JP2014201497A - Method for producing hydrated matrix and hydrated matrix - Google Patents

Method for producing hydrated matrix and hydrated matrix Download PDF

Info

Publication number
JP2014201497A
JP2014201497A JP2013080197A JP2013080197A JP2014201497A JP 2014201497 A JP2014201497 A JP 2014201497A JP 2013080197 A JP2013080197 A JP 2013080197A JP 2013080197 A JP2013080197 A JP 2013080197A JP 2014201497 A JP2014201497 A JP 2014201497A
Authority
JP
Japan
Prior art keywords
hydrated
slag
producing
solid body
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013080197A
Other languages
Japanese (ja)
Other versions
JP6065720B2 (en
Inventor
克則 ▲高▼橋
克則 ▲高▼橋
Katsunori Takahashi
久宏 松永
Hisahiro Matsunaga
久宏 松永
渡辺 圭児
Keiji Watanabe
圭児 渡辺
桑山 道弘
Michihiro Kuwayama
道弘 桑山
山口 公治
Kimiharu Yamaguchi
公治 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013080197A priority Critical patent/JP6065720B2/en
Priority to KR1020157027947A priority patent/KR101839661B1/en
Priority to CN201480019808.2A priority patent/CN105073680A/en
Priority to PCT/JP2014/051549 priority patent/WO2014167874A1/en
Priority to TW103106368A priority patent/TWI543957B/en
Publication of JP2014201497A publication Critical patent/JP2014201497A/en
Application granted granted Critical
Publication of JP6065720B2 publication Critical patent/JP6065720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/08Slag cements
    • C04B28/082Steelmaking slags; Converter slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a hydrated matrix, which can provide the hydrated matrix that has high durability even in an environment where cyclic stress is applied to the hydrated matrix.SOLUTION: There is provided the method for producing a hydrated matrix by kneading a granular steel-making slag and a SiO-containing substance with water. The method uses the steel-making slag which has a powdering rate of 2.5 mass% or less after being immersed in warm water having a temperature of 80°C for 10 days and has a coarse granule ratio of 4.5 or more, and uses as the SiO-containing substance, a blast furnace slag fine powder, or the blast furnace slag fine powder and fly ash.

Description

本発明は、粉粒状の製鋼スラグとSiO含有物質とを水で混練することによって製造される水和固化体の製造方法に関するものである。 The present invention relates to a method for producing a hydrated solid product produced by kneading a granular steel-making slag and a SiO 2 -containing substance with water.

製鋼工程で発生するスラグ(以下、製鋼スラグと略記)は、塩基度が高く、遊離CaOを多量に含有している。このため、製鋼スラグは、水和反応によって膨張しやいために、高炉スラグのように土木・建設資材としての用途には向かず、その処理に難儀している。そこで、近年、このような状況を打破するため、製鋼スラグを積極的に活用する技術が提案されている。具体的には、特許文献1には、製鋼スラグを含有する骨材と、潜在水硬性を有するシリカ含有物質及びポゾラン反応性を有するシリカ含有物質のうち、1種又は2種を50%以上含有して水和反応によって固化する結合材と、を混合することによって製造される水和固化体が記載されている。また、特許文献2には、結合材、細骨材、及び粗骨材の全てを粉砕及び破砕した鉄鋼スラグとすると共に、結合材として高炉スラグと製鋼スラグとを混合した鉄鋼スラグを用いて製造されるスラグブロックが記載されている。   Slag generated in the steelmaking process (hereinafter abbreviated as “steelmaking slag”) has a high basicity and contains a large amount of free CaO. For this reason, since steelmaking slag is easy to expand | swell by a hydration reaction, it is not suitable for the use as a civil engineering / construction material like a blast furnace slag, and is difficult to process. Therefore, in recent years, a technique for actively utilizing steelmaking slag has been proposed in order to overcome such a situation. Specifically, Patent Document 1 contains 50% or more of one or two of an aggregate containing steelmaking slag, a silica-containing material having latent hydraulic properties, and a silica-containing material having pozzolanic reactivity. Thus, a hydrated solid body produced by mixing a binder that solidifies by a hydration reaction is described. Patent Document 2 discloses a steel slag obtained by pulverizing and crushing all of a binder, fine aggregate, and coarse aggregate, and using a steel slag mixed with blast furnace slag and steelmaking slag as a binder. The slag block to be performed is described.

特開平10−152364号公報JP-A-10-152364 特開平2−233539号公報JP-A-2-233539 特許第3654122号公報Japanese Patent No. 3654122 特許第4438307号公報Japanese Patent No. 4438307

しかしながら、本発明の発明者らが、特許文献1,2記載の製造方法を用いて製鋼スラグを原料とする水和固化体を試作したところ、下記のような問題点が明らかとなった。   However, when the inventors of the present invention made a trial production of a hydrated solid body using steelmaking slag as a raw material by using the production methods described in Patent Documents 1 and 2, the following problems were revealed.

すなわち、特許文献1記載の製造方法によれば、製鋼スラグとして転炉スラグを用いた場合、20℃の水中で養生した際に水和固化体が崩壊し、満足できるものにならないことがあった。そこで、この原因を詳細に調査した結果、製鋼過程で添加されるCaO分やMgO分が、スラグに溶けきらずに残留していたり、冷却時に析出したりしてスラグ中にCaOやMgOの形態で存在し、このCaO分やMgO分が水中養生で水和膨張することによって、水和固化体が崩壊することがわかった。一方、特許文献2記載の製造方法のように、結合材まで含めて製鋼スラグを主体的に利用した場合には、水和固化体の圧縮強度が十分でないケースがほとんどであり、また、安定した強度発現が困難であり、セメント・コンクリートの代替としての使用に耐えるものではなかった。   That is, according to the manufacturing method described in Patent Document 1, when converter slag is used as steelmaking slag, the hydrated solidified body may not be satisfactory when cured in water at 20 ° C. . Therefore, as a result of investigating this cause in detail, the CaO and MgO components added in the steelmaking process remain without being dissolved in the slag, or precipitate during cooling, and in the form of CaO and MgO in the slag. It was found that the hydrated solidified body collapses when this CaO content or MgO content hydrates and expands under water curing. On the other hand, when the steelmaking slag including the binder is mainly used as in the manufacturing method described in Patent Document 2, in most cases, the compressive strength of the hydrated solidified body is not sufficient and stable. It was difficult to develop strength and could not be used as a substitute for cement and concrete.

