JP2014198886A - Recovery method of gold from gold ore containing iron pyrite - Google Patents

Recovery method of gold from gold ore containing iron pyrite Download PDF

Info

Publication number
JP2014198886A
JP2014198886A JP2013075222A JP2013075222A JP2014198886A JP 2014198886 A JP2014198886 A JP 2014198886A JP 2013075222 A JP2013075222 A JP 2013075222A JP 2013075222 A JP2013075222 A JP 2013075222A JP 2014198886 A JP2014198886 A JP 2014198886A
Authority
JP
Japan
Prior art keywords
gold
leaching
ore
iron
pyrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075222A
Other languages
Japanese (ja)
Other versions
JP5840641B2 (en
Inventor
和浩 波多野
Kazuhiro Hatano
和浩 波多野
浩至 勝川
Koji Katsukawa
浩至 勝川
佐野 正樹
Masaki Sano
正樹 佐野
由樹 青砥
Yuki Aoto
由樹 青砥
健志 中村
Kenji Nakamura
健志 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2013075222A priority Critical patent/JP5840641B2/en
Priority to AU2014245391A priority patent/AU2014245391B2/en
Priority to PCT/JP2014/053194 priority patent/WO2014156351A1/en
Priority to PE2015002093A priority patent/PE20151819A1/en
Priority to CA2908370A priority patent/CA2908370C/en
Publication of JP2014198886A publication Critical patent/JP2014198886A/en
Priority to CL2015002890A priority patent/CL2015002890A1/en
Application granted granted Critical
Publication of JP5840641B2 publication Critical patent/JP5840641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • C22B3/24Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition by adsorption on solid substances, e.g. by extraction with solid resins
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method of gold from gold ore containing iron pyrite capable of improving leaching speed of gold while suppressing the generation of sulfur dioxide and increasing the adsorption amount of gold to active charcoal, without using toxic chemicals such as cyan, thiourea, thiosulfate and halogen gas.SOLUTION: There is provided a recovery method of gold from gold ore containing iron pyrite comprising a pre-treatment which includes a process 1 of preparing gold ore containing iron pyrite and a process 2 of heating the gold ore under an inactive atmosphere at 450°C or more and thermal decomposing the iron pyrite in the gold ore to iron sulfide (II) and elemental sulfur, but does not include an oxidation roasting process; a process 3 of contacting the gold ore after the pre-treatment process with a gold leaching solution containing chloride iron, bromide iron and iron ion under application of an oxidant and leaching a gold component in the ore; a process 4 of adding the oxidant after adding cuprous chloride to the liquid after leaching the gold component obtained in the process 3, then adjusting the oxidation reduction potential at 520 mV or more to reduce monovalent copper ion in the liquid after leaching gold; and a process 5 of adsorbing gold in the liquid after leaching gold obtained in the process 4 to active charcoal.

Description

本発明は黄鉄鉱を含有する金鉱石からの金の回収方法に関する。   The present invention relates to a method for recovering gold from gold ore containing pyrite.

金を含有する硫化鉱物から金を回収する方法として、湿式法を利用した技術が知られている。伝統的には、硫化鉱物中の金を溶液中への浸出は、シアン、チオ尿素、チオ硫酸、ハロゲンガスといった薬品を使用することにより行われてきた。最近では、より毒性の低い浸出剤として、特開2009−235525号公報(特許文献1)に記載されるような、塩化物イオン、鉄イオン、銅イオン、及び臭化物イオンを利用した金浸出液を使用することも提案されている。   A technique using a wet method is known as a method for recovering gold from a sulfide mineral containing gold. Traditionally, leaching of gold in sulfide minerals into solutions has been performed by using chemicals such as cyanide, thiourea, thiosulfuric acid, and halogen gas. Recently, a gold leaching solution using chloride ions, iron ions, copper ions, and bromide ions as described in JP-A-2009-235525 (Patent Document 1) is used as a less toxic leachant. It has also been proposed to do.

また、硫化鉱物から金を浸出しやすくするための前処理として、硫化鉱物を酸化焙焼する方法が知られており、近年では酸化焙焼にその他の工程を組み合わせた前処理も提案されている。例えば、特開2010−235999号公報(特許文献2)では、硫化銅鉱物を硫黄の融点以下の温度で浸出し、得られた浸出残渣から微細な粒状となった硫黄及び浸出されずに残留した硫化物の粒子を、その他の酸化鉄や脈石成分との疎水性の違いを利用して浮上させる一方、酸化鉄や脈石成分などを沈降、もしくは沈鉱として分離させることにより、浸出残渣中に含まれる金を濃縮する。その後、濃縮された金を含む成分は、硫黄を除去してから酸化焙焼して鉄成分を酸化鉄(ヘマタイト)とし、その後硫酸を用いて溶解することによって、金が濃縮された残渣が回収される。   Further, as a pretreatment for facilitating leaching of gold from sulfide minerals, a method of oxidizing and roasting sulfide minerals is known, and in recent years, a pretreatment combining oxidation roasting with other processes has also been proposed. . For example, in Japanese Patent Application Laid-Open No. 2010-235999 (Patent Document 2), copper sulfide mineral is leached at a temperature lower than the melting point of sulfur, and sulfur obtained as fine particles from the obtained leaching residue and remains without leaching. Sulfide particles are levitated by utilizing the difference in hydrophobicity from other iron oxides and gangue components, while iron oxide and gangue components are settled or separated as sedimentation to separate them in the leach residue. Concentrate the gold contained in the. After that, the concentrated gold-containing component is oxidized and roasted after removing sulfur to convert the iron component to iron oxide (hematite), and then dissolved using sulfuric acid to recover the gold-enriched residue. Is done.

特開2009−235525号公報JP 2009-235525 A 特開2010−235999号公報JP 2010-235999 A

特開2009−235525号公報(特許文献1)に記載の方法は、毒性の高いシアン、チオ尿素、チオ硫酸、ハロゲンガスといった薬品を使用することなく金を容易に浸出できるので、硫化銅鉱中の金の浸出には極めて実用性が高いが、これを黄鉄鉱に適用した場合には、金浸出速度が十分ではなく、改善の余地が残されている。そのため、特開2010−235999号公報(特許文献2)に記載されるような酸素を供給して行う酸化焙焼を利用した前処理を行うことで金浸出速度を高める方法も考えられる。   Since the method described in JP2009-235525A (Patent Document 1) can easily leach gold without using chemicals such as highly toxic cyanide, thiourea, thiosulfuric acid, and halogen gas, Although it is extremely practical for gold leaching, when it is applied to pyrite, the gold leaching rate is not sufficient, and there remains room for improvement. Therefore, a method of increasing the gold leaching rate by performing pretreatment using oxidation roasting performed by supplying oxygen as described in JP 2010-235999 A (Patent Document 2) is also conceivable.

しかしながら、特許文献2に記載の方法も含めて硫化鉱物を酸化焙焼する方法を採用すると、2CuS+2O2→2CuO+SO2や、2CuFeS2+6O2→CuO+4SO2+Fe23、及び4FeS2+11O2→2Fe23+8SO2のような化学反応が優先的に起こるので、環境汚染物質として知られる二酸化硫黄(SO2)が発生するという問題が避けられない。金の浸出速度を高めるための前処理については、安全性や環境面の観点からは金浸出のための鉱物処理過程で発生する二酸化硫黄を低減し、安全性を高め、環境に与える影響を低いものとすることが望ましい。 However, if the method of oxidizing and roasting sulfide minerals including the method described in Patent Document 2 is adopted, 2CuS + 2O 2 → 2CuO + SO 2 , 2CuFeS 2 + 6O 2 → CuO + 4SO 2 + Fe 2 O 3 , and 4FeS 2 + 11O 2 → 2Fe Since a chemical reaction such as 2 O 3 + 8SO 2 occurs preferentially, the problem that sulfur dioxide (SO 2 ) known as an environmental pollutant is generated is inevitable. Pretreatment to increase the gold leaching rate is reduced from the viewpoint of safety and environment, sulfur dioxide generated in the mineral treatment process for gold leaching is reduced, safety is increased, and the impact on the environment is low. It is desirable to make it.

