JP2014199274A - Laminate and organic electroluminescent device - Google Patents

Laminate and organic electroluminescent device Download PDF

Info

Publication number
JP2014199274A
JP2014199274A JP2013073763A JP2013073763A JP2014199274A JP 2014199274 A JP2014199274 A JP 2014199274A JP 2013073763 A JP2013073763 A JP 2013073763A JP 2013073763 A JP2013073763 A JP 2013073763A JP 2014199274 A JP2014199274 A JP 2014199274A
Authority
JP
Japan
Prior art keywords
layer
light
light diffusion
diffusion layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013073763A
Other languages
Japanese (ja)
Other versions
JP5948276B2 (en
Inventor
佳奈 諸橋
Kana Morohashi
佳奈 諸橋
雄一郎 板井
Yuichiro Itai
雄一郎 板井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2013073763A priority Critical patent/JP5948276B2/en
Priority to PCT/JP2014/054350 priority patent/WO2014156418A1/en
Publication of JP2014199274A publication Critical patent/JP2014199274A/en
Application granted granted Critical
Publication of JP5948276B2 publication Critical patent/JP5948276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/877Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/872Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Abstract

PROBLEM TO BE SOLVED: To provide a laminate that has increased durability, has increased light extraction efficiency, and contributes to the suppression of the occurrence of stains and unevenness.SOLUTION: The laminate has, in this order, a substrate, a light diffusion layer containing light diffusion particles and a binder containing a (meth)acrylate resin, and a flattening layer containing a binder containing a (meth)acrylate resin, wherein the degree of polymerization of the light diffusion layer is 30 to 65% inclusive, and the degree of polymerization of the flattening layer is at least 50%.

Description

本発明は、積層体、及び有機電界発光装置に関する。   The present invention relates to a laminate and an organic electroluminescent device.

有機電界発光装置は、一対の電極間に有機発光層を有する構成であり、自発光型の表示装置であり、ディスプレイや照明の用途に期待されている。例えば、有機電界発光ディスプレイは、従来のCRTやLCDと比較して視認性が高く、視野角依存性がない等の表示性能上の利点を有している。また、ディスプレイを軽量化、薄層化できる利点もある。その一方、有機電界発光照明は、軽量化、薄層化が可能であるとの利点に加え、フレキシブルな基板を用いることでこれまで実現できなかった形状の照明を実現できる可能性を有している。   An organic electroluminescent device has a structure having an organic light emitting layer between a pair of electrodes, is a self-luminous display device, and is expected for use in displays and illumination. For example, an organic electroluminescent display has advantages in display performance such as higher visibility than conventional CRTs and LCDs and no viewing angle dependency. In addition, there is an advantage that the display can be made lighter and thinner. On the other hand, in addition to the advantages that organic electroluminescence lighting can be reduced in weight and thickness, it has the potential to realize illumination in a shape that could not be realized by using a flexible substrate. Yes.

光取り出し効率を向上させるために、基板と光拡散層と平坦化層とをこの順に有する積層体からなる光取り出し部材を有する有機電界発光装置が知られている(例えば特許文献1〜3)。光拡散層は、平均粒径がミクロンオーダーの光拡散粒子とバインダーとを含む層であり、光拡散粒子により有機発光層側から出射した光が散乱し、光取り出し側に拡散することで、光取り出し効率を向上させることができる。平坦化層は、光拡散層の表面が凹凸形状を有している場合などに、表面を平らにするために設けられ、その後の電極形成プロセスなどの工程を行いやすくするはたらきがある。   In order to improve the light extraction efficiency, an organic electroluminescence device having a light extraction member made of a laminate having a substrate, a light diffusion layer, and a planarization layer in this order is known (for example, Patent Documents 1 to 3). The light diffusing layer is a layer containing light diffusing particles having an average particle size of micron order and a binder. Light emitted from the organic light emitting layer side is scattered by the light diffusing particles and diffused to the light extraction side, thereby The extraction efficiency can be improved. The planarization layer is provided to flatten the surface when the surface of the light diffusion layer has an uneven shape, and serves to facilitate the subsequent steps such as the electrode formation process.

特開2012−155177号公報JP 2012-155177 A 特開2009−76452号公報JP 2009-76452 A 特開2012−221604号公報JP 2012-221604 A

しかしながら、有機電界発光装置において、光拡散層のバインダーとして(メタ)アクリレート系モノマーを重合してなる(メタ)アクリル系樹脂を用いた場合、光取り出し効率の低下や、発光面に暗い部分が多数発生し、明るく光っている部分との輝度差が生じ、シミ・ムラとなって視認されるため、外観上望ましくないという問題があった。このシミ・ムラは長時間の駆動で更に目立って見られる。
本発明者らは、上記問題の解決について検討したところ、光拡散層と平坦化層の重合度が関係していることを見出した。
本発明者らの検討によると、光拡散層中には光拡散粒子があるため、(メタ)アクリレート系モノマーが重合で体積収縮した際に、重合度が高すぎると、光拡散粒子とバインダーとの界面で応力が生じて膜が脆くなり、光拡散粒子とバインダーとの間に空隙ができて、光取出し効率が低下したり、上記のシミやムラが現れたりすることが分かった。
一方、光拡散層上の平坦化層は光拡散粒子を含まないため、重合度が高くなっても膜が脆くなることはない。また、平坦化層は、その上にITOなどの陽極を成膜する際のプラズマやスパッタダメージ、更にはフォトリソグラフィによるパターニングに耐えられるように十分に重合度を高くする必要がある。平坦化層の重合度が低すぎる場合、フォトリソグラフィによるパターニングのプロセス耐性が低かったり、ITOなどの陽極の成膜時のダメージによりITO表面が荒れ、時間経過とともに上記のシミやムラが現れたりする。
平坦化層の重合度を上げるため、光拡散層/平坦化層形成後にも加熱やUV照射を行う場合があるが、このとき下地である光拡散層も重合が更に進み、シミやムラが発生し、長時間の駆動でさらに顕著になる。
However, in an organic electroluminescent device, when a (meth) acrylic resin obtained by polymerizing a (meth) acrylate monomer is used as a binder for the light diffusion layer, the light extraction efficiency is reduced and there are many dark portions on the light emitting surface. There is a problem in that it is undesirable in appearance because it causes a brightness difference with a brightly shining portion and is visually recognized as spots or unevenness. This spot / unevenness is more noticeable when driving for a long time.
The inventors of the present invention have studied the solution of the above problem and found that the degree of polymerization of the light diffusion layer and the planarization layer is related.
According to the study by the present inventors, since there are light diffusing particles in the light diffusing layer, when the degree of polymerization is too high when the (meth) acrylate monomer undergoes volume shrinkage due to polymerization, the light diffusing particles and the binder It was found that stress was generated at the interface of the film and the film became brittle, and a gap was formed between the light diffusing particles and the binder, so that the light extraction efficiency was lowered, and the above-mentioned spots and unevenness appeared.
On the other hand, since the planarization layer on the light diffusion layer does not contain light diffusion particles, the film does not become brittle even when the degree of polymerization increases. Further, the planarization layer needs to have a sufficiently high degree of polymerization so that it can withstand plasma and sputter damage when an anode such as ITO is formed thereon, and further, patterning by photolithography. When the degree of polymerization of the planarization layer is too low, the process resistance of patterning by photolithography is low, or the ITO surface becomes rough due to damage during film formation of an anode such as ITO, and the above-mentioned spots and unevenness appear over time. .
In order to increase the degree of polymerization of the planarizing layer, heating or UV irradiation may be performed even after the light diffusing layer / planarizing layer is formed. At this time, the light diffusing layer as the base further undergoes polymerization, causing spots and unevenness. However, it becomes even more prominent when driven for a long time.

したがって、光取り出し効率が高く、発光面にシミやムラがない有機電界発光装置が求められている。
本発明は、耐久性向上、光取り出し効率の向上及びシミ・ムラ発生の抑制に寄与する積層体を提供することを目的とする。また、本発明は、耐久性が高く、光取り出し効率が高く、かつ、シミ・ムラが発生しない有機電界発光装置を提供することを目的とする。
Therefore, an organic electroluminescent device that has high light extraction efficiency and no spots or unevenness on the light emitting surface is desired.
An object of this invention is to provide the laminated body which contributes to durability improvement, the improvement of light extraction efficiency, and suppression of generation | occurrence | production of a spot and nonuniformity. Another object of the present invention is to provide an organic electroluminescent device that has high durability, high light extraction efficiency, and no spots or unevenness.

前記課題を解決するための手段としては、以下の通りである。   Means for solving the problems are as follows.

[1]
基板と、(メタ)アクリル系樹脂を含むバインダー及び光拡散粒子を含む光拡散層と、(メタ)アクリル系樹脂を含むバインダーを含む平坦化層とを、この順に有する積層体であって、光拡散層の重合度が30%以上65%以下であり、かつ、平坦化層の重合度が50%以上である積層体。
[2]
上記光拡散層中の光拡散粒子の平均粒径が0.5μm〜10μmである[1]に記載の積層体。
[3]
上記光拡散層中のバインダーの体積収縮率が2%以下である[1]又は[2]に記載の積層体。
[4]
上記光拡散層が、(メタ)アクリレート系モノマー、光拡散粒子、及び重合開始剤を含む光拡散層形成用組成物から形成され、
上記平坦化層が、(メタ)アクリレート系モノマー、及び重合開始剤を含む平坦化層形成用組成物から形成され、
光拡散層形成用組成物中の重合開始剤の配合割合が、(メタ)アクリレート系モノマーに対して3質量%以下であり、
平坦化層形成用組成物中の重合開始剤の配合割合が、(メタ)アクリレート系モノマーに対して3質量%以下である、[1]〜[3]のいずれかに記載の積層体。
[5]
上記光拡散粒子は、架橋された(メタ)アクリル系樹脂粒子である[1]〜[4]のいずれかに記載の積層体。
[6]
上記光拡散層及び上記平坦化層は、更に光触媒不活性処理した酸化チタン微粒子を含む[1]〜[5]のいずれかに記載の積層体。
[7]
[1]〜[6]のいずれかに記載の積層体と、上記積層体の平坦化層側に、第一電極と、有機発光層と、第二電極とを、この順に有する有機電界発光装置。
[1]
A laminate having a substrate, a light diffusion layer containing a binder containing (meth) acrylic resin and light diffusing particles, and a planarization layer containing a binder containing (meth) acrylic resin in this order, A laminate in which the diffusion layer has a polymerization degree of 30% to 65% and the planarization layer has a polymerization degree of 50% or more.
[2]
The laminate according to [1], wherein the light diffusion particles in the light diffusion layer have an average particle size of 0.5 μm to 10 μm.
[3]
The laminate according to [1] or [2], wherein the volume shrinkage of the binder in the light diffusion layer is 2% or less.
[4]
The light diffusion layer is formed from a composition for forming a light diffusion layer containing a (meth) acrylate monomer, a light diffusion particle, and a polymerization initiator,
The planarization layer is formed from a planarization layer-forming composition containing a (meth) acrylate monomer and a polymerization initiator,
The blending ratio of the polymerization initiator in the composition for forming a light diffusion layer is 3% by mass or less with respect to the (meth) acrylate monomer,
The laminated body in any one of [1]-[3] whose compounding ratio of the polymerization initiator in the composition for planarization layer formation is 3 mass% or less with respect to a (meth) acrylate type monomer.
[5]
The laminate according to any one of [1] to [4], wherein the light diffusion particles are crosslinked (meth) acrylic resin particles.
[6]
The said light-diffusion layer and the said planarization layer are laminated bodies in any one of [1]-[5] containing the titanium oxide microparticles | fine-particles which carried out the photocatalyst inactivation processing further.
[7]
[1] to [6] The organic electroluminescent device having the laminated body according to any one of [1] to [6] and a first electrode, an organic light emitting layer, and a second electrode in this order on the planarization layer side of the laminated body. .

本発明によれば、耐久性向上、光取り出し効率の向上及びシミ・ムラ発生の抑制に寄与する積層体を提供することができる。また、本発明によれば、耐久性が高く、光取り出し効率が高く、かつ、シミ・ムラが発生しない有機電界発光装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the laminated body which contributes to durability improvement, the improvement of light extraction efficiency, and suppression of generation | occurrence | production of a spot and nonuniformity can be provided. In addition, according to the present invention, it is possible to provide an organic electroluminescence device that has high durability, high light extraction efficiency, and no spots or unevenness.

本発明の積層体の一例を示す模式図である。It is a schematic diagram which shows an example of the laminated body of this invention. 本発明の有機電界発光装置の一例を示す模式図である。It is a schematic diagram which shows an example of the organic electroluminescent apparatus of this invention.

(積層体)
本発明の積層体は、基板と、(メタ)アクリル系樹脂を含むバインダー及び光拡散粒子を含む光拡散層と、バインダーを含む平坦化層とを、この順に有する積層体であって、光拡散層の重合度が30%以上65%以下であり、かつ、平坦化層の重合度が50%以上である。
図1は、本発明の積層体の一例を示す概略図である。この図1の積層体10は、基板1上に、光拡散層2と、平坦化層3とを有する。
(Laminate)
The laminate of the present invention is a laminate having a substrate, a binder containing (meth) acrylic resin and a light diffusing layer containing light diffusing particles, and a planarizing layer containing a binder in this order. The degree of polymerization of the layer is 30% or more and 65% or less, and the degree of polymerization of the planarizing layer is 50% or more.
FIG. 1 is a schematic view showing an example of a laminate of the present invention. The laminated body 10 in FIG. 1 has a light diffusion layer 2 and a planarizing layer 3 on a substrate 1.

<光拡散層>
本発明の積層体の光拡散層は、少なくとも(メタ)アクリル系樹脂を含むバインダーと光拡散粒子を含む。
<Light diffusion layer>
The light diffusion layer of the laminate of the present invention contains at least a binder containing (meth) acrylic resin and light diffusion particles.

<<バインダー>>
光拡散層のバインダーは、(メタ)アクリル系樹脂を含む。なお、「(メタ)アクリル系樹脂」とは、「アクリル系樹脂」と「メタクリル系樹脂」の両方を含む概念である。また、(メタ)アクリル系樹脂には、アクリレート/メタクリレートの誘導体、特にアクリレートエステル/メタクリレートエステルの(共)重合体も含まれる。「(メタ)アクリレート系モノマー」等も同様である。
(メタ)アクリル系樹脂は、(メタ)アクリレート系モノマーを重合させてなることが好ましい。
(メタ)アクリル系樹脂が有する繰り返し単位は、特に限定されない。前記(メタ)アクリル系樹脂は、繰り返し単位として(メタ)アクリル酸エステル単量体由来の繰り返し単位を有することが好ましい。
光拡散層のバインダーは、光取り出し効率の観点から、屈折率の大きいものが好ましい。バインダーの屈折率は、1.4〜1.9の範囲が好ましく、より好ましくは1.5〜1.85、さらに好ましくは1.55〜1.80である。バインダーの屈折率が上記範囲であれば、屈折率調整のために添加する後述の酸化チタン微粒子の量を少なくすることが出来る。酸化チタン微粒子の添加量が少ないと、酸化チタン微粒子の散乱や吸収が起こりにくく、膜の強度も適切に保たれやすいため好ましい。
<< Binder >>
The binder of the light diffusion layer contains a (meth) acrylic resin. The “(meth) acrylic resin” is a concept including both “acrylic resin” and “methacrylic resin”. The (meth) acrylic resin also includes acrylate / methacrylate derivatives, particularly acrylate / methacrylate (co) polymers. The same applies to “(meth) acrylate monomers” and the like.
The (meth) acrylic resin is preferably formed by polymerizing a (meth) acrylate monomer.
The repeating unit of the (meth) acrylic resin is not particularly limited. The (meth) acrylic resin preferably has a repeating unit derived from a (meth) acrylic acid ester monomer as a repeating unit.
The binder of the light diffusion layer is preferably a material having a large refractive index from the viewpoint of light extraction efficiency. The refractive index of the binder is preferably in the range of 1.4 to 1.9, more preferably 1.5 to 1.85, and still more preferably 1.55 to 1.80. If the refractive index of a binder is the said range, the quantity of the below-mentioned titanium oxide fine particle added for refractive index adjustment can be decreased. It is preferable to add a small amount of titanium oxide fine particles because the titanium oxide fine particles are unlikely to be scattered or absorbed and the strength of the film is easily maintained.

光拡散層のバインダーの体積収縮率は、2%以下であることが好ましく、1%以下であることがさらに好ましい。
ここでバインダーの体積収縮率とは、重合前のバインダー(モノマー)に対する硬化後のバインダー(ポリマー)の体積の変化率をいう。
前記バインダーの体積収縮率が2%以下であると、光拡散粒子とバインダーとの間に隙間が生じにくく、光取り出し効率が向上し、かつシミ・ムラが発生しにくくなるため好ましい。
The volume shrinkage ratio of the binder of the light diffusion layer is preferably 2% or less, and more preferably 1% or less.
Here, the volumetric shrinkage of the binder means the rate of change of the volume of the binder (polymer) after curing with respect to the binder (monomer) before polymerization.
When the volume shrinkage of the binder is 2% or less, it is preferable because no gap is generated between the light diffusion particles and the binder, the light extraction efficiency is improved, and spots and unevenness are hardly generated.

<<光拡散粒子>>
前記光拡散粒子としては、光を拡散可能なものであれば特に制限はなく、目的に応じて適宜選択することができ、有機粒子であっても、無機粒子であってもよく、2種以上の粒子を含有していても構わない。
<< light diffusion particles >>
The light diffusing particles are not particularly limited as long as they can diffuse light, and can be appropriately selected according to the purpose. The light diffusing particles may be organic particles, inorganic particles, or two or more kinds. These particles may be contained.

