JP2014199828A - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
JP2014199828A
JP2014199828A JP2011166982A JP2011166982A JP2014199828A JP 2014199828 A JP2014199828 A JP 2014199828A JP 2011166982 A JP2011166982 A JP 2011166982A JP 2011166982 A JP2011166982 A JP 2011166982A JP 2014199828 A JP2014199828 A JP 2014199828A
Authority
JP
Japan
Prior art keywords
glass substrate
antireflection layer
photovoltaic device
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011166982A
Other languages
Japanese (ja)
Inventor
篠原 亘
Wataru Shinohara
亘 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2011166982A priority Critical patent/JP2014199828A/en
Priority to PCT/JP2012/004485 priority patent/WO2013018287A1/en
Publication of JP2014199828A publication Critical patent/JP2014199828A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photovoltaic device capable of achieving both the effect of preventing the reflection of light and reliability at a high level.SOLUTION: A photovoltaic device 10 includes: a glass substrate 12; an antireflection layer 14 formed on the light receiving surface side of the glass substrate 12; and a photovoltaic element 16 provided on a side opposite to the light receiving surface of the glass substrate and converting light into electricity. The antireflection layer 14 is configured to have a refractive index lower than that of the glass substrate 12, and the glass substrate 12 has irregularities having a root-mean-square roughness RMS of within the range of 100-1,100 nm on the light receiving surface side 12a.

Description

本発明は、光起電力装置に関する。   The present invention relates to a photovoltaic device.

従来、光エネルギーを電気エネルギーに変換する光電変換装置として、いわゆる太陽電池の開発が各方面で精力的に行われている。太陽電池には、種々のタイプがあるが、近年、材料費の低減、低温プロセスによる製造の容易さ、などの観点から、薄膜シリコン太陽電池が注目されている。   2. Description of the Related Art Conventionally, so-called solar cells have been vigorously developed in various fields as photoelectric conversion devices that convert light energy into electrical energy. There are various types of solar cells. In recent years, thin-film silicon solar cells have attracted attention from the viewpoints of reduction of material costs and ease of production by a low-temperature process.

通常、太陽電池では、半導体領域に吸収される光量が大きいほど、すなわち、光の強さを一定とすれば半導体領域内へ入射する光の量が多いほど、形成される電子および正孔の濃度が増し、変換効率が向上する。そのため、光が太陽電池の表面で反射してしまうと、それだけ半導体領域内に入射する光が減るため、変換効率の低下を招くことになる。そこで、太陽電池の表面に反射防止膜を設けた構成が知られている(例えば、特許文献1参照)。   Usually, in solar cells, the greater the amount of light absorbed by the semiconductor region, that is, the greater the amount of light that enters the semiconductor region with a constant light intensity, the higher the concentration of electrons and holes that are formed. And conversion efficiency is improved. Therefore, if light is reflected from the surface of the solar cell, the amount of light incident on the semiconductor region is reduced accordingly, leading to a reduction in conversion efficiency. Therefore, a configuration in which an antireflection film is provided on the surface of a solar cell is known (see, for example, Patent Document 1).

特開2009−200441号公報JP 2009-200441 A

しかしながら、従来の反射防止膜は、ガラス基板との密着性と、反射防止効果との両立において、更なる改善の余地がある。   However, the conventional antireflection film has room for further improvement in coexistence of adhesion with the glass substrate and antireflection effect.

本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、光の反射防止効果と信頼性とを高いレベルで両立し得る光起電力装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a photovoltaic device capable of achieving both a light reflection preventing effect and reliability at a high level.

上記課題を解決するために、本発明のある態様の光起電力装置は、ガラス基板と、ガラス基板の受光面側に形成されている反射防止層と、ガラス基板の受光面と反対側に設けられ、光を電気に変える光起電力素子と、を備える。反射防止層は、ガラス基板よりも屈折率が小さくなるように構成されており、ガラス基板は、受光面側に、二乗平均平方根粗さRMSが100〜1100nmの範囲の凹凸を有する。   In order to solve the above-described problems, a photovoltaic device according to an aspect of the present invention is provided with a glass substrate, an antireflection layer formed on the light receiving surface side of the glass substrate, and a side opposite to the light receiving surface of the glass substrate. And a photovoltaic device that converts light into electricity. The antireflection layer is configured to have a refractive index smaller than that of the glass substrate, and the glass substrate has irregularities having a root mean square roughness RMS of 100 to 1100 nm on the light receiving surface side.