なお、このような問題点を解決するために、製鋼スラグの種類を限定すると共に、結合材として高炉スラグ微粉末を主体とする材料を使用する水和固化体の製造方法が提案、実用化されている。この製造方法では、製鋼スラグとして溶銑予備処理スラグを用いると共に、粒径が1.18mm以下の粒子の比率を、水を除く全配合量の15乃至55質量%の範囲内とすることが特許文献3に記載されている。また、特許文献4には、製鋼スラグの粉化率を限定することによって安定した水和固化体を製造する技術が記載されている。   In order to solve such problems, a method for producing a hydrated solid body using a material mainly composed of blast furnace slag fine powder as a binding material has been proposed and put into practical use, while limiting the types of steelmaking slag. ing. In this production method, hot metal pretreatment slag is used as the steelmaking slag, and the ratio of particles having a particle size of 1.18 mm or less is within the range of 15 to 55% by mass of the total amount excluding water. 3. Patent Document 4 describes a technique for producing a stable hydrated solid body by limiting the powdering rate of steelmaking slag.

そこで、本発明の発明者らは、これらの知見をもとに水和固化体を製造した結果、強度や体積安定性について良好な特性が得られることを確認できた。ところが、このようにして得られた水和固化体を様々な環境に曝露して追跡調査を行った結果、海中や河川中に浸漬して用いた場合には特に問題がないが、海岸の干満帯や、陸上で降雨や日照に曝された場合には、数年経過した後に大規模なクラックや破損が発生するケースが稀にみられることがわかった。これについては、残留部からコア等を抜いて静的な圧縮強度を評価した範囲では、大きな強度低下は認められず、クラック等が発生する原因は明確になっていなかった。   Accordingly, the inventors of the present invention have confirmed that good characteristics can be obtained in terms of strength and volume stability as a result of producing a hydrated solid body based on these findings. However, as a result of conducting follow-up studies by exposing the hydrated solids obtained in this way to various environments, there are no particular problems when they are used immersed in the sea or rivers. When exposed to rain or sunshine on the belt or on land, it has been found that there are rare cases where large-scale cracks and damage occur after several years. About this, in the range which removed the core etc. from the residual part and evaluated the static compressive strength, the big strength fall was not recognized but the cause which a crack etc. generate | occur | produced was not clear.

製鋼スラグに代表される産業副産物をより有効的に利用していくためには、水和固化体は、海中や水中での利用に限らず、沿岸域の波消しブロックや陸域の土間コンクリート代替等の様々な用途への利用が不可欠である。その場合、水和固化体は気温や日照等の様々な自然環境の中で長期にわたって使用されていくことになるために、長期的な耐久性も必要な特性となる。従来は、製鋼スラグの膨張安定性に起因する耐久性について多くの検討がなされてきた。しかしながら、過去の知見をもとに体積が安定した製鋼スラグを使用した場合であっても、小さなサイズでは問題はないものの、大型製品をある条件で曝露した場合には耐久性が劣る可能性があることがわかり、その対策が求められていた。   In order to use industrial by-products represented by steelmaking slag more effectively, hydrated solidified products are not limited to being used in the sea or underwater, but can be used as a substitute for wave-dissipating blocks in coastal areas and soil concrete in land areas. It is indispensable to use it for various purposes. In that case, since the hydrated solidified body is used over a long period of time in various natural environments such as air temperature and sunshine, long-term durability is also a necessary characteristic. Conventionally, many studies have been made on the durability resulting from the expansion stability of steelmaking slag. However, even when using steel slag with a stable volume based on past knowledge, there is no problem with small sizes, but durability may be inferior when large products are exposed under certain conditions. I found out that there was a need for countermeasures.

本発明は、上記課題に鑑みてなされたものであって、その目的は、繰り返し応力がかかる環境でも高い耐久性を有する水和固化体を得ることが可能な水和固化体の製造方法を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a hydrated solid body capable of obtaining a hydrated solid body having high durability even in an environment where repeated stress is applied. There is to do.

粉粒状の製鋼スラグで粉化率が低いものは、コンクリートにおける骨材と類似した機能を有し、且つ、一部結合材の反応に寄与するといわれている。鉄鋼スラグの粒度としては、25mm以下という以外は特段の規定はない(「鉄鋼スラグ水和固化体技術マニュアル」((財)沿岸技術研究センター)参照)。また、上述したように、特許文献3には、1.18mm以下の粒子の比率を、水を除く全配合量の15乃至55質量%の範囲内とすることが記載されている。   It is said that a powdered steelmaking slag having a low pulverization rate has a function similar to that of aggregate in concrete and partly contributes to the reaction of the binder. There is no special provision for the particle size of steel slag other than 25 mm or less (see “Steel Slag Hydrated Solid Technology Manual” (Coastal Technology Research Center)). Further, as described above, Patent Document 3 describes that the ratio of particles of 1.18 mm or less is within the range of 15 to 55% by mass of the total blending amount excluding water.

しかしながら、本発明の発明者らがこの条件を満たす製鋼スラグを様々な配合条件で混練し、水和固化体を曝露評価した結果、捨石や小規模なブロック等にしたものについては問題はないものの、1つの塊として重量が2.5tを超えるような大きなブロックであったり、熱環境や乾湿がサイクリックに変化するような環境に置かれたものであったりした場合、クラックが発生するケースがあることがわかった。   However, the inventors of the present invention kneaded steelmaking slag satisfying this condition under various blending conditions, and as a result of evaluating the exposure of the hydrated solidified body, there is no problem with rubble or small blocks. There are cases where cracks occur when the block is a large block with a weight exceeding 2.5 t as one lump, or placed in an environment where the heat environment and dryness and humidity change cyclically. I found out.