有機粒子としては、例えば(メタ)アクリル系樹脂粒子(例えば、ポリメチルメタクリレート粒子、架橋ポリメチルメタクリレート粒子、アクリル−スチレン共重合体粒子)、メラミン粒子、ポリカーボネート粒子、ポリスチレン粒子、架橋ポリスチレン粒子、ポリ塩化ビニル粒子、ベンゾグアナミン−メラミンホルムアルデヒド粒子、などが挙げられる。
無機粒子としては、例えばZrO、TiO、Al、In、ZnO、SnO、Sb、などが挙げられる。これらの中でも、TiO、ZrO、ZnO、SnOが特に好ましい。
Examples of organic particles include (meth) acrylic resin particles (for example, polymethyl methacrylate particles, cross-linked polymethyl methacrylate particles, acrylic-styrene copolymer particles), melamine particles, polycarbonate particles, polystyrene particles, cross-linked polystyrene particles, poly Examples include vinyl chloride particles, benzoguanamine-melamine formaldehyde particles, and the like.
Examples of inorganic particles include ZrO 2 , TiO 2 , Al 2 O 3 , In 2 O 3 , ZnO, SnO 2 , Sb 2 O 3 , and the like. Among these, TiO 2 , ZrO 2 , ZnO, and SnO 2 are particularly preferable.

光拡散粒子としては、耐溶剤性とバインダー中の分散性の点で架橋状態の樹脂粒子が好ましく、架橋された(メタ)アクリル系樹脂粒子が特に好ましい。
光拡散粒子が、架橋状態の樹脂粒子であることは、溶剤、例えばトルエン中に分散させ、樹脂粒子の溶け難さを見ることで確認することができる。
As the light diffusing particles, crosslinked resin particles are preferable in terms of solvent resistance and dispersibility in the binder, and crosslinked (meth) acrylic resin particles are particularly preferable.
It can be confirmed that the light diffusing particles are crosslinked resin particles by dispersing in a solvent, for example, toluene and checking the difficulty of dissolution of the resin particles.

前記光拡散粒子の平均粒径は、0.5μm〜10μmが好ましく、0.5μm〜6μmがより好ましく、1〜3μmが更に好ましい。前記光拡散粒子の平均粒径が10μm以下であれば、光の殆どが前方散乱にならず、光拡散粒子による光の角度を変換する能力が低下しないため好ましい。一方、前記光拡散粒子の平均粒径が、0.5μm以上であれば、可視光の波長より小さくならず、ミー散乱がレイリー散乱の領域に変化せず、光拡散粒子の散乱効率の波長依存性が小さくなり、有機電界発光装置の色度が変わりにくく、後方散乱が強くならず、光取り出し効率が向上するため好ましい。
前記光拡散粒子の平均粒径は、例えば日機装株式会社製ナノトラックUPA−EX150等の動的光散乱法を利用した装置や、電子顕微鏡写真の画像処理により測定することができる。
The average particle diameter of the light diffusion particles is preferably 0.5 μm to 10 μm, more preferably 0.5 μm to 6 μm, and still more preferably 1 to 3 μm. If the average particle diameter of the light diffusing particles is 10 μm or less, most of the light does not scatter forward, and the ability to convert the angle of light by the light diffusing particles does not decrease. On the other hand, if the average particle diameter of the light diffusing particles is 0.5 μm or more, it does not become smaller than the wavelength of visible light, Mie scattering does not change to the Rayleigh scattering region, and the wavelength dependence of the scattering efficiency of the light diffusing particles The chromaticity of the organic electroluminescent device hardly changes, the backscattering does not become strong, and the light extraction efficiency is improved.
The average particle diameter of the light diffusing particles can be measured by an apparatus using a dynamic light scattering method such as Nanotrack UPA-EX150 manufactured by Nikkiso Co., Ltd., or by image processing of an electron micrograph.

前記光拡散粒子の屈折率は、特に制限はなく、目的に応じて適宜選択することができるが、1.0〜3.0が好ましく、1.2〜1.6がより好ましく、1.3〜1.5が更に好ましい。前記屈折率が、1.0未満及び3.0を超えると、光拡散(散乱)が強くなりすぎるため、光取り出し効率が低下することがある。
前記光拡散粒子の屈折率は、例えば自動屈折率測定器(KPR−2000、株式会社島津製作所製)を用い、屈折液の屈折率を測定してから、精密分光計(GMR−1DA、株式会社島津製作所製)で、シュリブスキー法により測定することができる。
The refractive index of the light diffusing particles is not particularly limited and can be appropriately selected according to the purpose, but is preferably 1.0 to 3.0, more preferably 1.2 to 1.6, and 1.3. -1.5 is more preferable. When the refractive index is less than 1.0 and more than 3.0, light diffusion (scattering) becomes too strong, and the light extraction efficiency may be lowered.
The refractive index of the light diffusing particles is determined by measuring the refractive index of the refractive liquid using, for example, an automatic refractive index measuring device (KPR-2000, manufactured by Shimadzu Corporation), and then using a precision spectrometer (GMR-1DA, Inc.). (Manufactured by Shimadzu Corporation).

前記光拡散層における光拡散粒子の含有量は、30体積%以上66体積%以下が好ましく、40体積%以上60体積%以下がより好ましく、45体積%以上55体積%以下が特に好ましい。前記含有量が、30体積%以上であると、光拡散層に入射してきた光が光拡散粒子に散乱される確率が高く、光拡散層の光角度を変換する能力が大きくなり、光拡散層の厚みを厚くしなくても光取り出し効率を向上させることができる。また、前記光拡散層の厚みを厚くしなくてもよいことはコストの低減に繋がり、光拡散層の厚みのバラツキが小さくなり、発光面内の散乱効果にバラツキが生じにくいため好ましい。一方、前記含有量が、66体積%以下であれば、前記光拡散層のバインダーが光拡散粒子を充分に覆い内部にも空洞が生じないため、光拡散層の物理的強度が高いものとなる。   The content of the light diffusion particles in the light diffusion layer is preferably 30% by volume or more and 66% by volume or less, more preferably 40% by volume or more and 60% by volume or less, and particularly preferably 45% by volume or more and 55% by volume or less. When the content is 30% by volume or more, there is a high probability that the light incident on the light diffusion layer is scattered by the light diffusion particles, and the ability to convert the light angle of the light diffusion layer is increased. The light extraction efficiency can be improved without increasing the thickness of the light source. Further, it is preferable not to increase the thickness of the light diffusing layer because this leads to cost reduction, the variation in the thickness of the light diffusing layer is reduced, and the scattering effect in the light emitting surface is less likely to occur. On the other hand, when the content is 66% by volume or less, the binder of the light diffusing layer sufficiently covers the light diffusing particles, and no cavities are formed inside, so that the physical strength of the light diffusing layer is high. .

光拡散層は上記バインダーと光拡散粒子以外の成分を含んでもよい。   The light diffusion layer may contain components other than the binder and the light diffusion particles.

<<酸化チタン微粒子>>
光拡散層は、有機発光層側から出射した光を効率よく取り出すために、有機発光層と同等以上の屈折率(例えば1.8以上)を有することが好ましい。光拡散層の屈折率を高くするために、酸化チタンを主成分とするナノ粒子を用いることができる。すなわち、光拡散層は、酸化チタン微粒子を含むことが好ましく、特に、光触媒不活性処理した酸化チタン微粒子を含むことが好ましい。
光触媒不活性処理した酸化チタン微粒子は、光触媒活性を有していなければ特に制限はなく、目的に応じて適宜選択することができるが、(1)酸化チタン微粒子表面をアルミナ、シリカ、及びジルコニアの少なくとも1種で被覆した酸化チタン微粒子、(2)前記(1)の被覆した酸化チタン微粒子の被覆表面に樹脂を被覆してなる酸化チタン微粒子などが挙げられる。前記樹脂としては、例えばポリメタクリル酸メチル(PMMA)などが挙げられる。
<< Titanium oxide fine particles >>
The light diffusion layer preferably has a refractive index equal to or higher than that of the organic light emitting layer (for example, 1.8 or higher) in order to efficiently extract light emitted from the organic light emitting layer side. In order to increase the refractive index of the light diffusion layer, nanoparticles mainly composed of titanium oxide can be used. That is, the light diffusion layer preferably contains titanium oxide fine particles, and particularly preferably contains titanium oxide fine particles subjected to photocatalytic inactivation treatment.
The titanium oxide fine particles subjected to the photocatalytic deactivation treatment are not particularly limited as long as they do not have photocatalytic activity, and can be appropriately selected according to the purpose. (1) The surface of the titanium oxide fine particles is made of alumina, silica, and zirconia. Examples include titanium oxide fine particles coated with at least one kind, and (2) titanium oxide fine particles formed by coating a resin on the coated surface of the titanium oxide fine particles coated in (1). Examples of the resin include polymethyl methacrylate (PMMA).

前記光触媒不活性処理した酸化チタン微粒子が、光触媒活性を有さないことの確認は、例えばメチレンブルー法により行うことができる。   Confirmation that the photocatalytically inactivated titanium oxide fine particles do not have photocatalytic activity can be performed by, for example, a methylene blue method.

前記光触媒不活性処理した酸化チタン微粒子における酸化チタン微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、結晶構造は、ルチル、ルチル/アナターゼの混晶、アナターゼが主成分であることが好ましく、特にルチル構造が主成分であることが好ましい。
前記酸化チタン微粒子は、酸化チタン以外の金属酸化物を添加して複合化させても構わない。
前記酸化チタン微粒子に複合化させることができる金属酸化物としては、Sn、Zr、Si、Zn、及びAlから選択される少なくとも1種の金属酸化物が好ましい。
前記金属酸化物のチタンに対する添加量は、1モル%〜40モル%が好ましく、2モル%〜35モル%がより好ましく、3モル%〜30モル%が更に好ましい。
The titanium oxide fine particles in the photocatalyst-inactivated titanium oxide fine particles are not particularly limited and can be appropriately selected according to the purpose. The crystal structure is mainly composed of rutile, a rutile / anatase mixed crystal, and anatase. It is preferable that there is a rutile structure as a main component.
The titanium oxide fine particles may be compounded by adding a metal oxide other than titanium oxide.
The metal oxide that can be combined with the titanium oxide fine particles is preferably at least one metal oxide selected from Sn, Zr, Si, Zn, and Al.
The amount of the metal oxide added to titanium is preferably 1 mol% to 40 mol%, more preferably 2 mol% to 35 mol%, still more preferably 3 mol% to 30 mol%.

前記酸化チタン微粒子の一次平均粒径は、1nm〜30nmが好ましく、1nm〜25nmがより好ましく、1nm〜20nmが更に好ましい。前記一次平均粒径が、30nmを超えると、分散液が白濁し、沈降が起きることがあり、1nm未満であると、結晶構造がはっきりせずアモルファスに近いものとなり、経時でゲル化などの変化が起こるようになる。
前記一次平均粒径は、例えば、X線回折装置で測定された回折パターンの半値幅からの計算や電子顕微鏡(TEM)撮影像の直径からの統計計算などにより測定することができる。
前記酸化チタン微粒子の形状は、特に制限はなく、目的に応じて適宜選択することができるが、例えば、米粒状、球形状、立方体状、紡錘形状、又は不定形状が好ましい。前記酸化チタン微粒子は、1種を単独で用いてもよいが、2種類以上を併用して用いることもできる。
The primary average particle diameter of the titanium oxide fine particles is preferably 1 nm to 30 nm, more preferably 1 nm to 25 nm, and still more preferably 1 nm to 20 nm. If the primary average particle size exceeds 30 nm, the dispersion may become cloudy and sedimentation may occur. If the primary average particle size is less than 1 nm, the crystal structure is not clear and becomes nearly amorphous, and changes such as gelation over time. Will happen.
The primary average particle diameter can be measured, for example, by calculation from a half-value width of a diffraction pattern measured by an X-ray diffractometer or statistical calculation from a diameter of an electron microscope (TEM) image.
The shape of the titanium oxide fine particles is not particularly limited and may be appropriately selected according to the purpose. For example, a rice grain shape, a spherical shape, a cubic shape, a spindle shape, or an indefinite shape is preferable. The titanium oxide fine particles may be used alone or in combination of two or more.

前記光触媒不活性処理した酸化チタン微粒子は、屈折率が2.2以上3.0以下であり、2.2以上2.8以下がより好ましく、2.2以上2.6以下が更に好ましい。前記屈折率が、2.2以上であれば、光拡散層の屈折率を効果的に高めることができ、前記屈折率が、3.0以下であれば、光触媒不活性処理した酸化チタン微粒子が着色するなどの不都合がないので好ましい。
ここで、前記酸化チタン微粒子のように屈折率が高く(1.8以上)、平均一次粒径が1〜100nm程度の微粒子の屈折率を測定することは困難であるが、次のようにして屈折率を測定することができる。屈折率既知の樹脂材料に前記酸化チタン微粒子をドープし、前記酸化チタン微粒子が分散された樹脂材料をSi基板、又は石英基板上に塗布膜を形成する。前記塗布膜の屈折率をエリプソメーターで測定し、前記塗布膜を構成する樹脂材料と酸化チタン微粒子の体積分率から、前記酸化チタン微粒子の屈折率が判る。
The photocatalyst-inactivated titanium oxide fine particles have a refractive index of 2.2 or more and 3.0 or less, more preferably 2.2 or more and 2.8 or less, and further preferably 2.2 or more and 2.6 or less. If the refractive index is 2.2 or more, the refractive index of the light diffusion layer can be effectively increased, and if the refractive index is 3.0 or less, the photocatalyst-inactivated titanium oxide fine particles can be obtained. This is preferable because there is no inconvenience such as coloring.
Here, it is difficult to measure the refractive index of fine particles having a high refractive index (1.8 or more) and an average primary particle diameter of about 1 to 100 nm, as in the case of the titanium oxide fine particles. The refractive index can be measured. A resin material having a known refractive index is doped with the titanium oxide fine particles, and a coating film is formed on the Si substrate or the quartz substrate with the resin material in which the titanium oxide fine particles are dispersed. The refractive index of the coating film is measured with an ellipsometer, and the refractive index of the titanium oxide particles can be determined from the volume fraction of the resin material and the titanium oxide particles that constitute the coating film.

前記光触媒不活性処理した酸化チタン微粒子の含有量は、前記バインダーに対し、10体積%以上30体積%以下であり、10体積%以上25体積%以下がより好ましく、10体積%以上20体積%以下が更に好ましい。前記含有量が、10体積%以上であると、バインダーの屈折率を上げる作用が大きく、光取り出し効果が高くなり、30体積%以下であると、レイリー散乱が強くならず、光取り出し効果が向上するため好ましい。   The content of the photocatalyst-inactivated titanium oxide fine particles is 10% by volume to 30% by volume, more preferably 10% by volume to 25% by volume, and more preferably 10% by volume to 20% by volume with respect to the binder. Is more preferable. When the content is 10% by volume or more, the action of increasing the refractive index of the binder is large and the light extraction effect is high, and when it is 30% by volume or less, Rayleigh scattering does not become strong and the light extraction effect is improved. Therefore, it is preferable.

<光拡散層形成用組成物>
光拡散層は、(メタ)アクリル系樹脂を含むバインダーとなる(メタ)アクリレート系モノマーと光拡散粒子を含み、必要に応じて酸化チタン微粒子を含む光拡散層形成用組成物から形成されることが好ましい。
光拡散層形成用組成物は、上記成分以外の成分を含んでもよく、該成分としては、重合開始剤、溶媒などが挙げられる。
<Composition for forming light diffusion layer>
The light diffusion layer includes a (meth) acrylate monomer serving as a binder including a (meth) acrylic resin and a light diffusion particle, and is formed from a composition for forming a light diffusion layer including titanium oxide fine particles as necessary. Is preferred.
The composition for forming a light diffusion layer may contain components other than the above components, and examples of the components include a polymerization initiator and a solvent.

<<重合開始剤>>
光拡散層形成用組成物には、重合開始剤を含有することが好ましい。前記重合開始剤としては、熱重合開始剤、光重合開始剤などが挙げられ、光重合開始剤が好ましい。
前記重合開始剤は、光及び/又は熱照射により、ラジカルもしくは酸を発生する化合物が好ましく、光によりラジカルもしくは酸を発生する化合物がより好ましい。
前記光重合開始剤は、極大吸収波長が400nm以下が好ましい。このように吸収波長を紫外線領域にすることにより、取り扱いを白灯下で実施することができる。また、近赤外線領域に極大吸収波長を持つ化合物を用いることもできる。
<< Polymerization initiator >>
The composition for forming a light diffusion layer preferably contains a polymerization initiator. As said polymerization initiator, a thermal polymerization initiator, a photoinitiator, etc. are mentioned, A photoinitiator is preferable.
The polymerization initiator is preferably a compound that generates a radical or an acid by light and / or heat irradiation, and more preferably a compound that generates a radical or an acid by light.
The photopolymerization initiator preferably has a maximum absorption wavelength of 400 nm or less. Thus, the handling can be performed under a white light by setting the absorption wavelength to the ultraviolet region. A compound having a maximum absorption wavelength in the near infrared region can also be used.

前記ラジカルを発生する化合物は、光及び/又は熱照射によりラジカルを発生し、重合性の不飽和基を有する化合物の重合を、開始、促進させる化合物を指す。公知の重合開始剤や結合解離エネルギーの小さな結合を有する化合物などを、適宜、選択して用いることができる。また、ラジカルを発生する化合物は、単独で又は2種以上を併用することができる。   The compound that generates radicals refers to a compound that generates radicals by irradiation with light and / or heat, and initiates and accelerates polymerization of a compound having a polymerizable unsaturated group. A known polymerization initiator or a compound having a bond with a small bond dissociation energy can be appropriately selected and used. Moreover, the compound which generate | occur | produces a radical can be used individually or in combination of 2 or more types.