本発明によれば、光の反射防止効果と信頼性とを高いレベルで両立し得る。   According to the present invention, both the antireflection effect of light and the reliability can be achieved at a high level.

本実施の形態に係る光起電力装置の概略断面図である。It is a schematic sectional drawing of the photovoltaic apparatus which concerns on this Embodiment. 反射防止層の有無および屈折率の相違による光の波長と透過率との関係を示したグラフである。It is the graph which showed the relationship between the wavelength of light and the transmittance | permeability by the presence or absence of an antireflection layer, and the difference in refractive index. 加速劣化試験であるプレッシャークッカー試験による光の波長と透過率との関係の変化を示したグラフである。It is the graph which showed the change of the relationship between the wavelength of light and the transmittance | permeability by the pressure cooker test which is an accelerated deterioration test. 反射防止層の一例の断面TEM写真を示す図である。It is a figure which shows the cross-sectional TEM photograph of an example of an antireflection layer.

以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.

以下の各図に示す各層、各部の縮尺や形状は、説明を容易にするために便宜的に設定されており、特に言及がない限り限定的に解釈されるものではない。   The scales and shapes of each layer and each part shown in the following drawings are set for convenience of explanation, and are not limitedly interpreted unless otherwise specified.

図1は、本実施の形態に係る光起電力装置の概略断面図である。本実施の形態に係る光起電力装置10は、ガラス基板12と、ガラス基板12の受光面12a側に形成されている反射防止層14と、ガラス基板12の受光面12aと反対側に設けられ、光を電気に変える光起電力素子16と、を備える。   FIG. 1 is a schematic cross-sectional view of the photovoltaic device according to the present embodiment. The photovoltaic device 10 according to the present embodiment is provided on the opposite side of the glass substrate 12, the antireflection layer 14 formed on the light receiving surface 12a side of the glass substrate 12, and the light receiving surface 12a of the glass substrate 12. And a photovoltaic element 16 for converting light into electricity.

光起電力素子16は、第1電極層18、半導体層20および第2電極層22を有する。第1電極層18は、ガラス基板12の面上に形成されており、導電性および透光性を有する。本実施の形態に係る第1電極層18としては、透明導電性酸化膜(TCO)が用いられ、特に、高い光透過性、低抵抗性を有し、低価格である酸化亜鉛(ZnO)が好適である。   The photovoltaic element 16 includes a first electrode layer 18, a semiconductor layer 20, and a second electrode layer 22. The 1st electrode layer 18 is formed on the surface of the glass substrate 12, and has electroconductivity and translucency. As the first electrode layer 18 according to the present embodiment, a transparent conductive oxide film (TCO) is used, and in particular, zinc oxide (ZnO) having high light transmittance, low resistance, and low price is used. Is preferred.

半導体層20は、第1電極層18側からの入射光により電荷(電子および正孔)を生成する。半導体層20としては、例えば、pin接合またはpn接合を基本構造として有するアモルファス(非晶質)シリコン半導体層や微結晶シリコン半導体層の単層体あるいは積層体を用いることができる。本実施の形態に係る半導体層20は、第1電極層18側からそれぞれアモルファスシリコン半導体24、微結晶シリコン半導体26が積層されたものとして構成されている。なお、本明細書において、「微結晶」の用語は、完全な結晶状態のみならず、部分的に非結晶状態を含む状態をも意味するものとする。   The semiconductor layer 20 generates charges (electrons and holes) by incident light from the first electrode layer 18 side. As the semiconductor layer 20, for example, an amorphous (amorphous) silicon semiconductor layer having a pin junction or a pn junction as a basic structure, or a single layer or a stacked body of a microcrystalline silicon semiconductor layer can be used. The semiconductor layer 20 according to the present embodiment is configured by laminating an amorphous silicon semiconductor 24 and a microcrystalline silicon semiconductor 26 from the first electrode layer 18 side, respectively. Note that in this specification, the term “microcrystal” means not only a complete crystal state but also a state partially including an amorphous state.

また、アモルファスシリコン半導体24と微結晶シリコン半導体26との間に、中間層として、膜厚30nm程度の酸化シリコン(SiO)を設けてもよい。こうした中間層は、スパッタリング等により形成される。 Further, silicon oxide (SiO x ) having a thickness of about 30 nm may be provided as an intermediate layer between the amorphous silicon semiconductor 24 and the microcrystalline silicon semiconductor 26. Such an intermediate layer is formed by sputtering or the like.