そして、本発明の発明者らは、その原因を鋭意検討した結果、製鋼スラグの粒度の影響が極めて大きいことを見出し、特に1.18mm以下といった細かい粒度の粒子の割合を決めるのみでなく、粒度が大きな粒子が適当な割合で存在していることが重要であることを見出し、本発明を想到するに至った。   And the inventors of the present invention have found that the influence of the particle size of the steelmaking slag is extremely large as a result of earnest examination of the cause, and in particular, not only determines the proportion of particles with a fine particle size of 1.18 mm or less, but also the particle size However, the inventors have found that it is important that large particles are present in an appropriate ratio, and have come up with the present invention.

本発明に係る水和固化体の製造方法は、粉粒状の製鋼スラグとSiO含有物質とを水で混練することによって製造される水和固化体の製造方法であって、前記製鋼スラグとして、80℃の温水に10日間浸漬した後の粉化率が2.5質量%以下であり、且つ、粗粒率が4.5以上の製鋼スラグを使用し、前記SiO含有物質として、高炉スラグ微粉末又は高炉スラグ微粉末及びフライアッシュを使用することを特徴とする。 The method for producing a hydrated solid body according to the present invention is a method for producing a hydrated solid body produced by kneading a granular steelmaking slag and a SiO 2 -containing substance with water, and as the steelmaking slag, A steelmaking slag having a powdering rate of 2.5% by mass or less after being immersed in warm water of 80 ° C. for 10 days and a coarse rate of 4.5 or more is used, and the blast furnace slag is used as the SiO 2 -containing material. Fine powder or blast furnace slag fine powder and fly ash are used.

本発明に係る水和固化体の製造方法は、上記発明において、前記製鋼スラグとして、粒径が0.5mm以下の範囲内にある粒子の比率が10質量%以上である製鋼スラグを使用することを特徴とする。   In the above invention, the method for producing a hydrated solid body according to the present invention uses, as the steelmaking slag, a steelmaking slag having a particle size within a range of 0.5 mm or less in a ratio of 10 mass% or more. It is characterized by.

本発明に係る水和固化体の製造方法は、上記発明において、アルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の中から選ばれた1種又は2種以上を、高炉スラグ微粉末及びフライアッシュの合計含有量に対し0.2乃至20質量%の範囲内添加することを特徴とする。   The method for producing a hydrated solid product according to the present invention is the above-mentioned invention, wherein one or two selected from alkali metal and / or alkaline earth metal oxides, hydroxides, sulfates, and chlorides are used. More than seeds are added in the range of 0.2 to 20% by mass with respect to the total content of blast furnace slag fine powder and fly ash.

本発明に係る水和固化体の製造方法は、上記発明において、普通ポルトランドセメント、フライアッシュセメント、及び複合セメントから選ばれた1種又は2種以上を、高炉スラグ微粉末及びフライアッシュの合計含有量に対して200質量%を上限として添加することを特徴とする。   The method for producing a hydrated solid body according to the present invention is the above-described invention, wherein one or more selected from ordinary Portland cement, fly ash cement, and composite cement are contained in total of fine blast furnace slag powder and fly ash. 200 mass% is added as an upper limit with respect to the quantity, It is characterized by the above-mentioned.

本発明に係る水和固化体の製造方法は、上記発明において、ナフタレンスルホン酸及び/又はポリカルボン酸を、高炉スラグ微粉末、フライアッシュ、及びアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の合計含有量に対して0.1乃至2.0m質量%の範囲内添加することを特徴とする。   The method for producing a hydrated solid product according to the present invention is the above invention, wherein naphthalene sulfonic acid and / or polycarboxylic acid is mixed with blast furnace slag fine powder, fly ash, and an oxide of alkali metal and / or alkaline earth metal, It is characterized by being added in the range of 0.1 to 2.0 m% by mass with respect to the total content of hydroxide, sulfate and chloride.

本発明に係る水和固化体は、本発明に係る水和固化体の製造方法を利用して製造されたことを特徴とする。   The hydrated and solidified product according to the present invention is characterized by being manufactured using the method for producing a hydrated and solidified product according to the present invention.

本発明に係る水和固化体は、上記発明において、固化後の100万回疲労強度が静的疲労強度の50%を超えることを特徴とする。   The hydrated solid body according to the present invention is characterized in that, in the above-mentioned invention, the 1 million times fatigue strength after solidification exceeds 50% of the static fatigue strength.

本発明に係る水和固化体は、上記発明において、海域沿岸の干満帯、飛まつ帯、又は陸域で利用されることを特徴とする。   The hydrated solidified product according to the present invention is characterized in that, in the above-described invention, it is used in a tidal zone, a flying zone, or a land area on the coast of the sea area.

本発明に係る水和固化体は、上記発明において、重量1トン以上の部材に利用されることを特徴とする。   In the above invention, the hydrated solid body according to the present invention is used for a member having a weight of 1 ton or more.

本発明によれば、繰り返し応力がかかる環境でも高い耐久性を有する水和固化体を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the hydrated solid body which has high durability also in the environment where a repeated stress is applied can be provided.

図1は、製鋼スラグのFM値と破壊までの繰り返し負荷回数との関係の一例を示す図である。FIG. 1 is a diagram illustrating an example of the relationship between the FM value of steelmaking slag and the number of repeated loads until failure. 図2は、細粒側10%のスラグ径と混練物のスランプとの関係の一例を示す図である。FIG. 2 is a diagram showing an example of the relationship between the slag diameter on the fine grain side 10% and the slump of the kneaded product.