更に、黄鉄鉱を湿式処理する場合、随伴物の金は、予め残渣に分離濃縮された後にハロゲン浴で浸出される、もしくは主成分鉱の浸出後期に同時にハロゲン浴に浸出されるが、この浸出後液にはハロゲン化物を配位子とした金錯体が残留している。この金錯体を活性炭に吸着して回収する場合、その吸着量が多ければ多いほど歩留まりが大きい。特に活性炭を焼却処理する場合には、単位活性炭重量あたりの吸着量が生産コストに直結して大きな影響を及ぼす。そのため、単位吸着量を増加させる方法の開発が望まれるが、特許文献1及び2のいずれも、金の活性炭への吸着性向上に対する検討はなされておらず、また一般的にも活性炭の種類や浸出後液の共雑物等の問題もあり適当な方法は知られていない。   Further, when the pyrite is wet-treated, the accompanying gold is separated and concentrated in advance into a residue and then leached in a halogen bath, or leached in a halogen bath at the same time as the main component ore leaching. A gold complex having a halide as a ligand remains in the liquid. When the gold complex is adsorbed and recovered on activated carbon, the yield increases as the amount of adsorption increases. In particular, when the activated carbon is incinerated, the amount of adsorption per unit activated carbon weight directly affects the production cost and has a great effect. Therefore, development of a method for increasing the unit adsorption amount is desired. However, neither of Patent Documents 1 and 2 has been studied for improving the adsorptivity of gold to activated carbon. There is a problem such as contamination of the liquid after leaching, and an appropriate method is not known.

本発明は上記事情に鑑みてなされたものであり、黄鉄鉱を含有する金鉱石からの金の回収方法において、毒性の高いシアン、チオ尿素、チオ硫酸、ハロゲンガスといった薬品を使用することなく、更には二酸化硫黄の発生を抑制しながらも金の浸出速度を向上することができ、且つ活性炭への金の吸着量を増加させることが可能な黄鉄鉱を含有する金鉱石からの金の回収方法を提供する。   The present invention has been made in view of the above circumstances, and in the method for recovering gold from gold ore containing pyrite, without using chemicals such as highly toxic cyanide, thiourea, thiosulfuric acid, halogen gas, and the like. Provides a method for recovering gold from gold ore containing pyrite, which can improve the rate of gold leaching while suppressing the generation of sulfur dioxide and increase the amount of gold adsorbed on activated carbon. To do.

本発明者らは上記課題を解決するために鋭意検討したところ、黄鉄鉱に対して不活性雰囲気で硫化鉄(II)に熱分解する前処理を行った上で、塩化物イオン、臭化物イオン、及び三価の鉄イオンを含有する金浸出液を用いて金浸出を行うと、酸化硫黄の発生を抑制しながらも、金浸出速度が飛躍的に向上することを見出した。更に、本発明者らは、金浸出で得られた金浸出後液を活性炭に吸着して回収するに際し、活性炭への競合吸着物となる物質が、金浸出後液中の一価の銅イオンであることを突き止め、この一価の銅イオンを、金の活性炭吸着工程よりも前に予め減少させておくための処理をすることにより、活性炭への金の吸着量を有意に向上できることを見出した。   The present inventors have intensively studied to solve the above-mentioned problems, and after performing a pretreatment for pyrolysis to iron sulfide (II) in an inert atmosphere with respect to pyrite, chloride ions, bromide ions, and It has been found that when gold leaching is performed using a gold leaching solution containing trivalent iron ions, the gold leaching rate is dramatically improved while suppressing the generation of sulfur oxide. Furthermore, when the present inventors adsorbed and recovered the gold-leached solution obtained by gold leaching on activated carbon, the substance that becomes a competitive adsorbent to the activated carbon is a monovalent copper ion in the solution after gold leaching. As a result, it was found that the amount of gold adsorbed on the activated carbon can be significantly improved by performing a treatment for reducing the monovalent copper ions in advance before the gold activated carbon adsorption step. It was.

本発明は上記知見を基礎として完成したものであり、一側面において、黄鉄鉱を含有する金鉱石を準備する工程1及び当該金鉱石を不活性雰囲気下で450℃以上に加熱し、当該金鉱石中の黄鉄鉱を硫化鉄(II)及び単体硫黄に熱分解する工程2を含み、酸化焙焼工程を含まない前処理と、前処理工程後の金鉱石を、塩化物イオン、臭化物イオン、及び鉄イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出する工程3と、工程3で得られた金成分浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程4と、工程4で得られた金浸出後液中の金を活性炭に吸着させる工程5とを含む、黄鉄鉱を含有する金鉱石からの金の回収方法である。   The present invention has been completed on the basis of the above knowledge. In one aspect, Step 1 for preparing a gold ore containing pyrite and heating the gold ore to 450 ° C. or higher in an inert atmosphere, Including the step 2 of pyrolysis of pyrite of iron sulfide (II) and elemental sulfur, pretreatment without oxidation roasting, and gold ore after the pretreatment step, chloride ion, bromide ion, and iron ion After adding cuprous chloride to the gold component leaching solution obtained in step 3 and leaching the gold component in the ore by contacting the gold leaching solution containing Step 4 to reduce the monovalent copper ions in the solution after gold leaching by adjusting the redox potential to 520 mV or more by adding an oxidizing agent, and adsorbing the gold in the solution after gold leaching obtained in step 4 to the activated carbon From gold ore containing pyrite, including step 5 It is a method of recovery.

本発明に係る黄鉄鉱を含有する金鉱石からの金の回収方法の一実施形態においては、工程4が、酸化還元電位(参照電極、銀/塩化銀)を520mV〜570mVに調整する。   In one embodiment of the method for recovering gold from gold ore containing pyrite according to the present invention, step 4 adjusts the redox potential (reference electrode, silver / silver chloride) to 520 mV to 570 mV.

本発明に係る黄鉄鉱を含有する金鉱石からの金の回収方法の一実施形態においては、工程4が、空気の吹き込みにより酸化還元電位を調整する。   In one embodiment of the method for recovering gold from gold ore containing pyrite according to the present invention, step 4 adjusts the redox potential by blowing air.

黄鉄鉱を含有する金鉱石に対して、本発明に係る前処理方法を施した後に特定の金浸出液を用いて金浸出し、活性炭への吸着阻害物質である一価の銅イオンを金浸出液中から低減させる処理を行うことにより、有害な酸化硫黄の発生を抑制しながらも飛躍的に改善された金浸出速度を得ることができ、金の単位吸着量を増加させることが可能な、黄鉄鉱を含有する金鉱石からの金の回収方法が提供できる。   Gold ore containing pyrite is subjected to a pretreatment method according to the present invention and then gold leaching using a specific gold leaching solution, and monovalent copper ions, which are substances that inhibit adsorption to activated carbon, from the gold leaching solution. Contains pyrite, which can dramatically reduce gold leaching rate while suppressing the generation of harmful sulfur oxide and can increase the unit adsorption amount of gold A method for recovering gold from gold ore can be provided.

実施例及び比較例について、浸出時間と残渣中のAu品位の関係を示すグラフである。It is a graph which shows the relationship between leaching time and Au quality in a residue about an Example and a comparative example. 実施例1で使用した摩鉱後の黄鉄鉱精鉱に対し、窒素雰囲気下での熱分析をしたときのTG/DTA曲線である。It is a TG / DTA curve when the pyrite concentrate after the milling used in Example 1 is subjected to thermal analysis in a nitrogen atmosphere. 金浸出後液の酸化還元電位と吸着後液中の金濃度との関係を表すグラフである。It is a graph showing the relationship between the oxidation-reduction potential of the solution after gold leaching and the gold concentration in the solution after adsorption. 浸出液を活性炭充填カラムに連続的に給液した場合において、CuClの添加と空気の吹き込みを行った場合の、酸化還元電位及び金濃度の変化の関係を表すグラフである。It is a graph showing the relationship between the oxidation-reduction potential and the change in gold concentration when CuCl is added and air is blown when the leachate is continuously supplied to the activated carbon packed column.