前記ラジカルを発生する化合物としては、例えば、従来公知の有機過酸化化合物、アゾ系重合開始剤等の熱ラジカル重合開始剤、有機過酸化化合物(特開2001−139663号公報等)、アミン化合物(特公昭44−20189号公報記載)、メタロセン化合物(特開平5−83588号公報、特開平1−304453号公報等記載)、ヘキサアリールビイミダゾール化合物(米国特許第3,479,185号明細書等記載)、ジスルホン化合物(特開平5−239015号公報、特開昭61−166544号公報等)、有機ハロゲン化化合物、カルボニル化合物、有機ホウ酸化合物、ホスフィンオキサイド化合物、ホスホナート化合物等の光ラジカル重合開始剤が挙げられる。前記ラジカル発生剤としてより好ましくは、ホスフィンオキサイド化合物、ホスホナート化合物であり、特に好ましくはアシルフォスフィンオキサイド、アシルホスホナート等が挙げられ、具体的にはビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイドである。   Examples of the compound that generates radicals include conventionally known organic peroxide compounds, thermal radical polymerization initiators such as azo polymerization initiators, organic peroxide compounds (JP-A No. 2001-139663, etc.), amine compounds ( JP-B-44-20189), metallocene compounds (described in JP-A-5-83588, JP-A-1-304453, etc.), hexaarylbiimidazole compounds (US Pat. No. 3,479,185, etc.) Description), radical photopolymerization of disulfone compounds (JP-A-5-239015, JP-A-61-166544, etc.), organic halogenated compounds, carbonyl compounds, organic boric acid compounds, phosphine oxide compounds, phosphonate compounds, etc. Agents. The radical generator is more preferably a phosphine oxide compound or a phosphonate compound, particularly preferably an acyl phosphine oxide, an acyl phosphonate, or the like. Specifically, bis (2,4,6-trimethylbenzoyl)- It is phenylphosphine oxide.

前記有機ハロゲン化化合物としては、具体的には、若林等の"Bull.Chem.Soc Japan",42巻2924頁(1969年)、米国特許第3,905,815号明細書、特開平5−27830号公報、M.P.Hutt,"J.Heterocyclic Chemistry",1巻(3号)、(1970年)」等に記載の化合物が挙げられ、特に、トリハロメチル基が置換したオキサゾール化合物:s−トリアジン化合物が挙げられる。より好適には、少なくとも一つのモノ、ジ又はトリハロゲン置換メチル基がs−トリアジン環に結合したs−トリアジン誘導体が挙げられる。   Specific examples of the organic halogenated compounds include Wakabayashi et al., “Bull. Chem. Soc Japan”, 42, 2924 (1969), US Pat. No. 3,905,815, 27830, M.M. P. Hutt, “J. Heterocyclic Chemistry”, Vol. 1 (No. 3), (1970) ”and the like, and in particular, an oxazole compound substituted with a trihalomethyl group: an s-triazine compound. More preferable examples include s-triazine derivatives in which at least one mono, di, or trihalogen-substituted methyl group is bonded to the s-triazine ring.

前記カルボニル化合物としては、例えば、「最新 UV硬化技術」60ページ〜62ページ[株式会社技術情報協会刊、1991年]、特開平8−134404号公報の段落番号〔0015〕〜〔0016〕、特開平11−217518号公報の段落番号〔0029〕〜〔0031〕に記載の化合物などが挙げられる。また、アセトフェノン系、ヒドロキシアセトフェノン系、ベンゾフェノン系、チオキサン系、ベンゾインエチルエーテル、ベンゾインイソブチルエーテル等のベンゾイン化合物、p−ジメチルアミノ安息香酸エチル、p−ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体、ベンジルジメチルケタール、アシルフォスフィンオキサイドなどが挙げられる。   Examples of the carbonyl compound include, for example, “Latest UV Curing Technology”, pages 60 to 62 [published by Technical Information Association, 1991], paragraphs [0015] to [0016] of JP-A-8-134404, Examples include the compounds described in paragraph numbers [0029] to [0031] of Kaihei 11-217518. Further, benzoin compounds such as acetophenone, hydroxyacetophenone, benzophenone, thioxan, benzoin ethyl ether, benzoin isobutyl ether, benzoic acid ester derivatives such as ethyl p-dimethylaminobenzoate, ethyl p-diethylaminobenzoate, benzyldimethyl Examples include ketal and acylphosphine oxide.

前記有機ホウ酸塩化合物としては、例えば、特許第2764769号、特開2002−116539号等の各公報、及び、Kunz,Martin,"Rad.Tech'98.Proceeding April 19〜22,1998,Chicago"等に記載される有機ホウ酸塩記載される化合物が挙げられる。例えば、前記特開2002−116539号公報の段落番号〔0022〕〜〔0027〕に記載の化合物が挙げられる。またその他の有機ホウ素化合物としては、特開平6−348011号公報、特開平7−128785号公報、特開平7−140589号公報、特開平7−306527号公報、特開平7−292014号公報等の有機ホウ素遷移金属配位錯体等が具体例として挙げられる。   Examples of the organic borate compound include, for example, Japanese Patent Nos. 2764769 and 2002-116539, and Kunz, Martin, “Rad. Tech'98. Proceeding April 19-22, 1998, Chicago”. And the organic borates described in the above. For example, the compounds described in paragraphs [0022] to [0027] of JP-A-2002-116539 can be mentioned. Examples of other organic boron compounds include JP-A-6-348011, JP-A-7-128785, JP-A-7-140589, JP-A-7-306527, and JP-A-7-292014. Specific examples include organoboron transition metal coordination complexes.

次に、光重合開始剤として用いることができる光酸発生剤について詳述する。
前記光酸発生剤としては、光カチオン重合の光開始剤、色素類の光消色剤、光変色剤、又はマイクロレジスト等に使用されている公知の光酸発生剤等、公知の化合物及びそれらの混合物等が挙げられる。また、前記光酸発生剤としては、例えば、有機ハロゲン化化合物、ジスルホン化合物、オニウム化合物などが挙げられる。これらの中でも、有機ハロゲン化化合物、ジスルホン化合物が特に好ましい。前記有機ハロゲン化合物、ジスルホン化合物の具体例は、前記ラジカルを発生する化合物の記載と同様のものが挙げられる。
Next, a photoacid generator that can be used as a photopolymerization initiator will be described in detail.
Examples of the photoacid generator include known compounds such as photoinitiators for photocationic polymerization, photodecolorants for dyes, photochromic agents, or known photoacid generators used in microresists, and the like. And the like. Examples of the photoacid generator include organic halogenated compounds, disulfone compounds, onium compounds, and the like. Among these, organic halogenated compounds and disulfone compounds are particularly preferable. Specific examples of the organic halogen compound and the disulfone compound are the same as those described for the compound generating the radical.

前記オニウム化合物としては、例えばジアゾニウム塩、アンモニウム塩、イミニウム塩、ホスホニウム塩、ヨードニウム塩、スルホニウム塩、アルソニウム塩、セレノニウム塩等が挙げられ、例えば特開2002−29162号公報の段落番号〔0058〕〜〔0059〕に記載の化合物、などが挙げられる。   Examples of the onium compounds include diazonium salts, ammonium salts, iminium salts, phosphonium salts, iodonium salts, sulfonium salts, arsonium salts, selenonium salts, and the like, for example, paragraph numbers [0058] to JP-A-2002-29162. And the compounds described in [0059].

前記酸発生剤としては、オニウム塩が特に好適に用いられ、中でも、ジアゾニウム塩、ヨードニウム塩、スルホニウム塩、イミニウム塩が、光重合開始の光感度、化合物の素材安定性等の点から好ましい。   As the acid generator, an onium salt is particularly preferably used, and among them, a diazonium salt, an iodonium salt, a sulfonium salt, and an iminium salt are preferable from the viewpoint of photosensitivity at the start of photopolymerization, material stability of the compound, and the like.

前記オニウム塩の具体例としては、例えば、特開平9−268205号公報の段落番号〔0035〕に記載のアミル化されたスルホニウム塩、特開2000−71366号公報の段落番号〔0010〕〜〔0011〕に記載のジアリールヨードニウム塩又はトリアリールスルホニウム塩、特開2001−288205号公報の段落番号〔0017〕に記載のチオ安息香酸S−フェニルエステルのスルホニウム塩、特開2001−133696号公報の段落番号〔0030〕〜〔0033〕に記載のオニウム塩等が挙げられる。   Specific examples of the onium salt include, for example, an amylated sulfonium salt described in paragraph [0035] of JP-A-9-268205, and paragraphs [0010] to [0011] of JP-A-2000-71366. A diaryl iodonium salt or a triarylsulfonium salt described in JP-A-2001-288205, a sulfonium salt of thiobenzoic acid S-phenyl ester described in JP-A-2001-288205, a paragraph number in JP-A-2001-133696 Examples include the onium salts described in [0030] to [0033].

前記光酸発生剤の他の例としては、特開2002−29162号公報の段落番号〔0059〕〜〔0062〕に記載の有機金属/有機ハロゲン化物、o−ニトロベンジル型保護基を有する光酸発生剤、光分解してスルホン酸を発生する化合物(イミノスルフォネート等)等の化合物が挙げられる。   Other examples of the photoacid generator include organic metal / organic halides described in JP-A-2002-29162, paragraphs [0059] to [0062], and photoacids having an o-nitrobenzyl type protecting group. Examples thereof include compounds such as a generator and a compound that generates photosulfonic acid to generate sulfonic acid (such as iminosulfonate).

重合開始剤は、単独で用いてもよいし、2種以上を併用してもよい。
重合開始剤の添加量は、前記バインダーとなる(メタ)アクリレート系モノマーに対して3質量%以下であることが好ましく、1〜2.5質量%がより好ましく、1.5〜2.2質量%が更に好ましい。上記重合開始剤の添加量が3質量%以下であれば光拡散層において、重合度が高くなりすぎず、光拡散粒子とバインダーとの界面で応力が生じないため、膜が脆くならず、光拡散粒子とバインダーとの間で空隙ができないため、光取出し効率が向上し、また、シミやムラが発生しない。
A polymerization initiator may be used independently and may use 2 or more types together.
The addition amount of the polymerization initiator is preferably 3% by mass or less, more preferably 1 to 2.5% by mass, and more preferably 1.5 to 2.2% by mass with respect to the (meth) acrylate monomer serving as the binder. % Is more preferable. If the addition amount of the polymerization initiator is 3% by mass or less, the degree of polymerization does not become too high in the light diffusion layer, and stress does not occur at the interface between the light diffusion particles and the binder, so the film does not become brittle, Since there is no gap between the diffusing particles and the binder, the light extraction efficiency is improved, and no spots or unevenness occur.

<<溶媒>>
前記溶媒としては、特に制限はなく、目的に応じて適宜選択することができ、例えばアルコール類、ケトン類、エステル類、アミド類、エーテル類、エーテルエステル類、脂肪族炭化水素類、ハロゲン化炭化水素類などが挙げられる。具体的には、アルコール(例えばメタノール、エタノール、プロパノール、ブタノール、ベンジルアルコール、エチレングリコール、プロピレングリコール、エチレングリコールモノアセテート等)、ケトン(例えばメチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン等)、エステル(例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、蟻酸エチル、蟻酸プロピル、蟻酸ブチル、乳酸エチル等)、脂肪族炭化水素(例えばヘキサン、シクロヘキサン)、ハロゲン化炭化水素(例えばメチルクロロホルム等)、芳香族炭化水素(例えばベンゼン、トルエン、キシレン、エチルベンゼン等)、アミド(例えばジメチルホルムアミド、ジメチルアセトアミド、n−メチルピロリドン等)、エーテル(例えばジオキサン、テトラハイドロフラン、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル等)、エーテルアルコール(例えば1−メトキシ−2−プロパノール、エチルセルソルブ、メチルカルビノール等)が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、芳香族炭化水素、ケトン類が好ましく、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンがより好ましく、トルエン、キシレンが特に好ましい。
<< solvent >>
The solvent is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include alcohols, ketones, esters, amides, ethers, ether esters, aliphatic hydrocarbons, halogenated carbons. Hydrogen etc. are mentioned. Specifically, alcohol (for example, methanol, ethanol, propanol, butanol, benzyl alcohol, ethylene glycol, propylene glycol, ethylene glycol monoacetate, etc.), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, methylcyclohexanone, etc.), ester ( For example, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, ethyl formate, propyl formate, butyl formate, ethyl lactate, etc.), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methyl chloroform), aromatic Group hydrocarbons (eg benzene, toluene, xylene, ethylbenzene etc.), amides (eg dimethylformamide, dimethylacetamide, n-methylpyrrolidone etc.), ether (E.g. dioxane, tetrahydrofuran, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, etc.), ether alcohols (such as 1-methoxy-2-propanol, ethyl cellosolve, methyl carbinol and the like) and the. These may be used individually by 1 type and may use 2 or more types together. Among these, aromatic hydrocarbons and ketones are preferable, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone are more preferable, and toluene and xylene are particularly preferable.

<光拡散層の形成>
光拡散層は、光拡散層形成用組成物により形成される。
光拡散層は、光拡散層形成用組成物を、基板上に、例えばディップコート法、エアーナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法、マイクログラビアコート法、エクストルージョンコート法等の公知の薄膜形成方法で塗布し、乾燥、光及び/又は熱照射することにより作製することができる。好ましくは、光照射による硬化が、迅速硬化の点から有利である。更には、光硬化処理の後、光重合開始剤による拡散層の硬化(重合反応)を止める上で加熱処理することも好ましい。この場合、加熱温度としては、60℃〜105℃が好ましく、70℃〜100℃がより好ましく、70℃〜90℃が更に好ましい。
<Formation of light diffusion layer>
The light diffusion layer is formed of a light diffusion layer forming composition.
The light diffusion layer is a composition for forming a light diffusion layer on a substrate, for example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a micro gravure coating method, It can be prepared by applying by a known thin film forming method such as an extrusion coating method and drying, irradiating with light and / or heat. Preferably, curing by light irradiation is advantageous from the viewpoint of rapid curing. Furthermore, after the photocuring treatment, it is also preferable to perform a heat treatment to stop the curing (polymerization reaction) of the diffusion layer by the photopolymerization initiator. In this case, the heating temperature is preferably 60 ° C to 105 ° C, more preferably 70 ° C to 100 ° C, and still more preferably 70 ° C to 90 ° C.

光照射の光源は、光重合開始剤の反応する波長(吸収波長)付近であればいずれでもよく、吸収波長が紫外領域の場合、光源として、超高圧、高圧、中圧、低圧の各水銀灯、ケミカルランプ、カーボンアーク灯、メタルハライド灯、キセノン灯、太陽光等が挙げられる。波長350nm〜420nmの入手可能な各種レーザー光源をマルチビーム化して照射してもよい。また、吸収波長が赤外領域の場合、光源としてはハロゲンランプ、キセノンランプ、高圧ナトリウムランプが挙げられ、波長750nm〜1,400nmの入手可能な各種レーザー光源をマルチビーム化して照射してもよい。   The light source for light irradiation may be any wavelength near the wavelength (absorption wavelength) at which the photopolymerization initiator reacts. When the absorption wavelength is in the ultraviolet region, each light source can be an ultrahigh pressure, high pressure, medium pressure, low pressure mercury lamp, A chemical lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, sunlight, etc. are mentioned. Various available laser light sources having a wavelength of 350 nm to 420 nm may be irradiated as a multi-beam. When the absorption wavelength is in the infrared region, examples of the light source include a halogen lamp, a xenon lamp, and a high-pressure sodium lamp. Various available laser light sources having a wavelength of 750 nm to 1,400 nm may be converted into multi-beams for irradiation. .

光照射による光ラジカル重合の場合は、空気又は不活性気体中で行うことができるが、ラジカル重合性モノマーの重合の誘導期を短くするか、照射時間を短縮するためにできるだけ酸素濃度を少なくした雰囲気とすることが好ましい。前記酸素濃度範囲は0〜1,000ppmが好ましく、0〜800ppmがより好ましく、0〜600ppmが更に好ましい。照射する紫外線の照射強度は、0.1mW/cm〜200mW/cmが好ましく、塗布膜表面上での光照射量は、100mJ/cm〜100,000mJ/cmが好ましく、100mJ/cm〜50,000mJ/cmがより好ましく、100mJ/cm〜20,000mJ/cmが特に好ましい。前記光照射量が、100mJ/cm未満であると、光拡散層が十分に硬化せず、光拡散層上に平坦化層を塗布する際に溶解、また、基板洗浄時に崩壊することがある。一方、前記光照射量が、100,000mJ/cmを超えると、光拡散層の重合が進み過ぎ表面が黄変し、透過率が低下し、光取り出し効率が低下することがある。また、光照射工程での温度は、15℃〜70℃が好ましく、20℃〜60℃がより好ましく、25℃〜50℃が特に好ましい。前記温度が、15℃未満であると、光重合による光拡散層の硬化に時間がかかることがあり、70℃を超えると、光重合開始剤自体に影響を及ぼし、光重合(硬化)できなくなることがある。 In the case of radical photopolymerization by light irradiation, it can be carried out in air or in an inert gas, but the oxygen concentration was reduced as much as possible in order to shorten the induction period of radical polymerizable monomer polymerization or shorten the irradiation time. An atmosphere is preferable. The oxygen concentration range is preferably 0 to 1,000 ppm, more preferably 0 to 800 ppm, and still more preferably 0 to 600 ppm. Irradiation intensity of ultraviolet irradiation is preferably from 0.1mW / cm 2 ~200mW / cm 2 , irradiation amount on the coating film surface, 100mJ / cm 2 ~100,000mJ / cm 2 are preferred, 100 mJ / cm 2 to 50,000 mJ / cm 2 is more preferable, and 100 mJ / cm 2 to 20,000 mJ / cm 2 is particularly preferable. When the light irradiation amount is less than 100 mJ / cm 2 , the light diffusion layer is not sufficiently cured, and may be dissolved when a planarizing layer is applied on the light diffusion layer, or may be collapsed during substrate cleaning. . On the other hand, when the light irradiation amount exceeds 100,000 mJ / cm 2 , the polymerization of the light diffusion layer proceeds excessively, the surface is yellowed, the transmittance is lowered, and the light extraction efficiency may be lowered. Moreover, 15 to 70 degreeC is preferable, as for the temperature in a light irradiation process, 20 to 60 degreeC is more preferable, and 25 to 50 degreeC is especially preferable. When the temperature is less than 15 ° C, it may take time to cure the light diffusion layer by photopolymerization. When the temperature exceeds 70 ° C, the photopolymerization initiator itself is affected and cannot be photopolymerized (cured). Sometimes.