製鋼スラグを用いて製造される水和固化体は、製鋼スラグとして膨張安定性が低いものを骨材相当材として使用し、さらに結合材と水とを加えて混練することによって製造される。本発明では、高い耐久性を得るために、製鋼スラグとして、上記を含めて以下の条件(1),(2)を満足するものを用いる。また、本発明では、結合材として、高炉スラグ微粉末又は高炉スラグ微粉末及びフライアッシュ等のSiO含有物質を用いる。 A hydrated solid body produced using steelmaking slag is produced by using a steelmaking slag having low expansion stability as an aggregate equivalent material, and further adding a binder and water and kneading. In the present invention, in order to obtain high durability, steelmaking slag that satisfies the following conditions (1) and (2) including the above is used. Further, in the present invention, as a binder, using a blast furnace slag or blast furnace slag and SiO 2 containing material such as fly ash.

(1)CaOやMgOといった膨張性を有する鉱物の含有率が低く、粉化率が低いもの
(2)粗粒率(FM値)が4.5以上のもの
(1) Low content of expansive minerals such as CaO and MgO and low powdering rate (2) Coarse grain ratio (FM value) of 4.5 or more

製鋼スラグとしては、溶銑予備処理スラグ(脱燐スラグや脱珪スラグ等)、転炉脱炭スラグ、電気炉スラグ等を例示することができ、これらのうち1種以上を用いることができる。製鋼スラグは、最大粒径が25mm以下の粒度のものであることが好ましい。   Examples of the steelmaking slag include hot metal pretreatment slag (such as dephosphorization slag and desiliconization slag), converter decarburization slag, electric furnace slag, and the like, and one or more of these can be used. The steelmaking slag preferably has a maximum particle size of 25 mm or less.

製鋼スラグには、精錬のプロセスにおいてCaOやMgOが混入する。CaOやMgOの多くの部分はSiOやFeO等の他の元素と複合酸化物をつくるが、一部は遊離CaOや遊離MgOの状態で存在する。遊離CaOや遊離MgOがそのまま多量に残っていると、水分と反応してCa(OH)やMg(OH)となり、膨張する。これらの鉱物相は、製鋼スラグの組成や冷却を制御することによって低く抑えることができる。 In the steelmaking slag, CaO and MgO are mixed in the refining process. Many parts of CaO and MgO form complex oxides with other elements such as SiO 2 and FeO, but some exist in the state of free CaO and free MgO. If a large amount of free CaO or free MgO remains as it is, it reacts with moisture to become Ca (OH) 2 or Mg (OH) 2 and expands. These mineral phases can be kept low by controlling the composition and cooling of the steelmaking slag.

製鋼スラグを屋外のヤードで長期間ウェザーリングしたり、蒸気エージングして水和反応を促進したりすることによって、水和固化体の製造に使用する前に遊離CaOや遊離MgOをCa(OH)やMg(OH)に変化させておくことにより、骨材相当材として使用する際には問題なくなる。これについては、使用する製鋼スラグが、80℃で10日間温水養生したときに粉状になる比率が2.5質量%以下であれば、水和固化体の強度には影響を及ぼさず、応力等の環境による変化が少ない小型製品用途に使用した場合には、製品の破損等には影響を与えない。 By freezing steelmaking slag in the outdoor yard for a long time or by steam aging to promote the hydration reaction, free CaO and free MgO are converted into Ca (OH) before being used for the production of hydrated solidified bodies. By changing to 2 or Mg (OH) 2 , there is no problem when used as an aggregate equivalent material. About this, if the steelmaking slag to be used has a ratio of 2.5% by mass or less when heated at 80 ° C. for 10 days with warm water, the strength of the hydrated solidified body is not affected, and the stress When used in small product applications that are less susceptible to environmental changes, there is no effect on product damage.

従来の知見に基づいて製鋼スラグについて粒径1.18mm以下の粒子の比率のみを規定して大きなブロックを製造して陸上や干満帯に曝露したところ、場合によっては長期間曝露すると大規模な破損がおこることが観察された。大きな形状のものを利用する用途は、大きいことが必要となるものであり、言い換えれば、使用中の破損により単体重量が軽量になることは望ましくない。従って、石代替品のような用途に比べると高い耐久性が求められる。   Based on conventional knowledge, only a ratio of particles with a particle size of 1.18 mm or less was specified for steelmaking slag, and a large block was manufactured and exposed to land and tidal zones. Was observed to occur. Applications using large shapes need to be large, in other words, it is not desirable that the weight of a single unit be reduced due to breakage during use. Therefore, high durability is required compared to uses such as stone substitutes.

このような大きな形状で破壊がおこったものの原料配合や材料特性等を元に、破壊が起こらない条件について鋭意調査した結果、使用する製鋼スラグの細かい粒度の割合だけではなく、全体の粒度のバランスによって耐久性が大きく変化することがわかった。製鋼スラグは天然の石材とは異なり、副産物として溶融物を凝固させて破砕したものを利用しているため、粒度はその後の用途によって様々であり、これを最適な条件に破砕して適用することが重要であることがわかった。   As a result of earnest investigation on the conditions that do not cause breakage based on the raw material composition and material characteristics of such a large shape, but not only the ratio of the fine particle size of the steelmaking slag used, the balance of the overall particle size It was found that the durability greatly changes depending on the condition. Steelmaking slag is different from natural stone, and uses a product obtained by solidifying and crushing the melt as a by-product.Therefore, the particle size varies depending on the subsequent use. Was found to be important.

