JP2014202684A - Magnetic encoder and method for manufacturing the same - Google Patents

Magnetic encoder and method for manufacturing the same Download PDF

Info

Publication number
JP2014202684A
JP2014202684A JP2013081086A JP2013081086A JP2014202684A JP 2014202684 A JP2014202684 A JP 2014202684A JP 2013081086 A JP2013081086 A JP 2013081086A JP 2013081086 A JP2013081086 A JP 2013081086A JP 2014202684 A JP2014202684 A JP 2014202684A
Authority
JP
Japan
Prior art keywords
outer diameter
multipolar magnet
diameter cylindrical
magnetic
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013081086A
Other languages
Japanese (ja)
Inventor
育男 上本
Ikuo Uemoto
育男 上本
真二 宮崎
Shinji Miyazaki
真二 宮崎
拓治 原野
Takuji Harano
拓治 原野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2013081086A priority Critical patent/JP2014202684A/en
Priority to EP14783372.7A priority patent/EP2988102A4/en
Priority to CN201480020073.5A priority patent/CN105122011A/en
Priority to PCT/JP2014/059987 priority patent/WO2014168091A1/en
Publication of JP2014202684A publication Critical patent/JP2014202684A/en
Priority to US14/877,364 priority patent/US20160033303A1/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic encoder capable of strongly fixing a multipolar magnet and a core metal at a low cost without causing a fault in the multipolar magnet and maintaining high rotation detection accuracy for a long term.SOLUTION: A magnetic encoder includes a multipolar magnet 2 having magnetic poles alternately formed in a circumferential direction and provided in a core metal 1. The core metal 1 includes an inner diameter cylindrical part 4, a standing plate part 5 extended from one end of the inner diameter cylindrical part 4 to an outer diameter side and an outer diameter cylindrical part 6 extended in an axial direction from the outer diameter side edge of the standing plate part 5. A staking part 7 projected on the inner diameter side is provided in the outer diameter cylindrical part 6. The multipolar magnet 2 is integrally molded in an annular part 8 over the standing plate part 5 and the outer diameter cylindrical part 6 of the core metal 1 by insert-molding so that the staking part 7 is buried.

Description

この発明は、軸受に装着されて回転数検出用として機能する磁気エンコーダおよびその製造方法に関する。   The present invention relates to a magnetic encoder that is mounted on a bearing and functions to detect a rotational speed, and a method for manufacturing the same.

磁気エンコーダは、例えば、自動車の車輪用軸受装置に組み込まれ、アンチロックブレーキシステム(ABS)における車輪の回転数を検出する回転検出装置として用いられる。この種の回転検出装置は、ロータに設けられた凹凸歯の動きを磁気の大きさとして読み取るパッシブタイプと、磁気エンコーダの回転に伴う磁気の強弱の変化をホールIC等の磁気センサで読み取るアクティブタイプとに大別される。これらのうちアクティブタイプの回転検出装置は、安価かつ低速域での回転速度検出に優れるため、近年多用される傾向にある。   For example, the magnetic encoder is incorporated in a wheel bearing device of an automobile and is used as a rotation detection device that detects the number of rotations of a wheel in an antilock brake system (ABS). This type of rotation detection device is a passive type that reads the movement of the uneven teeth provided on the rotor as the magnitude of magnetism, and an active type that reads changes in magnetism with the rotation of the magnetic encoder with a magnetic sensor such as a Hall IC. It is roughly divided into Among these, the active type rotation detection device tends to be frequently used in recent years because it is inexpensive and excellent in detecting the rotation speed in a low speed region.

アクティブタイプの回転検出装置は、例えば、回転側部材に設けられた磁気エンコーダと、固定側部材に設けられた磁気センサとからなる。前記磁気エンコーダは、円周方向に多極に着磁された円環状の多極磁石と、この多極磁石に固定した芯金とを備える。前記多極磁石としては、磁性粉と非磁性粉とを含む磁石材料を圧粉・焼結して得られるいわゆる焼結磁石、磁性粉とゴムとを含む磁石材料を射出成形して得られるいわゆるゴム磁石、磁性粉と樹脂とを含む磁石材料を射出成形して得られるいわゆるプラスチック磁石等が公知である。
これら多極磁石50は、図9に示すように、接着(例えば、特許文献1、2を参照)するか、または図10に示すように、かしめ(例えば、特許文献3を参照)等の手段で芯金51に固定される。
The active type rotation detection device includes, for example, a magnetic encoder provided on the rotation side member and a magnetic sensor provided on the fixed side member. The magnetic encoder includes an annular multipolar magnet that is magnetized in multiple directions in the circumferential direction, and a metal core fixed to the multipolar magnet. As the multipolar magnet, a so-called sintered magnet obtained by compacting and sintering a magnetic material containing magnetic powder and non-magnetic powder, or a so-called sintered magnet obtained by injection molding a magnetic material containing magnetic powder and rubber. A so-called plastic magnet obtained by injection molding of a magnet material containing a rubber magnet, magnetic powder and resin is known.
These multipolar magnets 50 are bonded (for example, see Patent Documents 1 and 2) as shown in FIG. 9, or caulked (see, for example, Patent Document 3) as shown in FIG. Then, it is fixed to the cored bar 51.

特開2003−057070号公報JP 2003-057070 A 特開2008−233110号公報JP 2008-233110 A 特開2005−274436号公報JP 2005-274436 A

車輪用軸受装置に組み込まれる磁気エンコーダは使用温度範囲が広く、過酷な環境下で使用されるため、多極磁石を芯金に接着固定した場合、接着剤の経時劣化に起因した固定力の低下が問題となる。
特許文献1では、芯金の表面のうち、多極磁石との接着面を粗面化して接触(接着)面積を増大させることにより、両者の固定強度を高めることが提案されているが、粗面処理を施すことによるコスト増が避けられない。
また、特許文献2のようにプラスチック磁石をインサート成形時に硬化反応が進む接着剤を半硬化状態で芯金の表面に焼き付ける方法も提案されているが、これも焼付処理を施すことによるコスト増が避けられない。
Magnetic encoders incorporated in wheel bearing devices have a wide operating temperature range and are used in harsh environments. When multipolar magnets are bonded and fixed to a core metal, the fixing force decreases due to deterioration of the adhesive over time. Is a problem.
In Patent Document 1, it is proposed to increase the fixing strength of both of the surfaces of the cored bar by increasing the contact (bonding) area by roughening the bonding surface with the multipolar magnet. Cost increase due to surface treatment is inevitable.
Also, as in Patent Document 2, a method has been proposed in which a plastic magnet is baked on the surface of the core bar in a semi-cured state with an adhesive that undergoes a curing reaction during insert molding, but this also increases the cost due to the baking process. Unavoidable.