以下、本発明を詳しく説明する。   The present invention will be described in detail below.

1. 前処理工程
本発明に係る金鉱石の前処理方法の一実施形態においては、黄鉄鉱を含有する金鉱石を準備する工程1と、当該金鉱石を不活性雰囲気下で450℃以上に加熱し、当該金鉱石中の黄鉄鉱を硫化鉄(II)及び単体硫黄に熱分解する工程2とを含み、酸化焙焼工程を含まない。
1. Pretreatment step In one embodiment of the pretreatment method for gold ore according to the present invention, step 1 for preparing gold ore containing pyrite, and heating the gold ore to 450 ° C or higher under an inert atmosphere, Including pyrolysis of pyrite in gold ore into iron sulfide (II) and elemental sulfur, and no oxidation roasting process.

(1)工程1
工程1では黄鉄鉱を含有する金鉱石を準備する。というのは、本発明では難溶性で金浸出率の低い黄鉄鉱中の金の浸出率を高めることを目的とするからである。しかしながら、それ以外の要件、例えば、鉱石中の金の濃度の大小は問わない。本発明の処理対象となる金鉱石は、浮遊選鉱や比重選別といった慣用の選鉱処理を経たものとすることもできる。粉砕摩鉱して鉱石の粒径を小さくし、金浸出液が鉱石内部の金に接触しやすいようにすることもできる。金鉱石中の金濃度は典型的には0.1〜100質量ppm程度であり、より典型的には1〜20質量ppm程度である。
(1) Step 1
In step 1, gold ore containing pyrite is prepared. This is because the purpose of the present invention is to increase the gold leaching rate in pyrite, which is hardly soluble and has a low gold leaching rate. However, other requirements such as the concentration of gold in the ore are not important. The gold ore to be treated in the present invention may be subjected to a conventional beneficiation process such as flotation or specific gravity sorting. Grinding can reduce the particle size of the ore so that the gold leachate can easily come into contact with the gold inside the ore. The gold concentration in the gold ore is typically about 0.1 to 100 ppm by mass, and more typically about 1 to 20 ppm by mass.

金鉱石は黄鉄鉱を含有する他、黄銅鉱、方鉛鉱、閃亜鉛鉱、硫砒鉄鉱、輝安鉱、磁硫鉄鉱などを含有していてもよいが、本発明の典型的な実施形態においては黄鉄鉱が3質量%以上含まれる金鉱石を使用し、本発明のより典型的な実施形態においては黄鉄鉱が30質量%以上含まれる金鉱石を使用する。このような金鉱石を使用することで、本発明による前処理の効果が顕著に発揮される。金鉱石の黄鉄鉱の含有量には特に上限はなく、100質量%でもよいが、典型的には80質量%以下である。   In addition to containing pyrite, the gold ore may contain chalcopyrite, galena, sphalerite, arsenite, kyanite, pyrrhotite, etc., but in an exemplary embodiment of the present invention pyrite Is used, and in a more typical embodiment of the present invention, a gold ore containing 30% by mass or more of pyrite is used. By using such gold ore, the effect of the pretreatment according to the present invention is remarkably exhibited. The content of pyrite in the gold ore is not particularly limited, and may be 100% by mass, but typically 80% by mass or less.

また、本発明においては、酸化焙焼工程を含まないことも特徴の一つである。従来技術では酸素や空気の存在下で酸化焙焼していたため、硫化鉱物中の硫黄が酸素と結合して酸化硫黄を生じさせていた。本発明においてはそのような酸化焙焼工程を実施しない。   Moreover, in this invention, it is one of the characteristics that an oxidation roasting process is not included. In the prior art, oxidation roasting was performed in the presence of oxygen or air, so sulfur in the sulfide mineral was combined with oxygen to produce sulfur oxide. In the present invention, such an oxidation roasting step is not performed.

(2)工程2
工程2では当該金鉱石を不活性雰囲気下で450℃以上に加熱し、当該金鉱石中の黄鉄鉱を硫化鉄(II)及び単体硫黄に熱分解する。このときの化学反応は次式:FeS2→FeS+Sで表される。理論的には酸化硫黄の発生はない。当該熱分解を経た後の金鉱石は、後述する金浸出液に対する溶解性が格段に向上する。熱分解を経ない場合に比べて、金の浸出率が約10倍も上昇し得る。本発明で行う熱分解法では黄鉄鉱(FeS2)がヘマタイト(Fe23)へ変化しないため、金の浸出率が不十分であると思われたことから、このような結果が得られたことは極めて驚くべき事であった。
(2) Step 2
In step 2, the gold ore is heated to 450 ° C. or higher under an inert atmosphere, and pyrite in the gold ore is thermally decomposed into iron sulfide (II) and elemental sulfur. The chemical reaction at this time is represented by the following formula: FeS 2 → FeS + S. Theoretically there is no generation of sulfur oxide. The gold ore after undergoing the thermal decomposition has a marked improvement in solubility in the gold leachate described below. Compared to the case without thermal decomposition, the gold leaching rate can be increased by about 10 times. Since the pyrolysis method performed in the present invention did not change pyrite (FeS 2 ) to hematite (Fe 2 O 3 ), the gold leaching rate seemed to be insufficient, and thus such a result was obtained. That was extremely surprising.

熱分解を実施する際の不活性雰囲気としては、アルゴンやヘリウムのような希ガス雰囲気、窒素雰囲気が挙げられる。もしくは熱分解に使用した排ガスを循環して使用してもよい。雰囲気中に酸素が含まれると金鉱石が酸化焙焼されて二酸化硫黄が発生するので、環境に対する影響が懸念されるため、本発明では採用しない。   Examples of the inert atmosphere when carrying out the thermal decomposition include a rare gas atmosphere such as argon and helium, and a nitrogen atmosphere. Or you may circulate and use the exhaust gas used for thermal decomposition. If oxygen is contained in the atmosphere, the gold ore is oxidized and roasted to generate sulfur dioxide, which is not adopted in the present invention because there is a concern about the influence on the environment.

熱分解時、金鉱石の温度を450℃以上に保持する必要がある。これは、450℃未満では黄鉄鉱の熱分解が進行しにくいからである。好ましくは、熱分解は金鉱石の温度を550℃以上に保持して実施するのが好ましく、650℃以上に保持して実施するのがより好ましい。また、熱分解は保持温度を5分以上継続するのが好ましく、30分以上継続するのがより好ましい。熱分解反応を十分に進行させるためである。但し、金鉱石の温度を過剰に高くすると昇温に必要なエネルギーと処理時間が大きくなるおそれがあるので、保持温度は800℃以下とするのが好ましく、750℃以下とするのがより好ましい。同様に、保持温度を維持する時間も120分以下とするのが好ましく、60分以下とするのがより好ましい。   It is necessary to keep the temperature of the gold ore at 450 ° C. or higher during pyrolysis. This is because the pyrolysis of pyrite hardly proceeds at less than 450 ° C. Preferably, the thermal decomposition is preferably carried out while maintaining the temperature of the gold ore at 550 ° C. or higher, more preferably at 650 ° C. or higher. The thermal decomposition is preferably continued for 5 minutes or more, and more preferably for 30 minutes or more. This is because the thermal decomposition reaction proceeds sufficiently. However, if the temperature of the gold ore is excessively increased, the energy required for the temperature increase and the treatment time may be increased. Therefore, the holding temperature is preferably 800 ° C. or less, and more preferably 750 ° C. or less. Similarly, the time for maintaining the holding temperature is also preferably 120 minutes or less, and more preferably 60 minutes or less.