第2電極層22は、微結晶シリコン半導体26上に形成される。第2電極層22は、酸化亜鉛(ZnO)などの透明導電性酸化物(TCO)と銀(Ag)などの反射性金属との積層構造体からなる。一の光起電力素子16の第2電極層22は、隣接する他の光起電力素子16の第1電極層18と導通するように配置されている。これにより、一の光起電力素子16と他の光起電力素子16とが電気的に直列に接続される。   The second electrode layer 22 is formed on the microcrystalline silicon semiconductor 26. The second electrode layer 22 is made of a laminated structure of a transparent conductive oxide (TCO) such as zinc oxide (ZnO) and a reflective metal such as silver (Ag). The second electrode layer 22 of one photovoltaic element 16 is disposed so as to be electrically connected to the first electrode layer 18 of another adjacent photovoltaic element 16. Thereby, one photovoltaic element 16 and the other photovoltaic element 16 are electrically connected in series.

次に、反射防止層について詳述する。反射防止層14に求められる特性は種々あるが、屈折率やガラス基板12との密着性が重要な特性である。光起電力装置10の受光面側に設けられる反射防止層14は、ガラス基板12の屈折率(約1.52)と、大気の屈折率(約1.0)との中間の屈折率を有するものが望ましい。しかし、大気に近い屈折率を有するような固体材料は少ないため、従来はガラス基板の材料よりもやや屈折率の小さなシリカ系無機材料、またはアクリル系樹脂材料などが用いられており、いずれも屈折率は1.46以上であることから、十分な反射防止効果が得られていなかった。   Next, the antireflection layer will be described in detail. Although there are various characteristics required for the antireflection layer 14, the refractive index and the adhesion to the glass substrate 12 are important characteristics. The antireflection layer 14 provided on the light receiving surface side of the photovoltaic device 10 has an intermediate refractive index between the refractive index (about 1.52) of the glass substrate 12 and the refractive index of the atmosphere (about 1.0). Things are desirable. However, since there are few solid materials that have a refractive index close to that of the atmosphere, silica-based inorganic materials or acrylic resin materials having a slightly lower refractive index than those of glass substrate materials have been used in the past. Since the rate was 1.46 or more, a sufficient antireflection effect was not obtained.

そこで、本実施の形態に係る反射防止層14は、材料自体の屈折率はガラス基板12よりもそれほど小さくはないが、図1に示すように内部に多くの空隙(空孔14a)を含ませている。これにより、反射防止層14全体の平均的な屈折率が小さくなるため、より高い反射防止効果を発揮できる。本実施の形態に係る反射防止層14は、材料自体の選択だけでは困難な屈折率1.45を実現している。   Therefore, although the antireflective layer 14 according to the present embodiment has a refractive index of the material itself that is not so small as that of the glass substrate 12, it includes a large number of voids (holes 14a) inside as shown in FIG. ing. Thereby, since the average refractive index of the whole antireflection layer 14 becomes small, a higher antireflection effect can be exhibited. The antireflection layer 14 according to the present embodiment achieves a refractive index of 1.45, which is difficult only by selecting the material itself.

図2は、反射防止層の有無および屈折率の相違による光の波長と透過率との関係を示したグラフである。図2に示すラインaやラインcに示すように、反射防止層が未コートの場合や、反射防止層の屈折率nが1.48程度の場合、可視光の波長域(約400〜1100nm)での透過率は十分なものとは言えない。一方、図2のラインbに示すように、ガラス基板12との屈折率の差が大きい反射防止層(屈折率n=1.45)を用いることで、可視光の波長域(約400〜1100nm)での透過率が向上している。   FIG. 2 is a graph showing the relationship between the light wavelength and the transmittance according to the presence or absence of the antireflection layer and the difference in refractive index. As shown in line a and line c shown in FIG. 2, when the antireflection layer is uncoated, or when the refractive index n of the antireflection layer is about 1.48, the visible light wavelength range (about 400 to 1100 nm). The transmittance at is not sufficient. On the other hand, as shown by line b in FIG. 2, the wavelength range of visible light (about 400 to 1100 nm) is obtained by using an antireflection layer (refractive index n = 1.45) having a large refractive index difference from glass substrate 12. ) Is improved.

一方、このような多くの空隙を含む反射防止層は、耐湿性、強度、および基板との密着性などが低下し、長期の屋外使用中に反射防止層がはく離、損傷することで、反射防止効果が低下する点に改善の余地がある。   On the other hand, such an antireflection layer containing many voids deteriorates moisture resistance, strength, adhesion to the substrate, etc., and the antireflection layer peels off and is damaged during long-term outdoor use, thereby preventing reflection. There is room for improvement in that the effect is reduced.