一方、特許文献3のように多極磁石を芯金にかしめて固定すれば、両者を接着固定する場合のような固定力の経時劣化は回避される。しかしながら、特に焼結磁石からなる多極磁石を使用する場合、かしめ加工時に多極磁石に過度の負荷がかかり不具合を生じ易いため、かしめ加工に格別の配慮を要す。ゴム磁石やプラスチック磁石は、かしめ加工時等の不具合は効果的に回避することが可能であるが、一般に膨張収縮し易い。したがって、特許文献3のように多極磁石の内周面および外周面を芯金でかしめていると、特に高温環境下で多極磁石が膨張した場合にその膨張分を、多極磁石の内周面および外周面のいずれにも逃がすことができず、多極磁石が変形等して回転検出精度が低下するおそれがある。   On the other hand, when the multipolar magnet is caulked and fixed to the metal core as in Patent Document 3, deterioration with time of the fixing force as in the case where both are bonded and fixed is avoided. However, especially when using a multi-pole magnet made of sintered magnets, an excessive load is easily applied to the multi-pole magnet during caulking, so that special problems are required for caulking. Although rubber magnets and plastic magnets can effectively avoid problems such as caulking, they are generally easy to expand and contract. Therefore, when the inner peripheral surface and the outer peripheral surface of the multipolar magnet are caulked with a core metal as in Patent Document 3, when the multipolar magnet expands particularly in a high temperature environment, the amount of expansion is reduced. There is a risk that the rotation detection accuracy may be deteriorated due to deformation of the multipolar magnet or the like, because it cannot be escaped to both the peripheral surface and the outer peripheral surface.

この発明の目的は、多極磁石に不具合を生じさせることなく、多極磁石と芯金とを強固かつ低コストに固定することを可能とし、高い回転検出精度を長期にわたって維持することができる磁気エンコーダを提供することである。   An object of the present invention is to provide a magnet that can fix a multipolar magnet and a core metal firmly and at low cost without causing problems in the multipolar magnet, and can maintain high rotation detection accuracy over a long period of time. It is to provide an encoder.

この発明の磁気エンコーダは、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設け、
前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形したことを特徴とする。
A magnetic encoder of the present invention is a magnetic encoder provided with a multipolar magnet having magnetic poles alternately formed in a circumferential direction on a core metal,
The core metal has an inner diameter cylindrical portion, a standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, A staking portion that protrudes toward the inner diameter side is provided in this outer diameter cylindrical portion,
The multi-pole magnet is integrally formed by insert molding so that the staking portion is embedded in an annular portion of the core bar that extends between the standing plate portion and the outer diameter cylindrical portion.

この構成によると、芯金の外径円筒部に、内径側に突出するステーキング部を予め設け、このステーキング部を設けた芯金における、立板部および外径円筒部にわたる環状部分に、多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形した。芯金に多極磁石をインサート成形した後、ステーキング加工を行うのではなく、芯金に、多極磁石の抜け止め及び回り止めのためのステーキング部を設けた後、この芯金に多極磁石を、ステーキング部が埋まるように、インサート成形によって一体化している。   According to this configuration, the outer diameter cylindrical portion of the cored bar is provided with a staking portion that protrudes toward the inner diameter side in advance, and in the cored bar provided with this staking portion, an annular portion that spans the standing plate portion and the outer diameter cylindrical portion, The multipolar magnet was integrally formed by insert molding so that the staking portion was buried. Instead of staking after the multi-pole magnet is insert-molded into the core metal, the core metal is provided with a staking part for preventing the multi-pole magnet from coming off and preventing it from rotating. The pole magnet is integrated by insert molding so that the staking portion is buried.

(1)ステーキング加工+インサート成形により、芯金に多極磁石を確実かつ容易に固定できる。インサート成形だけでは多極磁石の固定が不十分であるが、芯金に予め設けたステーキング部が埋まるようにインサート成形することで、多極磁石の一部がステーキング部に拘束されて多極磁石の抜け止め及び回り止めを容易に行うことができ、芯金に多極磁石を強固に固定し得る。また、ステーキング加工であるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金の外径円筒部に内径側に突出するステーキング部を設けているため、多極磁石は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石が膨張した場合でも、その膨張分を多極磁石の内径側に逃がすことが可能となる。これにより、多極磁石が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金にステーキング部を予め設けたうえで、多極磁石をインサート成形しているため、多極磁石に残留応力が発生せず、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止することができる。
(1) A multi-pole magnet can be reliably and easily fixed to a cored bar by staking process + insert molding. Insert molding alone is insufficient to fix the multipolar magnet, but insert molding is performed so that the staking portion provided in advance in the core metal is embedded, so that part of the multipolar magnet is constrained by the staking portion. The pole magnet can be easily prevented from coming off and prevented from rotating, and the multipolar magnet can be firmly fixed to the cored bar. Moreover, since it is a staking process, a manufacturing cost can be reduced rather than the case where the conventional roughening process and baking process are performed.
(2) The conventional one that is fixed only by caulking needs to be performed on both the inner peripheral surface and the outer peripheral surface of the multipolar magnet in order to ensure the fixing. I can't escape. In the present application, since the staking portion that protrudes to the inner diameter side is provided in the outer diameter cylindrical portion of the core metal together with the insert molding, the multipolar magnet only needs to restrain the outer peripheral surface, and the inner peripheral surface is not restrained. Even when the multipolar magnet expands in a high temperature environment, the expansion can be released to the inner diameter side of the multipolar magnet. Thereby, it can prevent that a multipolar magnet deform | transforms undesirably, and can suppress the fall of rotation detection accuracy.
(3) Since a multipolar magnet is insert-molded after a staking portion is provided in advance in the core metal, no residual stress is generated in the multipolar magnet, and excessive stress is applied to the multipolar magnet as in caulking. It is possible to prevent a problem that a load is applied.

前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であっても良い。磁性体粉を高充填したプラスチック磁石は、線膨張係数を小さくすることができるため、プラスチック磁石の線膨張係数と、芯金に使用される金属系材料の線膨張係数との差を少なくすることができる。多極磁石は高温環境下で膨張し低温環境下で収縮するが、前記のように多極磁石と芯金の線膨張係数の差を少なくできるため、多極磁石と芯金との膨張量および収縮量の差を少なくすることができる。したがって、多極磁石が高温膨張時にこの多極磁石に過度の負荷がかかることはなく不具合を防止し得る。また多極磁石の低温収縮時のガタつきも僅かとなる。   The multipolar magnet may be a plastic magnet in which magnetic powder and a thermoplastic resin are mixed. Plastic magnets that are highly filled with magnetic powder can reduce the coefficient of linear expansion, thus reducing the difference between the coefficient of linear expansion of plastic magnets and the coefficient of linear expansion of metal-based materials used for metal cores. Can do. A multipolar magnet expands in a high temperature environment and contracts in a low temperature environment. However, since the difference in the linear expansion coefficient between the multipolar magnet and the core metal can be reduced as described above, the amount of expansion between the multipolar magnet and the core metal and The difference in shrinkage can be reduced. Therefore, when the multipolar magnet is expanded at a high temperature, an excessive load is not applied to the multipolar magnet, and a problem can be prevented. In addition, the play of the multipolar magnet at the time of low temperature shrinkage is small.