前記光拡散層の平均厚みは、1μm〜10μmが好ましく、2μm〜8μmがより好ましく、3μm〜6μmが特に好ましい。前記平均厚みが、1μm以上であると、十分な光拡散が得られ、光取り出し効率が向上し、10μm以下であれば、光散乱が強くなりすぎず、光取り出し効率が向上するため好ましい。
前記光拡散層の平均厚みは、例えば光拡散層の一部を切り取り、走査型電子顕微鏡(S−3400N、日立ハイテク株式会社製)で測定して、求めることができる。
The average thickness of the light diffusion layer is preferably 1 μm to 10 μm, more preferably 2 μm to 8 μm, and particularly preferably 3 μm to 6 μm. When the average thickness is 1 μm or more, sufficient light diffusion is obtained, and light extraction efficiency is improved. When the average thickness is 10 μm or less, light scattering is not excessively increased, and light extraction efficiency is improved.
The average thickness of the light diffusion layer can be determined, for example, by cutting a part of the light diffusion layer and measuring it with a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.).

光拡散層から光拡散粒子を除いた層の屈折率は、1.7〜2.2が好ましく、1.7〜2.1がより好ましく、1.7〜2.0が更に好ましい。光拡散層から光拡散粒子を除いた層の屈折率が、1.7以上であると、光取り出し効率が向上し、2.2以下であると、光拡散層中のバインダー内の光触媒不活性処理した酸化チタン微粒子量が多すぎないため、散乱が強くなりすぎず、光取り出し効率が向上する。
光拡散層から光拡散粒子を除いた層の屈折率は、有機電界発光層中の発光層の屈折率と同等乃至高いことが好ましい。
The refractive index of the layer obtained by removing light diffusing particles from the light diffusing layer is preferably 1.7 to 2.2, more preferably 1.7 to 2.1, and still more preferably 1.7 to 2.0. When the refractive index of the layer obtained by removing light diffusing particles from the light diffusing layer is 1.7 or more, the light extraction efficiency is improved, and when it is 2.2 or less, the photocatalytic inertness in the binder in the light diffusing layer is increased. Since the amount of the treated titanium oxide fine particles is not too large, scattering does not become too strong and the light extraction efficiency is improved.
The refractive index of the layer obtained by removing light diffusing particles from the light diffusing layer is preferably equal to or higher than the refractive index of the light emitting layer in the organic electroluminescent layer.

前記光拡散層の光出射面が平坦であるか、又は前記光拡散層の光出射面に平坦化層を有すること好ましい。これにより、光拡散粒子の密度を増加させても後方散乱の増加を抑制できる。また、平坦化することで異物付着が防止される。
前記光拡散層の光出射面を平坦にする方法としては、光拡散層形成用組成物から光拡散粒子を取り除いた平坦化層形成用組成物を、硬化した光拡散層上に積層する方法などが挙げられる。
It is preferable that the light emission surface of the light diffusion layer is flat or has a flattening layer on the light emission surface of the light diffusion layer. Thereby, even if it increases the density of light-diffusion particle | grains, the increase in backscattering can be suppressed. Moreover, foreign matter adhesion is prevented by flattening.
Examples of the method for flattening the light emitting surface of the light diffusion layer include a method of laminating a planarization layer forming composition obtained by removing light diffusion particles from a light diffusion layer forming composition on a cured light diffusion layer. Is mentioned.

<平坦化層>
本発明の積層体は、平坦化層を有する。
平坦化層としては、前記光拡散層において前記光拡散粒子を含まない組成であることが好ましく、前記光拡散層と同様にして形成することができる。
前記平坦化層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、1μm〜10μmが好ましく、2μm〜8μmがより好ましく、3μm〜6μmが特に好ましい。前記平坦化層の平均厚みが、1μm未満であると、突出した元の光拡散層の表面を平坦化できず、10μmを超えると、前記平坦化層の光の吸収により光取り出し能が低下してしまうことがある。
前記光拡散層と前記平坦化層の合計平均厚みは、2μm〜15μmが好ましく、3μm〜14μmがより好ましく、5μm〜12μmが特に好ましい。前記合計平均厚みが2μm以上であれば十分な拡散、平坦化ができ、15μm以下であれば、平坦化層での吸収、光拡散層での過剰な拡散が起こらず、光取り出し効率が向上する。
前記平坦化層の屈折率は、1.7〜2.2が好ましく、1.7〜2.1がより好ましく、1.7〜2.0が更に好ましい。前記平坦化層の屈折率が、1.7以上であれば、平坦化層とバリア層又は透明電極層との界面での全反射が増えず、光取り出し効率が向上し、2.2以下であれば、平坦化層中のバインダー内の光触媒不活性処理した酸化チタン微粒子量が多すぎないため、光散乱が強くなりすぎず、光取り出し効率が向上する。
前記平坦化層の屈折率は、前記光拡散層の屈折率と同等乃至高いことが好ましい。
<Planarization layer>
The laminated body of this invention has a planarization layer.
The planarizing layer preferably has a composition that does not contain the light diffusing particles in the light diffusing layer, and can be formed in the same manner as the light diffusing layer.
There is no restriction | limiting in particular in the average thickness of the said planarization layer, Although it can select suitably according to the objective, 1 micrometer-10 micrometers are preferable, 2 micrometers-8 micrometers are more preferable, and 3 micrometers-6 micrometers are especially preferable. If the average thickness of the flattening layer is less than 1 μm, the surface of the protruding original light diffusion layer cannot be flattened, and if it exceeds 10 μm, the light extraction ability decreases due to light absorption of the flattening layer. May end up.
The total average thickness of the light diffusion layer and the planarization layer is preferably 2 μm to 15 μm, more preferably 3 μm to 14 μm, and particularly preferably 5 μm to 12 μm. If the total average thickness is 2 μm or more, sufficient diffusion and planarization can be achieved, and if it is 15 μm or less, absorption in the planarization layer and excessive diffusion in the light diffusion layer do not occur, and light extraction efficiency is improved. .
The refractive index of the planarizing layer is preferably 1.7 to 2.2, more preferably 1.7 to 2.1, and still more preferably 1.7 to 2.0. If the refractive index of the planarization layer is 1.7 or more, total reflection at the interface between the planarization layer and the barrier layer or the transparent electrode layer does not increase, and the light extraction efficiency is improved. If present, the amount of titanium oxide fine particles subjected to the photocatalytic inactivation treatment in the binder in the planarizing layer is not too large, so that light scattering does not become too strong and the light extraction efficiency is improved.
The planarization layer preferably has a refractive index equal to or higher than that of the light diffusion layer.

<光拡散層及び平坦化層の重合度>
前記積層体において、光拡散層の重合度が30%以上65%以下であり、かつ、平坦化層の重合度が50%以上である。光拡散層の重合度が35%以上60%以下であり、かつ、平坦化層の重合度が60%以上であることがより好ましく、光拡散層の重合度が40%以上55%以下であり、かつ、平坦化層の重合度が65%以上75%以下であることがさらに好ましい。
ここで光拡散層の重合度とは、二重結合を有する重合性化合物の重合体を含む光拡散層における前記重合性化合物の重合度であり、好ましくは(メタ)アクリレート系モノマーの重合度である。また、平坦化層の重合度とは、二重結合を有する重合性化合物の重合体を含む平坦化層における前記重合性化合物の重合度であり、好ましくは(メタ)アクリレート系モノマーの重合度である。
前記重合度は、透過IRにより測定される二重結合の量により定められる。平坦化層の重合度については、Si基板に平坦化層をそれぞれ塗布し、フーリエ変換赤外分光光度計(NICOLET 4700:Thermo Scientific社製)にてIRスペクトルを測定し、960〜1000(cm−1)に見られる二重結合によるピークの強度の積分値を算出する。この時、重合前・後で測定を行い、重合前の強度積分値をI、重合後をIとし、重合度は、((I−I)/I)*100[%]とした。
光拡散層の重合度については、Si基板に拡散層を塗布し重合を行い、その上に平坦化層を塗布して重合を行う。その後、ドライエッチャーもしくは逆スパッタ法にて平坦化層のみを除去し、その後、フーリエ変換赤外分光光度計(NICOLET 4700:Thermo Scientific社製)にてIRスペクトルを測定し、960〜1000(cm−1)に見られる二重結合によるピークの強度の積分値Iを算出する。また、Si基板に拡散層を塗布し重合処理をせず測定を行い同様に二重結合によるピークの強度の積分値Iを算出する。重合度は、((I−I)/I)*100[%]とした。
光拡散層の重合度が30%未満であると、バインダーの重合が不十分となり、膜が形成できない、または基板と光拡散層の密着性に劣るため剥離が発生する。
また、光拡散層の重合度が65%より大きいと、光拡散粒子とバインダーとの界面に空隙が生じ、光取り出し効率が低下する。
平坦化層の重合度が50%未満であると、バインダーの重合が不十分となり、フォトリソグラフィによるパターニングへの耐久性が低くなり、ITO成膜時のダメージによりITO表面が荒れ、ITO成膜後の洗浄工程で剥離が生じたり、素子にした場合に時間経過とともにシミやムラが現れる。
<Degree of polymerization of light diffusion layer and planarization layer>
In the laminate, the polymerization degree of the light diffusion layer is 30% or more and 65% or less, and the polymerization degree of the planarization layer is 50% or more. More preferably, the degree of polymerization of the light diffusion layer is 35% or more and 60% or less, and the degree of polymerization of the planarization layer is 60% or more, and the degree of polymerization of the light diffusion layer is 40% or more and 55% or less. Further, it is more preferable that the degree of polymerization of the planarizing layer is 65% or more and 75% or less.
Here, the degree of polymerization of the light diffusion layer is the degree of polymerization of the polymerizable compound in the light diffusion layer containing a polymer of a polymerizable compound having a double bond, preferably the degree of polymerization of the (meth) acrylate monomer. is there. The degree of polymerization of the planarizing layer is the degree of polymerization of the polymerizable compound in the planarizing layer containing a polymer of a polymerizable compound having a double bond, preferably the degree of polymerization of the (meth) acrylate monomer. is there.
The degree of polymerization is determined by the amount of double bonds measured by transmission IR. About the polymerization degree of a planarization layer, apply | coating the planarization layer to Si substrate, respectively, IR spectrum is measured with a Fourier-transform infrared spectrophotometer (NICOLET 4700: The product made from Thermo Scientific), 960-1000 (cm < - >). 1 ) Calculate the integrated value of the intensity of the peak due to the double bond found in 1 ). At this time, the measurement was performed before and after the polymerization. The integrated intensity value before the polymerization was I b , and the polymerization after the polymerization was I a , and the degree of polymerization was ((I b −I a ) / I b ) * 100 [%] It was.
About the polymerization degree of a light-diffusion layer, it superposes | polymerizes by apply | coating a diffused layer to Si substrate, and apply | coating a planarization layer on it. Thereafter, only the planarization layer was removed by dry etching or reverse sputtering, and then the IR spectrum was measured with a Fourier transform infrared spectrophotometer (NICOLET 4700: manufactured by Thermo Scientific), and 960-1000 (cm It calculates an integrated value I a of the intensity of the peak due to the double bonds found in 1). Further, a diffusion layer is applied to the Si substrate, measurement is performed without performing a polymerization treatment, and an integrated value I b of the peak intensity due to double bonds is calculated in the same manner. The degree of polymerization was ((I b −I a ) / I b ) * 100 [%].
When the polymerization degree of the light diffusion layer is less than 30%, the polymerization of the binder becomes insufficient and a film cannot be formed, or peeling occurs due to poor adhesion between the substrate and the light diffusion layer.
On the other hand, when the polymerization degree of the light diffusion layer is larger than 65%, voids are generated at the interface between the light diffusion particles and the binder, and the light extraction efficiency is lowered.
When the degree of polymerization of the flattening layer is less than 50%, the polymerization of the binder becomes insufficient, the durability to patterning by photolithography becomes low, the ITO surface becomes rough due to damage during ITO film formation, and after ITO film formation In the cleaning process, peeling occurs or when an element is formed, spots and unevenness appear with time.

<基板>
本発明の積層体は基板を有する。
基板としては、その形状、構造、大きさ、材料等については、特に制限はなく、目的に応じて適宜選択することができ、前記形状としては、例えば平板状などが挙げられ、前記構造としては、単層構造であってもよいし、積層構造であってもよく、前記大きさとしては、前記光取り出し部材の大きさ等に応じて適宜選択することができる。
<Board>
The laminate of the present invention has a substrate.
The shape, structure, size, material and the like of the substrate are not particularly limited and can be appropriately selected according to the purpose. Examples of the shape include a flat plate shape. A single-layer structure or a laminated structure may be used, and the size may be appropriately selected according to the size of the light extraction member.

前記基板の材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、イットリア安定化ジルコニア(YSZ)、ガラス(無アルカリガラス、ソーダライムガラス等)等の無機材料、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリカーボネート、ポリイミド樹脂(PI)、ポリエチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、スチレン−アクリロニトリル共重合体などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、ポリエステル樹脂が好ましく、ロールでの塗布適性の観点からポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
前記基板の表面は、その上に設ける光拡散層との密着性を向上させるため、表面活性化処理を行うことが好ましい。前記表面活性化処理としては、例えばグロー放電処理、コロナ放電処理などが挙げられる。
There is no restriction | limiting in particular as a material of the said board | substrate, According to the objective, it can select suitably, For example, inorganic materials, such as a yttria stabilized zirconia (YSZ) and glass (an alkali free glass, soda-lime glass, etc.), polyethylene Examples thereof include polyester resins such as terephthalate (PET) and polyethylene naphthalate (PEN), polycarbonate, polyimide resin (PI), polyethylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, and styrene-acrylonitrile copolymer. These may be used individually by 1 type and may use 2 or more types together. Among these, a polyester resin is preferable, and polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoint of applicability with a roll.
The surface of the substrate is preferably subjected to a surface activation treatment in order to improve adhesion with the light diffusion layer provided thereon. Examples of the surface activation treatment include glow discharge treatment and corona discharge treatment.

前記基板は、適宜合成したものであってもよいし、市販品を使用してもよい。
前記基板の厚みとしては、特に制限はなく、目的に応じて適宜選択することができ、10μm以上が好ましく、50μm以上がより好ましい。
前記基板の屈折率は、1.3〜1.8が好ましく、1.4〜1.7がより好ましく、1.4〜1.6が更に好ましい。前記基板の屈折率が、1.3未満であると、前記基板と光拡散層の屈折率差が大きくなり、前記光拡散層からの光が入射する際、フレネル反射が強くなり、光取り出し効率が低下することがあり、1.8を超えると、基板と空気(光出射側)の屈折率差が大きくなり、フレネル反射が強くなり、光取り出し効率が低下することがある。
The substrate may be appropriately synthesized or a commercially available product may be used.
There is no restriction | limiting in particular as thickness of the said board | substrate, According to the objective, it can select suitably, 10 micrometers or more are preferable and 50 micrometers or more are more preferable.
The refractive index of the substrate is preferably 1.3 to 1.8, more preferably 1.4 to 1.7, and still more preferably 1.4 to 1.6. When the refractive index of the substrate is less than 1.3, the difference in refractive index between the substrate and the light diffusing layer becomes large, and when light from the light diffusing layer is incident, Fresnel reflection becomes strong, and light extraction efficiency is increased. If it exceeds 1.8, the difference in refractive index between the substrate and air (light exit side) becomes large, Fresnel reflection becomes strong, and the light extraction efficiency may be lowered.

本発明の積層体は、光取り出し部材として用いることができる。本発明の積層体及び光取り出し部材は、光取り出し効率を高めることができるので、有機電界発光装置に用いることが特に好ましい。   The laminate of the present invention can be used as a light extraction member. Since the laminated body and light extraction member of the present invention can improve the light extraction efficiency, it is particularly preferable to use it for an organic electroluminescent device.