図3は、加速劣化試験であるプレッシャークッカー試験による光の波長と透過率との関係の変化を示したグラフである。プレッシャークッカー試験の条件は、相対湿度99%rh、器内圧力0.20MPa、器内温度121℃、であり、試験片の反射防止層の屈折率は1.45、ガラス基板の表面は平滑なものを用いている。図3に示すように、プレッシャークッカー試験の時間の経過とともに、透過率が全波長域で低下しており、反射防止効果が著しく低下することが判明した。これは、反射防止層の内部や、ガラス基板と反射防止層との界面への水分等の浸透により、反射防止層がはく離したことが原因である。   FIG. 3 is a graph showing a change in the relationship between the wavelength of light and the transmittance in a pressure cooker test which is an accelerated deterioration test. The conditions of the pressure cooker test were a relative humidity of 99% rh, an internal pressure of 0.20 MPa, and an internal temperature of 121 ° C., the refractive index of the antireflection layer of the test piece was 1.45, and the surface of the glass substrate was smooth. Something is used. As shown in FIG. 3, it was found that with the passage of time in the pressure cooker test, the transmittance decreased in the entire wavelength range, and the antireflection effect decreased significantly. This is because the antireflection layer peeled off due to the penetration of moisture or the like into the antireflection layer or the interface between the glass substrate and the antireflection layer.

そこで、本発明者は、反射防止層の屈折率を小さくしつつ、反射防止層とガラス基板との密着性を向上するために鋭意検討した結果、以下の構成に想到した。   Accordingly, the present inventors have intensively studied to improve the adhesion between the antireflection layer and the glass substrate while reducing the refractive index of the antireflection layer, and as a result, have arrived at the following configuration.

前述のように、本実施の形態に係る反射防止層14は、ガラス基板12よりも屈折率が小さくなるように構成されている。加えて、ガラス基板12は、反射防止層14との界面において、微細な凹凸が設けられている。具体的には、ガラス基板12は、JISで規定されている方法によって測定された二乗平均平方根粗さRMS(Rq)が100〜1100nmの範囲の凹凸を有する。二乗平均平方根粗さRMSが100nm未満であると、反射防止層14との密着性の改善の効果が小さい。一方、二乗平均平方根粗さRMSが1100nmより大きいと、凹凸の大きさが可視光の波長よりも大きくなってしまうため、太陽光中の可視光は、傾斜した凹凸面で幾何学反射し反射率が高まるため、透過光量が減少する。   As described above, the antireflection layer 14 according to the present embodiment is configured to have a refractive index smaller than that of the glass substrate 12. In addition, the glass substrate 12 is provided with fine irregularities at the interface with the antireflection layer 14. Specifically, the glass substrate 12 has irregularities having a root mean square roughness RMS (Rq) measured by a method defined by JIS in the range of 100 to 1100 nm. When the root mean square roughness RMS is less than 100 nm, the effect of improving the adhesion with the antireflection layer 14 is small. On the other hand, when the root mean square roughness RMS is larger than 1100 nm, the size of the unevenness becomes larger than the wavelength of visible light. Therefore, the visible light in sunlight is geometrically reflected by the inclined uneven surface and reflected. Increases, the amount of transmitted light decreases.

なお、400nm以下の波長の光は、ガラス基板12で吸収されやすく、光起電力素子16での発電に寄与する割合は高くない。そこで、ガラス基板12は、二乗平均平方根粗さRMSが400nm以上の範囲の凹凸を有してもよい。これにより、反射防止層14との密着性を更に向上できる。   Note that light having a wavelength of 400 nm or less is easily absorbed by the glass substrate 12, and the rate of contribution to power generation by the photovoltaic element 16 is not high. Therefore, the glass substrate 12 may have irregularities with a root mean square roughness RMS of 400 nm or more. Thereby, adhesiveness with the antireflection layer 14 can further be improved.

なお、二乗平均平方根粗さRMSの測定方法は、はじめに反射防止層の形成された試料を有機溶剤中(アルコール,アセトンなど)で超音波洗浄し、反射防止層をはく離する。次に、露出したガラス基板の表面を原子間力顕微鏡(AFM)により測定することにより二乗平均平方根粗さRMSを算出する。   Note that the root mean square roughness RMS is measured by first ultrasonically cleaning the sample on which the antireflection layer is formed in an organic solvent (alcohol, acetone, etc.), and peeling off the antireflection layer. Next, the root mean square roughness RMS is calculated by measuring the exposed surface of the glass substrate with an atomic force microscope (AFM).