前記多極磁石には磁性体粉が混入され、この磁性体粉は、少なくともストロンチウムフェライトを含有するものであっても良い。
前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合され、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含むものであっても良い。熱可塑性樹脂としては、吸水による多極磁石の磁気特性の低下を極力抑制するため、吸水性の少ないものが望ましい。熱可塑性樹脂は、前記1以上の化合物を含むものとすることで吸水性を少なくし、多極磁石の磁気特性の低下を極力抑制することができる。なお、ポリフェニレンサルファイドは、線膨張係数が前記他の加工物よりも小さく、芯金と同等の線膨張係数を達成しやすいため、より望ましい。
The multipolar magnet may be mixed with magnetic powder, and the magnetic powder may contain at least strontium ferrite.
The multipolar magnet includes a mixture of magnetic powder and a thermoplastic resin, and the thermoplastic resin includes one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11, and polyphenylene sulfide. There may be. As the thermoplastic resin, a resin having low water absorption is desirable in order to suppress the deterioration of the magnetic properties of the multipolar magnet due to water absorption as much as possible. When the thermoplastic resin contains one or more compounds, water absorption can be reduced, and deterioration of the magnetic properties of the multipolar magnet can be suppressed as much as possible. Polyphenylene sulfide is more desirable because it has a smaller linear expansion coefficient than that of the other workpieces and can easily achieve a linear expansion coefficient equivalent to that of the core metal.

前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であり、前記多極磁石の線膨張係数と前記芯金の線膨張係数との差が2.0×10−5以下となるように、前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量を調整したものであっても良い。この場合、従来品よりも磁性体粉を高充填した磁力の高いプラスチック磁石を使用することが可能となり、表面磁束密度を向上させ、さらにコスト低減に寄与することができる。 The multipolar magnet is a plastic magnet in which magnetic powder and a thermoplastic resin are mixed, and a difference between a linear expansion coefficient of the multipolar magnet and a linear expansion coefficient of the core metal is 2.0 × 10 −5. What adjusted the compounding quantity of the said magnetic substance powder and the said thermoplastic resin which comprise the said plastic magnet so that it may become the following may be sufficient. In this case, it is possible to use a plastic magnet having a higher magnetic force filled with magnetic powder than a conventional product, which can improve the surface magnetic flux density and further contribute to cost reduction.

この発明の磁気エンコーダの製造方法は、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダの製造方法であって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設けるステーキング過程と、
このステーキング過程の後、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形するインサート成形過程とを有する。
The method of manufacturing a magnetic encoder of the present invention is a method of manufacturing a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a core metal,
The core metal has an inner diameter cylindrical portion, a standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, A staking process of providing a staking portion protruding on the inner diameter side of the outer diameter cylindrical portion;
After this staking process, insert molding in which the multipolar magnet is integrally formed by insert molding so that the staking portion is embedded in an annular portion of the cored bar extending over the standing plate portion and the outer diameter cylindrical portion. Process.

ステーキング過程では、芯金の外径円筒部に、内径側に突出するステーキング部を設ける。このステーキング過程の後、インサート成形過程において、芯金における、立板部および外径円筒部にわたる環状部分に、多極磁石をインサート成形によって一体成形する。
芯金に予め設けたステーキング部により、多極磁石の抜け止め及び回り止めを容易に図れるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。またステーキング部を設けた芯金に、多極磁石をインサート成形しているため、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止することができる。
芯金における、立板部および外径円筒部にわたる環状部分に、多極磁石をインサート成形によって一体成形したため、高温環境下で多極磁石が膨張した場合でも、その膨張分を多極磁石の内径側に逃がすことが可能となる。これにより、多極磁石が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
In the staking process, a staking portion that protrudes toward the inner diameter side is provided on the outer diameter cylindrical portion of the cored bar. After the staking process, in the insert molding process, a multipolar magnet is integrally formed by insert molding in an annular portion of the core bar extending over the upright plate portion and the outer diameter cylindrical portion.
Since the multi-pole magnet can be easily prevented from coming off and prevented from being rotated by the staking portion provided in advance on the cored bar, the manufacturing cost can be reduced as compared with the case where the conventional rough surface treatment or baking treatment is performed. Moreover, since the multipolar magnet is insert-molded in the core bar provided with the staking portion, it is possible to prevent a problem that an excessive load is applied to the multipolar magnet as in the caulking process.
Since the multipolar magnet is integrally formed by insert molding in the annular part of the core bar extending from the vertical plate part and the outer diameter cylindrical part, even if the multipolar magnet expands in a high temperature environment, the expansion part is used as the inner diameter of the multipolar magnet. It is possible to escape to the side. Thereby, it can prevent that a multipolar magnet deform | transforms undesirably, and can suppress the fall of rotation detection accuracy.

この発明の磁気エンコーダは、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設け、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形したため、多極磁石に不具合を生じさせることなく、多極磁石と芯金とを強固かつ低コストに固定することを可能とし、高い回転検出精度を長期にわたって維持することができる。   A magnetic encoder according to the present invention is a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a core metal, the core metal having an inner diameter cylindrical portion and one end of the inner diameter cylindrical portion. A standing plate portion extending from the outer diameter side of the standing plate portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion. The multipolar magnet is integrally formed by insert molding so that the staking portion is embedded in an annular portion of the cored bar that extends between the standing plate portion and the outer diameter cylindrical portion. Without making it possible, the multipolar magnet and the cored bar can be firmly and inexpensively fixed, and high rotation detection accuracy can be maintained over a long period of time.

この発明の磁気エンコーダの製造方法は、芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダの製造方法であって、前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設けるステーキング過程と、このステーキング過程の後、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形するインサート成形過程とを有するため、多極磁石に不具合を生じさせることなく、多極磁石と芯金とを強固かつ低コストに固定することを可能とし、高い回転検出精度を長期にわたって維持することができる。   A method for manufacturing a magnetic encoder according to the present invention is a method for manufacturing a magnetic encoder in which a multi-pole magnet having magnetic poles alternately formed in a circumferential direction is provided on a core metal, wherein the core metal includes an inner diameter cylindrical portion, It has a standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, and projects to the inner diameter side from the outer diameter cylindrical portion. A staking process in which a staking part is provided, and after the staking process, the staking part is embedded in the annular portion of the cored bar that extends over the standing plate part and the outer diameter cylindrical part. Thus, it has an insert molding process in which it is integrally formed by insert molding, so that it is possible to fix the multipolar magnet and the core metal firmly and at low cost without causing problems in the multipolar magnet, and high rotation. Long-term detection accuracy Over and it can be maintained.

