, concentrated nitric acid can be processed inexpensively and compactly, and its processing equipment can be saved and reduced in size, and at the same time adversely affects the environment. It becomes possible to treat organic solid waste.


基本的な処理法として、pHが3以下の濃厚硝酸排水に還元剤としての生体由来物質を投入して撹拌し、濃厚硝酸排水中の硝酸態窒素、亜硝酸態窒素を、還元状態にある生体由来物質に接触させることによって還元し、窒素ガスとして除去し、脱窒する。

As a basic treatment method, a biogenic substance as a reducing agent is added to concentrated nitric acid wastewater having a pH of 3 or less and stirred, and nitrate nitrogen and nitrite nitrogen in the concentrated nitric acid wastewater are reduced. Reduced by contact with the derived material, removed as nitrogen gas, and denitrified.


還元剤として用いる生体由来物質としては、廃棄対象物質で固形状である生体由来物質であり、具体的には残飯、飼料、廃食品、下水汚泥、廃棄動植物、有機固形廃棄物などである。特に処理費を徴収可能な(いわゆる逆有償で引き取り可能な)廃棄対象物質であることが望ましいが、その他廃棄物かどうか判断の不明瞭な生体由来物質についても、排水処理に供される時点で廃棄対象物質と考えることができる。固形状の生体由来物質は、広義には生体が合成した有機固形物であり、その全般が含まれる。

The biological material used as the reducing agent is a biological material that is a solid material to be discarded, and specifically includes leftover rice, feed, waste food, sewage sludge, waste animals and plants, organic solid waste, and the like. In particular, it is desirable to be a material subject to disposal that can collect disposal costs (so-called reverse-paid collection), but other biological materials that are unclear as to whether it is waste or not can be used for wastewater treatment. It can be considered as a material to be discarded. The solid biological material is an organic solid synthesized by a living body in a broad sense, and includes all of them.


生体由来物質と、濃厚硝酸排水中の硝酸態窒素、亜硝酸態窒素との接触方法は、曝気法、撹拌法、回転円板法、循環流水法のいずれの形態でもよく、望ましくは曝気法あるいは撹拌法により撹拌し接触させる。

The contact method between the biological substance and nitrate nitrogen or nitrite nitrogen in the concentrated nitric acid wastewater may be any of the aeration method, the stirring method, the rotating disk method, or the circulating flowing water method, preferably the aeration method or Stir by the stirring method and contact.


濃厚硝酸排水のpHが2未満である場合、予め尿素をナイロン不織布と共に加えさらに鉄を加えてpHを2以上に上げることもある。尿素は還元助剤として、ナイロン不織布は還元触媒として利用する。尿素は粉末状のものを使用し、ナイロン不織布は布状で用い、望ましくは1cm〜20cm角に切断して使用することで触媒効率を上げることができる。鉄は酸性度の低減と、反応によって発生する水素を還元助剤として用いるためのものである。鉄は廃棄対象物質としての鉄クズを用いたり、鉄粉を用いることもできる。

When the pH of the concentrated nitric acid waste water is less than 2, urea may be added together with the nylon nonwoven fabric and iron may be further added to raise the pH to 2 or more. Urea is used as a reduction aid, and nylon nonwoven fabric is used as a reduction catalyst. Urea is used in powder form, and nylon non-woven fabric is used in cloth form. Preferably, the catalyst efficiency can be increased by cutting into 1 to 20 cm square. Iron is used for reducing acidity and using hydrogen generated by the reaction as a reduction aid. Iron can be iron scrap as a material to be discarded or iron powder.


還元処理後に、無機性の塩基性物質を加え、pHを7〜10に調整することによって処理水が取り扱い易くなる。沈殿物を生じせしめ、沈澱汚泥を分離することで、上澄水を次のゆるやかな処理工程に送ることができるようになる。無機性の塩基性物質は具体的には水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム、酸化カルシウムなどである。

After the reduction treatment, the treated water can be easily handled by adding an inorganic basic substance and adjusting the pH to 7-10. By producing a precipitate and separating the precipitated sludge, the supernatant water can be sent to the next gentle processing step. Specific examples of the inorganic basic substance include sodium hydroxide, calcium hydroxide, magnesium hydroxide, and calcium oxide.