このように、本実施の形態に係る光起電力装置10においては、ガラス基板12は、反射防止層14との界面において凹凸を有しているため、ガラス基板12と反射防止層14との密着性が増し、光起電力装置10の信頼性が増す。また、ガラス基板12表面の凹凸により、光が散乱することで、光起電力素子16での光路長が長くなり、光起電力素子16において光が吸収されやすくなる。   As described above, in the photovoltaic device 10 according to the present embodiment, the glass substrate 12 has irregularities at the interface with the antireflection layer 14, so that the glass substrate 12 and the antireflection layer 14 are in close contact with each other. And the reliability of the photovoltaic device 10 is increased. Further, the light is scattered by the irregularities on the surface of the glass substrate 12, so that the optical path length in the photovoltaic element 16 becomes long and the light is easily absorbed in the photovoltaic element 16.

次に、実施例に係る光起電力装置10の製造方法について詳述する。はじめに、ガラス基板12の一方の主面にサンドブラスト(研磨材:WA#1000、圧力:0.2MPa、噴射量:34g/s)処理を行った。その結果、ガラス基板12の一方の主面に二乗平均平方根粗さRMSが800nmの微細な凹凸が形成された。そして、ガラス基板12の、微細な凹凸が形成されている側の面上に、シリカゾルゲルを主成分とする液体を塗布し、150℃で30分間焼成することにより、屈折率1.45、膜厚85nmの反射防止層14を得た。シリカゾルゲルを主成分とする液体は、界面活性剤を含み、この界面活性剤の熱分解により、反射防止膜14は多数の空隙(空孔14a)を含むように形成される。   Next, a method for manufacturing the photovoltaic device 10 according to the embodiment will be described in detail. First, sandblasting (abrasive material: WA # 1000, pressure: 0.2 MPa, injection amount: 34 g / s) was performed on one main surface of the glass substrate 12. As a result, fine irregularities having a root mean square roughness RMS of 800 nm were formed on one main surface of the glass substrate 12. Then, a liquid mainly composed of silica sol-gel is applied on the surface of the glass substrate 12 on which fine irregularities are formed, and baked at 150 ° C. for 30 minutes. An antireflection layer 14 having a thickness of 85 nm was obtained. The liquid mainly composed of silica sol-gel contains a surfactant, and the antireflection film 14 is formed to include a large number of voids (holes 14a) by thermal decomposition of the surfactant.

次に、ガラス基板12の他方の主面上に、第1電極層18、アモルファスシリコン半導体24、微結晶シリコン半導体26、第2電極層22を順次積層し、アモルファスSi/微結晶Siから成るタンデム構造セルを形成し、実施例に係る光起電力装置10を作製した。   Next, the first electrode layer 18, the amorphous silicon semiconductor 24, the microcrystalline silicon semiconductor 26, and the second electrode layer 22 are sequentially stacked on the other main surface of the glass substrate 12 to form a tandem made of amorphous Si / microcrystalline Si. A structural cell was formed, and the photovoltaic device 10 according to the example was manufactured.

一方、比較例に係る光起電力装置として、微細凹凸が形成されていないガラス基板上に、本実施の形態と同等の反射防止層を形成したタンデム構造セルも作製した。表1は、実施例および比較例に係る光起電力装置の特性の測定結果を示している。なお、測定は複数回行い、最大値、最小値、平均値を表1に記載している。   On the other hand, as a photovoltaic device according to a comparative example, a tandem structure cell in which an antireflection layer equivalent to this embodiment was formed on a glass substrate on which fine unevenness was not formed was also produced. Table 1 shows the measurement results of the characteristics of the photovoltaic devices according to Examples and Comparative Examples. The measurement was performed a plurality of times, and the maximum value, minimum value, and average value are shown in Table 1.