そこで、各条件の静的破壊強度を100%とした時の50%相当強度の繰り返し負荷をかけた時に、負荷を何回かけた時に破壊が起こるかを調査した。その結果、骨材の特性を粒度の指標であるFM(Fitness Modulus)値で評価すると、その関係が明確になることがわかった。すなわち、ふるい目開きが37.5、19.0、9.50、4.75、2.36,1.18、0.60、0.30、0.15mmの各ふるいでふるって粒度分布を測定し、そのふるいに留まる質量百分率を総和して100で割ったものをFM値として破壊回数を調べると、図1に示すように、FM値が小さくなると急激に破壊がおこりやすくなり、FM値が4.5以上では、100万回を越える疲労耐久性が、さらにFM値が4.8以上では200万回以上の疲労耐久性が確保できることを見出した。すなわち、製鋼スラグのFM値を4.5以上、より望ましくは4.8以上とすれば、高い耐久性をもつ水和固化体を得ることができることを見出した。   Therefore, when a repeated load having a strength equivalent to 50% when the static fracture strength of each condition is 100%, how many times the load was applied was examined. As a result, it was found that when the characteristics of the aggregate were evaluated by FM (Fitness Modulus) value, which is an index of particle size, the relationship became clear. That is, the particle size distribution is measured by sieving with sieves having a sieve opening of 37.5, 19.0, 9.50, 4.75, 2.36, 1.18, 0.60, 0.30, and 0.15 mm. Then, when the number of fractures is examined by summing up the mass percentages remaining on the sieve and dividing by 100 as FM value, as shown in FIG. It has been found that fatigue durability exceeding 1 million times can be secured at 4.5 or more, and fatigue durability at 2 million times or more can be secured at an FM value of 4.8 or more. That is, it has been found that when the FM value of steelmaking slag is 4.5 or more, more desirably 4.8 or more, a highly durable hydrated solid body can be obtained.

なお、本明細書において、大型の部材とは、単体で重量が1トンを超える大きさの部材のことを意味する。重量が1トンより軽い部材については、FM値が4.5を下回っても安定した性能を大よそ得ることができる。但し、構造的に一部に負荷がかかるような場合や乾湿の変動が大きいような場合には、重量が1トンより軽い部材についてもFM値が4.5以上のものを用いることが望ましい。   In addition, in this specification, a large-sized member means a member having a weight exceeding 1 ton as a single body. For a member having a weight of less than 1 ton, stable performance can be roughly obtained even if the FM value is less than 4.5. However, when a part of the structure is structurally loaded or when the wet and dry fluctuation is large, it is desirable to use a member having an FM value of 4.5 or more even for a member having a weight of less than 1 ton.

一方、FM値を大きくするとしても、流動性の観点から、施工方法等に応じてその範囲には自ずと制約があり、FM値は6.4以下、より望ましくは6.0以下とすることが好適である。例えば5mm程度の製鋼スラグばかりを用いた場合には、混練物の流動性が低下して施工性が悪くなる。このため、本発明の発明者らは、施工性を維持するのに必要な条件をさらに検討した。その結果、製鋼スラグの細かい部分の割合が混練・施工に強く影響を与えていることを見出した。   On the other hand, even if the FM value is increased, from the viewpoint of fluidity, the range is naturally limited depending on the construction method and the like, and the FM value should be 6.4 or less, more preferably 6.0 or less. Is preferred. For example, when only steelmaking slag of about 5 mm is used, the fluidity of the kneaded material is lowered and the workability is deteriorated. For this reason, the inventors of the present invention further examined the conditions necessary for maintaining workability. As a result, it has been found that the proportion of fine portions of steelmaking slag has a strong influence on kneading and construction.

そこで、製鋼スラグのうちの細粒側10質量%のスラグの径(D10)に着目して、同じ配合(水198kg/m、結合材527kg/m、残部を製鋼スラグ)で混練物のスランプを調査したところ、図2に示すように、D10が0.5mmを下回っていた場合、換言すれば、0.5mm以下の粒子の比率が10質量%を越えていた場合、良好な施工性が維持された。これに対して、D10が0.5mmを越えた場合には、スランプコーンを抜いた時点で試験体の上部が沈下することなく側方に崩壊してしまったために、スランプの評価としては0cmとした。 Therefore, by paying attention to the diameter of the fine particle side 10 weight percent of the slag of steel slag (D 10), the kneaded product in the same formulation (water 198 kg / m 3, the binder 527kg / m 3, steelmaking the remainder slag) when checking the slump, as shown in FIG. 2, if the D 10 of was below 0.5mm, in other words, if the ratio of particles less than 0.5mm were more than 10 mass%, good Workability was maintained. On the contrary, if the D 10 of exceeds 0.5mm is, 0 cm in order to top of the specimen at the time of disconnect the slump cone had collapsed sideways without sinking, as an evaluation of the slump It was.

粒度全体でFM値を高く、すなわち粗い粒子を増やして耐久性を確保する本発明では、さらに0.5mm以下の粒子の比率を10%以上有するような適性な粒度分布を持つ製鋼スラグを用いることで、高い耐久性と良好な混練・施工性を確保することが可能となる。   In the present invention in which the FM value is increased throughout the particle size, that is, the durability is ensured by increasing the number of coarse particles, steelmaking slag having an appropriate particle size distribution such that the ratio of particles of 0.5 mm or less is 10% or more is used. Thus, it is possible to ensure high durability and good kneading / constructing properties.

上記スラグを用いることで、製鋼スラグを骨材として用い、高い耐久性を持つ固化体を得ることができる。耐久性が高いことから、小型用途のみならず、重量が1トンを越えるような大きな部材へも使用することができる。特に乾湿が繰り返される海岸の干満帯や飛沫帯、降雨と日照とが繰り返される陸上等で、自然石の代替としての被覆石等への利用や、波消ブロックに代表されるコンクリートブロックと同様に使用することが可能である。   By using the slag, it is possible to obtain a solidified body having high durability by using steelmaking slag as an aggregate. Because of its high durability, it can be used not only for small applications but also for large members whose weight exceeds 1 ton. Especially for coastal tidal and splash zones where wetness and dryness are repeated, on land where rainfall and sunshine are repeated, etc., as a substitute for natural stones, as well as for concrete blocks such as wave-dissipating blocks It is possible to use.

本発明は、上記のような製鋼スラグを使用することによって、長期的な耐久性を確保するものであるが、さらに加えて、アルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の中から選ばれた1種又は2種以上を0.2質量%以上添加してもよい。これにより、水和固化体の初期強度を安定的に発現させることができること、固化を促進して養生に要する時間を短縮できること等、施工管理上の品質改善を図ることができる。添加量の上限は特に限定するものではないが、20質量%を超えて添加してもその効果が飽和するので、添加量の上限は20質量%とする。   In the present invention, long-term durability is ensured by using the steelmaking slag as described above. In addition, oxides and hydroxides of alkali metals and / or alkaline earth metals, One or more selected from sulfates and chlorides may be added in an amount of 0.2% by mass or more. Thereby, the initial strength of the hydrated solid body can be expressed stably, the solidification can be promoted, and the time required for curing can be shortened. Although the upper limit of the addition amount is not particularly limited, the effect is saturated even if added over 20% by mass, so the upper limit of the addition amount is 20% by mass.