熱分解を実施するための加熱炉の種類には特に制限はないが、例えば管状炉、ロータリーキルンを使用することができる。   Although there is no restriction | limiting in particular in the kind of heating furnace for implementing pyrolysis, For example, a tubular furnace and a rotary kiln can be used.

熱分解によって発生する単体硫黄は、高温の炉内でガス化しているので、金鉱石から固気分離可能である。そして、雰囲気ガスと共に排気系へと送ることが可能である。しかしながら、単体硫黄を排気系に送った時、温度の低下と共に硫黄が析出してガス道の閉塞等の不具合を生じさせるため、湿式スクラバーなどで回収することが望ましい。別法としては、ガス化した単体硫黄を工程2で発生する硫化鉄(II)と共に冷却して共に固体状で回収し、これらを一緒に金浸出工程に送ることも可能である。金の浸出工程で単体硫黄は金の浸出を阻害することなく浸出残渣として分離される。この場合、湿式スクラバーが不要になるため、経済的に有利になる。   Since elemental sulfur generated by pyrolysis is gasified in a high-temperature furnace, it can be separated from gold ore by solid-gas separation. Then, it can be sent to the exhaust system together with the atmospheric gas. However, when single sulfur is sent to the exhaust system, sulfur is deposited with a decrease in temperature to cause problems such as blockage of the gas passage. Therefore, it is desirable to recover with a wet scrubber or the like. Alternatively, the gasified elemental sulfur can be cooled together with the iron (II) sulfide generated in step 2 and recovered together in a solid state and sent together to the gold leaching step. In the gold leaching process, elemental sulfur is separated as a leaching residue without hindering gold leaching. In this case, a wet scrubber is unnecessary, which is economically advantageous.

2. 金浸出工程
(1)工程3
本発明に係る金回収方法の一実施形態においては、前処理工程後の金鉱石を、塩化物イオン、臭化物イオン、及び鉄イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出する工程3を実施する。
2. Gold leaching process (1) Process 3
In one embodiment of the gold recovery method according to the present invention, the gold ore after the pretreatment step is brought into contact with a gold leaching solution containing chloride ions, bromide ions, and iron ions under supply of an oxidizing agent, Step 3 of leaching the gold component in the ore is performed.

金の浸出は、溶出した金が塩化物イオン又は臭化物イオンと反応し、金の塩化錯体又は金の臭化錯体を生成することにより進行する。臭化物イオンを併用することで、より低電位の状態で錯体を形成するため、金の浸出効率の向上を図ることができる。また、鉄イオンは酸化剤の供給下で酸化した3価の鉄イオン又は当初より3価の鉄イオンが、金を酸化する働きをする。金浸出液は銅イオンを含有することが好ましい。銅イオンは直接反応に関与しないが、銅イオンが存在することで鉄イオンの酸化速度が速くなるからである。   Gold leaching proceeds by the elution of gold reacting with chloride ions or bromide ions to form gold chloride complexes or gold bromide complexes. By using bromide ions in combination, a complex is formed at a lower potential, so that the gold leaching efficiency can be improved. Further, the iron ions function to oxidize gold by trivalent iron ions oxidized under the supply of an oxidizing agent or trivalent iron ions from the beginning. The gold leachate preferably contains copper ions. This is because copper ions are not directly involved in the reaction, but the presence of copper ions increases the oxidation rate of iron ions.

浸出液と金鉱石の接触方法としては特に制限はなく、撒布や浸漬などの方法があるが、反応効率の観点から、浸出液中に残渣を浸漬し、撹拌する方法が好ましい。   The method for contacting the leachate with the gold ore is not particularly limited, and there are methods such as spreading and dipping. From the viewpoint of reaction efficiency, a method of dipping the residue in the leachate and stirring is preferred.

塩化物イオンの供給源としては、特に制限はないが、例えば塩化水素、塩酸、塩化金属及び塩素ガス等が挙げられ、経済性や安全性を考慮すれば塩化金属の形態で供給するのが好ましい。塩化金属としては、例えば塩化銅(塩化第一銅、塩化第二銅)、塩化鉄(塩化第一鉄、塩化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の塩化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の塩化物が挙げられ、経済性や入手容易性の観点から、塩化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、塩化銅及び塩化鉄を利用することも好ましい。   The supply source of chloride ions is not particularly limited, and examples thereof include hydrogen chloride, hydrochloric acid, metal chloride, and chlorine gas. In consideration of economy and safety, supply in the form of metal chloride is preferable. . Examples of the metal chloride include copper chloride (cuprous chloride, cupric chloride), iron chloride (ferrous chloride, ferric chloride), and alkali metals (lithium, sodium, potassium, rubidium, cesium, francium). Chlorides and chlorides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium) can be mentioned, and sodium chloride is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper chloride and iron chloride.

臭化物イオンの供給源としては、特に制限はないが、例えば臭化水素、臭化水素酸、臭化金属及び臭素ガス等が挙げられ、経済性や安全性を考慮すれば臭化金属の形態で供給するのが好ましい。臭化金属としては、例えば臭化銅(臭化第一銅、臭化第二銅)、臭化鉄(臭化第一鉄、臭化第二鉄)、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)の臭化物、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)の臭化物が挙げられ、経済性や入手容易性の観点から、臭化ナトリウムが好ましい。また、銅イオン及び鉄イオンの供給源としても利用できることから、臭化銅及び臭化鉄を利用することも好ましい。   The source of bromide ions is not particularly limited, but examples include hydrogen bromide, hydrobromic acid, metal bromide and bromine gas. In consideration of economy and safety, the form of metal bromide is used. It is preferable to supply. Examples of the metal bromide include copper bromide (cuprous bromide, cupric bromide), iron bromide (ferrous bromide, ferric bromide), alkali metals (lithium, sodium, potassium, Examples thereof include bromides of rubidium, cesium, and francium) and bromides of alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, and radium), and sodium bromide is preferable from the viewpoint of economy and availability. Moreover, since it can utilize also as a supply source of copper ion and iron ion, it is also preferable to utilize copper bromide and iron bromide.

銅イオン及び鉄イオンは、これらの塩の形態で供給するのが通常であり、例えばハロゲン化塩の形態で供給することができる。塩化物イオン及び/又は臭化物イオンの供給源としても利用できる観点から銅イオンは塩化銅及び/又は臭化銅、鉄イオンは塩化鉄及び/又は臭化鉄として供給されるのが好ましい。塩化銅及び塩化鉄としては塩化第二銅(CuCl2)、塩化第一銅(CuCl)、塩化第二鉄(FeCl3)。塩化第二鉄(FeCl2)等が使用される。 Copper ions and iron ions are usually supplied in the form of these salts. For example, they can be supplied in the form of halide salts. From the viewpoint that it can also be used as a source of chloride ions and / or bromide ions, copper ions are preferably supplied as copper chloride and / or copper bromide, and iron ions are preferably supplied as iron chloride and / or iron bromide. Copper chloride and iron chloride include cupric chloride (CuCl 2 ), cuprous chloride (CuCl), and ferric chloride (FeCl 3 ). Ferric chloride (FeCl 2 ) or the like is used.

工程3で使用する金浸出液中の塩化物イオンの濃度は、40g/L〜200g/Lであることがより好ましい。工程3で使用する金浸出液中の臭化物イオンの濃度は、反応速度や溶解度の観点から、20g/L〜100g/Lであることが好ましい。金浸出液中の鉄イオンは、0.01g/L〜10g/Lであることが好ましい。金の浸出効率の観点からは、金浸出液中の塩化物イオンに対する臭化物イオンの重量濃度比が1以上であることが好ましい。   The concentration of chloride ions in the gold leachate used in step 3 is more preferably 40 g / L to 200 g / L. The concentration of bromide ions in the gold leachate used in step 3 is preferably 20 g / L to 100 g / L from the viewpoint of reaction rate and solubility. The iron ions in the gold leachate are preferably 0.01 g / L to 10 g / L. From the viewpoint of gold leaching efficiency, the weight concentration ratio of bromide ions to chloride ions in the gold leaching solution is preferably 1 or more.