(有機電界発光装置及び有機電界発光装置の製造方法)
本発明の有機電界発光装置は、本発明の積層体と、該積層体の平坦化層側に、第一電極と、有機発光層と、第二電極とを、この順に有する。
本発明の有機電界発光装置は、好ましい第1の形態では、基板と、該基板上に、第一電極と、第二電極と、前記第一電極と前記第二陰極の間に有機電界発光層とを備え、
前記基板が、本発明の前記積層体であり、
封止板内に、少なくとも、前記第一電極、前記第二電極、前記有機電界発光層、及び前記光拡散層が封入されている。なお、封止板内に、前記第一電極、前記第二電極、前記有機電界発光層、前記平坦化層、及び前記光拡散層が封入されていることが好ましい。
本発明の有機電界発光装置は、好ましい第2の形態では、基板と、該基板上に、第一電極と、第二電極と、前記第一電極と前記第二陰極の間に有機電界発光層とを備え、
前記基板が、本発明の前記積層体であり、
前記第一電極と、前記平坦化層又は前記光拡散層との間に、バリア層を有する。
本発明の有機電界発光装置の製造方法は、基板上に、前記光拡散層形成用組成物を塗布し、光拡散層を形成する光拡散層形成工程と、
前記光拡散層上に、光拡散層形成用組成物から光拡散粒子を除いた平坦化層形成用組成物を塗布し、平坦化層を形成する平坦化層形成工程とを含み、更に必要に応じてその他の工程を含んでなる。
前記光拡散層形成工程が、光拡散層形成用組成物に重合開始剤を添加してから24時間以内に行われ、
前記平坦化層形成工程が、平坦化層形成用組成物に重合開始剤を添加してから24時間以内に行われることが、前記光拡散層形成用組成物及び前記平坦化層形成用組成物の重合が進行して徐々に粘度が変化し、塗布後の膜厚異常、硬化不足などを防ぐことができる点で好ましい。
(Organic electroluminescent device and organic electroluminescent device manufacturing method)
The organic electroluminescent device of the present invention includes the laminate of the present invention, and the first electrode, the organic light emitting layer, and the second electrode in this order on the planarizing layer side of the laminate.
In a preferred first embodiment, the organic electroluminescent device of the present invention is a substrate, an organic electroluminescent layer between the first electrode, the second electrode, and the first electrode and the second cathode on the substrate. And
The substrate is the laminate of the present invention,
In the sealing plate, at least the first electrode, the second electrode, the organic electroluminescent layer, and the light diffusion layer are sealed. In addition, it is preferable that the first electrode, the second electrode, the organic electroluminescent layer, the planarizing layer, and the light diffusion layer are sealed in a sealing plate.
In a preferred second embodiment, the organic electroluminescent device of the present invention includes a substrate, an organic electroluminescent layer on the substrate, a first electrode, a second electrode, and the first electrode and the second cathode. And
The substrate is the laminate of the present invention,
A barrier layer is provided between the first electrode and the planarization layer or the light diffusion layer.
The method for producing an organic electroluminescent device of the present invention comprises a step of applying a light diffusing layer forming composition on a substrate and forming a light diffusing layer,
A planarization layer forming step of applying a planarization layer forming composition obtained by removing light diffusing particles from the light diffusion layer forming composition onto the light diffusion layer, and forming a planarization layer; According to other steps.
The light diffusion layer forming step is performed within 24 hours after the addition of the polymerization initiator to the light diffusion layer forming composition,
The composition for forming a light diffusion layer and the composition for forming a planarized layer are formed such that the planarizing layer forming step is performed within 24 hours after adding a polymerization initiator to the composition for forming a planarized layer. As the polymerization proceeds, the viscosity gradually changes, which is preferable in that it can prevent abnormal film thickness after coating and insufficient curing.

−有機電界発光層−
前記有機電界発光層としては、少なくとも発光層を有する。前記発光層以外の機能層としては、正孔輸送層、電子輸送層、正孔ブロック層、電子ブロック層、正孔注入層、電子注入層等の各層が挙げられる。
-Organic electroluminescent layer-
The organic electroluminescent layer has at least a light emitting layer. Examples of the functional layer other than the light emitting layer include a hole transport layer, an electron transport layer, a hole block layer, an electron block layer, a hole injection layer, and an electron injection layer.

前記有機電界発光層は、陽極と発光層との間に正孔輸送層を有することが好ましく、陰極と発光層との間に電子輸送層を有することが好ましい。更に、正孔輸送層と陽極との間に正孔注入層を設けてもよく、電子輸送層と陰極との間に電子注入層を設けてもよい。
また、前記発光層と正孔輸送層との間に正孔輸送性中間層(電子ブロック層)を設けてもよく、発光層と電子輸送層との間に電子輸送性中間層(正孔ブロック層)を設けてもよい。各機能層は複数の二次層に分かれていてもよい。
The organic electroluminescent layer preferably has a hole transport layer between the anode and the light emitting layer, and preferably has an electron transport layer between the cathode and the light emitting layer. Furthermore, a hole injection layer may be provided between the hole transport layer and the anode, or an electron injection layer may be provided between the electron transport layer and the cathode.
In addition, a hole transporting intermediate layer (electron blocking layer) may be provided between the light emitting layer and the hole transporting layer, and an electron transporting intermediate layer (hole blocking layer) is provided between the light emitting layer and the electron transporting layer. Layer) may be provided. Each functional layer may be divided into a plurality of secondary layers.

前記発光層を含むこれらの機能層は、蒸着法やスパッタ法等の乾式製膜法、湿式塗布方式、転写法、印刷法、インクジェット方式等のいずれによっても好適に形成することができる。   These functional layers including the light emitting layer can be suitably formed by any of dry film forming methods such as vapor deposition and sputtering, wet coating methods, transfer methods, printing methods, and ink jet methods.

−−発光層−−
前記発光層は、電界印加時に、陽極、正孔注入層、又は正孔輸送層から正孔を受け取り、陰極、電子注入層、又は電子輸送層から電子を受け取り、正孔と電子の再結合の場を提供して発光させる機能を有する層である。
前記発光層は、発光材料を含む。前記発光層は発光材料のみで構成されていてもよいし、ホスト材料と発光材料の混合層でもよい(後者の場合、発光材料を「発光性ドーパント」もしくは「ドーパント」と称する場合がある)。前記発光材料は蛍光発光材料でも燐光発光材料であってもよく、2種以上が混合されていてもよい。ホスト材料は電荷輸送材料が好ましい。ホスト材料は1種であっても2種以上であってもよい。更に、発光層中に電荷輸送性を有さず、発光しない材料を含んでいてもよい。
--- Light emitting layer--
The light-emitting layer receives holes from an anode, a hole injection layer, or a hole transport layer when an electric field is applied, receives electrons from a cathode, an electron injection layer, or an electron transport layer, and recombines holes and electrons. It is a layer having a function of providing a field to emit light.
The light emitting layer includes a light emitting material. The light emitting layer may be composed of only a light emitting material, or may be a mixed layer of a host material and a light emitting material (in the latter case, the light emitting material may be referred to as a “light emitting dopant” or “dopant”). The light emitting material may be a fluorescent light emitting material or a phosphorescent light emitting material, and two or more kinds may be mixed. The host material is preferably a charge transport material. The host material may be one type or two or more types. Furthermore, the light emitting layer may contain a material that does not have charge transporting properties and does not emit light.

前記発光層の厚みは、特に制限はなく、目的に応じて適宜選択することができるが、2nm〜500nmであるのが好ましく、外部量子効率の観点で、3nm〜200nmであるのがより好ましく、5nm〜100nmであるのが更に好ましい。また、前記発光層は1層であっても2層以上であってもよく、それぞれの層が異なる発光色で発光してもよい。   The thickness of the light emitting layer is not particularly limited and may be appropriately selected depending on the purpose, but is preferably 2 nm to 500 nm, and more preferably 3 nm to 200 nm from the viewpoint of external quantum efficiency, More preferably, the thickness is 5 nm to 100 nm. Moreover, the said light emitting layer may be 1 layer, or may be two or more layers, and each layer may light-emit with a different luminescent color.

−−−発光材料−−−
前記発光材料は、燐光発光材料、蛍光発光材料等のいずれも好適に用いることができる。
前記発光材料は、ホスト化合物との間で、イオン化ポテンシャルの差(ΔIp)と電子親和力の差(ΔEa)が、1.2eV>△Ip>0.2eV、及び/又は1.2eV>△Ea>0.2eVの関係を満たすドーパントであることが、駆動耐久性の観点で好ましい。
前記発光層中の発光材料は、前記発光層中に一般的に発光層を形成する全化合物質量に対して、0.1質量%〜50質量%含有されるが、耐久性、外部量子効率の観点から1質量%〜50質量%含有されることが好ましく、2質量%〜50質量%含有されることがより好ましい。
--- Luminescent material ---
As the light emitting material, any of a phosphorescent light emitting material, a fluorescent light emitting material and the like can be suitably used.
The light emitting material has an ionization potential difference (ΔIp) and an electron affinity difference (ΔEa) of 1.2 eV>ΔIp> 0.2 eV and / or 1.2 eV>ΔEa> with the host compound. A dopant satisfying the relationship of 0.2 eV is preferable from the viewpoint of driving durability.
The light emitting material in the light emitting layer is contained in an amount of 0.1% by mass to 50% by mass with respect to the total compound mass generally forming the light emitting layer in the light emitting layer. From the viewpoint, the content is preferably 1% by mass to 50% by mass, and more preferably 2% by mass to 50% by mass.

<燐光発光材料>
前記燐光発光材料としては、一般に、遷移金属原子又はランタノイド原子を含む錯体を挙げることができる。
前記遷移金属原子としては、特に制限はなく、目的に応じて適宜選択することができ、例えばルテニウム、ロジウム、パラジウム、タングステン、レニウム、オスミウム、イリジウム、金、銀、銅、及び白金が挙げられ、より好ましくは、レニウム、イリジウム、及び白金であり、更に好ましくはイリジウム、白金である。
<Phosphorescent material>
In general, examples of the phosphorescent material include complexes containing a transition metal atom or a lanthanoid atom.
The transition metal atom is not particularly limited and may be appropriately selected depending on the purpose. Examples thereof include ruthenium, rhodium, palladium, tungsten, rhenium, osmium, iridium, gold, silver, copper, and platinum. Rhenium, iridium, and platinum are more preferable, and iridium and platinum are more preferable.

前記錯体の配位子としては、例えば、G.Wilkinson等著,Comprehensive Coordination Chemistry, Pergamon Press社1987年発行、H.Yersin著,「Photochemistry and Photophysics of Coordination Compounds」 Springer−Verlag社1987年発行、山本明夫著「有機金属化学−基礎と応用−」裳華房社1982年発行等に記載の配位子などが挙げられる。   Examples of the ligand of the complex include G.I. Wilkinson et al., Comprehensive Coordination Chemistry, Pergamon Press, 1987, H.C. Examples include ligands described in Yersin's "Photochemistry and Photophysics of Coordination Compounds" published by Springer-Verlag 1987, Akio Yamamoto "Organic Metal Chemistry-Fundamentals and Applications-" .

前記錯体は、化合物中に遷移金属原子を一つ有してもよいし、また、2つ以上有するいわゆる複核錯体であってもよい。異種の金属原子を同時に含有していてもよい。   The complex may have one transition metal atom in the compound, or may be a so-called binuclear complex having two or more. Different metal atoms may be contained at the same time.

これらの中でも、燐光発光材料としては、例えば、US6303238B1、US6097147、WO00/57676、WO00/70655、WO01/08230、WO01/39234A2、WO01/41512A1、WO02/02714A2、WO02/15645A1、WO02/44189A1、WO05/19373A2、WO2004/108857A1、WO2005/042444A2、WO2005/042550A1、特開2001−247859、特開2002−302671、特開2002−117978、特開2003−133074、特開2002−235076、特開2003−123982、特開2002−170684、EP1211257、特開2002−226495、特開2002−234894、特開2001−247859、特開2001−298470、特開2002−173674、特開2002−203678、特開2002−203679、特開2004−357791、特開2006−93542、特開2006−261623、特開2006−256999、特開2007−19462、特開2007−84635、特開2007−96259等の各公報に記載の燐光発光化合物などが挙げられる。これらの中でも、Ir錯体、Pt錯体、Cu錯体、Re錯体、W錯体、Rh錯体、Ru錯体、Pd錯体、Os錯体、Eu錯体、Tb錯体、Gd錯体、Dy錯体、Ce錯体が好ましく、Ir錯体、Pt錯体、又はRe錯体がより好ましく、金属−炭素結合、金属−窒素結合、金属−酸素結合、金属−硫黄結合の少なくとも一つの配位様式を含むIr錯体、Pt錯体、又はRe錯体が更に好ましく、発光効率、駆動耐久性、色度等の観点で、3座以上の多座配位子を含むIr錯体、Pt錯体、又はRe錯体が特に好ましい。   Among these, as phosphorescent materials, for example, US6303238B1, US6097147, WO00 / 57676, WO00 / 70655, WO01 / 08230, WO01 / 39234A2, WO01 / 41512A1, WO02 / 02714A2, WO02 / 15645A1, WO02 / 44189A1, WO05 / 19373A2, WO2004 / 108857A1, WO2005 / 042444A2, WO2005 / 042550A1, JP2001-247859, JP2002-302671, JP2002-117978, JP2003-133074, JP2002-1235076, JP2003-123982, JP2002-170684, EP121257, JP2002-226495, JP2002-2002 34894, JP 2001-247659, JP 2001-298470, JP 2002-173675, JP 2002-203678, JP 2002-203679, JP 2004-357791, JP 2006-93542, JP 2006-261623, Examples thereof include phosphorescent compounds described in JP-A-2006-256999, JP-A-2007-19462, JP-A-2007-84635, JP-A-2007-96259, and the like. Among these, Ir complex, Pt complex, Cu complex, Re complex, W complex, Rh complex, Ru complex, Pd complex, Os complex, Eu complex, Tb complex, Gd complex, Dy complex, and Ce complex are preferable, and Ir complex , A Pt complex, or a Re complex is more preferable, and an Ir complex, a Pt complex, or a Re complex including at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, and a metal-sulfur bond is further included. In view of luminous efficiency, driving durability, chromaticity, etc., an Ir complex, a Pt complex, or an Re complex containing a tridentate or higher polydentate ligand is particularly preferable.

前記燐光発光材料の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。   Specific examples of the phosphorescent material include the following compounds, but are not limited thereto.

<蛍光発光材料>
前記蛍光発光材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えばベンゾオキサゾール、ベンゾイミダゾール、ベンゾチアゾール、スチリルベンゼン、ポリフェニル、ジフェニルブタジエン、テトラフェニルブタジエン、ナフタルイミド、クマリン、ピラン、ペリノン、オキサジアゾール、アルダジン、ピリジン、シクロペンタジエン、ビススチリルアントラセン、キナクリドン、ピロロピリジン、チアジアゾロピリジン、シクロペンタジエン、スチリルアミン、芳香族ジメチリディン化合物、縮合多環芳香族化合物(アントラセン、フェナントロリン、ピレン、ペリレン、ルブレン、又はペンタセンなど)、8−キノリノールの金属錯体、ピロメテン錯体や希土類錯体に代表される各種金属錯体、ポリチオフェン、ポリフェニレン、ポリフェニレンビニレン等のポリマー化合物、有機シラン、又はこれらの誘導体などを挙げることができる。
<Fluorescent material>
The fluorescent light emitting material is not particularly limited and may be appropriately selected depending on the purpose. For example, benzoxazole, benzimidazole, benzothiazole, styrylbenzene, polyphenyl, diphenylbutadiene, tetraphenylbutadiene, naphthalimide, coumarin , Pyran, perinone, oxadiazole, aldazine, pyridine, cyclopentadiene, bisstyrylanthracene, quinacridone, pyrrolopyridine, thiadiazolopyridine, cyclopentadiene, styrylamine, aromatic dimethylidin compound, condensed polycyclic aromatic compound (anthracene, Phenanthroline, pyrene, perylene, rubrene, or pentacene), metal complexes of 8-quinolinol, various metal complexes represented by pyromethene complexes and rare earth complexes, polythiophene Polyphenylene polymer compounds such as polyphenylene vinylene, organic silane, or their derivatives can be mentioned.

−−−ホスト材料−−−
前記ホスト材料としては、正孔輸送性に優れる正孔輸送性ホスト材料(正孔輸送性ホストと記載する場合がある)及び電子輸送性に優れる電子輸送性ホスト化合物(電子輸送性ホストと記載する場合がある)を用いることができる。
---- Host material ---
As the host material, a hole-transporting host material having excellent hole-transporting property (may be described as a hole-transporting host) and an electron-transporting host compound having excellent electron-transporting property (described as an electron-transporting host) May be used).

<正孔輸送性ホスト材料>
前記正孔輸送性ホスト材料としては、例えば、以下の材料を挙げることができる。即ち、ピロール、インドール、カルバゾール、アザインドール、アザカルバゾール、トリアゾール、オキサゾール、オキサジアゾール、ピラゾール、イミダゾール、チオフェン、ポリアリールアルカン、ピラゾリン、ピラゾロン、フェニレンジアミン、アリールアミン、アミノ置換カルコン、スチリルアントラセン、フルオレノン、ヒドラゾン、スチルベン、シラザン、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、ポルフィリン系化合物、ポリシラン系化合物、ポリ(N−ビニルカルバゾール)、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、有機シラン、カーボン膜、又はそれらの誘導体などが挙げられる。
これらの中でも、インドール誘導体、カルバゾール誘導体、芳香族第三級アミン化合物、チオフェン誘導体、分子内にカルバゾール基を有するものが好ましく、t−ブチル置換カルバゾール基を有する化合物がより好ましい。
<Hole-transporting host material>
Examples of the hole transporting host material include the following materials. Pyrrole, indole, carbazole, azaindole, azacarbazole, triazole, oxazole, oxadiazole, pyrazole, imidazole, thiophene, polyarylalkane, pyrazoline, pyrazolone, phenylenediamine, arylamine, amino-substituted chalcone, styrylanthracene, fluorenone Hydrazone, stilbene, silazane, aromatic tertiary amine compound, styrylamine compound, aromatic dimethylidin compound, porphyrin compound, polysilane compound, poly (N-vinylcarbazole), aniline copolymer, thiophene oligomer, Examples thereof include conductive polymer oligomers such as polythiophene, organic silanes, carbon films, or derivatives thereof.
Among these, indole derivatives, carbazole derivatives, aromatic tertiary amine compounds, thiophene derivatives, and those having a carbazole group in the molecule are preferred, and compounds having a t-butyl substituted carbazole group are more preferred.