高炉スラグ微粉末の生産場所と固化体の製造場所とが離れている等、多量の高炉スラグ微粉末の入手が経済的に優位でない場合、又はアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物が入手しづらい場合、普通ポルトランドセメント、フライアッシュセメント、及び複合セメントをSiO含有物質の補助材料として利用することもできる。この場合、微粉部分の粒度構成が変化し、比重が重い製鋼スラグが分離しやすくなるため、これらの含有量は高炉スラグ微粉末及びフライアッシュの合計含有量に対し200質量%を上限とする。 When the production location of the blast furnace slag fine powder is far from the production place of the solidified body, such as when it is not economically advantageous to obtain a large amount of blast furnace slag fine powder, or an oxide of alkali metal and / or alkaline earth metal, If hydroxides, sulfates, and chlorides are difficult to obtain, ordinary Portland cement, fly ash cement, and composite cement can be used as an auxiliary material for the SiO 2 -containing material. In this case, the particle size composition of the fine powder portion changes, and steelmaking slag having a high specific gravity is easily separated.

ナフタレンスルホン酸及び/又はポリカルボン酸を添加すると、原料を水と共に混練する際の混錬性が向上する。そのため、混練に必要な水の量を低減することができ、その結果、より高強度の水和固化体が得られる。添加量を高炉スラグ微粉末、フライアッシュ及びアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の合計含有量に対して0.1質量%未満では効果に乏しく、2.0質量%を超えて添加しても効果が飽和するので、添加量は0.1乃至2.0質量%の範囲内に限定する。   Addition of naphthalene sulfonic acid and / or polycarboxylic acid improves kneadability when the raw material is kneaded with water. Therefore, the amount of water required for kneading can be reduced, and as a result, a higher strength hydrated solidified product can be obtained. Effective if the addition amount is less than 0.1% by mass with respect to the total content of blast furnace slag fine powder, fly ash and alkali metal and / or alkaline earth metal oxides, hydroxides, sulfates and chlorides Since the effect is saturated even if it is added in excess of 2.0% by mass, the addition amount is limited to the range of 0.1 to 2.0% by mass.

〔実施例〕
本実施例では、粒度を調整した粉粒状製鋼スラグを用いて水和固化体を作製した。粉粒状製鋼スラグとしては、高炉から出銑された高炉溶銑を脱燐処理した際に発生した溶銑予備処理スラグを用いた。また、結合材としては、高炉水砕スラグ微粉末及びフライアッシュを用い、アルカリ刺激材として普通ポルトランドセメントを用いた。試験に用いた製鋼スラグの粒度、FM値、及びD10は、本発明範囲及び比較の条件として選定した。その際の粒度、FM値、及びD10を表1に示す。
〔Example〕
In the present Example, the hydrated solid body was produced using the granular steelmaking slag which adjusted the particle size. As the granular steelmaking slag, the hot metal pretreatment slag generated when the blast furnace hot metal discharged from the blast furnace was dephosphorized was used. In addition, blast furnace granulated slag fine powder and fly ash were used as the binder, and ordinary Portland cement was used as the alkali stimulating material. The particle size of the steel slag used in the test, FM value, and D 10 represent respectively the particle diameters was selected as the condition of the range of the present invention and comparative. At that time the particle size, FM value, and D 10 shown in Table 1.

粉粒状製鋼スラグ、結合材、アルカリ刺激材、及び水を表2に示す配合でミキサーを用いて混練した。ワーカビリティーを評価するため、混練物のスランプを日本工業規格JIS A 1101のスランプ試験方法によって測定した後、10cm×10cm×40cmの型枠に成形した。成形物を2日後に脱枠し、20℃水中で28日養生した後、曲げ疲労試験を行った。曲げ疲労試験は、日本工業規格JIS A 1106の曲げ強度試験方法で求めた破壊応力を基準とし、その50%応力を上限応力、5%応力を下限応力として周波数7Hzで繰り返し載荷した。破壊が起こるまでの回数により、回数が1×10回を越えたものを○、回数が1×10回を下回ったものを×と判定した。スランプ及び耐久性の結果を表1にあわせて示す。 Powdered steelmaking slag, a binder, an alkali stimulant, and water were kneaded using a mixer with the formulation shown in Table 2. In order to evaluate workability, the slump of the kneaded product was measured by the slump test method of Japanese Industrial Standard JIS A 1101, and then molded into a 10 cm × 10 cm × 40 cm mold. The molded product was deframed after 2 days and cured in water at 20 ° C. for 28 days, and then subjected to a bending fatigue test. The bending fatigue test was repeatedly loaded at a frequency of 7 Hz with the 50% stress as the upper limit stress and the 5% stress as the lower limit stress based on the fracture stress obtained by the bending strength test method of Japanese Industrial Standard JIS A 1106. According to the number of times until destruction occurred, a case where the number exceeded 1 × 10 6 times was judged as “◯”, and a case where the number was less than 1 × 10 6 times was judged as “x”. The slump and durability results are also shown in Table 1.