実験のため調整した濃厚硝酸はpH1.4、電気伝導度13.5mS/cm、酸化還元電位748mVであった。濃厚硝酸中の硝酸態窒素濃度は、分光光度計U−3000を用いて吸光度を測定し、検量線から硝酸濃度を求めた。硝酸濃度から次式による硝酸性窒素濃度を算出した。硝酸態窒素濃度=0.222×硝酸濃度。その結果、硝酸態窒素濃度は0.8mol/Lであった。

The concentrated nitric acid prepared for the experiment had a pH of 1.4, an electrical conductivity of 13.5 mS / cm, and a redox potential of 748 mV. The nitrate nitrogen concentration in the concentrated nitric acid was determined by measuring the absorbance using a spectrophotometer U-3000 and determining the nitric acid concentration from a calibration curve. The nitrate nitrogen concentration was calculated from the nitric acid concentration according to the following formula. Nitrate nitrogen concentration = 0.222 × nitric acid concentration. As a result, the nitrate nitrogen concentration was 0.8 mol / L.


該濃厚硝酸排水5Lに0.25重量%の尿素と、0.50重量%の4cm角に切断したナイロン不織布(旭化成繊維社製NO5070)と、1重量%の鉄線(1mm径×20cm長さ)を投入し、水槽下部より曝気して槽内を24時間撹拌した。処理後の処理水1はpH2.8、電気伝導度9.7mS/cm、酸化還元電位249mVであった。

0.25 wt% urea, 0.50 wt% nylon non-woven fabric (NO5070 manufactured by Asahi Kasei Fibers Co., Ltd.) and 1 wt% iron wire (1 mm diameter x 20 cm length) in 5 L of concentrated nitric acid waste water Was added and aerated from the bottom of the water tank, and the inside of the tank was stirred for 24 hours. Treated water 1 after treatment had a pH of 2.8, an electrical conductivity of 9.7 mS / cm, and an oxidation-reduction potential of 249 mV.


2.25重量%の残飯(炊飯済み白米)を加え、水槽下部より曝気して槽内を30分間撹拌した。処理後の処理水2はpH3.1、電気伝導度9.8mS/cm、酸化還元電位247mVであった。

2.25% by weight of remaining rice (cooked white rice) was added, aerated from the bottom of the water tank, and stirred in the tank for 30 minutes. The treated water 2 after the treatment had a pH of 3.1, an electrical conductivity of 9.8 mS / cm, and a redox potential of 247 mV.


10重量%の水酸化カルシウムを加え、水槽下部より曝気して槽内を600分間撹拌した。処理後の処理水3はpH8.4、電気伝導度9.7mS/cm、酸化還元電位−339mVであった。処理水3中の硝酸態窒素濃度を分光光度計による吸光度の測定の結果から算出し、その結果0.06mol/Lであり、原水からの除去率は92.5%であった。処理中にアンモニアガス臭は発生せず、適切に窒素ガスによる脱窒が行われていたことが確認できた。

10% by weight of calcium hydroxide was added, aerated from the bottom of the water tank, and the inside of the tank was stirred for 600 minutes. The treated water 3 after the treatment had a pH of 8.4, an electric conductivity of 9.7 mS / cm, and an oxidation-reduction potential of -339 mV. The nitrate nitrogen concentration in the treated water 3 was calculated from the result of measuring the absorbance with a spectrophotometer. As a result, it was 0.06 mol / L, and the removal rate from the raw water was 92.5%. During the treatment, no ammonia gas odor was generated, and it was confirmed that denitrification with nitrogen gas was appropriately performed.

Claims (4)