表1に示す測定値、計算値の項目は、Voc(V):開放電圧、Isc(A):短絡電流、F.F.:曲線因子、Pmax:最大電力、η_cell(%):変換効率である。実施例1に係る光起電力装置は、比較例に係る光起電力装置と比較して、短絡電流(Isc)に関し、2.67%の向上が確認できた。これは、大気、反射防止層、ガラス基板へと太陽光が進行する際に、反射防止層とガラス基板との界面での屈折率変化が、可視光に対して階段状に変化せず、微細な凹凸によって平均的屈折率が徐々に変化した結果、より大きな反射防止効果が得られたためと考えられる。   Items of measured values and calculated values shown in Table 1 are as follows: Voc (V): open circuit voltage, Isc (A): short circuit current, F.V. F. : Fill factor, Pmax: maximum power, η_cell (%): conversion efficiency. The photovoltaic device according to Example 1 was confirmed to improve by 2.67% with respect to the short circuit current (Isc) as compared with the photovoltaic device according to the comparative example. This is because the refractive index change at the interface between the antireflection layer and the glass substrate does not change stepwise with respect to visible light when sunlight proceeds to the atmosphere, the antireflection layer, or the glass substrate. It is considered that a larger antireflection effect was obtained as a result of a gradual change in the average refractive index due to unevenness.

また、実施例に係る光起電力装置は、プレッシャークッカー試験においても、時間の経過に伴う短絡電流(Isc)の低下は認められず、高い信頼性を有していることが確認できた。   Moreover, the photovoltaic device which concerns on an Example WHEREIN: The fall of the short circuit current (Isc) with progress of time was not recognized also in the pressure cooker test, and it has confirmed that it had high reliability.

本実施の形態に係る反射防止層14は、前述のように、空孔14aが形成されている多孔質層である。これにより、反射防止層14の屈折率を材質を変えずに適宜小さくできる。   The antireflection layer 14 according to the present embodiment is a porous layer in which pores 14a are formed as described above. Thereby, the refractive index of the antireflection layer 14 can be appropriately reduced without changing the material.

図4は、反射防止層の一例の断面TEM写真を示す図である。図4に示す反射防止層は、空孔のサイズが約100nm×10nm程度であり、空孔率が10%程度と見積もられる。この場合、空孔の平均径は、測定箇所によって変化するが、10〜100nmの範囲と捉えることができる。   FIG. 4 is a view showing a cross-sectional TEM photograph of an example of the antireflection layer. The antireflection layer shown in FIG. 4 has a pore size of about 100 nm × 10 nm and a porosity of about 10%. In this case, the average diameter of the holes varies depending on the measurement location, but can be regarded as a range of 10 to 100 nm.

空孔は、その平均径が、ガラス基板の凹凸の二乗平均平方根粗さRMSよりも小さくなるように形成されていてもよい。これにより、反射防止層の屈折率を小さくできるとともに、反射防止層自体の強度の低下を抑制できる。   The pores may be formed such that the average diameter is smaller than the root mean square roughness RMS of the irregularities of the glass substrate. Thereby, while being able to make the refractive index of an antireflection layer small, the fall of the intensity | strength of antireflection layer itself can be suppressed.

なお、反射防止層14が多孔質層の場合、受光側からガラス基板側へ向かって、空孔14aの占める割合が段階的にまたは連続的に小さくなるように構成されていてもよい。これにより、反射防止層14における反射率を更に下げることができる。   In the case where the antireflection layer 14 is a porous layer, the proportion of the holes 14a may be reduced stepwise or continuously from the light receiving side toward the glass substrate side. Thereby, the reflectance in the antireflection layer 14 can be further lowered.

反射防止層14は、受光側からガラス基板側へ向かって、屈折率が段階的にまたは連続的に大きくなるように構成されていてもよい。これにより、反射防止層14における反射率を更に下げることができる。   The antireflection layer 14 may be configured such that the refractive index increases stepwise or continuously from the light receiving side toward the glass substrate side. Thereby, the reflectance in the antireflection layer 14 can be further lowered.

反射防止層14は、密度が2.4g/cm以下の二酸化ケイ素を主成分とする材料で構成されており、その厚みが60〜200nmの範囲であってもよい。これにより、ガラス基板12と組成が似た材料で反射防止層14を構成するため、ガラス基板12と反射防止層14との密着性を向上できる。また、反射防止層14により、ガラス基板12にアルカリ金属が含まれている場合であっても、アルカリ金属の析出が抑制され、ガラス基板12の白濁を防止することができる。 The antireflection layer 14 is made of a material mainly composed of silicon dioxide having a density of 2.4 g / cm 3 or less, and may have a thickness in the range of 60 to 200 nm. Thereby, since the anti-reflective layer 14 is comprised with the material similar to the glass substrate 12, the adhesiveness of the glass substrate 12 and the anti-reflective layer 14 can be improved. Moreover, even if it is a case where the alkali metal is contained in the glass substrate 12 by the antireflection layer 14, precipitation of an alkali metal is suppressed and the cloudiness of the glass substrate 12 can be prevented.