表1に示すように、製鋼スラグの粗粒率が本発明の範囲内にある場合、高い耐久性が得られた。これに対して、製鋼スラグの粗粒率が低いものについては、耐久性が十分確保できないことが確認された。また、D10が大きい条件では、耐久性は確保できるものの、フレッシュ状態でスランプコーンを引き上げると試験体の上部が沈下することなく周囲に崩れ、スランプを測定できなかった。D10は大きくても形状や成形方法によっては成形は可能であるが、施工性や仕上がりを良好な固化物とするためには、D10を0.5以下の範囲内とすることが望ましいことが確認された。以上のように本発明の範囲にすることで、従来にはない高い耐久性を安定して発現させることが可能となった。 As shown in Table 1, high durability was obtained when the coarse grain ratio of the steelmaking slag was within the range of the present invention. On the other hand, it was confirmed that durability was not able to be secured enough about the thing with a low coarse grain rate of steelmaking slag. Further, under the condition D 10 of greater, although the durability can be secured, collapse around without the upper part of the specimen pulled slump cone fresh state sinks, could not be measured slump. D 10 is depending largely be shaped and molding method can be molded, in order to workability and finish with a good solidified product, it is desirable to a D 10 in the range of 0.5 or less Was confirmed. As described above, by making it within the scope of the present invention, it has become possible to stably exhibit high durability that has not been achieved in the past.

Figure 2014201497
Figure 2014201497
Figure 2014201497
Figure 2014201497

Claims (9)

粉粒状の製鋼スラグとSiO含有物質とを水で混練することによって製造される水和固化体の製造方法であって、
前記製鋼スラグとして、80℃の温水に10日間浸漬した後の粉化率が2.5質量%以下であり、且つ、粗粒率が4.5以上の製鋼スラグを使用し、前記SiO含有物質として、高炉スラグ微粉末又は高炉スラグ微粉末及びフライアッシュを使用することを特徴とする水和固化体の製造方法。
A method for producing a hydrated solid body produced by kneading a granular steel-making slag and a SiO 2 -containing substance with water,
As the steelmaking slag, a steelmaking slag having a pulverization rate of 2.5% by mass or less after being immersed in hot water at 80 ° C. for 10 days and a coarse particle rate of 4.5 or more is used, and contains the SiO 2 Blast furnace slag fine powder or blast furnace slag fine powder and fly ash are used as a substance, The manufacturing method of the hydrated solid body characterized by the above-mentioned.
前記製鋼スラグとして、粒径が0.5mm以下の範囲内にある粒子の比率が10質量%以上である製鋼スラグを使用することを特徴とする請求項1に記載の水和固化体の製造方法。   2. The method for producing a hydrated solid body according to claim 1, wherein the steelmaking slag is a steelmaking slag having a particle size within a range of 0.5 mm or less of 10% by mass or more. . アルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の中から選ばれた1種又は2種以上を、高炉スラグ微粉末及びフライアッシュの合計含有量に対し0.2乃至20質量%の範囲内添加することを特徴とする請求項1又は2に記載の水和固化体の製造方法。   One or more selected from oxides, hydroxides, sulfates, and chlorides of alkali metals and / or alkaline earth metals with respect to the total content of blast furnace slag fine powder and fly ash The method for producing a hydrated solid body according to claim 1 or 2, wherein the addition is performed within a range of 0.2 to 20% by mass. 普通ポルトランドセメント、フライアッシュセメント、及び複合セメントから選ばれた1種又は2種以上を、高炉スラグ微粉末及びフライアッシュの合計含有量に対して200質量%を上限として添加することを特徴とする請求項1乃至3のうち、いずれか1項に記載の水和固化体の製造方法。   One or more kinds selected from ordinary Portland cement, fly ash cement, and composite cement are added up to 200 mass% with respect to the total content of blast furnace slag fine powder and fly ash. The manufacturing method of the hydrated solid body of any one of Claims 1 thru | or 3. ナフタレンスルホン酸及び/又はポリカルボン酸を、高炉スラグ微粉末、フライアッシュ、及びアルカリ金属及び/又はアルカリ土類金属の酸化物、水酸化物、硫酸塩、及び塩化物の合計含有量に対して0.1乃至2.0m質量%の範囲内添加することを特徴とする請求項1乃至4のうち、いずれか1項に記載の水和固化体の製造方法。   Naphthalene sulfonic acid and / or polycarboxylic acid with respect to the total content of blast furnace slag fine powder, fly ash, and alkali metal and / or alkaline earth metal oxides, hydroxides, sulfates, and chlorides The method for producing a hydrated solid body according to any one of claims 1 to 4, wherein the addition is performed within a range of 0.1 to 2.0 m% by mass. 請求項1乃至5のうち、いずれか1項に記載の水和固化体の製造方法を利用して製造されたことを特徴とする水和固化体。   A hydrated and solidified product produced using the method for producing a hydrated and solidified product according to any one of claims 1 to 5. 100万回疲労強度が静的疲労強度の50%を超えることを特徴とする請求項6に記載の水和固化体。   The hydrated solid body according to claim 6, wherein the fatigue strength of 1 million times exceeds 50% of the static fatigue strength. 海域沿岸の干満帯、飛まつ帯、又は陸域で利用されることを特徴とする請求項6又は7に記載の水和固化体。   The hydrated solidified body according to claim 6 or 7, wherein the hydrated solidified body is used in a tidal zone, a flying pine zone, or a land area along a sea area. 重量1トン以上の部材に利用されることを特徴とする請求項6乃至8のうち、いずれか1項に記載の水和固化体。   The hydrated solidified body according to any one of claims 6 to 8, which is used for a member having a weight of 1 ton or more.
JP2013080197A 2013-04-08 2013-04-08 Method for producing hydrated solid body Active JP6065720B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013080197A JP6065720B2 (en) 2013-04-08 2013-04-08 Method for producing hydrated solid body
KR1020157027947A KR101839661B1 (en) 2013-04-08 2014-01-24 Method for producing hydrated solidified body, and hydrated solidified body
CN201480019808.2A CN105073680A (en) 2013-04-08 2014-01-24 Method for producing hydrated solidified body, and hydrated solidified body
PCT/JP2014/051549 WO2014167874A1 (en) 2013-04-08 2014-01-24 Method for producing hydrated solidified body, and hydrated solidified body
TW103106368A TWI543957B (en) 2013-04-08 2014-02-26 Method for manufacturing hydrated solidified body and hydrated solidified body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013080197A JP6065720B2 (en) 2013-04-08 2013-04-08 Method for producing hydrated solid body