pHが3以下の濃厚硝酸排水を化学的に還元することによって窒素ガスとして脱窒する排水処理方法において、廃棄対象物質である固形状の生体由来物質を該排水に混合し、生物処理することなく窒素ガスとして還元し脱窒することを特徴とする化学的脱窒処理方法。 In a wastewater treatment method in which denitrification is performed as nitrogen gas by chemically reducing concentrated nitric acid wastewater having a pH of 3 or less, a solid biological substance, which is a target substance for disposal, is mixed with the wastewater without biological treatment. A chemical denitrification method characterized by reducing and denitrifying nitrogen gas. 請求項1の生体由来物質として、残飯、飼料、廃食品、下水汚泥、廃棄動植物、有機固形廃棄物を利用することを特徴とする酸化還元処理方法。 An oxidation-reduction treatment method characterized by using, as a living body-derived substance according to claim 1, residual rice, feed, waste food, sewage sludge, waste animals and plants, or organic solid waste. 請求項1あるいは請求項2において濃厚硝酸排水のpHが2未満である場合、予め尿素をナイロン不織布と共に加えさらに鉄を加えてpHを2以上に上げることを特徴とする化学的脱窒処理方法。 3. The chemical denitrification method according to claim 1, wherein when the pH of the concentrated nitric acid wastewater is less than 2, urea is added together with the nylon nonwoven fabric and iron is further added to raise the pH to 2 or more. 請求項3において還元処理後に、無機性の塩基性物質を加え、pHを7〜10に調整することを特徴とする化学的脱窒処理方法。
4. The chemical denitrification method according to claim 3, wherein after the reduction treatment, an inorganic basic substance is added to adjust the pH to 7 to 10.
JP2013083012A 2013-04-11 2013-04-11 Chemical denitrification processing method using solid organism-derived substance Pending JP2014205096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013083012A JP2014205096A (en) 2013-04-11 2013-04-11 Chemical denitrification processing method using solid organism-derived substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013083012A JP2014205096A (en) 2013-04-11 2013-04-11 Chemical denitrification processing method using solid organism-derived substance

Publications (1)

Publication Number Publication Date
JP2014205096A true JP2014205096A (en) 2014-10-30

Family

ID=52119139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013083012A Pending JP2014205096A (en) 2013-04-11 2013-04-11 Chemical denitrification processing method using solid organism-derived substance

Country Status (1)

Country Link
JP (1) JP2014205096A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538128A (en) * 2016-03-15 2018-12-27 フルオシュミ ゲーエムベーハー フランクフルト Composition containing modified low chromate red mud and process for producing the composition
CN111484117A (en) * 2020-04-17 2020-08-04 无锡中天固废处置有限公司 Method and device for reducing nitrate radical in acid solution

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018538128A (en) * 2016-03-15 2018-12-27 フルオシュミ ゲーエムベーハー フランクフルト Composition containing modified low chromate red mud and process for producing the composition
CN111484117A (en) * 2020-04-17 2020-08-04 无锡中天固废处置有限公司 Method and device for reducing nitrate radical in acid solution

Similar Documents

Publication Publication Date Title
Ma et al. Model-based evaluation of tetracycline hydrochloride removal and mineralization in an intimately coupled photocatalysis and biodegradation reactor
Ghafari et al. Bio-electrochemical removal of nitrate from water and wastewater—a review
JP5194223B1 (en) Chemical treatment agent
US10584046B2 (en) Nitrogen removal method, nitrification-reaction promoting agent for water treatment, and water treatment method
WO2010142004A2 (en) Controlled biosecure aquatic farming system in a confined environment
Virkutyte et al. Electro-Fenton, hydrogenotrophic and Fe2+ ions mediated TOC and nitrate removal from aquaculture system: Different experimental strategies
JP6344216B2 (en) Biological treatment of wastewater
CN105478454A (en) Method for removing residual high-concentration tetracycline in pharmacy mushroom residues
Ostroumov New Aspects of the Role of Organisms and Detritus in the Detoxification System of the Biosphere
JP2014205096A (en) Chemical denitrification processing method using solid organism-derived substance
CN109758714B (en) Method for restoring antibiotic-polluted soil
JP2009118834A (en) Microorganism activator
Fox et al. Treatment of nitrate-rich saline effluent by using citrate-rich waste as carbon source and electron donor in a single-stage activated sludge reactor
JPWO2005100267A1 (en) Wastewater treatment equipment using humic substances
JP5791981B2 (en) Wastewater treatment method
CN110803756A (en) Preparation of novel composite water treatment oxidant and method for degrading arsenic-containing feed additive in livestock and poultry breeding wastewater
JP2004216252A (en) Method for suppressing odor of dehydrated sludge cake
CN110156135A (en) A kind of method that peroxy-monosulfate removes tetracycline in livestock breeding wastewater
JP2024031876A (en) Redox swing type wastewater purification system
Ndegwa Solids separation enhances reduction of organic strength of swine manure subjected to aeration treatments
KR102361968B1 (en) The wastewater treatment method using compound microorganisms
KR100449379B1 (en) Treatment method for electroless plating wastewater
Cattaneo Livestock manure treatment for nutrients removal: consolidated techniques, emerging problems and new approaches
CN106477818A (en) A kind of processing method of food wastewater
KR100444801B1 (en) natural purifying method and its apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20151125