この発明の第1の実施形態に係る磁気エンコーダの断面図である。It is sectional drawing of the magnetic encoder which concerns on 1st Embodiment of this invention. 同磁気エンコーダの芯金の断面図である。It is sectional drawing of the metal core of the magnetic encoder. 同芯金の正面図である。It is a front view of a concentric bar. 図3の要部の拡大図である。It is an enlarged view of the principal part of FIG. 同磁気エンコーダの製造方法を概略示すフローチャートである。It is a flowchart which shows the manufacturing method of the magnetic encoder schematically. 同磁気エンコーダのインサート成形過程を概略示す説明図である。It is explanatory drawing which shows schematically the insert molding process of the magnetic encoder. 同磁気エンコーダの着磁過程を概略示す説明図である。It is explanatory drawing which shows schematically the magnetization process of the magnetic encoder. 同磁気エンコーダを使用した車輪用軸受装置の要部の断面図である。It is sectional drawing of the principal part of the wheel bearing apparatus which uses the magnetic encoder. 従来例の磁気エンコーダの断面図である。It is sectional drawing of the magnetic encoder of a prior art example. 他の従来例の磁気エンコーダの断面図である。It is sectional drawing of the magnetic encoder of another prior art example.

この発明の第1の実施形態に係る磁気エンコーダを図1ないし図8と共に説明する。以下の説明は、磁気エンコーダの製造方法についての説明をも含む。
図1に示すように、磁気エンコーダは、環状の芯金1と、この芯金1に設けた多極磁石2とを有する。多極磁石2は、円周方向に交互に磁極N,Sが形成されている。この磁気エンコーダは、図示外の回転側部材に取り付けられ、多極磁石2に磁気センサ3を対面させて回転検出に使用される。
A magnetic encoder according to a first embodiment of the present invention will be described with reference to FIGS. The following description also includes a description of a method for manufacturing the magnetic encoder.
As shown in FIG. 1, the magnetic encoder has an annular cored bar 1 and a multipolar magnet 2 provided on the cored bar 1. The multipolar magnet 2 has magnetic poles N and S formed alternately in the circumferential direction. This magnetic encoder is attached to a rotation-side member (not shown), and is used for rotation detection with the magnetic sensor 3 facing the multipolar magnet 2.

図2は、磁気エンコーダの芯金1の断面図である。芯金1は、磁性体、特に強磁性体の金属鋼板、例えば、フェライト系ステンレス鋼板(JIS規格のSUS430)や冷間圧延鋼板(JIS規格のSPCC)等で形成される。この芯金1は、前記回転側部材に嵌合される内径円筒部4と、この内径円筒部4の一端から外径側へ延びる立板部5と、この立板部5の外径側端から軸方向に延びる外径円筒部6とを有する。内径円筒部4は、立板部5の内径側端から軸方向一方に延び、外径円筒部6は、立板部5の外径側端から軸方向他方に延びる。この例の外径円筒部6の軸方向長さは、内径円筒部4の軸方向長さよりも短く形成される。   FIG. 2 is a cross-sectional view of the cored bar 1 of the magnetic encoder. The metal core 1 is formed of a magnetic material, particularly a ferromagnetic metal steel plate, for example, a ferritic stainless steel plate (JIS standard SUS430), a cold rolled steel plate (JIS standard SPCC), or the like. The metal core 1 includes an inner diameter cylindrical portion 4 fitted to the rotation side member, a standing plate portion 5 extending from one end of the inner diameter cylindrical portion 4 to the outer diameter side, and an outer diameter side end of the standing plate portion 5. And an outer diameter cylindrical portion 6 extending in the axial direction. The inner diameter cylindrical portion 4 extends in the axial direction from the inner diameter side end of the standing plate portion 5, and the outer diameter cylindrical portion 6 extends from the outer diameter side end of the standing plate portion 5 in the other axial direction. The axial length of the outer diameter cylindrical portion 6 in this example is shorter than the axial length of the inner diameter cylindrical portion 4.

図3は芯金1の正面図であり、図4は図3の要部の拡大図である。図3および図4に示すように、外径円筒部6における円周方向の複数箇所に、内径側に突出するステーキング部7を設けている。これらステーキング部7は円周方向一定間隔おきに設けられる。ステーキング部7は、芯金1に多極磁石2(図1)を固定すると共に、芯金1に対する多極磁石2(図1)の抜け止めおよび回り止めのために設けられる。各ステーキング部7は、外径円筒部6の軸方向先端部が内径側に突出して、正面視で略V字形状になるように塑性変形されて成る。外径円筒部6の軸方向先端部のみにステーキング部7を設けたことで、芯金1に対し多極磁石2(図1)が図2矢符A方向に強固に押し付けられる。これにより、図1に示すように、芯金1に対し多極磁石2が軸方向に不所望に抜けることを防止し得るうえ、芯金1に対し多極磁石2が相対回転することを防止し得る。   FIG. 3 is a front view of the cored bar 1, and FIG. 4 is an enlarged view of a main part of FIG. As shown in FIGS. 3 and 4, staking portions 7 projecting toward the inner diameter side are provided at a plurality of locations in the circumferential direction of the outer diameter cylindrical portion 6. These staking portions 7 are provided at regular intervals in the circumferential direction. The staking portion 7 is provided to fix the multipolar magnet 2 (FIG. 1) to the core metal 1 and to prevent the multipolar magnet 2 (FIG. 1) from coming off from the core metal 1 and to prevent rotation. Each staking portion 7 is plastically deformed so that the tip end portion in the axial direction of the outer diameter cylindrical portion 6 protrudes toward the inner diameter side and becomes substantially V-shaped in a front view. By providing the staking portion 7 only at the axial end of the outer diameter cylindrical portion 6, the multipolar magnet 2 (FIG. 1) is firmly pressed against the cored bar 1 in the direction of arrow A in FIG. 2. As a result, as shown in FIG. 1, the multipolar magnet 2 can be prevented from undesirably coming off in the axial direction with respect to the core metal 1, and the multipolar magnet 2 can be prevented from rotating relative to the core metal 1. Can do.

多極磁石2は、例えば、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石である。芯金1における、立板部5および外径円筒部6にわたる環状部分8に、前記多極磁石2をインサート成形によって一体成形している。芯金1の前記環状部分8に設けられた多極磁石2のうち、磁気センサ3に対面する表面2aは、外径円筒部6の軸方向先端と同一面を成して繋がっており、この多極磁石2は、従来の多極磁石よりも軸方向の厚みt1が厚くなるように形成されている。多極磁石2は、外径側の厚肉部9と、この厚肉部9に傾斜状の段部10を介して内径側に繋がる薄肉部11とを有する。前記段部10は、内径側に向かうに従って立板部5に近づくように傾斜する断面形状に形成されている。この多極磁石2における、磁気センサ3に対面する表面2aは、内径円筒部4の基準面である嵌合面4aに対し、定められた直角度公差内で且つ定められた円周振れ公差内に収まるように形成されている。   The multipolar magnet 2 is, for example, a plastic magnet in which magnetic powder and a thermoplastic resin are mixed. The multipolar magnet 2 is integrally formed by insert molding in an annular portion 8 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6 in the core metal 1. Of the multipolar magnet 2 provided on the annular portion 8 of the cored bar 1, the surface 2 a facing the magnetic sensor 3 is connected to form the same plane as the axial tip of the outer diameter cylindrical portion 6. The multipolar magnet 2 is formed so that the axial thickness t1 is larger than that of the conventional multipolar magnet. The multipolar magnet 2 has a thick-walled portion 9 on the outer diameter side and a thin-walled portion 11 connected to the thick-walled portion 9 on the inner diameter side via an inclined stepped portion 10. The step portion 10 is formed in a cross-sectional shape that is inclined so as to approach the upright plate portion 5 toward the inner diameter side. The surface 2 a facing the magnetic sensor 3 in the multipolar magnet 2 is within a predetermined squareness tolerance and within a predetermined circumferential runout tolerance with respect to the fitting surface 4 a which is a reference surface of the inner diameter cylindrical portion 4. It is formed to fit in.