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016212434A Division JP6315063B2 (en) 2016-10-31 2016-10-31 Method for producing hydrated solid body

Publications (2)

Publication Number Publication Date
JP2014201497A true JP2014201497A (en) 2014-10-27
JP6065720B2 JP6065720B2 (en) 2017-01-25

Family

ID=51689292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013080197A Active JP6065720B2 (en) 2013-04-08 2013-04-08 Method for producing hydrated solid body

Country Status (5)

Country Link
JP (1) JP6065720B2 (en)
KR (1) KR101839661B1 (en)
CN (1) CN105073680A (en)
TW (1) TWI543957B (en)
WO (1) WO2014167874A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208844A1 (en) * 2016-06-02 2017-12-07 Jfeスチール株式会社 Hydrated hardened body and method for manufacturing same
JP2017218369A (en) * 2016-06-02 2017-12-14 Jfeスチール株式会社 Hydration cured body and method for producing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975001B1 (en) 2018-12-05 2019-05-03 곽은주 The repairing method and repairing material by recycling pig iron slag
EP3889122A1 (en) * 2020-04-02 2021-10-06 Sika Technology Ag Method for the control of volume expansion of hydraulically setting compositions comprising steel making slag
KR102203519B1 (en) 2020-09-28 2021-01-18 (주)아시아특수재료 Solidifying agent using steelmaking slag
KR102203526B1 (en) 2020-10-05 2021-01-18 (주)아시아특수재료 Mixed composition with improved reactivity of ladle slag and ladle slag ground solidifying agent containing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045048A (en) * 2004-06-30 2006-02-16 Jfe Mineral Co Ltd Solidified body of steel-making slag and method for producing the same
JP2007269563A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Hydrated hardened body having reinforcing rod excellent in neutralization resistance and salt damage resistance
JP2008195544A (en) * 2007-02-08 2008-08-28 Jfe Steel Kk Steel-reinforced hydraulically hardened body excellent in carbonation resistance
JP4438307B2 (en) * 2003-03-28 2010-03-24 Jfeスチール株式会社 How to select steelmaking slag for hardened slag
JP2013006743A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Steel-making slag concrete

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3714043B2 (en) * 1998-10-14 2005-11-09 Jfeスチール株式会社 Agglomeration method of steelmaking slag
JP3654122B2 (en) * 2000-03-28 2005-06-02 Jfeスチール株式会社 Method for producing hardened slag

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438307B2 (en) * 2003-03-28 2010-03-24 Jfeスチール株式会社 How to select steelmaking slag for hardened slag
JP2006045048A (en) * 2004-06-30 2006-02-16 Jfe Mineral Co Ltd Solidified body of steel-making slag and method for producing the same
JP2007269563A (en) * 2006-03-31 2007-10-18 Jfe Steel Kk Hydrated hardened body having reinforcing rod excellent in neutralization resistance and salt damage resistance
JP2008195544A (en) * 2007-02-08 2008-08-28 Jfe Steel Kk Steel-reinforced hydraulically hardened body excellent in carbonation resistance
JP2013006743A (en) * 2011-06-24 2013-01-10 Nippon Steel & Sumitomo Metal Corp Steel-making slag concrete

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017208844A1 (en) * 2016-06-02 2017-12-07 Jfeスチール株式会社 Hydrated hardened body and method for manufacturing same
JP2017218369A (en) * 2016-06-02 2017-12-14 Jfeスチール株式会社 Hydration cured body and method for producing the same

Also Published As

Publication number Publication date
TW201442992A (en) 2014-11-16
WO2014167874A1 (en) 2014-10-16
JP6065720B2 (en) 2017-01-25
KR101839661B1 (en) 2018-03-16
CN105073680A (en) 2015-11-18
TWI543957B (en) 2016-08-01
KR20150128872A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
CN106396555B (en) It is a kind of based on the ultra high performance cementitious and preparation method thereof conserved in cellulose fibre
JP6065720B2 (en) Method for producing hydrated solid body
Mujedu et al. The use of corn cob ash and saw dust ash as cement replacement in concrete works
Agbede et al. Effect of rice husk ash (RHA) on the properties of Ibaji burnt clay bricks
Ndububa et al. Effect of guinea corn husk ash as partial replacement for cement in concrete
KR101922045B1 (en) Concrete composition for PHC pile comprising siliceous slag binder, method for manufacturing PHC pile using siliceous slag binder and PHC pile with high performances manufactured thereby
JP5907246B2 (en) Manufacturing method of solidified body
KR101856380B1 (en) Concrete Composition Using Utilizing Liquid Activator
JP6315063B2 (en) Method for producing hydrated solid body
Abubakar et al. Mechanical properties of concrete containing corn cob ash
JP6642506B2 (en) Manufacturing method of solidified body
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
JP5195866B2 (en) Method for producing hardened slag
JP2016216274A (en) Artificial stone material
KR20100071272A (en) Method for manufacturing cement additive using slag from pretreatment of hot meta
KR102364701B1 (en) Hybrid Lightweight Permeable Block Composition Using Industrial By-Products
JP4928401B2 (en) Hydrated solidified body, method for producing the same, and offshore structure
JP6015585B2 (en) Hydrated cured body
JP2013087011A (en) Steel slag hydration hardened body, and method for manufacturing the same
CN109153611B (en) Hydrated cured body and method for producing same
KR102074743B1 (en) Method for constructing mass concrete of architecture having improved chracteristics using two types of concrete composition mixture
Rahman et al. Effect of mineral admixtures on characteristics of high strength concrete
Aboshio et al. Rice husk ash as admixture in concrete
CN108892535B (en) Building formwork self-leveling recycled lightweight aggregate concrete and preparation method thereof
Palanisamy et al. Experimental Studies on Ambient Cured Self-Compacting Geopolymer Concrete Made With Ggbs and Bottom Ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20160801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161212

R150 Certificate of patent or registration of utility model

Ref document number: 6065720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250