以上、本発明を上述の実施の形態を参照して説明したが、本発明は上述の実施の形態に限定されるものではなく、実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれ得る。   As described above, the present invention has been described with reference to the above-described embodiment. However, the present invention is not limited to the above-described embodiment, and the present invention can be appropriately combined or replaced with the configuration of the embodiment. It is included in the present invention. In addition, it is possible to appropriately change the combination and processing order in the embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to the embodiment. The described embodiments can also be included in the scope of the present invention.

上述の実施の形態に係る第1電極層18としては、酸化亜鉛(ZnO)の他、酸化スズ(SnO)、酸化インジウム(In)、酸化チタン(TiO)、スズ酸亜鉛(ZnSnO)などの金属酸化物より選択された一種類あるいは複数種類の積層体により構成されていてもよい。なお、これらの金属酸化物には、フッ素(F)、スズ(Sn)、アルミニウム(Al)、ガリウム(Ga)、ニオブ(Nb)などがドープされていてもよい。 As the first electrode layer 18 according to the above-described embodiment, in addition to zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), titanium oxide (TiO 2 ), zinc stannate ( Zn 2 SnO 4) may be configured by a metal one kind selected from oxides or plural kinds of laminates such. Note that these metal oxides may be doped with fluorine (F), tin (Sn), aluminum (Al), gallium (Ga), niobium (Nb), or the like.

また、上述の実施の形態では、ガラス基板の受光面側に設けられた微細な凹凸は、サンドブラスト処理により形成されているが、フッ酸によるエッチングにより形成してもよい。   Further, in the above-described embodiment, the fine unevenness provided on the light receiving surface side of the glass substrate is formed by sandblasting, but may be formed by etching with hydrofluoric acid.

また、反射防止層は、所定の粒径(粒子サイズ)を有するシリコン粒子を主成分とする液状材料を、ガラス基板上に塗布し、焼成して形成してもよい。この場合には、隣接するシリコン粒子間に生じる空隙が、反射防止層としての空隙に相当する。   Further, the antireflection layer may be formed by applying a liquid material mainly composed of silicon particles having a predetermined particle size (particle size) on a glass substrate and baking it. In this case, a gap generated between adjacent silicon particles corresponds to a gap as an antireflection layer.

10 光起電力装置、 12 ガラス基板、 12a 受光面、 14 反射防止層、 14a 空孔、 16 光起電力素子、 18 第1電極層、 20 半導体層、 22 第2電極層、 24 アモルファスシリコン半導体、 26 微結晶シリコン半導体。   DESCRIPTION OF SYMBOLS 10 Photovoltaic apparatus, 12 Glass substrate, 12a Light-receiving surface, 14 Antireflection layer, 14a Hole, 16 Photovoltaic element, 18 1st electrode layer, 20 Semiconductor layer, 22 2nd electrode layer, 24 Amorphous silicon semiconductor, 26 Microcrystalline silicon semiconductor.

Claims (5)

ガラス基板と、
前記ガラス基板の受光面側に形成されている反射防止層と、
前記ガラス基板の受光面と反対側に設けられ、光を電気に変える光起電力素子と、を備え、
前記反射防止層は、前記ガラス基板よりも屈折率が小さくなるように構成されており、
前記ガラス基板は、受光面側に、二乗平均平方根粗さRMSが100〜1100nmの範囲の凹凸を有することを特徴とする光起電力装置。
A glass substrate;
An antireflection layer formed on the light receiving surface side of the glass substrate;
A photovoltaic element provided on the side opposite to the light receiving surface of the glass substrate, which converts light into electricity,
The antireflection layer is configured to have a refractive index smaller than that of the glass substrate,
The photovoltaic device according to claim 1, wherein the glass substrate has irregularities having a root mean square roughness RMS of 100 to 1100 nm on the light receiving surface side.
前記反射防止層は、空孔が形成されている多孔質層であることを特徴とする請求項1に記載の光起電力装置。   The photovoltaic device according to claim 1, wherein the antireflection layer is a porous layer in which pores are formed. 前記空孔は、その平均径が、前記ガラス基板の凹凸の二乗平均平方根粗さRMSよりも小さくなるように形成されていることを特徴とする請求項2に記載の光起電力装置。   The photovoltaic device according to claim 2, wherein the vacancies are formed so that an average diameter thereof is smaller than a root mean square roughness RMS of the irregularities of the glass substrate. 前記多孔質層は、受光側からガラス基板側へ向かって、空孔の占める割合が段階的にまたは連続的に小さくなるように構成されていることを特徴とする請求項2または3に記載の光起電力装置。   The said porous layer is comprised so that the ratio for which a hole accounts may become small in steps or continuously toward the glass substrate side from the light-receiving side. Photovoltaic device. 前記反射防止層は、密度が2.4g/cm以下の二酸化ケイ素を主成分とする材料で構成されており、その厚みが60〜200nmの範囲であることを特徴とする請求項1乃至4のいずれか1項に記載の光起電力装置。 The antireflection layer is made of a material mainly composed of silicon dioxide having a density of 2.4 g / cm 3 or less, and has a thickness in the range of 60 to 200 nm. The photovoltaic device of any one of these.
JP2011166982A 2011-07-29 2011-07-29 Photovoltaic device Withdrawn JP2014199828A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011166982A JP2014199828A (en) 2011-07-29 2011-07-29 Photovoltaic device
PCT/JP2012/004485 WO2013018287A1 (en) 2011-07-29 2012-07-11 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011166982A JP2014199828A (en) 2011-07-29 2011-07-29 Photovoltaic device