工程3の開始時における浸出液の酸化還元電位(vs Ag/AgCl)は、金浸出を促進する観点から550mV以上とするのが好ましく、600mV以上とするのがより好ましい。また、金の浸出速度を高める観点から、金浸出液のpHは2.0以下に維持するのが好ましいが、鉄の酸化速度は高いpHの方が促進されるため、金浸出液のpHは0.5〜1.9に維持するのがより好ましい。金浸出液の温度は、金の浸出速度を高める観点から45℃以上とするのが好ましく、60℃以上とするのがより好ましいが、高すぎると浸出液の蒸発や加熱コストの上昇あるので、95℃以下とするのが好ましく、85℃以下とするのがより好ましい。   The oxidation-reduction potential (vs Ag / AgCl) of the leaching solution at the start of step 3 is preferably 550 mV or more, more preferably 600 mV or more from the viewpoint of promoting gold leaching. Further, from the viewpoint of increasing the gold leaching rate, it is preferable to maintain the pH of the gold leaching solution at 2.0 or less. However, the higher the oxidation rate of iron, the higher the pH of the gold leaching solution. More preferably, it is maintained at 5 to 1.9. The temperature of the gold leachate is preferably 45 ° C. or higher from the viewpoint of increasing the gold leach rate, and more preferably 60 ° C. or higher. However, if it is too high, the leachate will evaporate and the heating cost will increase. It is preferable to set it as follows, and it is more preferable to set it as 85 degrees C or less.

本発明の好適な実施形態においては、工程3における金浸出液として、塩化物イオン及び臭化物イオンの両方を含有するように選択することを条件に、塩酸及び臭素酸の少なくとも一方と、塩化第二銅及び臭化第二銅の少なくとも一方と、塩化第二鉄及び臭化第二鉄の少なくとも一方と、塩化ナトリウム及び臭化ナトリウムの少なくとも一方とを含む混合液を使用することができる。   In a preferred embodiment of the present invention, at least one of hydrochloric acid and bromic acid, and cupric chloride are selected on the condition that the gold leachate in step 3 is selected to contain both chloride ions and bromide ions. And at least one of cupric bromide, at least one of ferric chloride and ferric bromide, and at least one of sodium chloride and sodium bromide can be used.

工程3の金浸出工程は酸化剤を供給しながら実施することで、酸化還元電位を管理する。酸化剤を添加しなければ途中で酸化還元電位が低下してしまい、浸出反応が進行しない。酸化剤としては特に制限はないが、例えば酸素、空気、塩素、臭素、及び過酸化水素などが挙げられる。極端に高い酸化還元電位をもつ酸化剤は必要なく、空気で十分である。   The gold leaching step of step 3 is performed while supplying an oxidizing agent, thereby managing the oxidation-reduction potential. If an oxidizing agent is not added, the redox potential is lowered in the middle, and the leaching reaction does not proceed. Although there is no restriction | limiting in particular as an oxidizing agent, For example, oxygen, air, chlorine, a bromine, hydrogen peroxide, etc. are mentioned. An oxidant with an extremely high redox potential is not necessary and air is sufficient.

(2)工程4
金浸出を十分に行った後の金浸出後液の酸化還元電位はおおむね500〜520mV程度となる。この金浸出後液に更にCuClを加えて撹拌し、一度酸化還元電位を520mV以下に、より好ましくは500mV以下に下げた後に、酸化剤を加えて再度ORPを520mV以上に調整する。これにより、金の活性炭吸着を阻害する金浸出後液中の一価の銅イオンが二価の銅イオンに酸化されて減少し、金浸出後液中の活性炭への吸着競合物が少なくなるため、活性炭への金の吸着率がより向上する。
(2) Step 4
The oxidation-reduction potential of the solution after gold leaching after sufficient gold leaching is about 500 to 520 mV. After the gold leaching, CuCl is further added and stirred, and once the oxidation-reduction potential is lowered to 520 mV or less, more preferably 500 mV or less, an oxidizing agent is added to again adjust the ORP to 520 mV or more. As a result, monovalent copper ions in the solution after gold leaching, which inhibits the adsorption of gold by activated carbon, are oxidized and reduced to divalent copper ions, and there are fewer adsorbing competitors on the activated carbon in the solution after gold leaching. Further, the adsorption rate of gold on activated carbon is further improved.

酸化剤は、特に限定されないがコストの面から空気が使用される。また液温も特に限定されないが、金浸出が加温浸出であることと、酸化効率の面を考慮すると、金浸出後液の液温は45℃以上に維持されるのが好ましく、より好ましくは50℃以上である。   The oxidizing agent is not particularly limited, but air is used from the viewpoint of cost. Also, the liquid temperature is not particularly limited, but considering the fact that gold leaching is warm leaching and the aspect of oxidation efficiency, the liquid temperature of the liquid after gold leaching is preferably maintained at 45 ° C. or more, more preferably It is 50 ° C. or higher.

ORPの上昇は、金浸出後液中の一価の銅イオンの減少を示す。一価銅は非常にソフトな元素として知られ活性炭に対する親和性が高く、金錯体の吸着と競合する。この一価銅の減少により活性炭中の吸着活性点は金に対する選択性が増すことで金の効率的な回収が達成される。   An increase in ORP indicates a decrease in monovalent copper ions in the solution after gold leaching. Monovalent copper is known as a very soft element, has a high affinity for activated carbon, and competes with the adsorption of gold complexes. By reducing the monovalent copper, the adsorption active sites in the activated carbon are increased in selectivity to gold, thereby achieving efficient recovery of gold.

ORPの調整は、520mV以上に調整することで、液中の一価銅濃度を低減させて金の活性炭への吸着率を向上させることができる。上限に特に制限はないが、調整に必要な時間及び一価銅の低減効率を考慮すると、570mV以下とするのが好ましく、より好ましくは530〜560mVに調整することが好ましい。   By adjusting the ORP to 520 mV or more, it is possible to reduce the monovalent copper concentration in the liquid and improve the adsorption rate of gold on activated carbon. Although there is no restriction | limiting in particular in an upper limit, when the time required for adjustment and the reduction efficiency of monovalent copper are considered, it is preferable to set it as 570 mV or less, More preferably, it is preferable to adjust to 530-560 mV.

3.金回収(工程5)
金の浸出反応後、固液分離することによって得られた金溶解液から、活性炭吸着により金を回収する工程5を実施する。金の活性炭への接触はバッチ回分式もしくは活性炭を充填した吸着塔に酸性浸出液を連続通液することで行ってもよい。
3. Gold recovery (process 5)
After the gold leaching reaction, Step 5 of recovering gold by activated carbon adsorption is performed from a gold solution obtained by solid-liquid separation. The contact of gold with activated carbon may be carried out by batch feeding or by continuously passing an acidic leachate through an adsorption tower packed with activated carbon.

バッチ式の場合、攪拌速度は指定されない。添加の活性炭量は金重量の50倍〜10000倍となるように添加する。   In the case of a batch type, the stirring speed is not specified. The amount of activated carbon added is 50 to 10,000 times the weight of gold.

連続通液法式では特に通液速度は限定されない(一般的にはSV1〜25)が活性炭の単位重量あたりの金吸着量が20000〜30000g/tとなった時点で、活性炭は要求能力を満たさなくなる。そのため活性炭からの金のストリップや再生はこの吸着量を目安に行う。活性炭の再生方法は一般的に知られる硫黄化合物や窒素化合物、もしくは酸により行われ、特に限定されない。   In the continuous flow method, the flow rate is not particularly limited (generally, SV1 to 25), but when the gold adsorption amount per unit weight of the activated carbon reaches 20000 to 30000 g / t, the activated carbon does not satisfy the required capacity. . Therefore, gold strips from activated carbon and regeneration are performed based on this amount of adsorption. The method for regenerating activated carbon is carried out with a generally known sulfur compound, nitrogen compound, or acid, and is not particularly limited.