磁性体粉として、例えば、ストロンチウムフェライトやバリウムフェライト等に代表される異方性あるいは等方性のフェライト系磁性粉や、ネオジウム−鉄−ボロン,サマリウム−コバルト,サマリウム−鉄−窒素等に代表される希土類系磁性粉等、公知の磁性粉を使用することができ、これらは単独で、あるいは複数組み合わせて使用される。本実施形態では、コストおよび耐候性の面で優位性を示す、フェライト系磁性粉を主として使用している。   As magnetic powder, for example, anisotropic or isotropic ferrite magnetic powder represented by strontium ferrite, barium ferrite, etc., neodymium-iron-boron, samarium-cobalt, samarium-iron-nitrogen, etc. Known magnetic powders such as rare earth magnetic powders can be used, and these are used alone or in combination. In the present embodiment, ferrite-based magnetic powder that exhibits superiority in terms of cost and weather resistance is mainly used.

熱可塑性樹脂としては、吸水による多極磁石の磁気特性の低下を極力抑制するため、吸水性の少ないものが望ましく、例えば、ポリアミド11(PA11)、ポリアミド12(PA12)、ポリアミド612(PA612)、ポリフェニレンサルファイド(PPS)の群から選択される少なくとも1つの化合物を含むものが使用される。なお、ポリフェニレンサルファイド(PPS)は、線膨張係数が前記他の加工物よりも小さく、芯金と同等の線膨張係数を達成しやすいため、より望ましい。   As the thermoplastic resin, in order to suppress the deterioration of the magnetic properties of the multipolar magnet due to water absorption as much as possible, those having low water absorption are desirable. For example, polyamide 11 (PA11), polyamide 12 (PA12), polyamide 612 (PA612), Those containing at least one compound selected from the group of polyphenylene sulfide (PPS) are used. Polyphenylene sulfide (PPS) is more desirable because it has a smaller linear expansion coefficient than the other workpieces and can easily achieve a linear expansion coefficient equivalent to that of the core metal.

前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量は、次のように調整される。多極磁石2の線膨張係数と芯金1の線膨張係数との差が2.0×10−5以下となるように、前記配合量が調整される。この配合量および線膨張係数の差は、冷熱耐久試験の試験結果から導き出されたものである。 The compounding quantity of the said magnetic substance powder and the said thermoplastic resin which comprises the said plastic magnet is adjusted as follows. The blending amount is adjusted so that the difference between the linear expansion coefficient of the multipolar magnet 2 and the linear expansion coefficient of the cored bar 1 is 2.0 × 10 −5 or less. The difference between the blending amount and the linear expansion coefficient is derived from the test result of the thermal endurance test.

冷熱耐久試験について説明する。
本実施形態に係る磁気エンコーダの実施例1〜6、従来形状の磁気エンコーダの比較例1,2をそれぞれ10個準備し、同一の試験条件で冷熱耐久試験を行った。この冷熱耐久試験を500サイクル実施後、プラスチック磁石のクラックの有無を確認し、各例につき10個中1個でもクラックが有ると「×」つまり冷熱の耐久性不可と判定した。各例につき10個中のいずれもクラックが無ければ「○」つまり冷熱の耐久性可と判定した。
The cold endurance test will be described.
Ten magnetic encoder examples 1 to 6 according to the present embodiment and ten comparative examples 1 and 2 of a conventional magnetic encoder were prepared, and a thermal durability test was performed under the same test conditions. After carrying out this cooling endurance test for 500 cycles, the presence or absence of cracks in the plastic magnet was confirmed. If none of the 10 cracks in each example was cracked, it was judged that “◯”, that is, the durability of cold heat was acceptable.

Figure 2014202684
Figure 2014202684

試験結果より、プラスチック磁石の線膨張係数と芯金の線膨張係数との差が2.0×10−5以下となるように、前記プラスチック磁石の磁性体粉と熱可塑性樹脂の配合量が調整された例は、クラックが無かった。 From the test results, the blending amount of the magnetic powder of the plastic magnet and the thermoplastic resin is adjusted so that the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the core metal is 2.0 × 10 −5 or less. In the example, there were no cracks.

図5は、磁気エンコーダの製造方法を概略示すフローチャートである。図1も参照しつつ説明する。この実施形態に係る磁気エンコーダの製造方法は、ステーキング過程(ステップs1)と、インサート成形過程(ステップs2)と、着磁過程(ステップs3)とを有する。先ず、ステーキング過程において、芯金1の外径円筒部6における円周方向の複数箇所に、前述のステーキング部7を設ける。なお芯金1の外径円筒部6を設けるのと同時にステーキング部7を設けても良いし、ステーキング部7を設けた後に外径円筒部6を設けても良い。   FIG. 5 is a flowchart schematically showing a method for manufacturing the magnetic encoder. This will be described with reference to FIG. The magnetic encoder manufacturing method according to this embodiment includes a staking process (step s1), an insert molding process (step s2), and a magnetization process (step s3). First, in the staking process, the aforementioned staking portions 7 are provided at a plurality of locations in the circumferential direction of the outer diameter cylindrical portion 6 of the core metal 1. The staking portion 7 may be provided at the same time as the outer diameter cylindrical portion 6 of the core 1 is provided, or the outer diameter cylindrical portion 6 may be provided after the staking portion 7 is provided.