Publications (1)

Publication Number Publication Date
JP2014199828A true JP2014199828A (en) 2014-10-23

Family

ID=47628839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011166982A Withdrawn JP2014199828A (en) 2011-07-29 2011-07-29 Photovoltaic device

Country Status (2)

Country Link
JP (1) JP2014199828A (en)
WO (1) WO2013018287A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3012970B1 (en) * 2013-06-17 2020-01-08 Kaneka Corporation Solar cell module and method for producing solar cell module

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005099693A (en) * 2003-09-05 2005-04-14 Hitachi Chem Co Ltd Composition for forming antireflection film, method for manufacturing antireflection film using the same, optical components and solar battery unit
JP2009088503A (en) * 2007-09-14 2009-04-23 Mitsubishi Chemicals Corp Laminated cover substrate for solar cell, solar cell and method for manufacturing the laminated cover substrate for solar cell
JP2011049460A (en) * 2009-08-28 2011-03-10 Mitsubishi Heavy Ind Ltd Photoelectric converter and substrate with transparent electrode layer
JP5905658B2 (en) * 2009-11-26 2016-04-20 旭化成イーマテリアルズ株式会社 Functional coating

Also Published As

Publication number Publication date
WO2013018287A1 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
US8022291B2 (en) Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
Liu et al. Hybridizing ZnO nanowires with micropyramid silicon wafers as superhydrophobic high-efficiency solar cells
JPWO2007040065A1 (en) Solar cell and solar cell module
US8710357B2 (en) Transparent conductive structure
JP2012522395A (en) Photovoltaic power generation apparatus and manufacturing method thereof
US20110186120A1 (en) Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
TW201115762A (en) Solar cell and method for fabricating the same
JP2003243676A (en) Thin-film photoelectric converting device
US20140083501A1 (en) Transparent conducting film having double structure and method of manufacturing the same
Ali et al. Enhancement of silicon solar cell efficiency by using back surface field in comparison of different antireflective coatings
JP5127925B2 (en) Thin film solar cell and manufacturing method thereof
CN101777588B (en) Light scattering multilayered structure and manufacturing method thereof
Hongsingthong et al. Development of novel Al-doped zinc oxide films fabricated on etched glass and their application to solar cells
Oyama et al. Requirements for TCO substrate in Si-based thin film solar cells-toward tandem
JP2014199828A (en) Photovoltaic device
JP5490031B2 (en) Photovoltaic device and photovoltaic module
JP2011054971A (en) Solar cell
JP5542038B2 (en) Thin film solar cell and method for manufacturing the same, thin film solar cell module
JP2012089712A (en) Thin film solar cell and method for manufacturing the same
US20190341516A1 (en) MICROSTRUCTURED ZnO COATINGS FOR IMPROVED PERFORMANCE IN Cu(In, Ga)Se2 PHOTOVOLTAIC DEVICES
JP2011222589A (en) Photovoltaic device and manufacturing method thereof
TWI470814B (en) Solar cell
JP2014011307A (en) Thin film solar cell and manufacturing method therefor, and thin film solar cell module
JP5650057B2 (en) Transparent electrode substrate and manufacturing method thereof
JP5563850B2 (en) Photoelectric conversion device and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20141104