4.その他
工程2を実施した後、工程3を実施する前に、金鉱石中の不純物を除去するための各種処理を行うことも可能である。例えば、単体硫黄は、前処理後の金鉱石を単体硫黄が溶融するのに十分な温度に加熱し、瀘別して金と単体硫黄を分離することが可能である。硫化鉄(FeS)は、前処理後の金鉱石を硫酸や塩酸等の各種鉱酸のほか、硫酸鉄や塩化鉄等のFe3+塩の水溶液に接触させて鉄分を浸出し、その後に固液分離することにより除去可能である。
4). Others After performing step 2, it is possible to perform various treatments for removing impurities in the gold ore before performing step 3. For example, elemental sulfur can separate gold and elemental sulfur by heating the gold ore after pretreatment to a temperature sufficient for elemental sulfur to melt and separating it. Iron sulfide (FeS) is made by contacting pre-treated gold ore with various mineral acids such as sulfuric acid and hydrochloric acid, as well as with aqueous solutions of Fe 3+ salts such as iron sulfate and iron chloride. It can be removed by liquid separation.

以下、実施例により本発明をさらに具体的に説明する。但し、本発明はこれらに限定されるものではない。なお、実施例で用いた金属の分析方法は、ICP−AESにて行った。但し、金の分析では、灰吹法にて試料中の金を析出させた後、ICP−AESにて定量分析を行った。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these. In addition, the analysis method of the metal used in the Example was performed by ICP-AES. However, in the analysis of gold, gold in the sample was deposited by the ash blowing method, and then quantitative analysis was performed by ICP-AES.

<比較例1>
黄鉄鉱精鉱(パプアニューギニア国産リヒール鉱)を準備した。この黄鉄鉱精鉱中の黄鉄鉱の含有量をXRDと化学分析により算定したところ、17質量%であった。黄鉄鉱精鉱(リヒール鉱)をボールミルで粉砕摩鉱して、累積重量粒度の分布曲線において累積重量が80%となる粒径(d80)を24μmに調整した。d80は、レーザ回折式粒度分布測定装置(島津製作所社型式SALD2100)で3回測定したときの平均値とした。次いで、摩鉱後の黄鉄鉱精鉱(200g)に対して、表1に記載の組成を有する塩酸酸性の金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で90時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を500mVに維持した。また、浸出中は、金浸出液のpHが1.0〜1.1を維持するように塩酸を適宜添加した。
<Comparative Example 1>
Pyrite concentrate (Papua New Guinea domestic reheel ore) was prepared. It was 17 mass% when content of the pyrite in this pyrite concentrate was calculated by XRD and chemical analysis. Pyrite concentrate (reheel ore) was pulverized and ground with a ball mill, and the particle size (d80) at which the cumulative weight was 80% in the cumulative weight particle size distribution curve was adjusted to 24 μm. d80 is an average value when measured three times with a laser diffraction particle size distribution measuring apparatus (model SALD2100 manufactured by Shimadzu Corporation). Next, the pyrite concentrate (200 g) after milling was subjected to a leaching treatment for 90 hours at a liquid temperature of 85 ° C. with a pulp concentration of 100 g / L using a hydrochloric acid acidic gold leachate having the composition shown in Table 1. It was. During the leaching process, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 500 mV. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at 1.0 to 1.1.

浸出試験中、定期的に浸出残渣のサンプルを採取し、残渣中のAu品位を測定した。図1に、当該試験の結果から得られた、浸出時間と残渣中のAu品位の関係を示す(図1中、「FeS2熱分解無し」のプロット参照)。この結果から、当初は約6g/tであった残渣中のAu品位が0.9g/tにまで低下するのに90時間要していることが分かる。 During the leaching test, samples of the leaching residue were taken periodically, and the Au quality in the residue was measured. FIG. 1 shows the relationship between the leaching time and the Au quality in the residue obtained from the results of the test (see the plot “FeS 2 no thermal decomposition” in FIG. 1). From this result, it can be seen that it takes 90 hours for the Au quality in the residue, which was initially about 6 g / t, to be reduced to 0.9 g / t.

<実施例1>
比較例1と同じ摩鉱後の黄鉄鉱精鉱(1.5kg)を管状炉に装入し、窒素雰囲気下で1時間かけて700℃まで昇温(昇温速度=10℃/min)した後、1時間加熱した。室温まで放冷後、加熱処理前後のXRD解析により、元鉱中に含まれていたFeS2のピークが消失し、FeSのピークが生じたことを確認した。熱処理により生じた単体硫黄は特に除去操作を施さなかった。
次いで、熱処理後の黄鉄鉱精鉱に対して、比較例1と同じ組成を有する塩酸酸性の金浸出液を用いてパルプ濃度100g/Lとし、液温85℃で18時間浸出処理を行った。浸出処理中は空気の吹き込み(精鉱1Lに対して0.1L/min)及び撹拌を継続し、酸化還元電位(ORP:vs Ag/AgCl)を400mV以上に維持した。また、浸出中は、金浸出液のpHが1.0〜1.1を維持するように塩酸を適宜添加した。
<Example 1>
The same pyrite concentrate (1.5 kg) after milling as in Comparative Example 1 was charged into a tubular furnace and heated to 700 ° C. (temperature increase rate = 10 ° C./min) over 1 hour in a nitrogen atmosphere. Heated for 1 hour. After cooling to room temperature, the XRD analysis before and after the heat treatment confirmed that the FeS 2 peak contained in the original ore disappeared and the FeS peak was generated. The elemental sulfur produced by the heat treatment was not particularly removed.
Subsequently, the pyrite concentrate after the heat treatment was subjected to a leaching treatment for 18 hours at a liquid temperature of 85 ° C. using a hydrochloric acid acidic gold leaching solution having the same composition as Comparative Example 1 to a pulp concentration of 100 g / L. During the leaching process, air blowing (0.1 L / min with respect to 1 L of concentrate) and stirring were continued, and the oxidation-reduction potential (ORP: vs Ag / AgCl) was maintained at 400 mV or higher. During the leaching, hydrochloric acid was appropriately added so that the pH of the gold leaching solution was maintained at 1.0 to 1.1.

浸出試験中、定期的に浸出残渣のサンプルを採取し、残渣中のAu品位を測定した。図1に、当該試験の結果から得られた、浸出時間と残渣中のAu品位の関係を示す(図1中、「FeS2熱分解有り」のプロット参照)。この結果から、当初は約6g/tであった残渣中のAu品位が僅か12時間で0.6g/tにまで低下したことが分かる。 During the leaching test, samples of the leaching residue were taken periodically, and the Au quality in the residue was measured. FIG. 1 shows the relationship between the leaching time and the Au quality in the residue obtained from the results of the test (see the “FeS 2 thermal decomposition” plot in FIG. 1). From this result, it can be seen that the Au quality in the residue, which was about 6 g / t at the beginning, decreased to 0.6 g / t in just 12 hours.