<電子輸送性ホスト材料>
前記電子輸送性ホスト材料としては、例えば、ピリジン、ピリミジン、トリアジン、イミダゾール、ピラゾール、トリアゾール、オキサゾール、オキサジアゾール、フルオレノン、アントラキノジメタン、アントロン、ジフェニルキノン、チオピランジオキシド、カルボジイミド、フルオレニリデンメタン、ジスチリルピラジン、フッ素置換芳香族化合物、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン、又はそれらの誘導体(他の環と縮合環を形成してもよい)、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体等を挙げることができる。これらの中でも、耐久性の点から金属錯体化合物が好ましく、金属に配位する少なくとも1つの窒素原子又は酸素原子又は硫黄原子を有する配位子をもつ金属錯体がより好ましい。前記金属錯体電子輸送性ホストとしては、例えば特開2002−235076号公報、特開2004−214179号公報、特開2004−221062号公報、特開2004−221065号公報、特開2004−221068号公報、特開2004−327313号公報等に記載の化合物が挙げられる。
<Electron transporting host material>
Examples of the electron transporting host material include pyridine, pyrimidine, triazine, imidazole, pyrazole, triazole, oxazole, oxadiazole, fluorenone, anthraquinodimethane, anthrone, diphenylquinone, thiopyran dioxide, carbodiimide, fluoreni Heterocyclic tetracarboxylic anhydrides such as redenemethane, distyrylpyrazine, fluorine-substituted aromatic compounds, naphthaleneperylene, phthalocyanines, or derivatives thereof (may form condensed rings with other rings), 8-quinolinol derivatives And various metal complexes represented by metal complexes having metal phthalocyanine, benzoxazole or benzothiazole as a ligand. Among these, a metal complex compound is preferable from the viewpoint of durability, and a metal complex having a ligand having at least one nitrogen atom, oxygen atom, or sulfur atom coordinated to a metal is more preferable. Examples of the metal complex electron transporting host include Japanese Patent Application Laid-Open No. 2002-235076, Japanese Patent Application Laid-Open No. 2004-214179, Japanese Patent Application Laid-Open No. 2004-221106, Japanese Patent Application Laid-Open No. 2004-221665, and Japanese Patent Application Laid-Open No. 2004-221068. And compounds described in JP-A No. 2004-327313.

前記正孔輸送性ホスト材料、電子輸送性ホスト材料の具体例として、以下の化合物を挙げることができるが、これらに限定されるものではない。   Specific examples of the hole transporting host material and the electron transporting host material include the following compounds, but are not limited thereto.

−−正孔注入層、正孔輸送層−−
前記正孔注入層、又は前記正孔輸送層は、陽極又は陽極側の層から正孔を受け取り陰極側に輸送する機能を有する層である。これらの層に用いられる正孔注入材料、正孔輸送材料は、低分子化合物であっても高分子化合物であってもよい。具体的には、ピロール誘導体、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三級アミン化合物、スチリルアミン化合物、芳香族ジメチリディン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、チオフェン誘導体、有機シラン誘導体、カーボン、等を含有する層が好ましい。
--- Hole injection layer, hole transport layer-
The hole injection layer or the hole transport layer is a layer having a function of receiving holes from the anode or the layer on the anode side and transporting them to the cathode side. The hole injecting material and hole transporting material used for these layers may be a low molecular compound or a high molecular compound. Specifically, pyrrole derivatives, carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl Anthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidin compounds, phthalocyanine compounds, porphyrin compounds, thiophene derivatives, organosilane derivatives, carbon, Etc. are preferred.

前記正孔注入層、又は前記正孔輸送層には、電子受容性ドーパントを含有させることができる。前記正孔注入層、又は正孔輸送層に導入する電子受容性ドーパントとしては、電子受容性で有機化合物を酸化する性質を有すれば、無機化合物でも有機化合物でも使用できる。
具体的には、無機化合物は塩化第二鉄や塩化アルミニウム、塩化ガリウム、塩化インジウム、五塩化アンチモンなどのハロゲン化金属、五酸化バナジウム、及び三酸化モリブデンなどの金属酸化物などが挙げられる。有機化合物の場合は、置換基としてニトロ基、ハロゲン、シアノ基、トリフルオロメチル基などを有する化合物、キノン系化合物、酸無水物系化合物、フラーレンなどを好適に用いることができる。
これらの電子受容性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子受容性ドーパントの使用量は、材料の種類によって異なるが、正孔輸送層材料に対して0.01質量%〜50質量%が好ましく、0.05質量%〜40質量%が更に好ましく、0.1質量%〜30質量%が特に好ましい。
The hole injection layer or the hole transport layer may contain an electron accepting dopant. As the electron-accepting dopant introduced into the hole injection layer or the hole transport layer, an inorganic compound or an organic compound can be used as long as it has an electron accepting property and oxidizes an organic compound.
Specifically, examples of the inorganic compound include metal halides such as ferric chloride, aluminum chloride, gallium chloride, indium chloride, and antimony pentachloride, and metal oxides such as vanadium pentoxide and molybdenum trioxide. In the case of an organic compound, a compound having a nitro group, halogen, cyano group, trifluoromethyl group or the like as a substituent, a quinone compound, an acid anhydride compound, fullerene, or the like can be preferably used.
These electron-accepting dopants may be used alone or in combination of two or more. The amount of the electron-accepting dopant varies depending on the type of the material, but is preferably 0.01% by mass to 50% by mass, more preferably 0.05% by mass to 40% by mass with respect to the hole transport layer material. 1 mass% to 30 mass% is particularly preferable.

前記正孔注入層、又は正孔輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The hole injection layer or the hole transport layer may have a single layer structure composed of one or more of the materials described above, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Also good.

−−電子注入層、電子輸送層−−
前記電子注入層、又は前記電子輸送層は、陰極又は陰極側の層から電子を受け取り陽極側に輸送する機能を有する層である。これらの層に用いる電子注入材料、電子輸送材料は低分子化合物であっても高分子化合物であってもよい。
具体的には、ピリジン誘導体、キノリン誘導体、ピリミジン誘導体、ピラジン誘導体、フタラジン誘導体、フェナントロリン誘導体、トリアジン誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、フルオレノン誘導体、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレン、ペリレン等の芳香環テトラカルボン酸無水物、フタロシアニン誘導体、8−キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体、シロールに代表される有機シラン誘導体、等を含有する層が好ましい。
--Electron injection layer, electron transport layer--
The electron injection layer or the electron transport layer is a layer having a function of receiving electrons from the cathode or a layer on the cathode side and transporting them to the anode side. The electron injection material and the electron transport material used for these layers may be a low molecular compound or a high molecular compound.
Specifically, pyridine derivatives, quinoline derivatives, pyrimidine derivatives, pyrazine derivatives, phthalazine derivatives, phenanthroline derivatives, triazine derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone Derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimide derivatives, fluorenylidenemethane derivatives, distyrylpyrazine derivatives, naphthalene, perylene and other aromatic ring tetracarboxylic acid anhydrides, phthalocyanine derivatives, 8-quinolinol derivative metal complexes, Metal phthalocyanines, various metal complexes represented by metal complexes with benzoxazole and benzothiazole as ligands, organosilane derivatives represented by siloles Body, the layer containing the like are preferable.

前記電子注入層、又は電子輸送層には、電子供与性ドーパントを含有させることができる。前記電子注入層、又は電子輸送層に導入される電子供与性ドーパントとしては、電子供与性で有機化合物を還元する性質を有していればよく、Liなどのアルカリ金属、Mgなどのアルカリ土類金属、希土類金属を含む遷移金属や還元性有機化合物などが好適に用いられる。金属としては、特に仕事関数が4.2eV以下の金属が好適に使用でき、具体的には、Li、Na、K、Be、Mg、Ca、Sr、Ba、Y、Cs、La、Sm、Gd、及びYbなどが挙げられる。また、還元性有機化合物としては、例えば、含窒素化合物、含硫黄化合物、含リン化合物などが挙げられる。
これらの電子供与性ドーパントは、単独で用いてもよいし、2種以上を用いてもよい。電子供与性ドーパントの使用量は、材料の種類によって異なるが、電子輸送層材料に対して0.1質量%〜99質量%が好ましく、1.0質量%〜80質量%が更に好ましく、2.0質量%〜70質量%が特に好ましい。
The electron injection layer or the electron transport layer may contain an electron donating dopant. The electron-donating dopant introduced into the electron-injecting layer or the electron-transporting layer is not limited as long as it has an electron-donating property and has a property of reducing an organic compound. Alkali metals such as Li and alkaline earths such as Mg Metals, transition metals including rare earth metals, reducing organic compounds, and the like are preferably used. As the metal, a metal having a work function of 4.2 eV or less can be preferably used. Specifically, Li, Na, K, Be, Mg, Ca, Sr, Ba, Y, Cs, La, Sm, Gd , And Yb. Examples of the reducing organic compound include nitrogen-containing compounds, sulfur-containing compounds, and phosphorus-containing compounds.
These electron donating dopants may be used alone or in combination of two or more. Although the usage-amount of an electron-donating dopant changes with kinds of material, 0.1 mass%-99 mass% are preferable with respect to electron carrying layer material, 1.0 mass%-80 mass% are still more preferable. 0 mass%-70 mass% is especially preferable.

前記電子注入層、又は前記電子輸送層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。   The electron injection layer or the electron transport layer may have a single layer structure composed of one or more of the above-described materials, or a multilayer structure composed of a plurality of layers having the same composition or different compositions. Good.

−−正孔ブロック層、電子ブロック層−−
前記正孔ブロック層は、陽極側から発光層に輸送された正孔が陰極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陰極側で隣接する有機化合物層として設けられる。
一方、前記電子ブロック層は、陰極側から発光層に輸送された電子が陽極側に通り抜けることを防止する機能を有する層であり、通常、発光層と陽極側で隣接する有機化合物層として設けられる。
前記正孔ブロック層を構成する化合物の例としては、BAlq等のアルミニウム錯体、トリアゾール誘導体、BCP等のフェナントロリン誘導体、等が挙げられる。電子ブロック層を構成する化合物の例としては、例えば前述の正孔輸送材料として挙げたものが利用できる。
前記正孔ブロック層及び電子ブロック層の厚みは、1nm〜500nmであるのが好ましく、5nm〜200nmであるのがより好ましく、10nm〜100nmであるのが更に好ましい。また、前記正孔ブロック層及び電子ブロック層は、上述した材料の1種又は2種以上からなる単層構造であってもよいし、同一組成又は異種組成の複数層からなる多層構造であってもよい。
--Hole blocking layer, electron blocking layer--
The hole blocking layer is a layer having a function of preventing holes transported from the anode side to the light emitting layer from passing through to the cathode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the cathode side. .
On the other hand, the electron blocking layer is a layer having a function of preventing electrons transported from the cathode side to the light emitting layer from passing to the anode side, and is usually provided as an organic compound layer adjacent to the light emitting layer on the anode side. .
Examples of the compound constituting the hole blocking layer include aluminum complexes such as BAlq, triazole derivatives, phenanthroline derivatives such as BCP, and the like. As an example of the compound constituting the electron blocking layer, for example, those mentioned as the hole transport material described above can be used.
The thickness of the hole blocking layer and the electron blocking layer is preferably 1 nm to 500 nm, more preferably 5 nm to 200 nm, and still more preferably 10 nm to 100 nm. The hole blocking layer and the electron blocking layer may have a single-layer structure made of one or more of the materials described above, or a multilayer structure made up of a plurality of layers having the same composition or different compositions. Also good.

−−電極−−
前記有機電界発光素子は、透明電極及び反射電極、即ち陽極と陰極とを含む。有機電界発光素子の性質上、陽極及び陰極のうち少なくとも一方の電極は透明が好ましい。
通常、陽極は有機化合物層に正孔を供給する電極としての機能を有していればよく、陰極は有機化合物層に電子を注入する電極としての機能を有していればよい。その形状、構造、大きさ等については特に制限はなく、発光素子の用途、目的に応じて、公知の電極材料の中から適宜選択することができる。電極を構成する材料としては、例えば、金属、合金、金属酸化物、導電性化合物、又はこれらの混合物等が好適に挙げられる。
--- Electrode--
The organic electroluminescent device includes a transparent electrode and a reflective electrode, that is, an anode and a cathode. In view of the properties of the organic electroluminescent element, at least one of the anode and the cathode is preferably transparent.
Usually, the anode only needs to have a function as an electrode for supplying holes to the organic compound layer, and the cathode only needs to have a function as an electrode for injecting electrons into the organic compound layer. The shape, structure, size, and the like are not particularly limited, and can be appropriately selected from known electrode materials according to the use and purpose of the light-emitting element. As a material which comprises an electrode, a metal, an alloy, a metal oxide, an electroconductive compound, or a mixture thereof etc. are mentioned suitably, for example.

前記電極としては、特に制限はなく、目的に応じて適宜選択することができるが、その陽極、陰極において、前記反射金属、前記半透明部材としての半透明金属を構成することが好ましい。   There is no restriction | limiting in particular as said electrode, Although it can select suitably according to the objective, It is preferable to comprise the said reflecting metal and the translucent metal as said translucent member in the anode and cathode.

前記陽極を構成する材料の具体例としては、例えば、アンチモンやフッ素等をドープした酸化錫(ATO、FTO)、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化亜鉛インジウム(IZO)等の導電性金属酸化物、金、銀、クロム、ニッケル等の金属、更にこれらの金属と導電性金属酸化物との混合物又は積層物、ヨウ化銅、硫化銅などの無機導電性物質、ポリアニリン、ポリチオフェン、ポリピロールなどの有機導電性材料、及びこれらとITOとの積層物などが挙げられる。この中で好ましいのは、導電性金属酸化物であり、特に、生産性、高導電性、透明性等の点からはITOが好ましい。   Specific examples of the material constituting the anode include, for example, tin oxide (ATO, FTO) doped with antimony or fluorine, tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO). ) Conductive metal oxides, metals such as gold, silver, chromium, nickel, and mixtures or laminates of these metals and conductive metal oxides, inorganic conductive materials such as copper iodide and copper sulfide, Examples thereof include organic conductive materials such as polyaniline, polythiophene, and polypyrrole, and laminates of these with ITO. Among these, conductive metal oxides are preferable, and ITO is particularly preferable from the viewpoints of productivity, high conductivity, transparency, and the like.

前記陰極を構成する材料としては、例えば、アルカリ金属(例えば、Li、Na、K、Cs等)、アルカリ土類金属(例えば、Mg、Ca等)、金、銀、鉛、アルミニウム、ナトリウム−カリウム合金、リチウム−アルミニウム合金、マグネシウム−銀合金、インジウム、及びイッテルビウム等の希土類金属などが挙げられる。これらは、1種単独で使用してもよいが、安定性と電子注入性とを両立させる観点からは、2種以上を好適に併用することができる。これらの中でも、電子注入性の点で、アルカリ金属やアルカリ土類金属が好ましく、保存安定性に優れる点で、アルミニウムを主体とする材料が好ましい。アルミニウムを主体とする材料とは、アルミニウム単独、アルミニウムと0.01質量%〜10質量%のアルカリ金属又はアルカリ土類金属との合金若しくはこれらの混合物(例えば、リチウム−アルミニウム合金、マグネシウム−アルミニウム合金など)をいう。   Examples of the material constituting the cathode include alkali metals (eg, Li, Na, K, Cs, etc.), alkaline earth metals (eg, Mg, Ca, etc.), gold, silver, lead, aluminum, sodium-potassium. Examples include alloys, lithium-aluminum alloys, magnesium-silver alloys, indium, and rare earth metals such as ytterbium. These may be used singly or in combination of two or more from the viewpoint of achieving both stability and electron injection. Among these, alkali metals and alkaline earth metals are preferable from the viewpoint of electron injection properties, and materials mainly composed of aluminum are preferable from the viewpoint of excellent storage stability. The material mainly composed of aluminum is aluminum alone, an alloy of aluminum and 0.01% by mass to 10% by mass of alkali metal or alkaline earth metal, or a mixture thereof (for example, lithium-aluminum alloy, magnesium-aluminum alloy). Etc.).

前記電極の形成方法については、特に制限はなく、公知の方法に従って行うことができる。例えば、印刷方式、コーティング方式等の湿式方式、真空蒸着法、スパッタリング法、イオンプレーティング法等の物理的方式、CVD、プラズマCVD法等の化学的方式などの中から、前記電極を構成する材料との適性を考慮し、適宜選択した方法に従って前記基板上に形成することができる。例えば、陽極の材料としてITOを選択する場合には、直流又は高周波スパッタ法、真空蒸着法、イオンプレーティング法等に従って形成することができる。陰極の材料として金属等を選択する場合には、その1種又は2種以上を同時又は順次にスパッタ法等に従って形成することができる。   There is no restriction | limiting in particular about the formation method of the said electrode, According to a well-known method, it can carry out. For example, a material constituting the electrode from a wet method such as a printing method, a coating method, a physical method such as a vacuum deposition method, a sputtering method, or an ion plating method, or a chemical method such as CVD or plasma CVD method. In consideration of the suitability, the film can be formed on the substrate according to an appropriately selected method. For example, when ITO is selected as the anode material, it can be formed according to a direct current or high frequency sputtering method, a vacuum deposition method, an ion plating method, or the like. When a metal or the like is selected as the cathode material, one or more of them can be formed simultaneously or sequentially according to a sputtering method or the like.