次に、インサート成形過程において、図6に示すように、ステーキング部7を設けた芯金1を、射出成形機12のキャビティ内にセットし、この芯金1の環状部分8に多極磁石2をインサート成形によって一体成形する。射出成形機12は、例えば、組み合わされる第1,第2の金型12a,12bを有する。第1の金型12aは、芯金1を位置決めした状態で保持する。第1および第2の金型12a,12bを互いに組み合わせた状態で、多極磁石2を成形する環状のキャビティが形成される。射出成形機12において、キャビティに多極磁石2の材料を充填する図示外のゲートが設けられている。
前記インサート成形と同時に磁場配向を加えながら磁場成形を行う。このときの磁場配向によってアキシャル方向に単極着磁された状態となるが、取り出し前に(金型内で冷却後)逆磁場を加えて脱磁処理を行う。脱磁が不十分な場合、着磁後の磁気特性の精度に影響があるので、必要により別工程で完全脱磁処理を行う場合もある。
多極磁石2を芯金1に一体成形しつつ磁場成形を行った後、第1,第2の金型12a,12bを開きこの多極磁石2及び芯金1が取り出される。
Next, in the insert molding process, as shown in FIG. 6, the cored bar 1 provided with the staking part 7 is set in the cavity of the injection molding machine 12, and a multipolar magnet is formed on the annular part 8 of the cored bar 1. 2 is integrally formed by insert molding. The injection molding machine 12 has, for example, first and second molds 12a and 12b to be combined. The first mold 12a holds the cored bar 1 in a positioned state. An annular cavity for forming the multipolar magnet 2 is formed in a state where the first and second molds 12a and 12b are combined with each other. In the injection molding machine 12, a gate (not shown) for filling the cavity with the material of the multipolar magnet 2 is provided.
Magnetic field shaping is performed while applying magnetic field orientation simultaneously with the insert molding. The magnetic field orientation at this time is a single pole magnetized in the axial direction, but before taking out (after cooling in the mold), a demagnetizing process is performed by applying a reverse magnetic field. If the demagnetization is insufficient, the accuracy of the magnetic properties after magnetization is affected, so that a complete demagnetization process may be performed in a separate process if necessary.
After the magnetic field forming is performed while integrally forming the multipolar magnet 2 on the core metal 1, the first and second molds 12a and 12b are opened, and the multipolar magnet 2 and the core metal 1 are taken out.

なお参考提案例として、図7に示すように、磁場成形機13により、多極磁石2をその軸心L1回りに回転させながら、所望の円周方向ピッチで順次に着磁しても良い。このとき、プラスチック磁石に異方性の磁性粉を使用する場合、磁場配向を加えながら磁場成形を行うことで、着磁後の表面磁束密度を向上し得る。なお着磁前に、完全脱磁処理工程を追加しても良い。この場合、着磁後のN極−S極のピーク差の低減を図ることができる。 なお着磁ヨークにより磁極のパターンを一度に転写させても良い。   As a reference proposal example, as shown in FIG. 7, the magnetic field forming machine 13 may sequentially magnetize the multipolar magnet 2 at a desired circumferential pitch while rotating it around the axis L <b> 1. At this time, when anisotropic magnetic powder is used for the plastic magnet, surface magnetic flux density after magnetization can be improved by performing magnetic field shaping while applying magnetic field orientation. Note that a complete demagnetization process may be added before magnetization. In this case, the peak difference between the N pole and the S pole after magnetization can be reduced. Note that the magnetic pole pattern may be transferred at once by the magnetizing yoke.

作用効果について説明する。
(1)ステーキング加工+インサート成形により、芯金1に多極磁石2を確実かつ容易に固定できる。インサート成形だけでは多極磁石の固定が不十分であるが、芯金1に予め設けたステーキング部7が埋まるようにインサート成形することで、多極磁石2の一部がステーキング部7に拘束されて多極磁石2の抜け止め及び回り止めを容易に行うことができ、芯金1に多極磁石2を強固に固定し得る。また、ステーキング加工であるため、従来の粗面処理や焼付処理を施す場合よりも製造コストの低減を図れる。
(2)従来のかしめ加工だけで固定を行うものは、固定の確実のために、多極磁石の内周面および外周面の両方に行うことが必要であり、そのため多極磁石の膨張分を逃がすことができない。本願のものでは、インサート成形と共に、芯金1の外径円筒部6に内径側に突出するステーキング部7を設けているため、多極磁石2は外周面の拘束だけで足り、内周面が拘束されないため、高温環境下で多極磁石2が膨張した場合でも、その膨張分を多極磁石2の内径側に逃がすことが可能となる。これにより、多極磁石2が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
(3)芯金1にステーキング部7を予め設けたうえで、多極磁石2をインサート成形しているため、多極磁石2に残留応力が発生せず、かしめ加工時のように多極磁石2に過度の負荷がかかる不具合を防止することができる。
The effect will be described.
(1) The multipolar magnet 2 can be reliably and easily fixed to the cored bar 1 by staking process + insert molding. Although the fixing of the multipolar magnet is insufficient only by the insert molding, a part of the multipolar magnet 2 is formed on the staking portion 7 by insert molding so that the staking portion 7 provided in advance on the core metal 1 is buried. The multipolar magnet 2 can be easily prevented from coming off and prevented from being rotated, and the multipolar magnet 2 can be firmly fixed to the cored bar 1. Moreover, since it is a staking process, a manufacturing cost can be reduced rather than the case where the conventional roughening process and baking process are performed.
(2) The conventional one that is fixed only by caulking needs to be performed on both the inner peripheral surface and the outer peripheral surface of the multipolar magnet in order to ensure the fixing. I can't escape. In the present application, since the staking portion 7 protruding to the inner diameter side is provided in the outer diameter cylindrical portion 6 of the core metal 1 together with the insert molding, the multipolar magnet 2 only needs to be constrained on the outer peripheral surface. Therefore, even when the multipolar magnet 2 expands in a high temperature environment, the expansion can be released to the inner diameter side of the multipolar magnet 2. Thereby, it can prevent that the multipolar magnet 2 deform | transforms undesirably, and can suppress the fall of rotation detection accuracy.
(3) Since the multipolar magnet 2 is insert-molded after the staking portion 7 is provided in advance on the cored bar 1, no residual stress is generated in the multipolar magnet 2 so that the multipolar magnet 2 can be multipolar as in caulking. A problem that an excessive load is applied to the magnet 2 can be prevented.

多極磁石2は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石である。磁性体粉を高充填したプラスチック磁石は、線膨張係数を小さくすることができるため、プラスチック磁石の線膨張係数と、芯金1に使用される金属製材料の線膨張係数との差を少なくすることができる。多極磁石2は高温環境下で膨張し低温環境下で収縮するが、前記のように多極磁石2と芯金1の線膨張係数の差を少なくできるため、多極磁石2と芯金1との膨張量および収縮量の差を少なくすることができる。したがって、多極磁石2が高温膨張時にこの多極磁石2に過度の負荷がかかることはなく不具合を防止し得る。また多極磁石2の低温収縮時のガタつきも僅かとなる。   The multipolar magnet 2 is a plastic magnet in which magnetic powder and a thermoplastic resin are mixed. Since the plastic magnet highly filled with magnetic powder can reduce the linear expansion coefficient, the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the metal material used for the core metal 1 is reduced. be able to. The multipolar magnet 2 expands in a high temperature environment and contracts in a low temperature environment. However, since the difference in coefficient of linear expansion between the multipolar magnet 2 and the core metal 1 can be reduced as described above, the multipolar magnet 2 and the core metal 1 can be reduced. The difference between the amount of expansion and the amount of contraction can be reduced. Therefore, when the multipolar magnet 2 is expanded at a high temperature, an excessive load is not applied to the multipolar magnet 2 and a problem can be prevented. Further, the play of the multipolar magnet 2 at the time of low temperature shrinkage is also slight.