<熱分解条件が与えるXRDにおけるFeS2及びFeSのピーク変化>
実施例1で使用した摩鉱後の黄鉄鉱精鉱(1.5kg)に対して、表1に記載のように保持温度及び保持時間を変化させたときのXRD解析におけるFeS2及びFeSの回折強度変化を調査した。実験は管状炉を使用し、窒素雰囲気下で行った。熱分解により生成する単体硫黄は蒸発させて窒素気流により除いた。昇温速度はすべて10℃/minとした。冷却は室温になるまで放冷した。XRD解析はリガク社製型式RINT2200 ultimateを使用した。FeS2は2θ=32.98°と56.15°、FeSは2θ=43.67°と33.78°に特徴的なピークをもつのでこれらの入射角に着目した。結果を表2に示す。
<Peak changes of FeS 2 and FeS in XRD given by thermal decomposition conditions>
Diffraction intensity of FeS 2 and FeS in XRD analysis when holding temperature and holding time are changed as shown in Table 1 for pyrite concentrate (1.5 kg) after milling used in Example 1 The change was investigated. The experiment was performed using a tubular furnace under a nitrogen atmosphere. Elemental sulfur produced by pyrolysis was evaporated and removed by a nitrogen stream. The heating rate was all 10 ° C./min. Cooling was allowed to cool to room temperature. For the XRD analysis, RIG2200 model RINT2200 ultimate was used. FeS 2 has characteristic peaks at 2θ = 32.98 ° and 56.15 °, and FeS has characteristic peaks at 2θ = 43.67 ° and 33.78 °, so attention was paid to these incident angles. The results are shown in Table 2.

表2の結果から、600℃以上に加熱すれば黄鉄鉱由来のピークは確実に消失することが分かり、これは結晶性黄鉄鉱が熱分解されたことを示し、保持温度及び保持時間はそれぞれ650℃以上で60分以上の条件とすると明瞭なFeSのピークが出現することから最も好ましいことが分かる。   From the results in Table 2, it can be seen that the pyrite-derived peak disappears reliably when heated to 600 ° C. or higher, which indicates that the crystalline pyrite was thermally decomposed, and the holding temperature and holding time were 650 ° C. and higher, respectively. When the condition is 60 minutes or longer, a clear FeS peak appears, which is most preferable.

<実施例2>
実施例1で使用した摩鉱後の黄鉄鉱精鉱に対し、窒素雰囲気下での熱分析(セイコー社製型式TG/DTA6300)により、各温度における重量変化と吸熱−発熱を調査した。昇温速度は毎分20℃とした。結果を図2に示す。450℃で質量の減少が始まり、同時に発熱が見られることから黄鉄鉱の分解が始まっていることが判る。窒素雰囲気下では最低でも450℃まで昇温しなければ黄鉄鉱の熱分解は生じない。ただし、上述したXRD解析の結果からみると、450℃付近では熱分解に長時間を要すると考えられ、600℃以上での加熱処理が望ましい。
<Example 2>
The pyrite concentrate after milling used in Example 1 was examined for weight change and endothermic-exothermic heat at each temperature by thermal analysis in a nitrogen atmosphere (model TG / DTA6300 manufactured by Seiko). The heating rate was 20 ° C. per minute. The results are shown in FIG. The decrease in mass begins at 450 ° C, and at the same time heat generation is seen, indicating that the decomposition of pyrite has started. In a nitrogen atmosphere, pyrolysis of pyrite will not occur unless the temperature is raised to at least 450 ° C. However, from the above-mentioned XRD analysis results, it is considered that the thermal decomposition takes a long time at around 450 ° C., and the heat treatment at 600 ° C. or higher is desirable.

<実施例3>
50g/Lの塩化物イオン、80g/Lの臭化物イオン、18g/Lの銅、及び0.2g/Lの鉄を含む金浸出液を用いて、金浸出工程後に得られた金浸出後液中の金を浸出した。金浸出後液は、NaCl:84g/L、NaBr:103g/L、Cu:20g/L、Fe:2g/L、Au:8mg/L含有し、pHは1.2であった。CuClを添加してORPを510mVに調整した。浸出後液を55℃に加温し、空気を1分当たり0.4L吹き込みながら攪拌した。この金浸出後液をヤシ殻由来活性炭(太平化学産業社製ヤシコールMC)およそ14mlを充填したガラス製カラムに通し、金を活性炭に吸着させた。カラムの直径は11mm、高さ150mmとした。液の供給速度は11.9ml/分、空間速度は50(1/h)とした。排出される吸着後液中の金を塩酸で希釈しICP−AESにより定量した。ORPと吸着後液の関係を図1に示す。
<Example 3>
In a gold leaching solution obtained after the gold leaching step using a gold leaching solution containing 50 g / L chloride ion, 80 g / L bromide ion, 18 g / L copper, and 0.2 g / L iron. Leached gold. The solution after gold leaching contained NaCl: 84 g / L, NaBr: 103 g / L, Cu: 20 g / L, Fe: 2 g / L, Au: 8 mg / L, and pH was 1.2. CuCl was added to adjust the ORP to 510 mV. After leaching, the liquid was heated to 55 ° C. and stirred while blowing 0.4 L of air per minute. This gold leaching solution was passed through a glass column filled with approximately 14 ml of coconut shell-derived activated carbon (Yaikol MC manufactured by Taihei Chemical Sangyo Co., Ltd.) to adsorb gold onto the activated carbon. The column diameter was 11 mm and the height was 150 mm. The liquid supply rate was 11.9 ml / min, and the space velocity was 50 (1 / h). Gold in the discharged solution after adsorption was diluted with hydrochloric acid and quantified by ICP-AES. The relationship between the ORP and the post-adsorption liquid is shown in FIG.

ORPを520mV以上に調整した液では吸着後液に含まれる金濃度が著しく低下していることがわかる。ORPの上限は定めないものの過度に電位を上げても吸着後液の金の濃度は劇的に低下することはなく、少なくとも520mVまで酸化すれば良いが過度の酸化を妨げるものではないことが分かる。   It can be seen that the gold concentration contained in the post-adsorption liquid is significantly reduced in the liquid in which the ORP is adjusted to 520 mV or more. Although the upper limit of ORP is not set, it is understood that even if the potential is raised excessively, the gold concentration in the solution after adsorption does not drop dramatically, and it is sufficient to oxidize to at least 520 mV, but it does not prevent excessive oxidation. .

<実施例4>
実施例3で使用した金浸出後と活性炭充填カラムとを用いて連続的に給液する中で、CuClの添加と空気吹込みによりORPを変化させて吸着後液の金濃度を測定した。結果を図2に示す。
<Example 4>
The gold concentration in the post-adsorption liquid was measured by changing the ORP by adding CuCl and blowing air while continuously feeding liquid after the gold leaching used in Example 3 and using the activated carbon packed column. The results are shown in FIG.

図2からもORPと金の活性炭への吸着の関係は明らかであり、金浸出後液はORP520mV以上として活性炭と接触させると良好な金の回収が可能である。また、ORPに影響を与えているのはCu(I)であることが分かる。   The relationship between adsorption of ORP and gold on activated carbon is clear also from FIG. 2, and gold can be recovered satisfactorily when the solution after gold leaching is ORP 520 mV or higher and contacted with activated carbon. It can also be seen that it is Cu (I) that affects the ORP.

Cu(I)は水溶液中では酸化を受けてCu(II)になりやすいが本系のような高濃度のハロゲン化物を含む水溶液では比較的安定に存在する。そのため空気吹き込み以外にも過酸化水素や次亜塩素酸といった酸化剤でCu(I)を酸化しても同様の結果が得られると推定されるがコストや取り扱いの利便性を考慮すると空気吹込みが好ましい。   Cu (I) tends to be oxidized to Cu (II) in an aqueous solution, but exists relatively stably in an aqueous solution containing a high-concentration halide as in this system. Therefore, in addition to air blowing, it is estimated that similar results can be obtained by oxidizing Cu (I) with an oxidizing agent such as hydrogen peroxide or hypochlorous acid. Is preferred.