なお、前記電極を形成する際にパターニングを行う場合は、フォトリソグラフィーなどによる化学的エッチングによって行ってもよいし、レーザーなどによる物理的エッチングによって行ってもよく、また、マスクを重ねて真空蒸着やスパッタ等をして行ってもよいし、リフトオフ法や印刷法によって行ってもよい。   In addition, when patterning is performed when forming the electrode, it may be performed by chemical etching such as photolithography, or may be performed by physical etching using a laser or the like. It may be performed by sputtering or the like, or may be performed by a lift-off method or a printing method.

−バリア層−
前記バリア層としては、特に制限はなく、目的に応じて適宜選択すればよく、有機材料からなる有機層単独、又は無機材料からなる無機層単独であってもよいが、有機材料からなる有機層と、無機材料からなる無機層とを積層した多層構造であってもよい。
前記無機材料としては、例えばSiNx、SiON、SiO、Al、TiOなどが挙げられる。
前記有機材料としては、例えばシリコーン系ポリマー、エポキシ系ポリマー、アクリル系ポリマー、ウレタン系ポリマーなどが挙げられる。
-Barrier layer-
There is no restriction | limiting in particular as said barrier layer, What is necessary is just to select suitably according to the objective, The organic layer consisting of an organic material alone, or the inorganic layer consisting of an inorganic material may be single, but the organic layer consisting of an organic material And a multilayer structure in which an inorganic layer made of an inorganic material is laminated.
Examples of the inorganic materials, for example SiNx, SiON, SiO 2, Al 2 O 3, etc. TiO 2 and the like.
Examples of the organic material include a silicone polymer, an epoxy polymer, an acrylic polymer, and a urethane polymer.

前記バリア層の形成方法としては、特に制限はなく、材料に応じて適宜選択することができ、例えば、塗布法、CVD法、真空蒸着法、スパッタ法などが挙げられる。
前記バリア層の屈折率(多層構造の場合は、平均屈折率)は、1.7以上が好ましく、1.8〜2.2がより好ましい。前記バリア層の屈折率が、1.7未満であると、透明電極とバリア層の界面で、有機電界発光層からの光の全反射が多くなり、光取り出し効率が低下することがある。
前記バリア層の光学的性質は、光線透過率が80%以上が好ましく、85%以上がより好ましく、90%以上が更に好ましい。
前記バリア層の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、0.1μm〜10μmが好ましく、0.1μm〜5μmがより好ましく、0.2μm〜3μmが更に好ましい。前記バリア層の平均厚みが、0.1μm未満であると、大気中の酸素及び水分の透過を防ぐ封止機能が不充分であることがあり、10μmを超えると、光線透過率が低下し、透明性を損なうこと、また、無機材料を単層で用いる場合、応力差により割れ、隣接層との剥離等、バリア性が損なわれることがある。
There is no restriction | limiting in particular as a formation method of the said barrier layer, According to material, it can select suitably, For example, the apply | coating method, CVD method, a vacuum evaporation method, a sputtering method etc. are mentioned.
The barrier layer has a refractive index (average refractive index in the case of a multilayer structure) of preferably 1.7 or more, and more preferably 1.8 to 2.2. When the refractive index of the barrier layer is less than 1.7, the total reflection of light from the organic electroluminescent layer increases at the interface between the transparent electrode and the barrier layer, and the light extraction efficiency may decrease.
As for the optical properties of the barrier layer, the light transmittance is preferably 80% or more, more preferably 85% or more, and still more preferably 90% or more.
The average thickness of the barrier layer is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.1 μm to 10 μm, more preferably 0.1 μm to 5 μm, and still more preferably 0.2 μm to 3 μm. . When the average thickness of the barrier layer is less than 0.1 μm, the sealing function for preventing the permeation of oxygen and moisture in the atmosphere may be insufficient, and when it exceeds 10 μm, the light transmittance decreases. When transparency is impaired, and when an inorganic material is used in a single layer, barrier properties such as cracking due to a stress difference and separation from an adjacent layer may be impaired.

−封止板−
前記封止板としては、前記透明電極、前記反射電極、前記有機電界発光層、前記平坦化層、及び前記光拡散層からなる積層体が封入できる大きさ、形状、構造などを有していれば特に制限はなく、目的に応じて適宜選択することができる。
前記封止缶と前記透明電極、前記反射電極、前記有機電界発光層、前記平坦化層、及び前記光拡散層からなる積層体の間の空間には、水分吸収剤又は不活性液体を封入してもよい。
前記水分吸収剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、酸化バリウム、酸化ナトリウム、酸化カリウム、酸化カルシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、五酸化燐、塩化カルシウム、塩化マグネシウム、塩化銅、フッ化セシウム、フッ化ニオブ、臭化カルシウム、臭化バナジウム、モレキュラーシーブ、ゼオライト、酸化マグネシウムなどが挙げられる。
前記不活性液体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、パラフィン類、流動パラフィン類;パーフルオロアルカン、パーフルオロアミン、パーフルオロエーテル等のフッ素系溶剤;塩素系溶剤、シリコーンオイル類などが挙げられる。
-Sealing plate-
The sealing plate may have a size, shape, structure, or the like that can enclose a laminate including the transparent electrode, the reflective electrode, the organic electroluminescent layer, the planarizing layer, and the light diffusion layer. If there is no restriction | limiting in particular, it can select suitably according to the objective.
A water absorbent or an inert liquid is sealed in a space between the sealing can and the transparent electrode, the reflective electrode, the organic electroluminescent layer, the planarizing layer, and the light diffusing layer. May be.
The moisture absorbent is not particularly limited and may be appropriately selected depending on the intended purpose. For example, barium oxide, sodium oxide, potassium oxide, calcium oxide, sodium sulfate, calcium sulfate, magnesium sulfate, phosphorus pentoxide, Examples thereof include calcium chloride, magnesium chloride, copper chloride, cesium fluoride, niobium fluoride, calcium bromide, vanadium bromide, molecular sieve, zeolite, and magnesium oxide.
The inert liquid is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include paraffins, liquid paraffins; fluorinated solvents such as perfluoroalkane, perfluoroamine, and perfluoroether; chlorine System solvents, silicone oils and the like.

ここで、図2は、本発明の有機電界発光装置の一例を示す概略図である。この図2の有機電界発光装置20は、基板1上に、光拡散層2と、平坦化層3とを有する積層体(光取り出し部材)の平坦化層3上に、透明電極4と、有機発光層5と、反射電極6とを有し、光拡散層2、平坦化層3、透明電極4、有機発光層5、及び反射電極6が封止缶7で封止されたものである。   Here, FIG. 2 is a schematic view showing an example of the organic electroluminescent device of the present invention. The organic electroluminescent device 20 of FIG. 2 includes a transparent electrode 4, an organic layer on a planarization layer 3 of a laminate (light extraction member) having a light diffusion layer 2 and a planarization layer 3 on a substrate 1. The light-emitting layer 5 and the reflective electrode 6 are included, and the light diffusion layer 2, the planarizing layer 3, the transparent electrode 4, the organic light-emitting layer 5, and the reflective electrode 6 are sealed with a sealing can 7.

前記有機電界発光装置は、フルカラーで表示し得る装置として構成することができる。
前記有機電界発光装置をフルカラータイプのものとする方法としては、例えば「月刊ディスプレイ」、2000年9月号、33〜37ページに記載されているように、色の3原色(青色(B)、緑色(G)、赤色(R))に対応する光をそれぞれ発光する層構造を基板上に配置する3色発光法、白色発光用の層構造による白色発光をカラーフィルタ層を通して3原色に分ける白色法、青色発光用の層構造による青色発光を蛍光色素層を通して赤色(R)及び緑色(G)に変換する色変換法、などが知られている。
この場合は、青色(B)、緑色(G)、赤色(R)の画素ごとにレーザーパワー、厚みを適宜調整することが好ましい。
また、上記方法により得られる、異なる発光色の層構造を複数組み合わせて用いることにより、所望の発光色の平面型光源を得ることができる。例えば、青色及び黄色の発光素子を組み合わせた白色発光光源、青色(B)、緑色(G)、及び赤色(R)の有機電界発光素子を組み合わせた白色発光光源、等である。
The organic electroluminescent device can be configured as a device capable of displaying in full color.
As a method for making the organic electroluminescent device of a full color type, for example, as described in “Monthly Display”, September 2000, pages 33 to 37, the three primary colors (blue (B), A three-color light emission method in which a layer structure that emits light corresponding to green (G) and red (R) is arranged on a substrate, a white light that divides white light emission by a layer structure for white light emission into three primary colors through a color filter layer And a color conversion method in which blue light emission by a layer structure for blue light emission is converted into red (R) and green (G) through a fluorescent dye layer are known.
In this case, it is preferable to appropriately adjust the laser power and thickness for each pixel of blue (B), green (G), and red (R).
In addition, a planar light source having a desired emission color can be obtained by using a combination of a plurality of layer structures having different emission colors obtained by the above method. For example, a white light-emitting light source combining blue and yellow light-emitting elements, a white light-emitting light source combining blue (B), green (G), and red (R) organic electroluminescent elements.

前記有機電界発光装置は、例えば、照明機器、コンピュータ、車載用表示器、野外表示器、家庭用機器、業務用機器、家電用機器、交通関係表示器、時計表示器、カレンダ表示器、ルミネッセントスクリーン、音響機器等をはじめとする各種分野において好適に使用することができる。   The organic electroluminescent device is, for example, a lighting device, a computer, an on-vehicle display, an outdoor display, a home device, a business device, a home appliance, a traffic display, a clock display, a calendar display, a luminescence. It can be suitably used in various fields including cent screens, audio equipment and the like.

以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。
以下に説明する実施例及び比較例において、光拡散層の平均厚み、平坦化層の平均厚み、及びバインダーの屈折率については、以下のようにして測定した。
Examples of the present invention will be described below, but the present invention is not limited to these examples.
In the examples and comparative examples described below, the average thickness of the light diffusion layer, the average thickness of the planarization layer, and the refractive index of the binder were measured as follows.

<光拡散層及び平坦化層の平均厚み>
前記光拡散層及び平坦化層の平均厚みは、例えば光拡散層又は平坦化層の一部を切り取り、走査型電子顕微鏡(S−3400N、日立ハイテク株式会社製)を用いて、求めることができる。
<Average thickness of light diffusion layer and planarization layer>
The average thickness of the light diffusion layer and the planarization layer can be determined, for example, by cutting out a part of the light diffusion layer or the planarization layer and using a scanning electron microscope (S-3400N, manufactured by Hitachi High-Tech Co., Ltd.). .

<屈折率の測定>
前記光拡散層及び平坦化層を構成するバインダーの屈折率(光拡散層から光拡散粒子を除いた層及び平坦化層の屈折率)は、Si基板、又は石英基板上に光の波長程度の厚さに前記バインダーを成膜し、その成膜した基板上のバインダーをエリプソメーター測定して屈折率を求めることができる。
<Measurement of refractive index>
The refractive index of the binder constituting the light diffusing layer and the planarizing layer (the refractive index of the layer obtained by removing the light diffusing particles from the light diffusing layer and the planarizing layer) is about the wavelength of light on the Si substrate or the quartz substrate. The refractive index can be obtained by depositing the binder to a thickness and measuring the binder on the deposited substrate with an ellipsometer.

表面をアルミナ及びジルコニアで被覆した酸化チタン分散液(平均直径15nmの酸化チタンのナノ粒子が分散、屈折率2.45)「材料名:酸化チタン分散トルエン、商品名:高透明性酸化チタンスラリーHTD−760T」について、以下のようにして、光触媒活性の有無を測定した。その結果、光触媒活性が抑制され、光触媒効果の無い酸化ジルコニウム粒子と同等であることが分かった。   Titanium oxide dispersion coated with alumina and zirconia on the surface (dispersion of titanium oxide nanoparticles with an average diameter of 15 nm, refractive index 2.45) "Material name: Titanium oxide dispersed toluene, trade name: Highly transparent titanium oxide slurry HTD For “−760T”, the presence or absence of photocatalytic activity was measured as follows. As a result, it was found that the photocatalytic activity was suppressed and it was equivalent to zirconium oxide particles having no photocatalytic effect.

<光触媒活性の測定>
光触媒活性の測定は、一般的な方法として公知の「メチレンブルー法」を用いる。「メチレンブルー法」は石英管にメチレンブルー水溶液を入れ、その中に各粒子をドープし、光照射前の透過率を測定後、光照射を行い、メチレンブルー水溶液の透過率の変化を確認することで光触媒活性を定量的に測定した。
<Measurement of photocatalytic activity>
The photocatalytic activity is measured using a known “methylene blue method” as a general method. The "methylene blue method" is a photocatalyst by placing a methylene blue aqueous solution in a quartz tube, doping each particle into it, measuring the transmittance before light irradiation, irradiating with light, and confirming the change in the transmittance of the methylene blue aqueous solution. Activity was measured quantitatively.

<有機電界発光装置の作製>
−バインダー(平坦化層形成材料)の調製−
表面をアルミナ及びジルコニアで被覆した酸化チタン分散液(平均直径15nmの酸化チタンのナノ粒子が分散、屈折率2.45)「材料名:酸化チタン分散トルエン、商品名:高透明性酸化チタンスラリーHTD−760T」35g、アクリレート系モノマー(樹脂材料)「材料名:フルオレン誘導体、商品名:オグソールEA−0200」(体積収縮率1%以下)10g、及びトルエン8.5gをローラーミキサー、スターラーにより攪拌して溶解し、更に超音波(ソニファイヤー)により分散させて、バインダー形成材料を得た。
得られたバインダー形成材料は、そのまま平坦化層の形成材料となるので、以下、平坦化層形成材料と称することもある。
<Production of organic electroluminescent device>
-Preparation of binder (planarization layer forming material)-
Titanium oxide dispersion coated with alumina and zirconia on the surface (dispersion of titanium oxide nanoparticles with an average diameter of 15 nm, refractive index 2.45) "Material name: Titanium oxide dispersed toluene, trade name: Highly transparent titanium oxide slurry HTD -760T "35 g, acrylate monomer (resin material)" Material name: fluorene derivative, product name: Ogsol EA-0200 "(volume shrinkage ratio 1% or less) 10 g, and toluene 8.5 g were stirred with a roller mixer and a stirrer. Then, it was further dissolved by ultrasonic waves (sonifier) to obtain a binder forming material.
Since the obtained binder forming material becomes the forming material of the flattening layer as it is, it may be hereinafter referred to as the flattening layer forming material.

−光拡散層形成材料の作製−
得られたバインダー形成材料19gに光拡散粒子(平均直径1.5μmの架橋アクリル系粒子、屈折率1.49)「材料名:EX−150」4.2g、及びトルエン14gをスターラーにて攪拌しながら添加し、超音波にて光拡散粒子をバインダー形成材料に十分に分散させ、更にスターラーで攪拌し、光拡散粒子の含有量が40体積%となる光拡散層形成材料を得た。
-Production of light diffusion layer forming material-
Light diffusion particles (cross-linked acrylic particles having an average diameter of 1.5 μm, refractive index of 1.49) “Material name: EX-150” (4.2 g) and toluene (14 g) were stirred with a stirrer in 19 g of the obtained binder-forming material. Then, the light diffusing particles were sufficiently dispersed in the binder forming material with ultrasonic waves, and further stirred with a stirrer to obtain a light diffusing layer forming material having a light diffusing particle content of 40% by volume.

次に、作製した平坦化層形成材料及び光拡散層形成材料に重合開始剤(ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイド)を表1に記載の量(アクリレート系モノマーに対する質量割合)を添加し、十分に攪拌した。   Next, a polymerization initiator (bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide) is added to the produced planarization layer forming material and light diffusion layer forming material in the amounts shown in Table 1 (mass with respect to the acrylate monomer). Ratio) was added and stirred thoroughly.

−光取出し部材の作製−
次に、ガラス基板(コーニング社製、Eagle XG、屈折率1.51)を洗浄容器に入れ、中性洗剤中で超音波洗浄した後、純水中で超音波洗浄し、120℃で120分間加熱乾燥を行った。
ガラス基板にワイヤーバーを用いて光拡散層形成材料を塗布し、その後、窒素雰囲気下でUV照射(365nm)を1分間行い硬化させ、平均厚み5μmの光拡散層を作製した。
次に、光拡散層の上にワイヤーバーを用いて平坦化層形成材料を塗布し、UV照射を行い硬化させ、平均厚み5μmの平坦化層を形成し、光取り出し部材(積層体)を作製した。なお、有機電界発光装置を組み立てた際に、光拡散層及び平坦化層が封止板内に収まる大きさとなるように塗布した。
その後、作製した光取り出し部材をイソプロピルアルコール(IPA)、純水の順に超音波洗浄を行い、120℃で2時間、乾燥した。
-Production of light extraction member-
Next, a glass substrate (manufactured by Corning, Eagle XG, refractive index 1.51) is placed in a cleaning container, subjected to ultrasonic cleaning in a neutral detergent, and then ultrasonically cleaned in pure water, at 120 ° C. for 120 minutes. Heat drying was performed.
A light diffusion layer forming material was applied to a glass substrate using a wire bar, and then UV irradiation (365 nm) was performed for 1 minute in a nitrogen atmosphere to cure, thereby preparing a light diffusion layer having an average thickness of 5 μm.
Next, a planarizing layer forming material is applied on the light diffusion layer using a wire bar, and cured by UV irradiation to form a planarizing layer having an average thickness of 5 μm, and a light extraction member (laminate) is produced. did. In addition, when the organic electroluminescent device was assembled, the light diffusion layer and the planarization layer were applied so as to fit in the sealing plate.
Thereafter, the produced light extraction member was subjected to ultrasonic cleaning in the order of isopropyl alcohol (IPA) and pure water, and dried at 120 ° C. for 2 hours.