多極磁石2における熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含むものとすることで吸水性を少なくし、多極磁石2の磁気特性の低下を極力抑制することができる。
プラスチック磁石の線膨張係数と芯金1の線膨張係数との差が2.0×10−5以下となるように、前記プラスチック磁石を構成する磁性体粉と熱可塑性樹脂の配合量を調整したため、従来品よりも磁性体粉を高充填した磁力の高いプラスチック磁石を使用することが可能となり、表面磁束密度を向上させ、さらにコスト低減に寄与することができる。
The thermoplastic resin in the multipolar magnet 2 contains one or more compounds selected from the group consisting of polyamide 12, polyamide 612, polyamide 11 and polyphenylene sulfide, thereby reducing water absorption and magnetic properties of the multipolar magnet 2. Can be suppressed as much as possible.
The blending amount of the magnetic powder and the thermoplastic resin constituting the plastic magnet is adjusted so that the difference between the linear expansion coefficient of the plastic magnet and the linear expansion coefficient of the core metal 1 is 2.0 × 10 −5 or less. Thus, it is possible to use a plastic magnet having a higher magnetic force filled with magnetic powder than in the conventional product, thereby improving the surface magnetic flux density and further contributing to cost reduction.

図8は、この磁気エンコーダを使用した車輪用軸受装置の要部の断面図である。
車輪用軸受装置は、回転側部材である内方部材14と、車両における図示外のナックル等に取付けられる外方部材15と、これら内方部材14と外方部材15との間に介在される転動体16とを備えている。この例では、転動体16としてボールが適用されているが、ころを適用することも可能である。内方部材14における、車幅方向中央寄り側であるインボード側の外周面に、実施形態に係る磁気エンコーダの芯金1が圧入状態に嵌合されている。
FIG. 8 is a cross-sectional view of a main part of a wheel bearing device using this magnetic encoder.
The wheel bearing device is interposed between an inner member 14 that is a rotation side member, an outer member 15 that is attached to a knuckle (not shown) in the vehicle, and the inner member 14 and the outer member 15. The rolling element 16 is provided. In this example, a ball is applied as the rolling element 16, but it is also possible to apply a roller. The core bar 1 of the magnetic encoder according to the embodiment is fitted in a press-fit state on the outer peripheral surface of the inboard member 14 on the inboard side that is closer to the center in the vehicle width direction.

この例では、外方部材15のインボード側の内周面に、保護カバー17が圧入され、外方部材15のインボード側の開口部を閉塞している。この保護カバー17により、軸受内部に封入されたグリースの漏洩を防止できると共に、外部から軸受内部に泥水や異物等が侵入することを防止し得る。この保護カバー17は、磁気エンコーダの多極磁石2に対向する磁気センサ3の感知性能に影響を及ぼさないような、例えば、非磁性体の鋼板、例えば、オーステナイト系ステンレス鋼板が使用されている。なお保護カバー17に代えて、例えば、外方部材15の内周面に、内径円筒部4の外周面および立板部5の内側面にリップが摺接するシール装置(図示せず)を設けても良い。   In this example, the protective cover 17 is press-fitted into the inner peripheral surface of the outer member 15 on the inboard side, and the inboard side opening of the outer member 15 is closed. The protective cover 17 can prevent leakage of grease enclosed in the bearing and prevent muddy water, foreign matter, and the like from entering the bearing from the outside. The protective cover 17 is made of, for example, a non-magnetic steel plate such as an austenitic stainless steel plate that does not affect the sensing performance of the magnetic sensor 3 facing the multipolar magnet 2 of the magnetic encoder. Instead of the protective cover 17, for example, a sealing device (not shown) is provided on the inner peripheral surface of the outer member 15 so that the lip is in sliding contact with the outer peripheral surface of the inner diameter cylindrical portion 4 and the inner surface of the upright plate portion 5. Also good.

車輪用軸受装置に、実施形態に係る磁気エンコーダを適用すると、芯金1に予め設けたステーキング部7により、多極磁石2の抜け止め及び回り止めを容易に図れるため、従来技術よりも製造コストの低減を図れる。またステーキング部7を設けた芯金1に、多極磁石2をインサート成形しているため、かしめ加工時のように多極磁石に過度の負荷がかかる不具合を防止し得る。
芯金1における、立板部5および外径円筒部6にわたる環状部分8に、多極磁石2をインサート成形によって一体成形したため、高温環境下で多極磁石2が膨張した場合でも、その膨張分を多極磁石2の内径側に逃がすことが可能となる。これにより、多極磁石2が不所望に変形することを未然に防止し、回転検出精度の低下を抑制し得る。
When the magnetic encoder according to the embodiment is applied to the wheel bearing device, the multi-pole magnet 2 can be easily prevented from coming off and prevented from rotating by the staking portion 7 provided in advance on the core 1, so that it is manufactured more than the prior art. Cost can be reduced. Moreover, since the multipolar magnet 2 is insert-molded in the core metal 1 provided with the staking portion 7, it is possible to prevent a problem that an excessive load is applied to the multipolar magnet as in caulking.
Since the multipolar magnet 2 is integrally formed by insert molding in the annular portion 8 extending over the upright plate portion 5 and the outer diameter cylindrical portion 6 of the core metal 1, even when the multipolar magnet 2 expands in a high temperature environment, Can be released to the inner diameter side of the multipolar magnet 2. Thereby, it can prevent that the multipolar magnet 2 deform | transforms undesirably, and can suppress the fall of rotation detection accuracy.

1…芯金
2…多極磁石
4…内径円筒部
5…立板部
6…外径円筒部
7…ステーキング部
8…環状部分
DESCRIPTION OF SYMBOLS 1 ... Core metal 2 ... Multipolar magnet 4 ... Inner diameter cylindrical part 5 ... Standing plate part 6 ... Outer diameter cylindrical part 7 ... Staking part 8 ... Annular part

Claims (6)

芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダであって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設け、
前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形したことを特徴とする磁気エンコーダ。
A magnetic encoder provided with a multi-pole magnet having magnetic poles alternately formed in a circumferential direction on a mandrel,
The core metal has an inner diameter cylindrical portion, a standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, A staking portion that protrudes toward the inner diameter side is provided in this outer diameter cylindrical portion,
A magnetic encoder, wherein the multipolar magnet is integrally formed by insert molding so that the staking portion is embedded in an annular portion of the cored bar that extends between the standing plate portion and the outer diameter cylindrical portion.
請求項1記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石である磁気エンコーダ。   The magnetic encoder according to claim 1, wherein the multipolar magnet is a plastic magnet in which magnetic powder and a thermoplastic resin are mixed. 請求項1または請求項2に記載の磁気エンコーダにおいて、前記多極磁石には磁性体粉が混入され、この磁性体粉は、少なくともストロンチウムフェライトを含有する磁気エンコーダ。   3. The magnetic encoder according to claim 1, wherein magnetic powder is mixed in the multipolar magnet, and the magnetic powder contains at least strontium ferrite. 請求項1ないし請求項3のいずれか1項に記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合され、前記熱可塑性樹脂は、ポリアミド12、ポリアミド612、ポリアミド11、ポリフェニレンサルファイドからなる群から選択される1以上の化合物を含む磁気エンコーダ。   4. The magnetic encoder according to claim 1, wherein the multipolar magnet includes a mixture of magnetic powder and a thermoplastic resin, and the thermoplastic resin includes polyamide 12, polyamide 612, and polyamide. 5. 11. A magnetic encoder comprising one or more compounds selected from the group consisting of polyphenylene sulfide. 請求項1ないし請求項4のいずれか1項に記載の磁気エンコーダにおいて、前記多極磁石は、磁性体粉と熱可塑性樹脂とが混合されたプラスチック磁石であり、前記多極磁石の線膨張係数と前記芯金の線膨張係数との差が2.0×10−5以下となるように、前記プラスチック磁石を構成する前記磁性体粉と前記熱可塑性樹脂の配合量を調整した磁気エンコーダ。 5. The magnetic encoder according to claim 1, wherein the multipolar magnet is a plastic magnet in which magnetic powder and a thermoplastic resin are mixed, and the linear expansion coefficient of the multipolar magnet. The magnetic encoder which adjusted the compounding quantity of the said magnetic substance powder and the said thermoplastic resin which comprise the said plastic magnet so that the difference with the linear expansion coefficient of the said core metal may be 2.0 * 10 <-5> or less. 芯金に、円周方向に交互に磁極が形成された多極磁石を設けた磁気エンコーダの製造方法であって、
前記芯金は、内径円筒部と、この内径円筒部の一端から外径側へ延びる立板部と、この立板部の外径側端から軸方向に延びる外径円筒部とを有し、この外径円筒部に内径側に突出するステーキング部を設けるステーキング過程と、
このステーキング過程の後、前記芯金における、前記立板部および前記外径円筒部にわたる環状部分に、前記多極磁石を、前記ステーキング部が埋まるように、インサート成形によって一体成形するインサート成形過程と、
を有する磁気エンコーダの製造方法。
A method of manufacturing a magnetic encoder provided with a multi-pole magnet having magnetic poles alternately formed in a circumferential direction on a mandrel,
The core metal has an inner diameter cylindrical portion, a standing plate portion extending from one end of the inner diameter cylindrical portion to the outer diameter side, and an outer diameter cylindrical portion extending in the axial direction from the outer diameter side end of the standing plate portion, A staking process of providing a staking portion protruding on the inner diameter side of the outer diameter cylindrical portion;
After this staking process, insert molding in which the multipolar magnet is integrally formed by insert molding so that the staking portion is embedded in an annular portion of the cored bar extending over the standing plate portion and the outer diameter cylindrical portion. Process,
The manufacturing method of the magnetic encoder which has.
JP2013081086A 2013-04-09 2013-04-09 Magnetic encoder and method for manufacturing the same Pending JP2014202684A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013081086A JP2014202684A (en) 2013-04-09 2013-04-09 Magnetic encoder and method for manufacturing the same
EP14783372.7A EP2988102A4 (en) 2013-04-09 2014-04-04 Magnetic encoder and production method therefor
CN201480020073.5A CN105122011A (en) 2013-04-09 2014-04-04 Magnetic encoder and production method therefor
PCT/JP2014/059987 WO2014168091A1 (en) 2013-04-09 2014-04-04 Magnetic encoder and production method therefor
US14/877,364 US20160033303A1 (en) 2013-04-09 2015-10-07 Magnetic encoder and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013081086A JP2014202684A (en) 2013-04-09 2013-04-09 Magnetic encoder and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2014202684A true JP2014202684A (en) 2014-10-27

Family

ID=52353224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013081086A Pending JP2014202684A (en) 2013-04-09 2013-04-09 Magnetic encoder and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2014202684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153765A (en) * 2015-02-20 2016-08-25 Tdk株式会社 Magnet structure and rotation angle detector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058376A1 (en) * 2003-09-16 2005-03-17 Ntn Corporation Magnetic encoder and wheel support bearing assembly utilizing the same
JP2005233923A (en) * 2004-01-22 2005-09-02 Nsk Ltd Roller bearing
JP2007187484A (en) * 2006-01-11 2007-07-26 Uchiyama Mfg Corp Tone wheel and manufacturing method therefor
JP2010249536A (en) * 2009-04-10 2010-11-04 Ntn Corp Magnetic encoder and method of manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058376A1 (en) * 2003-09-16 2005-03-17 Ntn Corporation Magnetic encoder and wheel support bearing assembly utilizing the same
JP2005233923A (en) * 2004-01-22 2005-09-02 Nsk Ltd Roller bearing
JP2007187484A (en) * 2006-01-11 2007-07-26 Uchiyama Mfg Corp Tone wheel and manufacturing method therefor
JP2010249536A (en) * 2009-04-10 2010-11-04 Ntn Corp Magnetic encoder and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016153765A (en) * 2015-02-20 2016-08-25 Tdk株式会社 Magnet structure and rotation angle detector

Similar Documents

Publication Publication Date Title
WO2014168091A1 (en) Magnetic encoder and production method therefor
JP2006313117A (en) Manufacturing method of encoder
EP1965090B1 (en) Magnetized pulsar ring, and rolling bearing device with sensor using the same
WO2011105366A1 (en) Ball bearing equipped with encoder for detecting rotational speed of wheel of two-wheeled motor vehicle, and device for detecting rotational speed of wheel of two-wheeled motor vehicle, the device using the ball bearing
WO2008059788A1 (en) Sensor-equipped sealing device, and rolling bearing device adapted for use in vehicle and using the sealing device
JP4893648B2 (en) Rolling bearing unit with combination seal ring
JP4899404B2 (en) Rolling bearing with encoder
JP2007316024A (en) Rolling bearing
JP2008309717A (en) Magnetic encoder and rolling bearing unit equipped with the magnetic encoder
JP2014202684A (en) Magnetic encoder and method for manufacturing the same
US20090277268A1 (en) Magnetized pulsar ring and rolling bearing apparatus with sensor having the same
JP2007333142A (en) Rolling bearing
EP2163857B1 (en) Magnetic encoder and rolling bearing
JP4725020B2 (en) Rolling bearing with sensor for automobile wheel and manufacturing method thereof
JP2007321894A (en) Roller bearing
JP4682737B2 (en) Encoder manufacturing method and rolling bearing device
JP4952087B2 (en) Rolling bearing unit
JP6215071B2 (en) Magnetic encoder and manufacturing method thereof
JP4925452B2 (en) Magnetic encoder
JP5061652B2 (en) Magnetized pulsar ring and sensor-equipped rolling bearing device using the same
JP2015143638A (en) Magnetic encoder and method for manufacturing the same
JP2007333184A (en) Rolling bearing
JP2006329770A (en) Magnetic encoder, its manufacturing method, and roller bearing device
JP2012172686A (en) Rotational speed detection device for wheel of motorcycle
JP2009036335A (en) Wheel bearing device with rotating speed detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170822