Claims (3)

黄鉄鉱を含有する金鉱石を準備する工程1及び当該金鉱石を不活性雰囲気下で450℃以上に加熱し、当該金鉱石中の黄鉄鉱を硫化鉄(II)及び単体硫黄に熱分解する工程2を含み、酸化焙焼工程を含まない前処理と、
前処理工程後の金鉱石を、塩化物イオン、臭化物イオン、及び鉄イオンを含有する金浸出液に酸化剤の供給下で接触させて、当該鉱石中の金成分を浸出する工程3と
工程3で得られた金成分浸出後液に塩化第一銅を添加した後、酸化剤を加えて酸化還元電位を520mV以上に調整して金浸出後液中の一価の銅イオンを低減させる工程4と、
工程4で得られた金浸出後液中の金を活性炭に吸着させる工程5と
を含む、黄鉄鉱を含有する金鉱石からの金の回収方法。
Step 1 for preparing gold ore containing pyrite and Step 2 for heating the gold ore to 450 ° C. or higher under an inert atmosphere and thermally decomposing the pyrite in the gold ore into iron (II) sulfide and elemental sulfur. Including pre-treatment that does not include oxidation roasting process;
In step 3 and step 3, the gold ore after the pretreatment step is brought into contact with a gold leaching solution containing chloride ions, bromide ions, and iron ions under supply of an oxidizing agent to leach gold components in the ore. Step 4 of adding cuprous chloride to the obtained gold component leaching solution and then adding an oxidizing agent to adjust the oxidation-reduction potential to 520 mV or more to reduce monovalent copper ions in the gold leaching solution; ,
A method for recovering gold from gold ore containing pyrite, which comprises adsorbing gold in the solution after gold leaching obtained in step 4 to activated carbon.
工程4が、酸化還元電位(参照電極、銀/塩化銀)を520mV〜570mVに調整することを含む請求項1に記載の黄鉄鉱を含有する金鉱石からの金の回収方法。   The method for recovering gold from gold ore containing pyrite according to claim 1, wherein step 4 includes adjusting the redox potential (reference electrode, silver / silver chloride) to 520 mV to 570 mV. 工程4が、空気の吹き込みにより酸化還元電位を調整することを含む請求項1又は2に記載の黄鉄鉱を含有する金鉱石からの金の回収方法。   The method for recovering gold from gold ore containing pyrite according to claim 1 or 2, wherein step 4 includes adjusting the oxidation-reduction potential by blowing air.
JP2013075222A 2013-03-29 2013-03-29 Method for recovering gold from gold ore containing pyrite Active JP5840641B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013075222A JP5840641B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from gold ore containing pyrite
AU2014245391A AU2014245391B2 (en) 2013-03-29 2014-02-12 Method for recovering gold from gold ore containing pyrite
PCT/JP2014/053194 WO2014156351A1 (en) 2013-03-29 2014-02-12 Method for recovering gold from gold ore containing pyrite
PE2015002093A PE20151819A1 (en) 2013-03-29 2014-02-12 METHOD TO RECOVER GOLD FROM GOLD MINERALS CONTAINING PYRITE
CA2908370A CA2908370C (en) 2013-03-29 2014-02-12 Method of recovering gold from gold ores containing pyrite
CL2015002890A CL2015002890A1 (en) 2013-03-29 2015-09-28 Method to recover gold from gold ores containing pyrite.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075222A JP5840641B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from gold ore containing pyrite

Publications (2)

Publication Number Publication Date
JP2014198886A true JP2014198886A (en) 2014-10-23
JP5840641B2 JP5840641B2 (en) 2016-01-06

Family

ID=51623352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075222A Active JP5840641B2 (en) 2013-03-29 2013-03-29 Method for recovering gold from gold ore containing pyrite

Country Status (6)

Country Link
JP (1) JP5840641B2 (en)
AU (1) AU2014245391B2 (en)
CA (1) CA2908370C (en)
CL (1) CL2015002890A1 (en)
PE (1) PE20151819A1 (en)
WO (1) WO2014156351A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818379A (en) * 2015-04-22 2015-08-05 柳州华锡有色设计研究院有限责任公司 Treatment method of gold and silver pyrite
CN105483392A (en) * 2015-12-09 2016-04-13 灵宝金源矿业股份有限公司 Technology for recycling gold from breccia gold ores
CN106521178A (en) * 2016-11-21 2017-03-22 昆明理工大学 Pretreatment mineral separation technique for ferromanganese-containing electrum
CN107904394A (en) * 2017-11-30 2018-04-13 广西大学 The dump leaching method for pre-oxidizing of primary gold ore stone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907961A (en) * 2016-05-04 2016-08-31 长春黄金研究院 Oxidation pretreatment method for strengthening arsenic containing gold concentrates through cooperation of oxidizing agent and catalyst
CN106086451A (en) * 2016-07-27 2016-11-09 长春黄金研究院 A kind of method of collaborative reduction thiosulfate consumption
CN112284959A (en) * 2020-10-15 2021-01-29 长春黄金研究院有限公司 Method for determining influence of gold-robbing substances in gold ore product on gold and silicate-coated gold
CN115449626A (en) * 2022-09-14 2022-12-09 海南行者新材料科技有限公司 Method for treating sulfur-containing gold ore powder by using microwaves
CN115465880B (en) * 2022-09-16 2023-10-31 中南大学 Method for preparing thiosulfate from pyrite under normal pressure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042155A (en) * 2003-07-28 2005-02-17 Sumitomo Metal Mining Co Ltd Method for concentrating noble metal contained in leaching residue from hydrometallurgical copper refining process
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold
JP2012184462A (en) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005042155A (en) * 2003-07-28 2005-02-17 Sumitomo Metal Mining Co Ltd Method for concentrating noble metal contained in leaching residue from hydrometallurgical copper refining process
JP2009235525A (en) * 2008-03-27 2009-10-15 Nippon Mining & Metals Co Ltd Method for leaching out gold
JP2012184462A (en) * 2011-03-04 2012-09-27 Jx Nippon Mining & Metals Corp Method of leaching copper and gold from sulfide ore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104818379A (en) * 2015-04-22 2015-08-05 柳州华锡有色设计研究院有限责任公司 Treatment method of gold and silver pyrite
CN105483392A (en) * 2015-12-09 2016-04-13 灵宝金源矿业股份有限公司 Technology for recycling gold from breccia gold ores
CN106521178A (en) * 2016-11-21 2017-03-22 昆明理工大学 Pretreatment mineral separation technique for ferromanganese-containing electrum
CN106521178B (en) * 2016-11-21 2019-01-04 昆明理工大学 A kind of electrum pretreatment ore-dressing technique containing ferrimanganic
CN107904394A (en) * 2017-11-30 2018-04-13 广西大学 The dump leaching method for pre-oxidizing of primary gold ore stone

Also Published As

Publication number Publication date
JP5840641B2 (en) 2016-01-06
AU2014245391A1 (en) 2015-10-22
PE20151819A1 (en) 2015-12-16
CA2908370A1 (en) 2014-10-02
WO2014156351A1 (en) 2014-10-02
CL2015002890A1 (en) 2016-07-29
CA2908370C (en) 2017-11-07
AU2014245391B2 (en) 2016-03-31

Similar Documents

Publication Publication Date Title
JP5840641B2 (en) Method for recovering gold from gold ore containing pyrite
JP5955393B2 (en) Method for leaching gold from gold ore containing pyrite
JP5832665B2 (en) Method for leaching gold from gold ore containing pyrite
WO2014168222A1 (en) Pretreated gold ore
JP5840642B2 (en) Method for recovering gold from sulfide minerals
JP6195536B2 (en) Iron removal method, iron leaching method, and gold recovery method
WO2019064709A1 (en) Gold leaching method and gold recovery method
AU2013100641A4 (en) Pretreated gold ore
JP6899672B2 (en) How to recover gold from ore or refining intermediates
JP6329939B2 (en) Gold ore pretreatment method
AU2013100677A4 (en) Method of pretreating gold ore
JP6849482B2 (en) How to recover gold from ores containing gold or refining intermediates
WO2014155752A1 (en) Method for pretreatment of gold ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151111

R150 Certificate of patent or registration of utility model

Ref document number: 5840641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250