次に、作製した光取り出し部材をUS洗浄後(水20分)し(陽極成膜前の光取り出し層(光拡散層と平坦化層からなる)の剥離はここで起こり得る)、その後、平坦化層上に、スパッタ成膜機にて金属マスクによりITO(Indium Tin Oxide)を厚みが100nmとなるように成膜し第1電極(陽極)とした。
前記手法で作成した第1電極を有する積層体をUS洗浄後(水20分)し{有機層形成前の陽極の剥離はここで起こり得る}、その後、第1電極上に、真空蒸着装置により、HAT−CNを10nm(正孔注入層)、その上にα−NPDを500nm(正孔輸送層)、CBP(85%)とIr(ppy)(15%)を30nm共蒸着させ発光層を形成し、更にその上にトリフェニレン10nm(正孔ブロック層)、その上にAlqを40nm(電子注入層)を積層することで有機層が得られた。次に、電子注入層上にバッファ層としてLiFを厚みが1nmとなるように蒸着し、該バッファ層上にアルミニウムを電極層(第2電極)として厚みが100nmとなるように蒸着し積層体を得た。
Next, the produced light extraction member was washed in the US (water 20 minutes) (peeling of the light extraction layer (consisting of the light diffusion layer and the planarizing layer) before film formation of the anode can occur here), and then flattened. An ITO (Indium Tin Oxide) film having a thickness of 100 nm was formed on the conversion layer with a metal mask using a sputter film forming machine to form a first electrode (anode).
The laminate having the first electrode prepared by the above method is washed in the US (water 20 minutes) {the anode can be peeled off before the organic layer is formed here}, and then on the first electrode by a vacuum deposition apparatus. , HAT-CN is 10 nm (hole injection layer), α-NPD is 500 nm (hole transport layer), CBP (85%) and Ir (ppy) 3 (15%) are co-deposited to 30 nm on the light emitting layer Further, triphenylene 10 nm (hole blocking layer) was laminated thereon, and Alq 40 nm (electron injection layer) was laminated thereon, whereby an organic layer was obtained. Next, LiF is deposited as a buffer layer on the electron injection layer so as to have a thickness of 1 nm, and aluminum is deposited as an electrode layer (second electrode) on the buffer layer so as to have a thickness of 100 nm. Obtained.


−−封止−−
次に、作製した積層体に、窒素ガス雰囲気中にて乾燥剤を貼り付け、基板との設置面に封止材を塗った封止ガラス缶にて基板の有機層側を封止した。以上により、有機電界発光装置を作製した。
--Sealing--
Next, a desiccant was affixed to the produced laminate in a nitrogen gas atmosphere, and the organic layer side of the substrate was sealed with a sealing glass can in which a sealing material was applied to the installation surface with the substrate. Thus, an organic electroluminescence device was produced.

〔評価〕
作製した有機電界発光装置について、以下のようにして、光拡散層及び平坦化層の重合度、陽極成膜前の光取り出し層の剥離の有無、有機層形成前の陽極の剥離の有無、光取り出し効率、外観状のムラやシミの有無を評価した。結果を表1に示す。
[Evaluation]
About the produced organic electroluminescent device, the degree of polymerization of the light diffusion layer and the planarizing layer, the presence or absence of peeling of the light extraction layer before the anode film formation, the presence or absence of peeling of the anode before the organic layer formation, light The removal efficiency, the appearance unevenness and the presence or absence of spots were evaluated. The results are shown in Table 1.

<重合度の測定>
光拡散層の重合度と平坦化層は透過IRにより測定した。
平坦化層の重合度については、Si基板に平坦化層をそれぞれ塗布し、フーリエ変換赤外分光光度計(NICOLET 4700:Thermo Scientific社製)にてIRスペクトルを測定し、960〜1000(cm−1)に見られる二重結合によるピークの強度の積分値を算出する。この時、重合前・後で測定を行い、重合前の強度積分値をI、重合後をIとし、重合度は、((I−I)/I)*100[%]とした。
光拡散層の重合度については、Si基板に拡散層を塗布し重合を行い、その上に平坦化層を塗布して重合を行う。その後、ドライエッチャーもしくは逆スパッタ法にて平坦化層のみを除去し、その後、フーリエ変換赤外分光光度計(NICOLET 4700:Thermo Scientific社製)にてIRスペクトルを測定し、960〜1000(cm−1)に見られる二重結合によるピークの強度の積分値Iを算出する。また、Si基板に拡散層を塗布し重合処理をせず測定を行い同様に二重結合によるピークの強度の積分値Iを算出する。重合度は、((I−I)/I)*100[%]とした。
<Measurement of degree of polymerization>
The degree of polymerization of the light diffusion layer and the leveling layer were measured by transmission IR.
About the polymerization degree of a planarization layer, apply | coating the planarization layer to Si substrate, respectively, IR spectrum is measured with a Fourier-transform infrared spectrophotometer (NICOLET 4700: The product made from Thermo Scientific), 960-1000 (cm < - >). 1 ) Calculate the integrated value of the intensity of the peak due to the double bond found in 1 ). At this time, the measurement was performed before and after the polymerization. The integrated intensity value before the polymerization was I b , and the polymerization intensity was I a , and the degree of polymerization was ((I b −I a ) / I b ) * 100 [%] It was.
About the polymerization degree of a light-diffusion layer, it superposes | polymerizes by apply | coating a diffused layer to Si substrate, and apply | coating a planarization layer on it. Thereafter, only the planarization layer was removed by dry etching or reverse sputtering, and then the IR spectrum was measured with a Fourier transform infrared spectrophotometer (NICOLET 4700: manufactured by Thermo Scientific), and 960-1000 (cm It calculates an integrated value I a of the intensity of the peak due to the double bonds found in 1). Further, a diffusion layer is applied to the Si substrate, measurement is performed without performing a polymerization treatment, and an integrated value I b of the peak intensity due to double bonds is calculated in the same manner. The degree of polymerization was ((I b −I a ) / I b ) * 100 [%].

<外部量子収率の測定>
外部量子収率の測定は、浜松ホトニクス株式会社製の外部量子効率測定装置「C9920−12」を用いて、直流定電流を各有機電界発光装置に印加して発光させ測定した。
<Measurement of external quantum yield>
The external quantum yield was measured using an external quantum efficiency measurement device “C9920-12” manufactured by Hamamatsu Photonics Co., Ltd., by applying a constant DC current to each organic electroluminescence device to emit light.

<有機電界発光装置の経時変化の評価方法>
発光面の目視観察にて、有機電界発光装置の経時変化の評価を行った。東陽テクニカ(株)製ソースメジャーユニット2400を用いて、直流電流を各素子に印加し、発光させた時の輝度が1000cd/m2で駆動させ、温度20℃、湿度60%で駆動させた。100時間放置後の外観上のムラやシミの発生を目視で確認した。
<Evaluation method of change with time of organic electroluminescence device>
The change with time of the organic electroluminescent device was evaluated by visual observation of the light emitting surface. Using a source measure unit 2400 manufactured by Toyo Technica Co., Ltd., a direct current was applied to each element to drive it at a luminance of 1000 cd / m 2 and drive at a temperature of 20 ° C. and a humidity of 60%. Generation | occurrence | production and the generation | occurrence | production of the nonuniformity and the spot on the external appearance after leaving for 100 hours were confirmed visually.

<有機電界発光装置の製造中の状態の評価方法>
光拡散層、及び平坦化層を成膜プロセス毎に、目視にて表面を観察することで、表面の凹凸、剥離等を確認した。
<The evaluation method of the state in manufacture of an organic electroluminescent apparatus>
The surface of the light diffusion layer and the planarization layer was visually observed for each film forming process, thereby confirming surface irregularities and peeling.

表1の結果から、実施例1〜3は、いずれも外部量子効率が高く、上記有機電界発光装置の経時変化の評価方法による結果も良好であることが分かった。
比較例1及び2は拡散層の重合開始剤の添加量を増やしたことにより、実施例1及び2と比較して、拡散層の重合度が高くなったものである。光取出し層や陽極の剥離は観察されなかったが、100時間経過後にムラやシミが観察された。
比較例3は、拡散層の重合開始剤の添加量を少なくしたものであるが、拡散層の重合度が低く、陽極成膜前に光取出し層の剥離が観察された。
また、バインダーの硬化時の屈折率は1.8、拡散微粒子の屈折率は1.49で屈折率差が十分に大きく、薄膜でも光取り出しに十分な拡散を得ることができる。
またトルエンを溶媒としているため、樹脂の粒子は十分な耐溶剤性が必要であるが、その点でも本材料の組み合わせは溶剤に強く、また経時変化による分散の劣化(凝集等)においても非常に優れている。
From the results of Table 1, it was found that Examples 1 to 3 all had high external quantum efficiency, and the results obtained by the method for evaluating changes over time of the organic electroluminescent device were also good.
In Comparative Examples 1 and 2, the degree of polymerization of the diffusion layer was increased as compared with Examples 1 and 2 by increasing the amount of the polymerization initiator added to the diffusion layer. Although peeling of the light extraction layer and the anode was not observed, unevenness and spots were observed after 100 hours.
In Comparative Example 3, the addition amount of the polymerization initiator in the diffusion layer was reduced, but the polymerization degree of the diffusion layer was low, and peeling of the light extraction layer was observed before the anode film formation.
Further, the refractive index of the binder upon curing is 1.8, the refractive index of the diffusing fine particles is 1.49, and the refractive index difference is sufficiently large, so that even a thin film can obtain sufficient diffusion for light extraction.
In addition, since toluene is used as a solvent, resin particles must have sufficient solvent resistance. However, in this respect, the combination of the materials is resistant to the solvent, and the dispersion deterioration (aggregation, etc.) due to changes over time is also very high. Are better.

1 基板
2 光拡散層
3 平坦化層
4 透明電極
5 有機発光層
6 反射電極
7 封止缶
10 積層体
20 有機電界発光装置
DESCRIPTION OF SYMBOLS 1 Substrate 2 Light diffusing layer 3 Flattening layer 4 Transparent electrode 5 Organic light emitting layer 6 Reflecting electrode 7 Sealing can 10 Laminate 20 Organic electroluminescent device

Claims (7)

基板と、(メタ)アクリル系樹脂を含むバインダー及び光拡散粒子を含む光拡散層と、(メタ)アクリル系樹脂を含むバインダーを含む平坦化層とを、この順に有する積層体であって、光拡散層の重合度が30%以上65%以下であり、かつ、平坦化層の重合度が50%以上である積層体。   A laminate having a substrate, a light diffusion layer containing a binder containing (meth) acrylic resin and light diffusing particles, and a planarization layer containing a binder containing (meth) acrylic resin in this order, A laminate in which the diffusion layer has a polymerization degree of 30% to 65% and the planarization layer has a polymerization degree of 50% or more. 前記光拡散層中の光拡散粒子の平均粒径が0.5μm〜10μmである請求項1に記載の積層体。   The laminate according to claim 1, wherein an average particle diameter of the light diffusion particles in the light diffusion layer is 0.5 μm to 10 μm. 前記光拡散層中のバインダーの体積収縮率が2%以下である請求項1又は2に記載の積層体。   The laminate according to claim 1 or 2, wherein the volume shrinkage of the binder in the light diffusion layer is 2% or less. 前記光拡散層が、(メタ)アクリレート系モノマー、光拡散粒子、及び重合開始剤を含む光拡散層形成用組成物から形成され、
前記平坦化層が、(メタ)アクリレート系モノマー、及び重合開始剤を含む平坦化層形成用組成物から形成され、
光拡散層形成用組成物中の重合開始剤の配合割合が、(メタ)アクリレート系モノマーに対して3質量%以下であり、
平坦化層形成用組成物中の重合開始剤の配合割合が、(メタ)アクリレート系モノマーに対して3質量%以下である、請求項1〜3のいずれか一項に記載の積層体。
The light diffusion layer is formed from a composition for forming a light diffusion layer containing a (meth) acrylate monomer, a light diffusion particle, and a polymerization initiator,
The planarizing layer is formed from a composition for forming a planarizing layer containing a (meth) acrylate monomer and a polymerization initiator,
The blending ratio of the polymerization initiator in the composition for forming a light diffusion layer is 3% by mass or less with respect to the (meth) acrylate monomer,
The laminated body as described in any one of Claims 1-3 whose compounding ratio of the polymerization initiator in the composition for planarization layer formation is 3 mass% or less with respect to a (meth) acrylate type monomer.
前記光拡散粒子は、架橋された(メタ)アクリル系樹脂粒子である請求項1〜4のいずれか一項に記載の積層体。   The laminate according to any one of claims 1 to 4, wherein the light diffusion particles are crosslinked (meth) acrylic resin particles. 前記光拡散層及び前記平坦化層は、更に光触媒不活性処理した酸化チタン微粒子を含む請求項1〜5のいずれか一項に記載の積層体。   The laminate according to any one of claims 1 to 5, wherein the light diffusion layer and the planarization layer further include titanium oxide fine particles subjected to photocatalytic inactivation treatment. 請求項1〜6のいずれか一項に記載の積層体と、該積層体の平坦化層側に、第一電極と、有機発光層と、第二電極とを、この順に有する有機電界発光装置。   The organic electroluminescent device which has a 1st electrode, an organic light emitting layer, and a 2nd electrode in this order on the planarization layer side of the laminated body as described in any one of Claims 1-6, and this laminated body. .
JP2013073763A 2013-03-29 2013-03-29 Laminated body and organic electroluminescent device Expired - Fee Related JP5948276B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013073763A JP5948276B2 (en) 2013-03-29 2013-03-29 Laminated body and organic electroluminescent device
PCT/JP2014/054350 WO2014156418A1 (en) 2013-03-29 2014-02-24 Laminate and organic electroluminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013073763A JP5948276B2 (en) 2013-03-29 2013-03-29 Laminated body and organic electroluminescent device

Publications (2)

Publication Number Publication Date
JP2014199274A true JP2014199274A (en) 2014-10-23
JP5948276B2 JP5948276B2 (en) 2016-07-06

Family

ID=51623415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013073763A Expired - Fee Related JP5948276B2 (en) 2013-03-29 2013-03-29 Laminated body and organic electroluminescent device

Country Status (2)

Country Link
JP (1) JP5948276B2 (en)
WO (1) WO2014156418A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6351532B2 (en) * 2015-03-26 2018-07-04 富士フイルム株式会社 Functional film and method for producing functional film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059128A (en) * 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP2007299725A (en) * 2006-04-07 2007-11-15 Sekisui Chem Co Ltd Organic electroluminescent device
JP2011157497A (en) * 2010-02-02 2011-08-18 Daicel-Cytec Co Ltd Active energy ray-curable composition
JP2012155177A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Light diffusion layer-forming material and light extraction member, as well as organic electroluminescent device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059128A (en) * 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP2007299725A (en) * 2006-04-07 2007-11-15 Sekisui Chem Co Ltd Organic electroluminescent device
JP2011157497A (en) * 2010-02-02 2011-08-18 Daicel-Cytec Co Ltd Active energy ray-curable composition
JP2012155177A (en) * 2011-01-27 2012-08-16 Fujifilm Corp Light diffusion layer-forming material and light extraction member, as well as organic electroluminescent device and method for manufacturing the same

Also Published As

Publication number Publication date
JP5948276B2 (en) 2016-07-06
WO2014156418A1 (en) 2014-10-02

Similar Documents

Publication Publication Date Title
JP5698993B2 (en) Light diffusing layer forming material, light extraction member, organic electroluminescent device and method for manufacturing the same
JP5913938B2 (en) Light diffusing transfer material, method of forming light diffusing layer, and method of manufacturing organic electroluminescent device
JP5835216B2 (en) Light extraction sheet, organic electroluminescence element and lighting device
JP5754912B2 (en) Light extraction sheet, organic electroluminescent device, and method for manufacturing the same
JP5527329B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE USING THE SAME
JP5898933B2 (en) Laminated body and organic electroluminescent device
JP6042103B2 (en) Organic electroluminescence device
JP5912306B2 (en) Organic electroluminescent substrate and organic electroluminescent device
JP5990049B2 (en) Organic electroluminescence device
JP5994884B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP6070411B2 (en) GAS BARRIER FILM, GAS BARRIER FILM MANUFACTURING METHOD, AND ORGANIC ELECTROLUMINESCENT ELEMENT
JP5578987B2 (en) Fine particle layer transfer material, organic electroluminescence device and method for producing the same
JP6200777B2 (en) Light extraction member and organic electroluminescence device
JP5948276B2 (en) Laminated body and organic electroluminescent device
WO2012172883A1 (en) Method for manufacturing organic electroluminescent element
JP5708677B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT AND LIGHTING DEVICE
JP2009252944A (en) Organic electroluminescence element and its manufacturing method
JP2011150803A (en) Organic electroluminescence element and lighting system
JP2004303562A (en) Substrate for organic electroluminescent element
JP6200778B2 (en) Organic electroluminescence device
JP6130629B2 (en) Organic electroluminescence device
JP5353852B2 (en) Surface light emitter and method for manufacturing surface light emitter
JP2013114761A (en) Electroluminescent lighting system and method for manufacturing electroluminescent lighting system
JP2011222385A (en) Organic electroluminescent element manufacturing method and organic electroluminescent element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150424

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5948276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees